
LoRA-MGPO: Mitigating Double Descent in LoRA Fine-Tuning via
Momentum-Guided Perturbation Optimization

Anonymous ACL submission

Abstract

Parameter-efficient fine-tuning (PEFT) meth-001
ods, such as Low-Rank Adaptation (LoRA), en-002
able efficient adaptation of large language mod-003
els (LLMs) via low-rank matrix optimization004
with frozen weights. However, LoRA typically005
exhibits "double descent" in training loss as006
rank increases, characterized by a three-phase007
dynamics: initial convergence, transient diver-008
gence, and eventual stabilization. This non-009
monotonic behavior delays convergence and010
impairs generalization through unstable gradi-011
ents and attraction to sharp minima. To address012
these challenges, we propose LoRA-MGPO,013
a novel LoRA-based framework incorporating014
Momentum-Guided Perturbation Optimization015
(MGPO). First, MGPO eliminates Sharpness-016
Aware Minimization (SAM)’s dual gradient017
computations by reusing momentum vectors018
from optimizer states to guide perturbation di-019
rections. This retains SAM’s training stability020
and flat minima preference with maintained021
efficiency. Second, MGPO incorporates adap-022
tive perturbation normalization, scaling pertur-023
bation intensity via exponential moving aver-024
age (EMA)-smoothed gradient magnitudes. Ex-025
periments on natural language understanding026
and generation benchmarks demonstrate that027
LoRA-MGPO outperforms LoRA and state-of-028
the-art PEFT methods. Further analysis con-029
firms its ability to stabilize training and reduce030
sharp minima attraction, with smoother loss031
curves and improved convergence behavior.032

1 Introduction033

Large language models (LLMs) have revolution-034

ized natural language processing, setting new per-035

formance benchmarks for tasks such as text gen-036

eration and semantic understanding (Chang et al.,037

2024; Wei et al., 2022). However, full-parameter038

fine-tuning (Full FT) of these models requires up-039

dating billions of parameters, imposing prohibitive040

memory and computational costs. To address this041

challenge, parameter-efficient fine-tuning (PEFT) 042

methods have emerged as a promising alternative 043

by selectively optimizing essential model compo- 044

nents (Lester et al., 2021; Fu et al., 2023). 045

Among these, Low-Rank Adaptation (LoRA) 046

(Hu et al., 2021) stands out for its computational 047

efficiency and architectural simplicity. Specifically, 048

LoRA approximates weight changes via low-rank 049

matrices by decomposing the update as ∆W = 050

BA, where W0 ∈ Rm×n represents the frozen 051

pre-trained weights, and B ∈ Rm×r, A ∈ Rr×n 052

are trainable matrices with rank r ≪ min(m,n). 053

The updated weights W ′ = W0 +∆W retain the 054

original model functionality while reducing the 055

number of trainable parameters from O(mn) to 056

O(r(m + n)). For input X ∈ Rp×m, the output 057

Y = X(W0 +BA) ∈ Rp×n preserves the original 058

model functionality, enabling efficient downstream 059

adaptation through low-rank updates. 060

Despite its efficiency, LoRA exhibits the "dou- 061

ble descent" phenomenon during training (Belkin 062

et al., 2019). As illustrated in Figure 1, LoRA 063

fine-tunes LLaMA-2-7B (Touvron et al., 2023) 064

on MetaMathQA (Yu et al., 2024) with rank (r) 065

and alpha (α) parameters set to identical values 066

(r = α ∈ {32, 64, 128}) and a fixed learning rate 067

of 5e−4. This typically produces a double-descent 068

loss curve characterized by initial convergence, 069

abrupt divergence, and eventual stabilization. No- 070

tably, the double descent phenomenon becomes 071

increasingly pronounced with larger rank values. 072

Moreover, Full FT exhibits even more severe dou- 073

ble descent behavior, aligning with the observation 074

in (Nakkiran et al., 2019) that larger model sizes 075

exacerbate this phenomenon. The non-monotonic 076

behavior delays convergence and impairs gener- 077

alization through unstable gradient dynamics and 078

attraction to sharp minima during training (Li et al., 079

2024b). 080

To address the unstable gradient dynamics driv- 081

ing double descent, Sharpness-Aware Minimiza- 082

1

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s
LoRA-rank32

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

LoRA-rank64

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

LoRA-rank128

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Full FT

Figure 1: Training loss curves of Full FT and LoRA (Hu et al., 2021) methods with LLaMA-2-7B (Touvron et al.,
2023) on the MetaMathQA dataset (Yu et al., 2024). For LoRA, rank (r) and alpha (α) parameters are set to identical
values (r = α ∈ {32, 64, 128}), while the learning rate is fixed at 5e− 4.

