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Abstract

Privacy-preserving and cost-effective indoor sensing is vi-
tal for embodied agents to collaborate safely with people in
dynamic scenes. Multi-view millimeter-wave radar shows
great potential for this purpose. However, prevailing meth-
ods rely on implicit cross-view association, which this re-
liance often results in ambiguous feature matches and de-
graded performance in cluttered environments. To address
these limitations, we propose REXO (multi-view Radar ob-
ject dEtection with 3D bounding boX diffusiOn), which lifts
DiffusionDet’s 2D box denoising to the full 3D radar space.
Noisy 3D boxes are projected onto all radar views to enable
explicit association and radar-conditioned denoising. Eval-
uated on two open indoor radar datasets, our approach out-
performs state-of-the-art methods by +11.02 AP on MMVR
and +4.22 AP on HIBER.

1. Introduction

Reliable perception is crucial for embodied agents in in-
door settings (homes, factories, clinics), where scene un-
derstanding, motion capture, and human-robot collabora-
tion are required. Radar is increasingly used for navigation,
manipulation, and safer human-robot interaction because it
provides robust awareness in low light, smoke, dust, and
even through cardboard and plastic [23, 31]. For example,
FuseGrasp [9] fuses radar and camera to grasp transparent
objects, exploiting millimeter-wave (mmWave) radar’s abil-
ity to render transparent materials opaque and robotic-arm
radar imaging to recover shapes invisible to RGB-D. On
the other hand, radar-only perception (see Appendix A) re-
mains challenging. Multi-view radar methods either pair
horizontal proposals with fixed-height vertical ones [37]
(Fig. 1 (a)) or use query-based transformers to regress 3D
bounding boxes (BBoxes) from both views [40] (Fig. 1 (b)).
Image-based object detection has been redefined as a gen-
erative denoising process, where a random noisy 2D BBox
is iteratively refined through a diffusion denoising process
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Figure 1. (a) RFMask [37] generates horizontal-view proposals
with fixed height; (b) RETR [40] implicitly links queries to cross-
view features; (c) DiffusionDet [7] needs pairing with fixed-height
vertical BBoxes; (d) REXO (ours) performs diffusion directly in
3D radar space for simple, explicit cross-view association.

to yield a final clean BBox [7] and this approach generally

surpasses query-based detectors. When ported to horizontal

radar heatmaps (Fig. | (c)), it denoises 2D BBoxes but still
requires the fixed-height vertical pairing used by RFMask.
We therefore /ift the diffusion procedure from a 2D plane

(image or horizontal radar view) in DiffusionDet to the full
3D radar space, as illustrated in Fig. | (d). This simple
lifting facilitates cross-view radar feature association and
radar-conditioned BBox denoising, while enabling the in-
tegration of geometry-aware loss functions and prior con-
straints on the 3D BBox. Consequently, we introduce the
proposed framework as Radar object dEtection with 3D
bounding boX diffusiOn (REXO) with the following con-
tributions:

1. 2D-to-3D Lifting with Explicit Cross-View Associa-
tion: At each diffusion timestep, a noisy 3D BBox is
projected onto every radar view, and Rol-aligned crops
supply view-specific features. This BBox-guided associ-
ation grows linearly with the number of views, whereas
proposal- or query-based schemes grow quadratically.
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Figure 2. REXO training: 1) A backbone extracts horizontal/vertical radar features; 2) Ground-truth 3D BBox x¢ are diffused to noisy
x¢; 3) o is grounded using a ground-level constraint; 4) DenoisingDet, projects x; onto both views and uses the aligned features to
recover &o; 5) A radar-to-camera transform and 3D-to-2D projection yield image BBox binage.

2. 3D BBox Denoising: While the cross-view feature as-
sociation is simplified due to the 2D-to-3D lifting, the
denoising process may be more challenging. In turn, the
associated radar features are used as conditioning to al-
leviate the more challenging 3D BBox denoising. To the
best of our knowledge, REXO is the first diffusion model
in the multi-view radar perception field.

We demonstrate the effectiveness of our contributions
through evaluations on two open radar datasets.

