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Abstract

Generative models in drug discovery have recently gained attention as efficient
alternatives to brute-force virtual screening. However, most existing models do not
account for synthesizability, limiting their practical use in real-world scenarios. In
this paper, we propose RXNFLOW, which sequentially assembles molecules using
predefined molecular building blocks and chemical reaction templates to constrain
the synthetic chemical pathway. We then train on this sequential generating process
with the objective of generative flow networks (GFlowNets) to generate both highly
rewarded and diverse molecules. To mitigate the large action space of synthetic
pathways in GFlowNets, we implement a novel action space subsampling method.
This enables RXNFLOW to learn generative flows over extensive action spaces
comprising combinations of 1.2 million building blocks and 71 reaction templates
without significant computational overhead. Additionally, RXNFLOW can employ
modified or expanded action spaces for generation without retraining, allowing for
the introduction of additional objectives or the incorporation of newly discovered
building blocks. We experimentally demonstrate that RXNFLOW outperforms
existing reaction-based and fragment-based models in pocket-specific optimization
across various target pockets. Furthermore, RXNFLOW achieves state-of-the-art
performance on CrossDocked2020 for pocket-conditional generation, with an
average Vina score of –8.85 kcal/mol and 34.8% synthesizability. Code is available
at https://github.com/SeonghwanSeo/RxnFlow.

1 Introduction

Structure-based drug discovery (SBDD) has emerged as a pivotal paradigm for early drug discovery,
facilitated by the increasing accessibility of protein structure prediction tools [31] and high-resolution
crystallography [37]. However, traditional brute-force virtual screening is computationally expensive
[20], prompting the development of deep generative models that can bypass this inefficiency. In this
context, various approaches such as deep reinforcement learning [61], variational autoencoders [63]
generative adversarial network [48], and diffusion models [22, 23] have been proposed to directly
sample candidate molecules against a given protein structure.

While generative models have shown success in molecular discovery with desirable biological
properties, most overlook synthesizability which is a crucial factor for wet-lab validation [15]. One
line to improve synthesizability is multi-objective optimization using cheap functions to estimate
the synthesizability [12], but this is too simplified to reflect complex synthetic principles [9]. Other
efforts aim to project molecules from generative models into a synthesizable space [17, 40], but
chemical modifications in this process can degrade the optimized properties.
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Figure 1: Overview of RXNFLOW. (a) Synthetic action space which is represented in a continuous
action space. Each colored box corresponds to a reaction template and the molecules in the box are
reactant blocks. (b) Policy estimation using the action space subsampling in a manner of importance
sampling. (c) Molecular generation process and model training.

To address this issue, recent works formulate the generation of synthetic pathways as a Markov
decision process (MDP) for molecular design [19]. These approaches return a synthesizable molecule
by assembling purchasable building blocks and reaction templates according to the generated synthetic
pathway. Notably, the emergence of virtual libraries—created by combinatorially enumerating
building blocks and reaction templates, such as Enamine REAL [21]—allows the generated molecules
to be readily synthesizable on demand with their synthetic pathways. Recent studies [9, 33] advanced
this approach by training the decision-making policy using the objective of generative flow networks
[GFlowNets; 3]. This objective encourages the policy to sample in proportion to the reward function,
enabling the retrieval of samples from a diverse range of modes.

Unlike atom-based or fragment-based models, the synthetic action spaces are massive and composed
of millions of building blocks and tens of reaction templates. While the large action spaces offer
opportunities to discover novel hit candidates by expanding an explorable chemical space [50], it
incurs significant computational overhead. Thus, prior works have restricted the action spaces to
trade off the size of the search space for efficiency. However, reducing the search space leads to a
decrease in diversity and synthetic complexity. While one could compensate for the reduced number
of building block candidates by adding more reaction steps, this leads to the increase in synthetic
complexity, negatively influencing synthesizability, yield, and cost [8, 32].

