LoRA-MGPO: Mitigating Double Descent in LoRA Fine-Tuning via
Momentum-Guided Perturbation Optimization

Anonymous ACL submission

Abstract

Parameter-efficient fine-tuning (PEFT) meth-
ods, such as Low-Rank Adaptation (LoRA), en-
able efficient adaptation of large language mod-
els (LLMs) via low-rank matrix optimization
with frozen weights. However, LoRA typically
exhibits "double descent" in training loss as
rank increases, characterized by a three-phase
dynamics: initial convergence, transient diver-
gence, and eventual stabilization. This non-
monotonic behavior delays convergence and
impairs generalization through unstable gradi-
ents and attraction to sharp minima. To address
these challenges, we propose LORA-MGPO,
a novel LoRA-based framework incorporating
Momentum-Guided Perturbation Optimization
(MGPO). First, MGPO eliminates Sharpness-
Aware Minimization (SAM)’s dual gradient
computations by reusing momentum vectors
from optimizer states to guide perturbation di-
rections. This retains SAM’s training stability
and flat minima preference with maintained
efficiency. Second, MGPO incorporates adap-
tive perturbation normalization, scaling pertur-
bation intensity via exponential moving aver-
age (EMA)-smoothed gradient magnitudes. Ex-
periments on natural language understanding
and generation benchmarks demonstrate that
LoRA-MGPO outperforms LoRA and state-of-
the-art PEFT methods. Further analysis con-
firms its ability to stabilize training and reduce
sharp minima attraction, with smoother loss
curves and improved convergence behavior.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, setting new per-
formance benchmarks for tasks such as text gen-
eration and semantic understanding (Chang et al.,
2024; Wei et al., 2022). However, full-parameter
fine-tuning (Full FT) of these models requires up-
dating billions of parameters, imposing prohibitive
memory and computational costs. To address this

challenge, parameter-efficient fine-tuning (PEFT)
methods have emerged as a promising alternative
by selectively optimizing essential model compo-
nents (Lester et al., 2021; Fu et al., 2023).

Among these, Low-Rank Adaptation (LoRA)
(Hu et al., 2021) stands out for its computational
efficiency and architectural simplicity. Specifically,
LoRA approximates weight changes via low-rank
matrices by decomposing the update as AW =
BA, where W, € R™*" represents the frozen
pre-trained weights, and B € R"™*", A € R™*"
are trainable matrices with rank r < min(m,n).
The updated weights W' = Wy + AW retain the
original model functionality while reducing the
number of trainable parameters from O(mn) to
O(r(m + n)). For input X € RP*™, the output
Y = X(Wy+ BA) € RP*™ preserves the original
model functionality, enabling efficient downstream
adaptation through low-rank updates.

Despite its efficiency, LoRA exhibits the "dou-
ble descent" phenomenon during training (Belkin
et al., 2019). As illustrated in Figure 1, LoRA
fine-tunes LLaMA-2-7B (Touvron et al., 2023)
on MetaMathQA (Yu et al., 2024) with rank (r)
and alpha («) parameters set to identical values
(r = o € {32,64,128}) and a fixed learning rate
of 5e —4. This typically produces a double-descent
loss curve characterized by initial convergence,
abrupt divergence, and eventual stabilization. No-
tably, the double descent phenomenon becomes
increasingly pronounced with larger rank values.
Moreover, Full FT exhibits even more severe dou-
ble descent behavior, aligning with the observation
in (Nakkiran et al., 2019) that larger model sizes
exacerbate this phenomenon. The non-monotonic
behavior delays convergence and impairs gener-
alization through unstable gradient dynamics and
attraction to sharp minima during training (Li et al.,
2024b).

To address the unstable gradient dynamics driv-
ing double descent, Sharpness-Aware Minimiza-

LoRA-rank32 LoRA-rank64

LoRA-rank128 Full FT

o
®

0.8

)
o

0.6

o
s

0.4

Training Loss

o
N

0.2

16
1.4
12
0.6 1.0
0.8
0.6
0.4

0.2

0.0
0 1000 2000 3000 4000 5000 6000
Steps

0 1000 2000 3000 4000 5000 6000
Steps

0.0
0 1000 2000 3000 4000 5000 6000
Steps

0.0
0 1000 2000 3000 4000 5000 6000
Steps

Figure 1: Training loss curves of Full FT and LoRA (Hu et al., 2021) methods with LLaMA-2-7B (Touvron et al.,
2023) on the MetaMathQA dataset (Yu et al., 2024). For LoRA, rank () and alpha (o) parameters are set to identical
values (r = « € {32,64, 128}), while the learning rate is fixed at 5e — 4.

tion (SAM) serves as a regularization strategy in
LoRA optimization, demonstrated to enhance con-
vergence and generalization (Foret et al., 2020; Li
et al., 2024a). By seeking flat minima through
gradient perturbation, SAM suppresses parameter
oscillations during training (Li et al., 2024b). How-
ever, SAM’s scalability is constrained by dual gra-
dient computations per iteration, doubling compu-
tational costs (Becker et al., 2024; Li et al., 2024c¢).
Unlike SAM’s costly dual gradient computations,
momentum-guided SAM reuses momentum vec-
tors from optimizer states to guide perturbation
directions, eliminating additional gradient evalua-
tions while preserving directional sharpness-aware
updates (Becker et al., 2024). Despite these effi-
ciency, standalone momentum-guided SAM cannot
ensure stable convergence or robust generalization.
Thus, exponential moving average (EMA)-based
smoothing (Wang et al., 2021) is introduced to sup-
press parameter oscillations and decouple perturba-
tion intensity from optimization dynamics.