tion (SAM) serves as a regularization strategy in083

LoRA optimization, demonstrated to enhance con-084

vergence and generalization (Foret et al., 2020; Li085

et al., 2024a). By seeking flat minima through086

gradient perturbation, SAM suppresses parameter087

oscillations during training (Li et al., 2024b). How-088

ever, SAM’s scalability is constrained by dual gra-089

dient computations per iteration, doubling compu-090

tational costs (Becker et al., 2024; Li et al., 2024c).091

Unlike SAM’s costly dual gradient computations,092

momentum-guided SAM reuses momentum vec-093

tors from optimizer states to guide perturbation094

directions, eliminating additional gradient evalua-095

tions while preserving directional sharpness-aware096

updates (Becker et al., 2024). Despite these effi-097

ciency, standalone momentum-guided SAM cannot098

ensure stable convergence or robust generalization.099

Thus, exponential moving average (EMA)-based100

smoothing (Wang et al., 2021) is introduced to sup-101

press parameter oscillations and decouple perturba-102

tion intensity from optimization dynamics.103

Building on these insights, we propose LoRA-104

MGPO, a novel LoRA-based framework incorpo-105

rating Momentum-Guided Perturbation Optimiza-106

tion (MGPO) to mitigate the detrimental effects of107

double descent. First, MGPO eliminates SAM’s108

dual gradient computations by reusing momentum109

vectors from optimizer states to guide perturbation110

directions. This preserves SAM’s training stability111

and flat minima preference while maintaining com-112

putational efficiency. Second, MGPO introduces113

adaptive perturbation normalization, which scales114

perturbation intensity via EMA-smoothed gradient115

magnitudes. This decouples it from optimization116

dynamics and suppresses double descent. We eval-117

uate LoRA-MGPO on natural language understand-118

ing (NLU) and generation (NLG) benchmarks,119

demonstrating consistent improvements over stan-120

dard LoRA and other state-of-the-art PEFT base-121

lines. Further analysis shows that LoRA-MGPO 122

stabilizes training dynamics and mitigates sharp 123

minima, with smoother loss curves and faster con- 124

vergence rates as empirical evidence. 125

2 Related Work 126

Parameter-Efficient Fine-Tuning (PEFT). The 127

scale of LLMs and their increasing deployment 128

have motivated the development of PEFT tech- 129

niques (Houlsby et al., 2019). While full-parameter 130

fine-tuning methods (Howard and Ruder, 2018; De- 131

vlin, 2018) incur high computational and storage 132

costs, PEFT methods reduce trainable parameters 133

by selectively updating subsets of model weights, 134

achieving competitive performance (Houlsby et al., 135

2019; Ding et al., 2023; Han et al., 2024). Among 136

these, Low-Rank Adaptation (LoRA) (Hu et al., 137

2021) and its variants—such as Rank-Stabilized 138

LoRA (rsLoRA) (Kalajdzievski, 2023), LoRA+ 139

(Hayou et al., 2024), PiSSA (Meng et al., 2024), 140

DoRA (Liu et al., 2024b), and AdaLoRA (Zhang 141

et al., 2023)—have gained prominence by approxi- 142

mating weight updates through low-rank matrix de- 143

compositions while preserving model performance. 144

These methods primarily focus on architectural 145

modifications or adaptive rank allocation to en- 146

hance learning efficiency and performance. Other 147

notable PEFT methods include Adapter Layers 148

(Houlsby et al., 2019), BitFit (Zaken et al., 2021), 149

and Prefix-Tuning (Li and Liang, 2021), which 150

achieve efficient adaptation with minimal parame- 151

ter updates. Recent advancements further explore 152

gradient approximation strategies, such as LoRA- 153

GA (Wang et al., 2024a) and LoRA-Pro (Wang 154

et al., 2024b), which accelerate convergence by 155

approximating full fine-tuning gradients. 156

Optimization Stability in PEFT 157

The optimization stability of PEFT methods, 158

such as LoRA, is notably influenced by low-rank 159

2

adaptation strategies. Empirical studies show that160

performance improves with increasing rank up to a161

certain threshold, beyond which overfitting occurs,162

destabilizing training dynamics in LLMs. This163

behavior mirrors the double descent phenomenon,164

first characterized by (Belkin et al., 2019), where165

larger model capacities exacerbate gradient instabil-166

ity during training. (Nakkiran et al., 2019) further167

demonstrates that both increased model scale and168

data quantity may degrade performance in high-169

dimensional parameter spaces. To mitigate these170

challenges, Sharpness-Aware Minimization (SAM)171

(Foret et al., 2020) has been proposed to promote172

flat minima through gradient perturbation. How-173

ever, it incurs significant computational overhead174

due to the need for dual gradient computations175

(Becker et al., 2024; Li et al., 2024c).176

Recent advances in directional perturbation177

strategies have improved stability: gradient-guided178

approaches (Liu et al., 2024a; Ballas and Diou,179

2025; Guo et al., 2024) leverage historical gradient180

information to control the magnitude of perturba-181

tions, offering greater robustness to sharp minima182

compared to stochastic noise injection methods.183

Momentum-guided methods, such as Momentum-184

SAM, reduce computational costs by reusing op-185

timizer momentum vectors, thus eliminating the186

need for additional gradient evaluations (Becker187

et al., 2024). However, their integration with PEFT188

remains underexplored. Additionally, exponential189

moving average (EMA)-based smoothing (Wang190

et al., 2021) stabilizes training dynamics by con-191

trolling gradient magnitudes. Despite these ad-192

vancements, existing methods generally address193

directional perturbation and dynamic regulariza-194

tion separately, highlighting the need for unified195

frameworks that optimize both efficiency and sta-196

bility in PEFT.197

3 Method198

In this section, we first review the core frame-199

work of LoRA. Building on LoRA, we propose our200

LoRA-MGPO, which (i) integrates Momentum-201

Guided Perturbation Optimization (MGPO) to202

avoid additional gradient evaluations by reusing203

optimizer momentum vectors for directional per-204

turbation updates, and (ii) introduces adaptive per-205

turbation normalization to decouple perturbation206

intensity from regularization scheduling via EMA-207

smoothed intensity scaling.208

3.1 Review of LoRA 209

Full Fine-tuning involves directly updating the en- 210

tire weight matrix W0 ∈ Rm×n, which incurs high 211

computational and memory costs, making it diffi- 212

cult to deploy in practice. In contrast, Low-Rank 213

Adaptation (LoRA) (Hu et al., 2021) is a parameter- 214

efficient fine-tuning technique that introduces low- 215

rank matrices B ∈ Rm×r and A ∈ Rr×n to ap- 216

proximate weight updates while keeping pretrained 217

weights W0 frozen to retain model knowledge and 218

simplify optimization. Vanilla LoRA initializes A 219

with Kaiming normal distribution (He et al., 2015): 220

A ∼ N (0, σ2) where σ =
√

2
r , and sets B = 0. 221

Given an input matrix X ∈ Rp×m (where p is the 222

batch size, m is the input dimensionality), the out- 223

put is computed as: 224

Y = XW ′ ∈ Rp×n, (1) 225

where the adapted weight matrix is defined as: 226

W ′ = W0 + ηBA ∈ Rm×n. (2) 227

Here, the rank r is chosen to satisfy r ≪ 228

min(m,n), which ensures the trainable parame- 229

ters are negligible compared to the original model 230

size. The scaling factor η = α
r balances the update 231

magnitude and learning dynamics (Hu et al., 2021). 232

While rsLoRA (Kalajdzievski, 2023) demonstrates 233

that adaptive scaling of r can enhance performance, 234

excessive rank expansion without corresponding 235

optimization induces a pronounced double descent 236

regime during fine-tuning, delaying convergence 237

and impairing generalization through unstable gra- 238

dient dynamics and attraction to sharp minima (Li 239

et al., 2024b). 240

3.2 LoRA Fine-Tune with Momentum-Guided 241

Perturbation Optimization 242

To address the challenge arising from double 243

descent in LoRA training, we propose LoRA- 244

MGPO, a novel LoRA-based framework integrat- 245

ing Momentum-Guided Perturbation Optimization 246

(MGPO). MGPO eliminates SAM’s dual gradient 247

computations by reusing momentum vectors vt to 248

guide weight-space perturbations, while adaptive 249

normalization dynamically scales perturbation in- 250

tensity through EMA-smoothed gradient magni- 251

tudes. 252

3.2.1 Integrating SAM into LoRA 253

The objective function of Sharpness-Aware Min-
imization (SAM) (Foret et al., 2020) minimizes

3

loss landscape sharpness by perturbing in the full
weight space:

min
A,B

max
∥ϵ∥≤ρ

L (W0 + ηBA+ ϵ) .