In response to this challenge, we propose RXNFLOW, a synthesis-oriented generative framework
that allows training generative flows over a large action space to generate synthetic pathways for
drug design. The distinctive features of this method are as follows. First, we introduce an action
space subsampling (Figure 1) to handle massive action spaces without significant memory overhead,
enabling us to explore a broader chemical space with fewer reaction steps than existing models.
Then, we train the generative policy with a GFlowNet objective to sample both diverse and potent
molecules from the expanded search space. We demonstrate that RXNFLOW effectively generates
drug candidates, outperforming existing reaction-based, atom-based, and fragment-based baselines
across various SBDD tasks, while ensuring the synthesizability of generated drug candidates. We also
achieve a new state-of-the-art Vina score, drug-likeness, and synthesizability on the CrossDocked2020
pocket-conditional generation benchmark [39].

Furthermore, we formulate an adaptable MDP (Figure 2) for consistent flow estimation on modified
building block libraries, which can be highly practical in real-world applications. By combining
the proposed MDP with action embedding [10], which represents actions in a continuous space
instead of a discrete space, RXNFLOW can achieve further objectives or incorporate newly discovered
building blocks without retraining. We experimentally show that RXNFLOW can achieve an additional
solubility objective and behave appropriately for unseen building blocks. This capability makes
RXNFLOW highly adaptable to real-world drug discovery pipeline, where new objectives frequently
arise [13] and building block libraries are continuously expanding [21].
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2 Related Works

Structure-based drug discovery. The first type of SBDD involves pocket-specific optimization
methods to enhance docking scores against a single pocket, including evolutionary algorithms
[49], reinforcement learning (RL) [61], and GFlowNets [3]. However, these require individual
optimizations for each pocket, limiting scalability. The second type is based on pocket-conditional
generation, which generates molecules against arbitrary given pockets without additional training.
This can be achieved by distribution-based generative models [48, 47, 23, 51] trained on protein-
ligand complex datasets to model ligand distributions for given pockets. On the other hand, Shen et al.
[54] formulated a pocket-conditioned policy for GFlowNets to generate samples from reward-biased
distributions in a zero-shot manner.

Syntheis-oriented generative models. To ensure the synthesizability of generated molecules,
synthesis-oriented de novo design approaches incorporate combinatorial chemistry principles into
generative models. Bradshaw et al. [6] represented the synthetic pathways as directed acyclic graphs
(DAG) for generative modeling. Horwood and Noutahi [25] formulated the synthetic pathway
generation as an MDP and optimize the molecules with RL. Similarly, Gao et al. [17] employed
a genetic algorithm to optimize synthesis trees to generate molecules with the desired properties.
Seo et al. [53] proposed a conditional generative model to directly sample molecules with desired
properties without optimization. Recently, Cretu et al. [9], Koziarski et al. [33] trained the models
with the GFlowNets objective to generate diverse and potent molecules.

Action embedding for large action spaces. To handle large action spaces in the synthesis-oriented
generation, Gottipati et al. [19] employed action embedding [10] that represents building blocks in
a continuous action space with their chemical information. Later, Seo et al. [53], Koziarski et al.
[33] experimentally demonstrated that it can enhance the model training and generative performance.
The continuous action space provides the benefit of reducing the computational complexity for
sampling from large space of actions and the memory requirement for parameterizing the categorical
distribution over the large action space.

Generative Flow Networks. GFlowNets are a learning framework for a stochastic generative policy
that constructs an object through a series of decisions, where the probability of generating each
object is proportional to a given reward associated with that object [3]. Unlike other optimization
methods that maximize rewards and often converge to a single solution, GFlowNets aim to sample a
diverse set of high-rewarded modes, which is vital for novel drug design [54, 27]. To this end, the
generative policy is trained using objectives such as flow matching [3], detailed balance [4], and
trajectory balance [41]. Extending the GFlowNets to various applications is an active area of research,
e.g., GFlowNets have been applied to designing crystal structures [44], phylogenetic inference [62],
finetuning diffusion models [57], and causal inference [43].