Building on these insights, we propose LoRA-
MGPO, a novel LoRA-based framework incorpo-
rating Momentum-Guided Perturbation Optimiza-
tion (MGPO) to mitigate the detrimental effects of
double descent. First, MGPO eliminates SAM’s
dual gradient computations by reusing momentum
vectors from optimizer states to guide perturbation
directions. This preserves SAM’s training stability
and flat minima preference while maintaining com-
putational efficiency. Second, MGPO introduces
adaptive perturbation normalization, which scales
perturbation intensity via EMA-smoothed gradient
magnitudes. This decouples it from optimization
dynamics and suppresses double descent. We eval-
uate LORA-MGPO on natural language understand-
ing (NLU) and generation (NLG) benchmarks,
demonstrating consistent improvements over stan-
dard LoRA and other state-of-the-art PEFT base-

lines. Further analysis shows that LORA-MGPO
stabilizes training dynamics and mitigates sharp
minima, with smoother loss curves and faster con-
vergence rates as empirical evidence.

2 Related Work

Parameter-Efficient Fine-Tuning (PEFT). The
scale of LLMs and their increasing deployment
have motivated the development of PEFT tech-
niques (Houlsby et al., 2019). While full-parameter
fine-tuning methods (Howard and Ruder, 2018; De-
vlin, 2018) incur high computational and storage
costs, PEFT methods reduce trainable parameters
by selectively updating subsets of model weights,
achieving competitive performance (Houlsby et al.,
2019; Ding et al., 2023; Han et al., 2024). Among
these, Low-Rank Adaptation (LoRA) (Hu et al.,
2021) and its variants—such as Rank-Stabilized
LoRA (rsLoRA) (Kalajdzievski, 2023), LoRA+
(Hayou et al., 2024), PiSSA (Meng et al., 2024),
DoRA (Liu et al., 2024b), and AdaLoRA (Zhang
et al., 2023)—have gained prominence by approxi-
mating weight updates through low-rank matrix de-
compositions while preserving model performance.
These methods primarily focus on architectural
modifications or adaptive rank allocation to en-
hance learning efficiency and performance. Other
notable PEFT methods include Adapter Layers
(Houlsby et al., 2019), BitFit (Zaken et al., 2021),
and Prefix-Tuning (Li and Liang, 2021), which
achieve efficient adaptation with minimal parame-
ter updates. Recent advancements further explore
gradient approximation strategies, such as LoRA-
GA (Wang et al., 2024a) and LoRA-Pro (Wang
et al., 2024b), which accelerate convergence by
approximating full fine-tuning gradients.

Optimization Stability in PEFT

The optimization stability of PEFT methods,
such as LoRA, is notably influenced by low-rank

adaptation strategies. Empirical studies show that
performance improves with increasing rank up to a
certain threshold, beyond which overfitting occurs,
destabilizing training dynamics in LLMs. This
behavior mirrors the double descent phenomenon,
first characterized by (Belkin et al., 2019), where
larger model capacities exacerbate gradient instabil-
ity during training. (Nakkiran et al., 2019) further
demonstrates that both increased model scale and
data quantity may degrade performance in high-
dimensional parameter spaces. To mitigate these
challenges, Sharpness-Aware Minimization (SAM)
(Foret et al., 2020) has been proposed to promote
flat minima through gradient perturbation. How-
ever, it incurs significant computational overhead
due to the need for dual gradient computations
(Becker et al., 2024; Li et al., 2024c¢).

Recent advances in directional perturbation
strategies have improved stability: gradient-guided
approaches (Liu et al., 2024a; Ballas and Diou,
2025; Guo et al., 2024) leverage historical gradient
information to control the magnitude of perturba-
tions, offering greater robustness to sharp minima
compared to stochastic noise injection methods.
Momentum-guided methods, such as Momentum-
SAM, reduce computational costs by reusing op-
timizer momentum vectors, thus eliminating the
need for additional gradient evaluations (Becker
et al., 2024). However, their integration with PEFT
remains underexplored. Additionally, exponential
moving average (EMA)-based smoothing (Wang
et al., 2021) stabilizes training dynamics by con-
trolling gradient magnitudes. Despite these ad-
vancements, existing methods generally address
directional perturbation and dynamic regulariza-
tion separately, highlighting the need for unified
frameworks that optimize both efficiency and sta-
bility in PEFT.

3 Method

In this section, we first review the core frame-
work of LoRA. Building on LoRA, we propose our
LoRA-MGPO, which (i) integrates Momentum-
Guided Perturbation Optimization (MGPO) to
avoid additional gradient evaluations by reusing
optimizer momentum vectors for directional per-
turbation updates, and (ii) introduces adaptive per-
turbation normalization to decouple perturbation
intensity from regularization scheduling via EMA-
smoothed intensity scaling.

3.1 Review of LoRA

Full Fine-tuning involves directly updating the en-
tire weight matrix Wy € R™*", which incurs high
computational and memory costs, making it diffi-
cult to deploy in practice. In contrast, Low-Rank
Adaptation (LoRA) (Hu et al., 2021) is a parameter-
efficient fine-tuning technique that introduces low-
rank matrices B € R"™*" and A € R"*" to ap-
proximate weight updates while keeping pretrained
weights W frozen to retain model knowledge and
simplify optimization. Vanilla LoRA initializes A
with Kaiming normal distribution (He et al., 2015):

A ~ N(0,0%) where 0 = \/g, and sets B = 0.