Here, A and B are trainable LoRA matrices, and ϵ254

is a weight-space perturbation vector derived from255

historical gradients. By maintaining LoRA’s low-256

rank parameterization ηBA, our method preserves257

parameter efficiency while enabling curvature es-258

timation aligned with SAM’s principle (Becker259

et al., 2024). However, direct application of SAM260

to LoRA introduces two critical limitations: (1)261

dual gradient computations significantly increase262

computational overhead, and (2) additional weight263

storage for perturbation contradicts LoRA’s princi-264

ple of parameter-efficient fine-tuning. These chal-265

lenges are resolved by MGPO through momentum266

reuse and adaptive normalization, as detailed be-267

low.268

3.2.2 Momentum-Guided Perturbation269

Optimization (MGPO)270

Building on Momentum-SAM (Becker et al., 2024),271

we reformulate SAM for LoRA by eliminating its272

dual gradient computations. Instead of computing273

gradients twice per iteration, MGPO reuses opti-274

mizer momentum vectors vt to guide perturbation275

directions in the weight space:276

min
A,B

L(W0 + ηBA+ ϵ), (3)277

where the perturbation vector ϵ is defined as:278

ϵ = −ρ · vt
∥vt∥2

·
(
ḡ
(t)
l

)−1
, (4)279

where ρ denotes the perturbation radius hyperpa-280

rameter, vt represents the momentum state vector281

guiding perturbation directions, and ḡ
(t)
l stands for282

the exponential moving average of gradient mag-283

nitudes used for adaptive normalization. This ap-284

proach leverages historical gradient information285

through the momentum update:286

vt = µvt−1 +∇L(Wt), (5)287

where µ controls the contribution of historical gra-288

dients. By reusing vt, MGPO avoids SAM’s com-289

putationally expensive second gradient pass while290

maintaining stability against sharp minima attrac-291

tion. Moreover, momentum reuse eliminates the292

need for additional weight storage during pertur-293

bation, inherently preserving LoRA’s parameter294

efficiency.295

Two-Stage Weight Update Mechanism To en- 296

able efficient curvature estimation and weight 297

restoration, we adopt a two-stage strategy: 298

W̃t = Wt − ρ · vt
∥vt∥2

, (6) 299

where Wt = W0 + ηBtAt represents LoRA- 300

parameterized weights, and W̃t denotes perturbed 301

weights for curvature estimation. The training con- 302

cludes with: 303

WT = W̃T + ρ · vT
∥vT ∥2

, (7) 304

where W̃T is the final perturbed state at iteration T , 305

and WT restores unperturbed LoRA weights while 306

retaining curvature information. 307

3.2.3 Adaptive Perturbation Normalization 308

To complement MGPO’s core design, we nor- 309

malize ϵ via exponential moving average (EMA)- 310

smoothed gradient magnitudes: 311

ḡ
(t)
l = βḡ

(t−1)
l + (1− β)∥∇∆Wl

L∥2, (8) 312

where β balances responsiveness to recent gradi- 313

ents with noise suppression. This adaptive normal- 314

ization enhances MGPO’s double descent suppres- 315

sion capability by ensuring scale-invariant pertur- 316

bations across training stages and network layers. 317

4 Experiments 318

Baselines To evaluate LoRA-MGPO, we compare 319

it with several baselines. Full Fine-Tuning updates 320

all model parameters but is computationally expen- 321

sive for LLMs. Vanilla LoRA (Hu et al., 2021) in- 322

troduces a low-rank matrix product BA into linear 323

layers, initializing A with Kaiming initialization 324

and B as zero, offering parameter efficiency. We 325

also examine LoRA Variants with Modified Struc- 326

ture. For instance, DoRA (Liu et al., 2024b) en- 327

hances expressiveness by incorporating learnable 328

magnitudes. AdaLoRA (Zhang et al., 2023) dynam- 329

ically prunes less significant weights via singular 330

value decomposition (SVD), reallocating rank to 331

optimize resource use. Additionally, we explore 332

LoRA Variants with Original Structure. rsLoRA 333

(Kalajdzievski, 2023) stabilizes training with a scal- 334

ing factor. LoRA+ (Hayou et al., 2024) applies 335

separate learning rates for A and B, improving 336

adaptability. PiSSA (Meng et al., 2024) leverages 337

SVD on the weight matrix W at initialization, us- 338

ing larger singular values for better initialization. 339

4

Table 1: Performance of T5-Base Fine-Tuning with Full Fine-Tuning and Various LoRA Variants on a Subset of
GLUE Tasks. The best and second-best results are highlighted in bold and underline.

Method MNLI SST2 CoLA QNLI MRPC Avg

Full FT 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73 87.91
LoRA 85.30±0.04 94.04±0.11 69.35±0.05 92.96±0.09 68.38±0.01 82.08

LoRA Variants with Modified Structure
DoRA 85.67±0.09 94.04±0.53 72.04±0.94 93.04±0.06 68.08±0.51 82.57
AdaLoRA 85.45±0.11 93.69±0.20 69.16±0.24 91.66±0.05 68.14±0.28 81.62

LoRA Variants with Original Structure
PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51 84.71
rsLoRA 85.73±0.10 94.19±0.23 72.32±1.12 93.12±0.09 52.86±2.27 79.64
LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39 84.95
LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77