2. REXO: BBox Diffusion in 3D Radar Space

DiffusionDet [7] reformulates object detection as a denois-
ing diffusion process [17, 32], treating «; as 2D BBox pa-
rameters instead of image pixels. We extend this to multi-
view radar by lifting ; to 3D BBox in radar coordinates
system. Conditioned on radar heatmaps (see in Fig. 2),
REXO performs 3D BBox diffusion in two phases: 1) a for-
ward process that adds noise to ground-truth (GT) BBox
x( to produce random x 7 during training, and 2) a reverse
process that denoises random a7 to estimate noise-free &
during inference. The denoised BBox is also projected to
the 2D image plane for supervision in both radar and im-
age domains. We describe REXO in two parts: training and
inference.

2.1. Training

Backbone: As illustrated in Fig. 2, we first generate two
radar heatmaps (horizontal Yo, € RM*WXD and ver-
tical Yyer € RMXHXD \where M, W, H and D de-
note the number of consecutive frames, width, height and
depth, respectively. More details are described in Ap-
pendix B) derived from raw data captured by horizontal
and vertical radar arrays. Taking the two radar heatmaps
Yior € RMXWXD and Yo € RM*XHXD ag inputs,
a shared backbone network (e.g., ResNet [14]) gener-
ates horizontal-view and vertical-view radar feature maps:
Zyor = backbone (Y oy ) and Zyer = backbone (Y ey ).

Initialization of x, and Forward Process to x; with
Ground-Level Constraint: For a given number of
BBoxes Nirain to be detected, xo is simply initial-
ized by the 3D BBox GT in the radar space Tyagar =
{¢z,cy, 2w, h.d}" € RS and padded with random 3D
BBOX ®rang ~ N (0, 1) if Niain > Ngr. The diffused
3D BBox x; at time ¢ can be generated as

Ty = Vayxo + V1 — aue, (1)

where € ~ N (0, Is), and &; denotes the noise variance
schedule. Since the BBox is now explicitly defined in the
3D radar coordinate system, it is natural to incorporate prior
knowledge as a constraint into the diffusion process. Unlike
DiffusionDet and RETR, we enforce the reduced five 3D
parameters by grounding with h!/2, allowing 3D and 2D
gradients to flow jointly and guiding the denoising process
under strict geometric constraints. This ensures that objects
are correctly positioned on the floor, reflecting realistic spa-
tial relationships: @, = {ct, ht/2,ct, wt, ht,d'} " (see the

Ground-Level Constraint in Fig. 2).

Cross-View Radar-Conditioned BBox Detector:
DenoisingDet, includes explicit cross-view feature as-
sociation and radar-conditioned 3D BBox detector. Given
the noisy 3D BBox z; in (1), the x;-guided cross-view
feature association first projects x; onto the two radar
views, resulting in two 2D BBoxes,

t t t it T t t t t T
Lt hor — {Cgcacsz 7d } ; Lt,ver — {Cy,Cz,h ad } , (2)

and then crops out the cross-view 2D radar features:
;zg;ver = R‘OIAlign(Zhor/ven mt,hor/ver) € ROXTxr
via a standard ROIAlign operation [15], where r denotes
a fixed spatial resolution, e.g., r = 7. At time ¢, this process

yields Niyain pairs of associated radar features
Zcrop

radar

3)

each corresponding to a noisy 3D BBox ;. Conditioned

on Z;.:5., a DenoisingDet, with learnable weights 6 is

_ {Zcrop Zcrop} c RCXT‘X?T"

hor » “ver



Table 1. Evaluation on 4 data splits of the MM VR dataset and WALK of the HIBER dataset.