Given an input matrix X € RP*™ (where p is the
batch size, m is the input dimensionality), the out-
put is computed as:

Y = XW' ¢ RP*™, (1)
where the adapted weight matrix is defined as:
W' =Wy +nBA € R™*", (2)

Here, the rank r is chosen to satisfy r <
min(m,n), which ensures the trainable parame-
ters are negligible compared to the original model
size. The scaling factor 7 = - balances the update
magnitude and learning dynamics (Hu et al., 2021).
While rsLoRA (Kalajdzievski, 2023) demonstrates
that adaptive scaling of r can enhance performance,
excessive rank expansion without corresponding
optimization induces a pronounced double descent
regime during fine-tuning, delaying convergence
and impairing generalization through unstable gra-
dient dynamics and attraction to sharp minima (Li

et al., 2024b).

3.2 LoRA Fine-Tune with Momentum-Guided
Perturbation Optimization

To address the challenge arising from double
descent in LoRA training, we propose LoRA-
MGPO, a novel LoRA-based framework integrat-
ing Momentum-Guided Perturbation Optimization
(MGPO). MGPO eliminates SAM’s dual gradient
computations by reusing momentum vectors v; to
guide weight-space perturbations, while adaptive
normalization dynamically scales perturbation in-
tensity through EMA-smoothed gradient magni-
tudes.

3.2.1 Integrating SAM into LoRA

The objective function of Sharpness-Aware Min-
imization (SAM) (Foret et al., 2020) minimizes

loss landscape sharpness by perturbing in the full
weight space:

min max £ (Wp +nBA+¢).

AB |lel|<p
Here, A and B are trainable LoRA matrices, and €
is a weight-space perturbation vector derived from
historical gradients. By maintaining LoRA’s low-
rank parameterization nB A, our method preserves
parameter efficiency while enabling curvature es-
timation aligned with SAM’s principle (Becker
et al., 2024). However, direct application of SAM
to LoRA introduces two critical limitations: (1)
dual gradient computations significantly increase
computational overhead, and (2) additional weight
storage for perturbation contradicts LoRA’s princi-
ple of parameter-efficient fine-tuning. These chal-
lenges are resolved by MGPO through momentum
reuse and adaptive normalization, as detailed be-
low.

3.2.2 Momentum-Guided Perturbation
Optimization (MGPO)

Building on Momentum-SAM (Becker et al., 2024),
we reformulate SAM for LoRA by eliminating its
dual gradient computations. Instead of computing
gradients twice per iteration, MGPO reuses opti-
mizer momentum vectors v; to guide perturbation
directions in the weight space:

min L(Wy +nBA + ¢), 3)
A.B
where the perturbation vector € is defined as:
v o 1
e=—p- = (a") .)
[[0|2

where p denotes the perturbation radius hyperpa-
rameter, v; represents the momentum state vector
guiding perturbation directions, and gl(t) stands for
the exponential moving average of gradient mag-
nitudes used for adaptive normalization. This ap-
proach leverages historical gradient information

through the momentum update:
vp = pvg—1 + VLWY), &)

where p controls the contribution of historical gra-
dients. By reusing v;, MGPO avoids SAM’s com-
putationally expensive second gradient pass while
maintaining stability against sharp minima attrac-
tion. Moreover, momentum reuse eliminates the
need for additional weight storage during pertur-
bation, inherently preserving LoRA’s parameter
efficiency.

Two-Stage Weight Update Mechanism To en-
able efficient curvature estimation and weight
restoration, we adopt a two-stage strategy:

— vt

Wi=Wi—p- 77— (6)
[[vel2

where W; = Wy + nBA; represents LoRA-

parameterized weights, and W; denotes perturbed

weights for curvature estimation. The training con-

cludes with:

Wr=Wr+p —-
T T+p [orll’

(N

where W/T is the final perturbed state at iteration 7',
and W restores unperturbed LoRA weights while
retaining curvature information.

3.2.3 Adaptive Perturbation Normalization

To complement MGPO’s core design, we nor-
malize e via exponential moving average (EMA)-
smoothed gradient magnitudes:

3" = 83"+ (1= B)IVamLlz, ®

where 3 balances responsiveness to recent gradi-
ents with noise suppression. This adaptive normal-
ization enhances MGPO’s double descent suppres-
sion capability by ensuring scale-invariant pertur-
bations across training stages and network layers.

4 Experiments

Baselines To evaluate LORA-MGPO, we compare
it with several baselines. Full Fine-Tuning updates
all model parameters but is computationally expen-
sive for LLMs. Vanilla LoRA (Hu et al., 2021) in-
troduces a low-rank matrix product B A into linear
layers, initializing A with Kaiming initialization
and B as zero, offering parameter efficiency. We
also examine LoRA Variants with Modified Struc-
ture. For instance, DoRA (Liu et al., 2024b) en-
hances expressiveness by incorporating learnable
magnitudes. AdaLoRA (Zhang et al., 2023) dynam-
ically prunes less significant weights via singular
value decomposition (SVD), reallocating rank to
optimize resource use. Additionally, we explore
LoRA Variants with Original Structure. rsLoRA
(Kalajdzievski, 2023) stabilizes training with a scal-
ing factor. LoRA+ (Hayou et al., 2024) applies
separate learning rates for A and B, improving
adaptability. PiSSA (Meng et al., 2024) leverages
SVD on the weight matrix W at initialization, us-
ing larger singular values for better initialization.

Table 1: Performance of T5-Base Fine-Tuning with Full Fine-Tuning and Various LoRA Variants on a Subset of
GLUE Tasks. The best and second-best results are highlighted in bold and underline.