LoRA-MGPO 86.58±0.11 94.72±0.46 82.32±0.18 93.79±0.46 86.62±0.68 88.81

LoRA-GA (Wang et al., 2024a) aligns low-rank340

gradients with full fine-tuning for faster conver-341

gence. Similarly, LoRA-Pro (Wang et al., 2024b)342

dynamically adjusts gradients to align the entire343

parameter update trajectory with full fine-tuning.344

Implementation Details We replicate the experi-345

mental setup of LoRA-GA (Wang et al., 2024a). By346

default, we fine-tune the models using the AdamW347

optimizer (Loshchilov and Hutter, 2019), weight348

decay is set to 0, and a cosine learning rate schedule349

with a 0.03 warmup ratio is used. LoRA adapters350

are applied to all linear layers, excluding embed-351

ding, normalization, and classification layers. The352

rank r is set to 8, and the scaling factor α is set to353

16 unless specified otherwise. For NLU tasks, we354

fine-tune T5-base (Raffel et al., 2020) with a learn-355

ing rate of 1×10−4, a sequence length of 128, and a356

batch size of 32. ρ = 0.05, µ = 0.9, β = 0.9. For357

the NLG tasks, we fine-tune LLaMA-2-7B (Tou-358

vron et al., 2023) with a learning rate of 2× 10−5,359

a sequence length of 1024, and a macro batch size360

of 32. ρ = 0.01, µ = 0.8, β = 0.8. Experiments361

were conducted on NVIDIA H20-NVLink (96GB)362

GPUs, repeated three times with different random363

seeds, and results are reported as averages with364

standard deviation.365

4.1 Results on Natural Language366

Understanding (NLU) Tasks367

We evaluate the performance of our proposed368

method, LoRA-MGPO, across several NLU tasks369

from the GLUE benchmark (Wang et al., 2018),370

including MNLI, SST-2, CoLA, QNLI, and MRPC.371

The experiments are conducted using the T5-base372

model (Raffel et al., 2020), with the LoRA rank 373

fixed at 8. To ensure a comprehensive compar- 374

ison, we include several baseline methods: full 375

fine-tuning, standard LoRA (Hu et al., 2021), 376

and its variants—DoRA (Liu et al., 2024b) and 377

AdaLoRA (Zhang et al., 2023), which modify 378

the LoRA structure. Additionally, we consider 379

rsLoRA (Kalajdzievski, 2023), LoRA+ (Hayou 380

et al., 2024), PiSSA (Meng et al., 2024), and LoRA- 381

GA (Wang et al., 2024a), which retain the original 382

LoRA structure. The results are summarized in 383

Table 1. 384

LoRA-MGPO outperforms all other methods 385

across all tasks. It achieves the highest accuracy 386

on MNLI (86.58), CoLA (82.32), QNLI (93.79), 387

and MRPC (86.62). For SST2, it ranks second with 388

94.72, just behind full fine-tuning (94.75). LoRA- 389

MGPO’s average performance is 88.81, surpassing 390

LoRA-GA’s 87.77 by 1.04 points. These results 391

demonstrate LoRA-MGPO’s robust performance, 392

driven by its ability to optimize the loss landscape 393

through MGPO and adaptive perturbation normal- 394

ization, improving generalization, especially on 395

smaller datasets. 396

4.2 Results on Natural Language Generation 397

(NLG) Tasks 398

Experiments were conducted using the LLaMA- 399

2-7B model (Touvron et al., 2023), with a LoRA 400

rank set to 8. We also explored the effects of higher 401

ranks (32 and 128) on performance. For dialogue 402

generation, the model was fine-tuned on a 52k 403

subset of the WizardLM dataset (Xu et al., 2024) 404

and evaluated on the MT-Bench dataset (Zheng 405

5

Table 2: Fine-tuning results for LLaMA-2-7B model on NLG-related tasks. The best and second-best results are
highlighted in bold and underline.

Method MT-Bench GSM8K HumanEval Avg

Full FT 5.30±0.11 59.36±0.85 35.31±2.13 33.32
LoRA 5.61±0.10 42.08±0.04 14.76±0.17 20.82

DoRA 5.97±0.02 53.07±0.75 19.75±0.41 26.26
AdaLoRA 5.57±0.05 50.72±1.39 17.80±0.44 24.70

PiSSA 5.30±0.02 44.54±0.27 16.02±0.78 21.95
rsLoRA 5.25±0.03 45.62±0.10 16.01±0.79 22.29
LoRA+ 5.71±0.08 52.11±0.62 18.17±0.52 25.33

LoRA-GA 5.95±0.16 53.60±0.30 19.81±1.46 26.45
LoRA-GA (rank=32) 5.79±0.09 55.12±0.30 20.18±0.19 27.03
LoRA-GA (rank=128) 6.13±0.07 55.07±0.18 23.05±0.37 28.08

LoRA-MGPO 6.27±0.12 54.56±0.44 21.02±0.39 27.28
LoRA-MGPO (rank=32) 6.21±0.15 55.74±0.21 21.34±0.47 27.76
LoRA-MGPO (rank=128) 6.48±0.23 56.96±0.35 24.87±0.54 29.44