Method MMVR:P1S1 MMVR:P1S2 MMVR:P2S1 MMVR:P2S2 HIBER:WALK

AP APso  AP7s AP APso  AP7s AP APso  AP7s AP APso  APrs AP APso  AP7s
RFMask 25.53 6730 15.86 2446 66.82 11.22 31.37 61.50 27.48 6.03 2277 0.88 17.77 5246  6.78
RFMask3D 34.84 69.57 31.74 30.75 76.48 16.23 39.89 80.38 3535 12.26 37.01 4.34 16.58 48.10 6.53
DETR 35.64 7759 28.00 28.51 7590 13.42 29.53 63.08 2535 929 3469 249 1445 4733 425
RETR 39.62 8055 33.84 30.16 7895 15.17 46.75 83.80 46.06 1245 4130  4.96 22.09 59.83 10.99
REXO 39.23 7346 37.83 3648 87.02 20.51 48.35 85.89 48.38 2347 6441 1044 2533 6255 15.83

trained to estimate the BBox & and the class scores p as
~ A A crop
{&o,p} = DenoisingDet, (&, t, Z pqnr) » )

where ¢ specifies the timestep embedding. In our indoor
setting, we use a two-class softmax over {person, back-
ground}. The class-head can extend to C classes (including
background) by using a C'-way softmax with cross-entropy.

3D-to-2D Projection with Learnable Refinement:
REXO further projects &y in (4) into the 2D image
plane. By setting @ .q.r = &g, We convert each of the
8 corners of the corresponding 3D BBOX @ agar using
x .= R&, .+ v, where Z._,._ is the i-th corner of
Tradar, I and v are the calibrated 3D rotation matrix and
translation vector: Each 3D corner %, . . is projected to

the image plane through the calibrated pinhole model:

_ _ 73T A
binit = {Caca Cy, W, h} = PrOJinit (mcamera) .5

Since biy;y systematically overshoots the ground-truth ex-
tent (see Appendix C), we attach a refinement module with
learnable parameter ¢ to obtain the offset:

Ab = {AQE, Ay, A, AB}T = Refinementy (f), (6)

where f = Predictor (e, Zsngs,) is the time-dependent
feature. e; denotes the timestep embedding [17] and
Predictor denotes the time-dependent predictor [7] with
the radar feature and the embedding. Applying these offsets
produces the final image-plane box Bimage, achieving tighter

alignment without sacrificing geometric consistency.

~

bimage = {Em + @A‘f» Ey + BAQ, eAww, eAhB}T. @)

Loss: To ensure consistency between the radar and image
plane representations, we adopt a simplified scheme of the
Tri-plane loss [40] that directly calculates the loss of 3D
BBox. REXO employs the Hungarian match cost [21] with
a loss function computed in both the 3D and 2D spaces:
Egﬁx = ASDESEX (wradara iradar) +)\2D£‘§2x(bimage7 bimage)s
where the 3D/2D BBox loss is defined as £;,(z,Z) =
ActouLerou(®, ®) + A, L1, (, T) representing a weighted
combination of the generalized intersection over union
(GIoU) loss Lg1ou [27] and the ¢4 loss Ly, and the coeffi-
cients \ balance the relative contribution of each loss term.
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Figure 3. AP breakdowns with IoU histograms on MM VR.

2.2. Inference

REXO infers objects by reversing the diffusion process.
Given a target count N, we sample random 3D boxes
xr ~ N (0, I¢) in the radar coordinate system at t = T
and denoise them down to ¢t = 1. With x; and radar fea-
tures { Znor, Zver } the trained DenoisingDet, in (4) pre-
dicts &g, giving

Do (wtfl | T, Zhora Zver) - J\/‘(\/Oltqfﬂo + ’yeg)vo’tQIG)a
® = \Ju1Zo+ /1 -1 — 0} Egt) + o€, (8)

where eét) = (wt — \/07,5:?:0)/\/1 — o specifies the direc-
tion pointing to the noisy BBox z, at time ¢, and €, ~
N (0, I) represents a random BBox. Note that the denois-
ing step is inherently conditioned on the cross-view radar
feature maps via the estimated & from the DenoisingDet,
module. After the final step, g (= @yagar) 1S converted to
image plane boxes Bimage via the radar—to-camera transform
and the 3D-to-2D projection. Boxes whose class scores ex-
ceed a threshold are output as detections.

3. Experiments

We demonstrate the effectiveness of REXO through evalu-
ations on two open high-resolution radar datasets.