Method MNLI SST2 CoLA QNLI MRPC Avg
Full FT 86.3310.00 94751021 80.701024 93.194022 84.564073 | 87.91
LoRA 85304004 94.041011 69351005 92.964009 68381001 | 82.08
LoRA Variants with Modified Structure
DoRA 85.67+0.09 94.041053 72.041094 93.041006 68.08+051 | 82.57
AdalLoRA 85.45:|:0_11 93.69:‘:0.20 69.16:|:0.24 91.66:|:0_05 68.14:‘:0.28 81.62
LoRA Variants with Original Structure
PiSSA 85.75+0.07 94.07+006 74274039 93.154014 76311051 | 84.71
rsLoRA 85.73:|:0_10 94.19:‘:0.23 72.32:|:1_12 93.12:|:0_()9 52.86:‘:2.27 79.64
LoRA+ 85.8140.09 93.85+024 77.534020 93.144003 74431139 | 84.95
LoRA-GA 85. 704009 94.1140.18 80.571020 93.181006 85294024 | 87.77
LoRA-MGPO ‘ 86.58. 011 94.721046 82.321018 93.7910.46 86.62106s ‘ 88.81

LoRA-GA (Wang et al., 2024a) aligns low-rank
gradients with full fine-tuning for faster conver-
gence. Similarly, LoORA-Pro (Wang et al., 2024b)
dynamically adjusts gradients to align the entire
parameter update trajectory with full fine-tuning.

Implementation Details We replicate the experi-
mental setup of LORA-GA (Wang et al., 2024a). By
default, we fine-tune the models using the AdamW
optimizer (Loshchilov and Hutter, 2019), weight
decay is set to 0, and a cosine learning rate schedule
with a 0.03 warmup ratio is used. LoRA adapters
are applied to all linear layers, excluding embed-
ding, normalization, and classification layers. The
rank 7 is set to 8, and the scaling factor « is set to
16 unless specified otherwise. For NLU tasks, we
fine-tune T5-base (Raffel et al., 2020) with a learn-
ing rate of 1x10~%, a sequence length of 128, and a
batch size of 32. p = 0.05, u = 0.9, 5 = 0.9. For
the NLG tasks, we fine-tune LLaMA-2-7B (Tou-
vron et al., 2023) with a learning rate of 2 x 107>,
a sequence length of 1024, and a macro batch size
of 32. p = 0.01, 4 = 0.8, 5 = 0.8. Experiments
were conducted on NVIDIA H20-NVLink (96GB)
GPUs, repeated three times with different random
seeds, and results are reported as averages with
standard deviation.

4.1 Results on Natural Language
Understanding (NLU) Tasks

We evaluate the performance of our proposed
method, LORA-MGPO, across several NLU tasks
from the GLUE benchmark (Wang et al., 2018),
including MNLI, SST-2, CoLA, QNLI, and MRPC.
The experiments are conducted using the T5-base

model (Raffel et al., 2020), with the LoRA rank
fixed at 8. To ensure a comprehensive compar-
ison, we include several baseline methods: full
fine-tuning, standard LoRA (Hu et al., 2021),
and its variants—DoRA (Liu et al., 2024b) and
AdalLoRA (Zhang et al., 2023), which modify
the LoRA structure. Additionally, we consider
rsLoRA (Kalajdzievski, 2023), LoRA+ (Hayou
et al., 2024), PiSSA (Meng et al., 2024), and LoRA-
GA (Wang et al., 2024a), which retain the original
LoRA structure. The results are summarized in
Table 1.

LoRA-MGPO outperforms all other methods
across all tasks. It achieves the highest accuracy
on MNLI (86.58), CoLA (82.32), QNLI (93.79),
and MRPC (86.62). For SST2, it ranks second with
94.72, just behind full fine-tuning (94.75). LoRA-
MGPO’s average performance is 88.81, surpassing
LoRA-GA’s 87.77 by 1.04 points. These results
demonstrate LORA-MGPO’s robust performance,
driven by its ability to optimize the loss landscape
through MGPO and adaptive perturbation normal-
ization, improving generalization, especially on
smaller datasets.

4.2 Results on Natural Language Generation
(NLG) Tasks

Experiments were conducted using the LLaMA-
2-7B model (Touvron et al., 2023), with a LoRA
rank set to 8. We also explored the effects of higher
ranks (32 and 128) on performance. For dialogue
generation, the model was fine-tuned on a 52k
subset of the WizardLM dataset (Xu et al., 2024)
and evaluated on the MT-Bench dataset (Zheng

Table 2: Fine-tuning results for LLaMA-2-7B model on NLG-related tasks. The best and second-best results are
highlighted in bold and underline.

Method MT-Bench GSMS8K HumanEval | Avg
Full FT 5.30:|:0_11 59-3610.85 35.31:‘:2_13 33.32
LoRA 5.6li0.10 42.08i0.04 14.7610.17 20.82
DoRA 5974002 53.07+075 19754041 | 26.26
AdalLLoRA 5.57:|:0.05 50.72:‘:1.39 17.80:‘:0.44 24.70
PiSSA 5304002 44541027 16024978 | 21.95
rsLoRA 5-25i0.03 45.62i0_10 16.0110.79 22.29
LoRA+ 5-71:|:0.08 52.1 1:&0.62 18.17:‘:0_52 25.33
LoRA-GA 5954016 53.601030 19.81t146 | 26.45
LoRA-GA (rank=32) 5.79:|:0.09 55.12:;:0.30 20.18:&0.19 27.03
LoRA-GA (rank=128) 6.131007 55.0710.18 23.051+037 | 28.08
LoRA-MGPO 6.27 1012 54564044 21.024939 | 27.28
LoRA-MGPO (rank:32) 6.21:|:0,15 55.74:5:0,21 21.34:|:0_47 27.76
LoRA-MGPO (rank:128) 6.48:|:0.23 56.96:‘:0‘35 24.87:|:0.54 29.44