et al., 2024a). For mathematical reasoning, the406

model was fine-tuned on a 100k sample from407

the MetaMathQA dataset (Yu et al., 2024) and408

evaluated on the GSM8K test set (Cobbe et al.,409

2021). For code generation, the model was fine-410

tuned on a 100k subset of the CodeFeedback411

dataset (Zheng et al., 2024b) and evaluated on412

the HumanEval dataset (Chen et al., 2021). We413

compared LoRA-MGPO with several baselines, in-414

cluding full fine-tuning, standard LoRA (Hu et al.,415

2021), and its variants—DoRA (Liu et al., 2024b),416

AdaLoRA (Zhang et al., 2023), rsLoRA (Kala-417

jdzievski, 2023), LoRA+ (Hayou et al., 2024),418

PiSSA (Meng et al., 2024), and LoRA-GA (Wang419

et al., 2024a).420

The results, summarized in Table 2, show421

that LoRA-MGPO consistently outperforms all422

other methods across tasks. Specifically, LoRA-423

MGPO achieves the highest score on MT-Bench424

(6.27), indicating superior performance in dialogue425

generation. On GSM8K, LoRA-MGPO scores426

54.56, placing second to full fine-tuning (59.36),427

demonstrating strong performance in mathemat-428

ical reasoning. For HumanEval, LoRA-MGPO429

scores 21.02, outperforming LoRA (14.76), DoRA430

(19.75), and other variants, though it still falls short431

of full fine-tuning (35.31). Increasing the rank to 32432

and 128 further improves LoRA-MGPO’s perfor-433

mance. At rank 128, it achieves 6.48 on MT-Bench,434

56.96 on GSM8K, and 24.87 on HumanEval, nar-435

rowing the gap to full fine-tuning and demonstrat-436

ing scalability with higher ranks. These results 437

validate LoRA-MGPO’s effectiveness in enhanc- 438

ing training stability, achieving robust performance 439

across various NLG tasks, and showcasing its scal- 440

ability with increasing rank. 441

4.3 Effectiveness Analysis on Mitigating 442

Double Descent 443

The primary objective of this experiment is to 444

assess the effectiveness of LoRA-MGPO in mit- 445

igating the double descent phenomenon during 446

fine-tuning. We fine-tuned LLaMA-2-7B (Tou- 447

vron et al., 2023) on the MetaMathQA dataset 448

(Yu et al., 2024) using LoRA, LoRA-MGPO, 449

and Full FT. The first analysis (Figure 2) sets 450

the rank (r) and alpha (α) to identical values, 451

r = α ∈ {16, 32, 64, 128}, with a fixed learning 452

rate of 5e − 4. The second analysis (Figure 3) 453

investigates learning rate sensitivity, evaluating 454

{2e−4, 3e−4, 4e−4, 6e−4} with r = α = 128. 455

The results presented in Figures 2 and 3 lead to 456

the following key observations: First, both LoRA 457

and Full FT exhibit more pronounced double de- 458

scent phenomena as the rank (r ≥ 64) increases, 459

marked by performance dips followed by recov- 460

ery phases in their training curves. Second, higher 461

learning rates (lr ≥ 4e − 4) exacerbate this is- 462

sue, resulting in sharper fluctuations and delayed 463

convergence in the baseline methods. Third, LoRA- 464

MGPO consistently demonstrates smooth loss tra- 465

jectories across all settings. These findings confirm 466

6

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Tr

ai
ni

ng
 L

os
s

rank 16
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 32

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 64

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 128

Full FT
LoRA-MGPO
LoRA

Figure 2: Training loss dynamics across rank configurations: Comparative analysis of LoRA, LoRA-MGPO, and
full fine-tuning on LLaMA-2-7B and MetaMathQA. Rank (r) and alpha (α) follow r = α ∈ {16, 32, 64, 128} with
fixed learning rate 5e− 4.

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

lr = 2e-4
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2
lr = 3e-4

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lr = 4e-4
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
lr = 6e-4

Full FT
LoRA-MGPO
LoRA

Figure 3: Learning rate sensitivity analysis: Training loss comparison of LoRA, LoRA-MGPO, and full fine-tuning
on LLaMA-2-7B and MetaMathQA. Evaluation spans learning rates {2e− 4, 3e− 4, 4e− 4, 6e− 4} with rank (r)
and alpha (α) fixed at 128.

that LoRA-MGPO effectively mitigates the double467

descent phenomenon, ensuring stable convergence468

throughout the fine-tuning process.469

Ful
l FT

w/o
MGPO

+APN
MGPO

MGPO
+APN

0

10

20

30

40

50

60

(a) Performance on MT-Bench, GSM8K, and HumanEval

5.30 5.61 5.69 6.27

59.36

42.08

54.12 54.56

35.31

14.76
20.43 21.02

MT-Bench
GSM8K
HumanEval

Ful
l FT

w/o
MGPO

+APN
MGPO

MGPO
+APN

80

82

84

86

88

90

(b) Performance on GLUE Avg

87.91

82.08

86.76

88.81
T5-base

Figure 4: Ablation Study of LoRA Variants on
NLG and NLU Tasks: (a) NLG Performance on
MT-Bench, GSM8K, and HumanEval (LLaMA-2-7B);
(b) Average NLU Performance on GLUE Bench-
marks (MNLI, SST2, CoLA, QNLI, MRPC) with T5-
Base. Methods compared: w/o MGPO+APN (standard
LoRA), MGPO (LoRA+MGPO), and LoRA-MGPO
(LoRA+MGPO+APN).

4.4 Ablation Study470

This ablation study evaluates the individual con-471

tributions of the MGPO and Adaptive Perturba-472

tion Normalization (APN) components within the473

proposed LoRA-MGPO framework. For Natu-474

ral Language Generation (NLG) tasks, we as-475

sessed LLaMA-2-7B (Touvron et al., 2023) on476

MT-Bench (Zheng et al., 2024a) (dialogue genera- 477

tion), GSM8K (Cobbe et al., 2021) (mathematical 478

reasoning), and HumanEval (Chen et al., 2021) 479

(code generation). For Natural Language Under- 480

standing (NLU) tasks, we tested T5-Base on five 481

GLUE (Wang et al., 2018) subtasks: MNLI, SST2, 482

CoLA, QNLI, and MRPC, with results averaged 483

across these tasks. In all experiments, the LoRA 484

rank was fixed at 8, and α = 16 to ensure consis- 485

tent comparisons. 486

As shown in Figure 4, LoRA-MGPO consis- 487

tently achieves the highest performance. On NLU 488

tasks, it outperforms full fine-tuning by +0.90 489

points (88.81 vs. 87.91) and surpasses MGPO 490

(86.76) by +2.05 points, demonstrating the sig- 491

nificant role of APN in enhancing generaliza- 492

tion when combined with MGPO. For NLG tasks, 493

LoRA-MGPO sets new state-of-the-art results on 494

MT-Bench (6.27) and HumanEval (21.02), while 495

maintaining competitive performance on GSM8K 496

(54.56). In contrast, the baseline model without 497

APN (standard LoRA) consistently underperforms 498

across all tasks, such as 14.76 on HumanEval and 499

42.08 on GSM8K. These results confirm that the 500

synergistic integration of MGPO and APN im- 501

proves parameter-efficient fine-tuning. 502

7

Table 3: Comparative analysis of computational efficiency and performance in LoRA, LoRA-MGPO, and Full FT
methods trained for a single epoch using LLaMA-2-7B on the WizardLM dataset.

Method #Params Memory Cost Training Time MT-Bench GSM8K HumanEval

Full FT 6738M >96 GB - 5.30±0.11 59.36±0.85 35.31±2.13

LoRA 320M 81.73 GB 5h 48min 5.61±0.10 42.08±0.04 14.76±0.17

LoRA-MGPO 320M 90.56 GB 6h 52min 6.27±0.12 54.56±0.44 21.02±0.39

Table 4: Comparison of optimization methods with ran-
dom noise analysis results for the LLaMA-3.1-8B-Base.