Datasets: MMVR [26] includes multi-view radar
heatmaps collected from over 25 human subjects across
6 rooms over a span of 9 days. It consists of 345K data
frames collected in 2 protocols: P1: Open Foreground)
with 107.9K frames in an open-foreground room with a
single subject; and P2: Cluttered Space with 237.9K frames
in 5 cluttered rooms with single and multiple subjects.
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Figure 4. Visualization of unseen frames in P2S2 of MMVR: The left column shows the radar heatmaps, followed by the second column
displaying predicted/GT 3D BBoxes in the radar space. Corresponding image-plane 2D BBox predictions are shown in the middle column
for two baselines (RFMask and RETR) and REXO, with purple segmentation masks overlaid to illustrate the alignment with human GT.
The right column presents the RGB images with GT 2D BBoxes for qualitative check.

Under each protocol, two data splits are defined to evaluate
radar perception performance: S1: a random data split and
S2: a cross-session, unseen split. HIBER [37], partially
released, includes multi-view radar heatmaps from 10
human subjects in a single room but from different angles
with multiple data splits. In our evaluation, we used the
“WALK” data split, consisting of 73.5K data frames with
one subject walking in the room.

Implementation: We consider RFMask [37], DETR [5]
and RETR [40] as baseline methods. Additionally, we
evaluate a 3D extension of RFMask (RFMask3D; see Ap-
pendix D), that takes the two radar views as inputs for BBox
prediction. Hyperparameter settings are provided in Ap-
pendix E.

Metrics: We evaluate performance using average preci-
sion (AP) at two IoU thresholds of 0.5 (APsp) and 0.75
(AP75), along with the mean AP (AP) computed over thresh-
olds in the range of [0.5 : 0.05 : 0.95]. For detailed metric
definitions, refer to Appendix F.

Result of MMVR: Table | presents the results under the
four combinations of two protocols and two data splits of
the MMVR dataset. REXO demonstrates significant per-
formance improvements in P1S2, P2S1, and P2S2. Notably,
in P2S2 where the test radar frames contain an entirely un-
seen environment during training, REXO outperforms the
best baseline RETR by a large margin, boosting AP from
12.45 to 23.47, highlighting its strong generalization capa-
bilities. Surprisingly, under the simplest combination P1S1
where a single subject is recorded in the same room with a
random data split, REXO’s performance is slightly lower
than that of RETR, particularly on the metric AP5o. To
understand these differences, we break down the AP into
IoU histograms for (a) P1S1 and (b) P1S2, as illustrated in

Fig. 3, where blue and red histograms represent the IoU dis-
tributions for RETR and REXO, respectively, and the left
and right dotted lines mark the two IoU thresholds at 0.5
and 0.75. It is seen that in Fig. 3a, the excess of RETR
over REXO (blue areas) over the IoU interval [0.5,0.75] is
greater than that of REXO over RETR (pink areas) over the
interval [0.75,1.0], explaining RETR’s higher AP5, under
P1S1. Meanwhile, REXO has better AP75 as it provides
more high-quality predictions with IoU above 0.75.

Result of HIBER: Table | presents the results evaluated
on the “WALK” data split of the HIBER dataset. As well
as MM VR cases, REXO outperforms RETR across all eval-
uation metrics with an AP of 25.33, surpassing RETR’s AP
at 22.09. REXO attains AP5q of 62.55 and AP75 of 15.83,
demonstrating strong performance in both low- and high-
IoU BBox performance evaluations.

Visualization: Fig. 4 visualizes selected “Unseen”
frames from a room never encountered during training
in P2S2. Tt is seen that 2D BBox predictions by REXO
align more closely with human segmentation masks
(purple pixels) than those of RETR and RFMask. This
improvement is potentially due to the explicit cross-view
feature association, which strengthens consistency across
radar views even in new environments, yielding better
generalization. More challenging examples are provided in
Appendix G.

4. Conclusion

We proposed REXO, a multi-view radar object detection
method that refines the 3D BBox through a diffusion pro-
cess. By explicitly guiding cross-view radar feature associa-
tion, REXO achieves consistent performance improvements
on two open indoor radar datasets over a list of strong base-
lines.
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