et al., 2024a). For mathematical reasoning, the
model was fine-tuned on a 100k sample from
the MetaMathQA dataset (Yu et al., 2024) and
evaluated on the GSMS8K test set (Cobbe et al.,
2021). For code generation, the model was fine-
tuned on a 100k subset of the CodeFeedback
dataset (Zheng et al., 2024b) and evaluated on
the HumanEval dataset (Chen et al., 2021). We
compared LoRA-MGPO with several baselines, in-
cluding full fine-tuning, standard LoRA (Hu et al.,
2021), and its variants—DoRA (Liu et al., 2024b),
AdalLoRA (Zhang et al., 2023), rsLoRA (Kala-
jdzievski, 2023), LoRA+ (Hayou et al., 2024),
PiSSA (Meng et al., 2024), and LoRA-GA (Wang
et al., 2024a).

The results, summarized in Table 2, show
that LoRA-MGPO consistently outperforms all
other methods across tasks. Specifically, LoRA-
MGPO achieves the highest score on MT-Bench
(6.27), indicating superior performance in dialogue
generation. On GSMS8K, LoRA-MGPO scores
54.56, placing second to full fine-tuning (59.36),
demonstrating strong performance in mathemat-
ical reasoning. For HumanEval, LoORA-MGPO
scores 21.02, outperforming LoRA (14.76), DoRA
(19.75), and other variants, though it still falls short
of full fine-tuning (35.31). Increasing the rank to 32
and 128 further improves LORA-MGPO’s perfor-
mance. Atrank 128, it achieves 6.48 on MT-Bench,
56.96 on GSMSK, and 24.87 on HumanEval, nar-
rowing the gap to full fine-tuning and demonstrat-

ing scalability with higher ranks. These results
validate LORA-MGPO’s effectiveness in enhanc-
ing training stability, achieving robust performance
across various NLG tasks, and showcasing its scal-
ability with increasing rank.

4.3 Effectiveness Analysis on Mitigating
Double Descent

The primary objective of this experiment is to
assess the effectiveness of LORA-MGPO in mit-
igating the double descent phenomenon during
fine-tuning. We fine-tuned LLaMA-2-7B (Tou-
vron et al., 2023) on the MetaMathQA dataset
(Yu et al., 2024) using LoRA, LoRA-MGPO,
and Full FT. The first analysis (Figure 2) sets
the rank (r) and alpha («) to identical values,
r = a € {16, 32,64, 128}, with a fixed learning
rate of be — 4. The second analysis (Figure 3)
investigates learning rate sensitivity, evaluating
{2¢—4,3e—4,4e—4,6e—4} withr = a = 128.

The results presented in Figures 2 and 3 lead to
the following key observations: First, both LoORA
and Full FT exhibit more pronounced double de-
scent phenomena as the rank (» > 64) increases,
marked by performance dips followed by recov-
ery phases in their training curves. Second, higher
learning rates (Ir > 4e — 4) exacerbate this is-
sue, resulting in sharper fluctuations and delayed
convergence in the baseline methods. Third, LoRA-
MGPO consistently demonstrates smooth loss tra-
jectories across all settings. These findings confirm

rank 16 rank 32

rank 64 rank 128

Full FT
144 b LoRA-MGPO 1al b
—— LoRA

Full FT
LoRA-MGPO
—— LoRA

Training Loss

o o r
2 &
1

o
i

o <

o

TN

Full FT

0.0
0 500 1000 1500 2000 2500 3000 0

Steps Steps

500 1000 1500 2000 2500 3000

0.0 0.0
0 500 1000 1500 2000 2500 3000 O
Steps

500 1000 1500 2000 2500 3000
Steps

Figure 2: Training loss dynamics across rank configurations: Comparative analysis of LoRA, LoRA-MGPO, and
full fine-tuning on LLaMA-2-7B and MetaMathQA. Rank (r) and alpha («) follow r = « € {16, 32, 64, 128} with

fixed learning rate 5e — 4.

Ir = 2e-4 Ir = 3e-4

Ir = 4e-4 Ir = 6e-4

1.0 Full FT
LoRA-MGPO

Full FT
LoRA-MGPO
—— LoRA

0.8

0.6

Training Loss

0.4

0.2

Full FT
LoRA-MGPO
—— LoRA

12

0.0
0 500 1000 1500 2000 2500 3000 0

Steps Steps

500 1000 1500 2000 2500 3000

0.0 0.00
0 500 1000 1500 2000 2500 3000 0
Steps

500 1000 1500 2000 2500 3000
Steps

Figure 3: Learning rate sensitivity analysis: Training loss comparison of LoRA, LoORA-MGPO, and full fine-tuning
on LLaMA-2-7B and MetaMathQA. Evaluation spans learning rates {2¢ — 4, 3e — 4, 4e — 4, 6e — 4} with rank (r)

and alpha («) fixed at 128.

that LoORA-MGPO effectively mitigates the double
descent phenomenon, ensuring stable convergence
throughout the fine-tuning process.