Method MTBench GSM8k HumanEval

Full FT 5.88±0.23 73.69±0.28 51.63±1.27

LoRA 6.15±0.02 67.78±1.25 43.09±0.35

LoRA + Random Noise 6.43±0.26 68.05±1.12 42.92±0.41

LoRA-MGPO 7.51±0.07 70.23±1.08 45.13±0.63

4.5 Comparative Analysis with Random Noise503

In this experiment, we evaluated several opti-504

mization methods using the LLaMA-3.1-8B-Base505

model (Dubey et al., 2024), with a fixed LoRA rank506

of 8 (alpha = 16). The methods compared include507

Full FT, LoRA, LoRA combined with Random508

Noise (Li et al., 2024b), and our proposed LoRA-509

MGPO. The model was fine-tuned on a 100K sub-510

set of the MetaMathQA (Yu et al., 2024), Code-511

Feedback (Zheng et al., 2024b), and WizardLM512

datasets, targeting mathematical reasoning, cod-513

ing, and dialogue tasks, respectively. Training was514

performed using a peak learning rate of 5e-5 with515

BF16 mixed precision. Performance metrics for516

each method are summarized in Table 4, with task-517

specific evaluations: accuracy on GSM8k for math-518

ematical reasoning, PASS@1 on HumanEval for519

coding, and average MTBench scores for dialogue520

generation, as detailed in (Zheng et al., 2023).521

The results indicate that methods incorporat-522

ing random noise (LoRA + Random Noise) yield523

minor improvements on certain tasks but show524

inconsistent performance across evaluation met-525

rics. In contrast, LoRA-MGPO consistently outper-526

forms all other methods on MTBench, GSM8k, and527

HumanEval. These findings suggest that LoRA-528

MGPO is more effective at enhancing model ro-529

bustness, particularly in noisy environments, and530

provides a more reliable optimization strategy than531

traditional random noise-based methods.532

4.6 Computational Cost Analysis533

We compare the computational cost and overall534

performance of LoRA-MGPO, LoRA, and Full FT535

on NLG tasks. The experiments are conducted 536

on a single NVIDIA H100-NVLink (96GB) GPU 537

with 1 epoch of training, optimized using Deep- 538

Speed (Rasley et al., 2020) and ZeRO-2 stages. 539

The model is LLaMA-2-7B (Touvron et al., 2023), 540

and the dataset is WizardLM (Xu et al., 2024). 541

The results, summarized in Table 3, show that 542

Full FT requires the highest computational re- 543

sources, with 6,738M parameters and over 96 GB 544

of memory. In comparison, both LoRA and LoRA- 545

MGPO use significantly fewer parameters (320M) 546

and consume less memory, with LoRA-MGPO 547

slightly exceeding LoRA in memory usage (90.56 548

GB vs. 81.73 GB). The training time for LoRA- 549

MGPO is 6 hours and 52 minutes, slightly longer 550

than the 5 hours and 48 minutes for LoRA. Im- 551

portantly, LoRA-MGPO delivers substantial per- 552

formance improvements over LoRA. This trade-off 553

between computational cost and performance un- 554

derscores the practical viability of LoRA-MGPO. 555

5 Conclusion 556

This work addresses the double descent phe- 557

nomenon in LoRA, a parameter-efficient fine- 558

tuning method for LLMs, characterized by non- 559

monotonic training dynamics with transient di- 560

vergence and delayed convergence. We pro- 561

pose LoRA-MGPO, a framework integrating 562

Momentum-Guided Perturbation Optimization 563

(MGPO), which leverages optimizer momentum 564

vectors to guide perturbation directions and intro- 565

duces adaptive normalization via gradient magni- 566

tude smoothing. This approach stabilizes training, 567

reduces attraction to sharp minima, and maintains 568

computational efficiency. Empirical results show 569

LoRA-MGPO outperforms conventional LoRA 570

and state-of-the-art PEFT methods on natural lan- 571

guage tasks, achieving smoother loss curves and 572

accelerated convergence. By resolving LoRA’s 573

instability while preserving its efficiency, LoRA- 574

MGPO provides a practical solution for adapting 575

LLMs with minimal parameter updates. 576

8

Limitations577

First, LoRA-MGPO’s reliance on momentum vec-578

tors for perturbation directions assumes stable op-579

timizer dynamics, which may limit its effective-580

ness in early training stages or under highly non-581

stationary gradient conditions. Second, while adap-582

tive perturbation normalization via EMA-smoothed583

gradients enhances robustness, its performance584

could be sensitive to abrupt shifts in gradient585

magnitude distributions, potentially requiring task-586

specific adjustments to smoothing hyperparame-587

ters.588

References589

Aristotelis Ballas and Christos Diou. 2025. Gradient-590
guided annealing for domain generalization. arXiv591
preprint arXiv:2502.20162.592

Marlon Becker, Frederick Altrock, and Benjamin Risse.593
2024. Momentum-sam: Sharpness aware minimiza-594
tion without computational overhead. arXiv preprint595
arXiv:2401.12033.596

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik597
Mandal. 2019. Reconciling modern machine-598
learning practice and the classical bias–variance599
trade-off. Proceedings of the National Academy of600
Sciences, 116(32):15849–15854.601

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,602
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,603
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-604
vey on evaluation of large language models. ACM605
Transactions on Intelligent Systems and Technology,606
15(3):1–45.607

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming608
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-609
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,610
Greg Brockman, et al. 2021. Evaluating large611
language models trained on code. arXiv preprint612
arXiv:2107.03374.613

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,614
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias615
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro616
Nakano, et al. 2021. Training verifiers to solve math617
word problems. arXiv preprint arXiv:2110.14168.618

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-619
rectional transformers for language understanding.620
arXiv preprint arXiv:1810.04805.621

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,622
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin623
Chen, Chi-Min Chan, Weize Chen, et al. 2023.624
Parameter-efficient fine-tuning of large-scale pre-625
trained language models. Nature Machine Intelli-626
gence, 5(3):220–235.627

Bill Dolan and Chris Brockett. 2005. Automatically 628
constructing a corpus of sentential paraphrases. In 629
Proc. Int. Workshop Paraphrasing. 630

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 631
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 632
Akhil Mathur, Alan Schelten, Amy Yang, Angela 633
Fan, et al. 2024. The llama 3 herd of models. arXiv 634
preprint arXiv:2407.21783. 635

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and 636
Behnam Neyshabur. 2020. Sharpness-aware min- 637
imization for efficiently improving generalization. 638
arXiv preprint arXiv:2010.01412. 639

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai 640
Lam, Lidong Bing, and Nigel Collier. 2023. On 641
the effectiveness of parameter-efficient fine-tuning. 642
In Proceedings of the AAAI conference on artificial 643
intelligence, volume 37, pages 12799–12807. 644

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, 645
and Mengdi Wang. 2024. Gradient guidance for dif- 646
fusion models: An optimization perspective. arXiv 647
preprint arXiv:2404.14743. 648

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and 649
Sai Qian Zhang. 2024. Parameter-efficient fine- 650
tuning for large models: A comprehensive survey. 651
arXiv preprint arXiv:2403.14608. 652