(a) Performance on MT-Bench, GSM8K, and
59.36

(b) Performance on GLUE Avg

0] —— T5-base

54.12 54,56 88.81

87.91
42,08 —— MT-Bench

407 3537 GSMBK

—— HumanEval| 86
30
20,43 2102 | 84
20
.7 0

86.76

<& & L & & & L &

S e{,qox‘? «© ‘b&ox‘? S \}(}Qox‘? «© “\(,Qoxv
& &

Figure 4: Ablation Study of LoRA Variants on

NLG and NLU Tasks: (a) NLG Performance on
MT-Bench, GSMS8K, and HumanEval (LLaMA-2-7B);
(b) Average NLU Performance on GLUE Bench-
marks (MNLI, SST2, CoLA, QNLI, MRPC) with T5-
Base. Methods compared: w/o MGPO+APN (standard
LoRA), MGPO (LoRA+MGPO), and LoRA-MGPO
(LoRA+MGPO+APN).

4.4 Ablation Study

This ablation study evaluates the individual con-
tributions of the MGPO and Adaptive Perturba-
tion Normalization (APN) components within the
proposed LoORA-MGPO framework. For Natu-
ral Language Generation (NLG) tasks, we as-
sessed LLaMA-2-7B (Touvron et al., 2023) on

MT-Bench (Zheng et al., 2024a) (dialogue genera-
tion), GSMS8K (Cobbe et al., 2021) (mathematical
reasoning), and HumanEval (Chen et al., 2021)
(code generation). For Natural Language Under-
standing (NLU) tasks, we tested T5-Base on five
GLUE (Wang et al., 2018) subtasks: MNLI, SST2,
CoLA, QNLI, and MRPC, with results averaged
across these tasks. In all experiments, the LoRA
rank was fixed at 8, and o« = 16 to ensure consis-
tent comparisons.

As shown in Figure 4, LoORA-MGPO consis-
tently achieves the highest performance. On NLU
tasks, it outperforms full fine-tuning by +0.90
points (88.81 vs. 87.91) and surpasses MGPO
(86.76) by +2.05 points, demonstrating the sig-
nificant role of APN in enhancing generaliza-
tion when combined with MGPO. For NLG tasks,
LoRA-MGPO sets new state-of-the-art results on
MT-Bench (6.27) and HumanEval (21.02), while
maintaining competitive performance on GSM8K
(54.56). In contrast, the baseline model without
APN (standard LoRA) consistently underperforms
across all tasks, such as 14.76 on HumanEval and
42.08 on GSMS8K. These results confirm that the
synergistic integration of MGPO and APN im-
proves parameter-efficient fine-tuning.

Table 3: Comparative analysis of computational efficiency and performance in LoRA, LoORA-MGPO, and Full FT
methods trained for a single epoch using LLaMA-2-7B on the WizardLM dataset.

Method #Params | Memory Cost | Training Time | MT-Bench GSM8K HumanEval
Full FT 6738M >96 GB - 5.30+0.11 99.364085 35.31i213
LoRA 320M 81.73 GB 5h 48min 5.6110.10 42.0840.04 14.7610.17
LoRA-MGPO | 320M 90.56 GB 6h 52min 6.27+012 94.56+1044 21.0240.39

Table 4: Comparison of optimization methods with ran-
dom noise analysis results for the LLaMA-3.1-8B-Base.

Method | MTBench GSM8k HumanEval
Full FT 5.88i0423 73-69i0,28 51.63i1427
LoRA 6.15i0_02 67.78i1_25 43-09i0.35
LoRA + Random Noise 6-43j:0.26 68.0511_12 4292:(:0.41
LORA-MGPO 7.51;&()‘07 7023:&108 45.13:&()‘63

4.5 Comparative Analysis with Random Noise

In this experiment, we evaluated several opti-
mization methods using the LLaMA-3.1-8B-Base
model (Dubey et al., 2024), with a fixed LoRA rank
of 8 (alpha = 16). The methods compared include
Full FT, LoRA, LoRA combined with Random
Noise (Li et al., 2024b), and our proposed LoRA-
MGPO. The model was fine-tuned on a 100K sub-
set of the MetaMathQA (Yu et al., 2024), Code-
Feedback (Zheng et al., 2024b), and WizardLM
datasets, targeting mathematical reasoning, cod-
ing, and dialogue tasks, respectively. Training was
performed using a peak learning rate of 5e-5 with
BF16 mixed precision. Performance metrics for
each method are summarized in Table 4, with task-
specific evaluations: accuracy on GSM8k for math-
ematical reasoning, PASS@1 on HumanEval for
coding, and average MTBench scores for dialogue
generation, as detailed in (Zheng et al., 2023).
The results indicate that methods incorporat-
ing random noise (LoRA + Random Noise) yield
minor improvements on certain tasks but show
inconsistent performance across evaluation met-
rics. In contrast, LORA-MGPO consistently outper-
forms all other methods on MTBench, GSM8k, and
HumanEval. These findings suggest that LoRA-
MGPO is more effective at enhancing model ro-
bustness, particularly in noisy environments, and
provides a more reliable optimization strategy than
traditional random noise-based methods.

4.6 Computational Cost Analysis

We compare the computational cost and overall
performance of LORA-MGPO, LoRA, and Full FT

on NLG tasks. The experiments are conducted
on a single NVIDIA H100-NVLink (96GB) GPU
with 1 epoch of training, optimized using Deep-
Speed (Rasley et al., 2020) and ZeRO-2 stages.
The model is LLaMA-2-7B (Touvron et al., 2023),
and the dataset is WizardLM (Xu et al., 2024).

The results, summarized in Table 3, show that
Full FT requires the highest computational re-
sources, with 6,738M parameters and over 96 GB
of memory. In comparison, both LoRA and LoRA-
MGPO use significantly fewer parameters (320M)
and consume less memory, with LoORA-MGPO
slightly exceeding LoRA in memory usage (90.56
GB vs. 81.73 GB). The training time for LoRA-
MGPO is 6 hours and 52 minutes, slightly longer
than the 5 hours and 48 minutes for LoRA. Im-
portantly, LoORA-MGPO delivers substantial per-
formance improvements over LoRA. This trade-off
between computational cost and performance un-
derscores the practical viability of LoORA-MGPO.

5 Conclusion

This work addresses the double descent phe-
nomenon in LoRA, a parameter-efficient fine-
tuning method for LLMs, characterized by non-
monotonic training dynamics with transient di-
vergence and delayed convergence. We pro-
pose LoRA-MGPO, a framework integrating
Momentum-Guided Perturbation Optimization
(MGPO), which leverages optimizer momentum
vectors to guide perturbation directions and intro-
duces adaptive normalization via gradient magni-
tude smoothing. This approach stabilizes training,
reduces attraction to sharp minima, and maintains
computational efficiency. Empirical results show
LoRA-MGPO outperforms conventional LoRA
and state-of-the-art PEFT methods on natural lan-
guage tasks, achieving smoother loss curves and
accelerated convergence. By resolving LoRA’s
instability while preserving its efficiency, LoRA-
MGPO provides a practical solution for adapting
LLMs with minimal parameter updates.

Limitations

First, LORA-MGPQO’s reliance on momentum vec-
tors for perturbation directions assumes stable op-
timizer dynamics, which may limit its effective-
ness in early training stages or under highly non-
stationary gradient conditions. Second, while adap-
tive perturbation normalization via EMA-smoothed
gradients enhances robustness, its performance
could be sensitive to abrupt shifts in gradient
magnitude distributions, potentially requiring task-
specific adjustments to smoothing hyperparame-
ters.

References

Aristotelis Ballas and Christos Diou. 2025. Gradient-
guided annealing for domain generalization. arXiv
preprint arXiv:2502.20162.

Marlon Becker, Frederick Altrock, and Benjamin Risse.
2024. Momentum-sam: Sharpness aware minimiza-
tion without computational overhead. arXiv preprint
arXiv:2401.12033.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik
Mandal. 2019. Reconciling modern machine-
learning practice and the classical bias—variance
trade-off. Proceedings of the National Academy of
Sciences, 116(32):15849-15854.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1-45.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220-235.

Bill Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In
Proc. Int. Workshop Paraphrasing.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2020. Sharpness-aware min-
imization for efficiently improving generalization.
arXiv preprint arXiv:2010.01412.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On
the effectiveness of parameter-efficient fine-tuning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 12799—-12807.

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen,
and Mengdi Wang. 2024. Gradient guidance for dif-
fusion models: An optimization perspective. arXiv
preprint arXiv:2404.14743.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
Preprint, arXiv:2402.12354.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
Preprint, arXiv:1502.01852.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Damjan Kalajdzievski. 2023. A rank stabilization
scaling factor for fine-tuning with lora. Preprint,
arXiv:2312.03732.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732

Bingcong Li, Liang Zhang, and Niao He. 2024a. Im-
plicit regularization of sharpness-aware minimiza-
tion for scale-invariant problems. arXiv preprint
arXiv:2410.14802.

Tao Li, Zhengbao He, Yujun Li, Yasheng Wang, Lifeng
Shang, and Xiaolin Huang. 2024b. Flat-lora: Low-
rank adaption over a flat loss landscape. arXiv
preprint arXiv:2409.14396.

Tao Li, Qinghua Tao, Weihao Yan, Zehao Lei, Yingwen
Wu, Kun Fang, Mingzhen He, and Xiaolin Huang.
2024c. Revisiting random weight perturbation for
efficiently improving generalization. arXiv preprint
arXiv:2404.00357.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Gang Liu, Hongyang Li, Zerui He, and Shenjun Zhong.
2024a. Enhancing generalization in medical visual
question answering tasks via gradient-guided model
perturbation. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2220-2224. IEEE.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024b. Dora:
Weight-decomposed low-rank adaptation. Preprint,
arXiv:2402.09353.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Preprint,
arXiv:2404.02948.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2019. Deep
double descent: Where bigger models and more data
hurt. Preprint, arXiv:1912.02292.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for SQuAD. pages 784-789.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In SIGKDD, pages 3505—
3506.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for

10

semantic compositionality over a sentiment treebank.
pages 1631-1642.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Shaowen Wang, Linxi Yu, and Jian Li. 2024a. Lora-ga:
Low-rank adaptation with gradient approximation.
Preprint, arXiv:2407.05000.

Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yi Xu,
Yulun Zhang, and Yun Fu. 2021. Rethinking adam: A
twofold exponential moving average approach. arXiv
preprint arXiv:2106.11514.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and
Tieniu Tan. 2024b. Lora-pro: Are low-rank adapters
properly optimized? Preprint, arXiv:2407.18242.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Trans. Assoc. Comput. Linguist., 7:625-641.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Proc.
Conf. North Am. Chapter Assoc. Comput. Linguist.,
pages 1112-1122.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In /CLR.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In ICLR.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. Preprint, arXiv:2303.10512.

https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.
Judging llm-as-a-judge with mt-bench and chatbot
arena. In NeurIPS.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.
2024b. OpenCodelnterpreter: Integrating code gen-
eration with execution and refinement. In Findings
of ACL.

11

Appendix

Contents

A Models of Datasets 11
A.1 Detailsof Models 11
A.2 Details of Datasets 12

B Baselines 12

A Models of Datasets

A.1 Details of Models

In this work, we primarily utilize two pre-trained
language models: LLaMA-2-7B and T5-base. Be-
low, we provide a brief overview of these models
along with their respective configurations.