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. 653
Lora+: Efficient low rank adaptation of large models. 654
Preprint, arXiv:2402.12354. 655

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 656
Sun. 2015. Delving deep into rectifiers: Surpassing 657
human-level performance on imagenet classification. 658
Preprint, arXiv:1502.01852. 659

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 660
Bruna Morrone, Quentin De Laroussilhe, Andrea 661
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 662
Parameter-efficient transfer learning for nlp. In In- 663
ternational conference on machine learning, pages 664
2790–2799. PMLR. 665

Jeremy Howard and Sebastian Ruder. 2018. Universal 666
language model fine-tuning for text classification. 667
arXiv preprint arXiv:1801.06146. 668

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 669
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 670
and Weizhu Chen. 2021. Lora: Low-rank adap- 671
tation of large language models. arXiv preprint 672
arXiv:2106.09685. 673

Damjan Kalajdzievski. 2023. A rank stabilization 674
scaling factor for fine-tuning with lora. Preprint, 675
arXiv:2312.03732. 676

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 677
The power of scale for parameter-efficient prompt 678
tuning. arXiv preprint arXiv:2104.08691. 679

9

https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732

Bingcong Li, Liang Zhang, and Niao He. 2024a. Im-680
plicit regularization of sharpness-aware minimiza-681
tion for scale-invariant problems. arXiv preprint682
arXiv:2410.14802.683

Tao Li, Zhengbao He, Yujun Li, Yasheng Wang, Lifeng684
Shang, and Xiaolin Huang. 2024b. Flat-lora: Low-685
rank adaption over a flat loss landscape. arXiv686
preprint arXiv:2409.14396.687

Tao Li, Qinghua Tao, Weihao Yan, Zehao Lei, Yingwen688
Wu, Kun Fang, Mingzhen He, and Xiaolin Huang.689
2024c. Revisiting random weight perturbation for690
efficiently improving generalization. arXiv preprint691
arXiv:2404.00357.692

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:693
Optimizing continuous prompts for generation. arXiv694
preprint arXiv:2101.00190.695

Gang Liu, Hongyang Li, Zerui He, and Shenjun Zhong.696
2024a. Enhancing generalization in medical visual697
question answering tasks via gradient-guided model698
perturbation. In ICASSP 2024-2024 IEEE Interna-699
tional Conference on Acoustics, Speech and Signal700
Processing (ICASSP), pages 2220–2224. IEEE.701

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo702
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting703
Cheng, and Min-Hung Chen. 2024b. Dora:704
Weight-decomposed low-rank adaptation. Preprint,705
arXiv:2402.09353.706

Ilya Loshchilov and Frank Hutter. 2019. Decoupled707
weight decay regularization. In ICLR.708

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.709
Pissa: Principal singular values and singular vec-710
tors adaptation of large language models. Preprint,711
arXiv:2404.02948.712

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan713
Yang, Boaz Barak, and Ilya Sutskever. 2019. Deep714
double descent: Where bigger models and more data715
hurt. Preprint, arXiv:1912.02292.716

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine717
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,718
Wei Li, and Peter J Liu. 2020. Exploring the lim-719
its of transfer learning with a unified text-to-text720
transformer. Journal of machine learning research,721
21(140):1–67.722

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.723
Know what you don’t know: Unanswerable questions724
for SQuAD. pages 784–789.725

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and726
Yuxiong He. 2020. Deepspeed: System optimiza-727
tions enable training deep learning models with over728
100 billion parameters. In SIGKDD, pages 3505–729
3506.730

Richard Socher, Alex Perelygin, Jean Wu, Jason731
Chuang, Christopher D Manning, Andrew Y Ng, and732
Christopher Potts. 2013. Recursive deep models for733

semantic compositionality over a sentiment treebank. 734
pages 1631–1642. 735

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 736
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 737
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 738
Bhosale, et al. 2023. Llama 2: Open founda- 739
tion and fine-tuned chat models. arXiv preprint 740
arXiv:2307.09288. 741

Alex Wang, Amanpreet Singh, Julian Michael, Felix 742
Hill, Omer Levy, and Samuel R Bowman. 2018. 743
Glue: A multi-task benchmark and analysis platform 744
for natural language understanding. In International 745
Conference on Learning Representations. 746

Shaowen Wang, Linxi Yu, and Jian Li. 2024a. Lora-ga: 747
Low-rank adaptation with gradient approximation. 748
Preprint, arXiv:2407.05000. 749

Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yi Xu, 750
Yulun Zhang, and Yun Fu. 2021. Rethinking adam: A 751
twofold exponential moving average approach. arXiv 752
preprint arXiv:2106.11514. 753

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and 754
Tieniu Tan. 2024b. Lora-pro: Are low-rank adapters 755
properly optimized? Preprint, arXiv:2407.18242. 756

Alex Warstadt, Amanpreet Singh, and Samuel R Bow- 757
man. 2019. Neural network acceptability judgments. 758
Trans. Assoc. Comput. Linguist., 7:625–641. 759

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 760
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 761
Maarten Bosma, Denny Zhou, Donald Metzler, et al. 762
2022. Emergent abilities of large language models. 763
arXiv preprint arXiv:2206.07682. 764

Adina Williams, Nikita Nangia, and Samuel R Bow- 765
man. 2018. A broad-coverage challenge corpus for 766
sentence understanding through inference. In Proc. 767
Conf. North Am. Chapter Assoc. Comput. Linguist., 768
pages 1112–1122. 769

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 770
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei 771
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering 772
large pre-trained language models to follow complex 773
instructions. In ICLR. 774

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, 775
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li, 776
Adrian Weller, and Weiyang Liu. 2024. Metamath: 777
Bootstrap your own mathematical questions for large 778
language models. In ICLR. 779

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 780
berg. 2021. Bitfit: Simple parameter-efficient 781
fine-tuning for transformer-based masked language- 782
models. arXiv preprint arXiv:2106.10199. 783

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 784
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 785
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap- 786
tive budget allocation for parameter-efficient fine- 787
tuning. Preprint, arXiv:2303.10512. 788

10

https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan789
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,790
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.791
Judging llm-as-a-judge with mt-bench and chatbot792
arena. Advances in Neural Information Processing793
Systems, 36:46595–46623.794

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan795
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,796
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.797
Judging llm-as-a-judge with mt-bench and chatbot798
arena. In NeurIPS.799

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,800
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.801
2024b. OpenCodeInterpreter: Integrating code gen-802
eration with execution and refinement. In Findings803
of ACL.804