* LLaMA-2-7B: This is a large language model
developed by Meta, featuring 7 billion param-
eters. It is part of the LLaMA-2 series, which
is known for its strong performance across
various natural language understanding and
generation tasks. The model architecture is
based on the transformer decoder, making it
particularly effective for autoregressive tasks
such as text generation. More details about
the model can be found on its Hugging Face

page®.

* T5-base: The Text-to-Text Transfer Trans-
former (T5) is a versatile encoder-decoder
model introduced by Google. The base ver-
sion of TS consists of approximately 220 mil-
lion parameters and is widely used for a va-
riety of tasks, including translation, summa-
rization, and question-answering. Its unified
text-to-text framework allows for seamless
adaptation to different downstream applica-
tions. Additional information about T5-base
is available on its Hugging Face repository".

Both models were fine-tuned on our specific

datasets to align with this study’s objectives experi-
ments were conducted using the implementations
provided by Hugging Face’s Transformers library.

*https://huggingface.co/meta-1lama/LLaMA-2-7B
Thttps://huggingface.co/t5-base

https://huggingface.co/meta-llama/LLaMA-2-7B
https://huggingface.co/t5-base

Table 5: GLUE Benchmark Datasets and Evaluation Metrics

Dataset Task Type Classes Train Examples Metric Description

CoLA Acceptability 2 8.5k Matthews Corr. Grammatical acceptability
SST-2 Sentiment 2 67k Accuracy Sentiment analysis
MRPC Paraphrase 2 3.7k Accuracy/F1 Paraphrase detection
MNLI NLI 3 393k Accuracy Multi-genre NLI

QNLI NLI/QA 2 108k Accuracy QA/NLI converted from SQuAD

A.2 Details of Datasets

Table 5 summarizes the GLUE benchmark datasets
and their respective evaluation metrics (Wang et al.,
2018). The GLUE benchmark encompasses a vari-
ety of natural language understanding tasks, such
as grammatical correctness (CoLA (Warstadt et al.,
2019)), sentiment classification (SST-2 (Socher
et al., 2013)), paraphrase identification (MRPC
(Dolan and Brockett, 2005)), natural language in-
ference (MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2018)). The datasets differ signifi-
cantly in size, with training examples ranging from
as many as 393,000 in MNLI. These tasks involve
either binary or multi-class classification. Each
task uses specific evaluation metrics, including ac-
curacy, F1 score, Matthews correlation coefficient,
and Pearson/Spearman correlation coefficients, de-
pending on the nature of the task. This exten-
sive collection serves as a standardized benchmark
for evaluating and comparing model performance
across a broad spectrum of linguistic challenges.

Specific metrics are applied to natural language
generation (NLG) tasks. For instance, Accuracy
is used for GSM8K; Pass@1 is employed for Hu-
manEval, representing the proportion of initially
generated code snippets that successfully pass all
unit tests; and GPT-4 Evaluation is utilized for MT-
Bench, where GPT-4 evaluates the quality of the
model’s outputs.

B Baselines

To evaluate the effectiveness of LORA-MGPO, we
compare it with several baseline approaches. First,
Full Fine-Tuning updates all model parameters but
demands substantial computational resources, mak-
ing it impractical for LLMs. In contrast, Vanilla
LoRA (Hu et al., 2021) incorporates a low-rank
matrix product B A into linear layers, where A is
initialized using Kaiming initialization and B is set
to zero, providing a more efficient alternative in
terms of parameter usage.

Next, we examine LoRA variants with struc-

12

tural modifications, which introduce architectural
changes to enhance performance. For instance,
DoRA (Liu et al., 2024b) improves model expres-
siveness by incorporating learnable magnitudes,
offering greater flexibility in representation. Mean-
while, AdaLoRA (Zhang et al., 2023) dynamically
prunes less significant weights during fine-tuning
using singular value decomposition (SVD), reallo-
cating rank to critical areas within a fixed parameter
budget to optimize resource utilization.

Finally, we explore LoRA variants that retain
the original structure, which refine the implemen-
tation while preserving the fundamental framework.
For example, rsLoRA (Kalajdzievski, 2023) intro-
duces a scaling factor to stabilize the scale of LoRA
during training. LoRA+ (Hayou et al., 2024) ap-
plies separate learning rates for matrices A and
B, enhancing adaptability and training efficiency.
Additionally, PiSSA (Meng et al., 2024) leverages
singular value decomposition (SVD) on the weight
matrix W at the start of training, initializing A and
B based on components with larger singular val-
ues to improve initialization quality. Furthermore,
LoRA-GA (Wang et al., 2024a) accelerates conver-
gence by approximating low-rank matrix gradients
with those of full fine-tuning, ensuring better gra-
dient flow throughout training. Similarly, LoRA-
Pro (Wang et al., 2024b) dynamically adjusts the
gradient in each optimization step to ensure that
the parameter update trajectory of the entire train-
ing process is approximated with full fine-tuning,
rather than just the initialization phase.

	Introduction
	Related Work
	Method
	Review of LoRA
	LoRA Fine-Tune with Momentum-Guided Perturbation Optimization
	Integrating SAM into LoRA
	Momentum-Guided Perturbation Optimization (MGPO)
	Adaptive Perturbation Normalization

	Experiments
	Results on Natural Language Understanding (NLU) Tasks
	Results on Natural Language Generation (NLG) Tasks
	Effectiveness Analysis on Mitigating Double Descent
	Ablation Study
	Comparative Analysis with Random Noise
	Computational Cost Analysis

	Conclusion
	Models of Datasets
	Details of Models
	Details of Datasets

	Baselines