Appendix 805

Contents 806

A Models of Datasets 11 807

A.1 Details of Models 11 808

A.2 Details of Datasets 12 809

B Baselines 12 810

A Models of Datasets 811

A.1 Details of Models 812

In this work, we primarily utilize two pre-trained 813

language models: LLaMA-2-7B and T5-base. Be- 814

low, we provide a brief overview of these models 815

along with their respective configurations. 816

• LLaMA-2-7B: This is a large language model 817

developed by Meta, featuring 7 billion param- 818

eters. It is part of the LLaMA-2 series, which 819

is known for its strong performance across 820

various natural language understanding and 821

generation tasks. The model architecture is 822

based on the transformer decoder, making it 823

particularly effective for autoregressive tasks 824

such as text generation. More details about 825

the model can be found on its Hugging Face 826

page*. 827

• T5-base: The Text-to-Text Transfer Trans- 828

former (T5) is a versatile encoder-decoder 829

model introduced by Google. The base ver- 830

sion of T5 consists of approximately 220 mil- 831

lion parameters and is widely used for a va- 832

riety of tasks, including translation, summa- 833

rization, and question-answering. Its unified 834

text-to-text framework allows for seamless 835

adaptation to different downstream applica- 836

tions. Additional information about T5-base 837

is available on its Hugging Face repository†. 838

Both models were fine-tuned on our specific 839

datasets to align with this study’s objectives experi- 840

ments were conducted using the implementations 841

provided by Hugging Face’s Transformers library. 842

*https://huggingface.co/meta-llama/LLaMA-2-7B
†https://huggingface.co/t5-base

11

https://huggingface.co/meta-llama/LLaMA-2-7B
https://huggingface.co/t5-base

Table 5: GLUE Benchmark Datasets and Evaluation Metrics

Dataset Task Type Classes Train Examples Metric Description

CoLA Acceptability 2 8.5k Matthews Corr. Grammatical acceptability
SST-2 Sentiment 2 67k Accuracy Sentiment analysis
MRPC Paraphrase 2 3.7k Accuracy/F1 Paraphrase detection
MNLI NLI 3 393k Accuracy Multi-genre NLI
QNLI NLI/QA 2 108k Accuracy QA/NLI converted from SQuAD

A.2 Details of Datasets843

Table 5 summarizes the GLUE benchmark datasets844

and their respective evaluation metrics (Wang et al.,845

2018). The GLUE benchmark encompasses a vari-846

ety of natural language understanding tasks, such847

as grammatical correctness (CoLA (Warstadt et al.,848

2019)), sentiment classification (SST-2 (Socher849

et al., 2013)), paraphrase identification (MRPC850

(Dolan and Brockett, 2005)), natural language in-851

ference (MNLI (Williams et al., 2018), QNLI (Ra-852

jpurkar et al., 2018)). The datasets differ signifi-853

cantly in size, with training examples ranging from854

as many as 393,000 in MNLI. These tasks involve855

either binary or multi-class classification. Each856

task uses specific evaluation metrics, including ac-857

curacy, F1 score, Matthews correlation coefficient,858

and Pearson/Spearman correlation coefficients, de-859

pending on the nature of the task. This exten-860

sive collection serves as a standardized benchmark861

for evaluating and comparing model performance862

across a broad spectrum of linguistic challenges.863

Specific metrics are applied to natural language864

generation (NLG) tasks. For instance, Accuracy865

is used for GSM8K; Pass@1 is employed for Hu-866

manEval, representing the proportion of initially867

generated code snippets that successfully pass all868

unit tests; and GPT-4 Evaluation is utilized for MT-869

Bench, where GPT-4 evaluates the quality of the870

model’s outputs.871

B Baselines872

To evaluate the effectiveness of LoRA-MGPO, we873

compare it with several baseline approaches. First,874

Full Fine-Tuning updates all model parameters but875

demands substantial computational resources, mak-876

ing it impractical for LLMs. In contrast, Vanilla877

LoRA (Hu et al., 2021) incorporates a low-rank878

matrix product BA into linear layers, where A is879

initialized using Kaiming initialization and B is set880

to zero, providing a more efficient alternative in881

terms of parameter usage.882

Next, we examine LoRA variants with struc-883

tural modifications, which introduce architectural 884

changes to enhance performance. For instance, 885

DoRA (Liu et al., 2024b) improves model expres- 886

siveness by incorporating learnable magnitudes, 887

offering greater flexibility in representation. Mean- 888

while, AdaLoRA (Zhang et al., 2023) dynamically 889

prunes less significant weights during fine-tuning 890

using singular value decomposition (SVD), reallo- 891

cating rank to critical areas within a fixed parameter 892

budget to optimize resource utilization. 893

Finally, we explore LoRA variants that retain 894

the original structure, which refine the implemen- 895

tation while preserving the fundamental framework. 896

For example, rsLoRA (Kalajdzievski, 2023) intro- 897

duces a scaling factor to stabilize the scale of LoRA 898

during training. LoRA+ (Hayou et al., 2024) ap- 899

plies separate learning rates for matrices A and 900

B, enhancing adaptability and training efficiency. 901

Additionally, PiSSA (Meng et al., 2024) leverages 902

singular value decomposition (SVD) on the weight 903

matrix W at the start of training, initializing A and 904

B based on components with larger singular val- 905

ues to improve initialization quality. Furthermore, 906

LoRA-GA (Wang et al., 2024a) accelerates conver- 907

gence by approximating low-rank matrix gradients 908

with those of full fine-tuning, ensuring better gra- 909

dient flow throughout training. Similarly, LoRA- 910

Pro (Wang et al., 2024b) dynamically adjusts the 911

gradient in each optimization step to ensure that 912

the parameter update trajectory of the entire train- 913

ing process is approximated with full fine-tuning, 914

rather than just the initialization phase. 915

12

	Introduction
	Related Work
	Method
	Review of LoRA
	LoRA Fine-Tune with Momentum-Guided Perturbation Optimization
	Integrating SAM into LoRA
	Momentum-Guided Perturbation Optimization (MGPO)
	Adaptive Perturbation Normalization

	Experiments
	Results on Natural Language Understanding (NLU) Tasks
	Results on Natural Language Generation (NLG) Tasks
	Effectiveness Analysis on Mitigating Double Descent
	Ablation Study
	Comparative Analysis with Random Noise
	Computational Cost Analysis

	Conclusion
	Models of Datasets
	Details of Models
	Details of Datasets

	Baselines