3 Method

3.1 GFlowNet Preliminaries

GFlowNets [3] are the class of generative models that learn to sample objects x ∈ X proportional
to a given reward function, i.e., p(x) ∝ R(x). This is achieved by sequentially constructing a
compositional object x through a series of state transitions s→ s′, forming a trajectory τ = (s0 →
. . .→ sn = x) ∈ T . The set of all complete trajectories from the initial state s0 can be represented
as a directed acyclic graph G = (S,A) with a reachable state space S and an action space A.
Each action a induces a transition from the state s to the state s′, expressed as s′ = T (s, a) and
represented as s→ s′. Then, we define the trajectory flow F (τ), which flows along the trajectory
τ = (s0 → . . .→ sn = x), as the reward of the terminal state, R(x). The edge flow F (s→ s′), or
equivalently F (s, a), is defined as the total flow along the edge a : s→ s′:

F (s→ s′) = F (s, a) =
∑

τ∈T s.t. (s→s′)∈τ

F (τ). (1)
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The state flow F (s) for the intermediate state is defined as the total flow through the state s:

F (s) =
∑

τ∈T s.t. s∈τ

F (τ) =
∑

(s′′→s)∈A

F (s′′ → s) =
∑

(s→s′)∈A

F (s→ s′).

︸ ︷︷ ︸
Intermediate flow matching condition

(2)

In addition to the flow matching condition for intermediate states, there are two boundary conditions
for the states. First, the flow of a terminal state x must equal the reward of the objective: F (x) = R(x).
Second, the partition function, Z, is equivalent to the sum of all trajectory flows and the sum of all
rewards: Z = F (s0) =

∑
τ∈T F (τ) =

∑
x∈X R(x). These three conditions—one for intermediate

states and two for boundary states—are known as the flow matching conditions and ensure that
GFlowNets generate objectives proportional to their rewards.

To convert the flow network into a usable policy, we define the forward policy as the forward transition
probability PF (s

′|s) and the backward policy as the backward transition probability PB(s|s′):

PF (s
′|s) := P (s→ s′|s) = F (s→ s′)

F (s)
, PB(s|s′) := P (s→ s′|s′) = F (s→ s′)

F (s′)
. (3)

3.2 Action Space for Synthetic Pathway Generation

Following Cretu et al. [9], we treated a chemical reaction as a forward transition and a synthetic
pathway as a trajectory for molecular generation. For the initial state s0, the model always chooses
AddFirstReactant to sample a building block b from the entire building block set B as a starting
molecule. For the later states s, the model samples actions among ReactUni, ReactBi, or Stop.
When the action type is ReactUni, the model performs in silico uni-molecular reactions with an
assigned reaction template r ∈ R1. When the action type is ReactBi, the model performs bi-
molecular reactions with a reaction template r ∈ R2 and a reactant block b in the possible reactant
set for the reaction template r: Br ⊆ B. If Stop is sampled, the trajectory is terminated. To sum up,
the allowable action space A(s) for the state s is:

A(s) =
{
B if s = s0
{Stop} ∪ R1 ∪ {(r, b)|r ∈ R2, b ∈ Br} otherwise

(4)

where unavailable reaction templates to the molecule of the state s are masked.

3.3 Flow Network on Action Space Subsampling

We propose a novel memory-efficient technique called the action space subsampling, that estimates
the state flow Fθ(s) from a subset of the outgoing edge flows Fθ(s → s′) for forward policy
estimation. First, we implement an auxiliary policy, termed subsampling policy P(A), which samples
a subset of the action space A∗ ⊆ A. This reduces both the memory footprint and the computational
complexity from O(|B||R2|) to O(|B∗||R2|) with the controllable size |B∗|. We then estimate the
forward policy by importance sampling. In contrast to the parameterized forward policy, we formulate
a fixed backward policy since it is hard to force invariance to molecule isomorphism [41]. Theoretical
backgrounds are provided in Sec. A.

Subsampling policy. Subsampling policy P(A) performs uniform sampling for the initial state and
importance sampling for the later states. For the initial state, the allowable action space A(s0) = B is
homogeneous since all of them are AddFirstReactant actions. For the later state, the action space
is comprised of one Stop, tens of ReactUni actions, and millions of ReactBi actions. To capture
rare-type actions in the inhomogeneous space, we use all Stop and ReactUni actions. The partial
action space A∗(s) ∼ P(A(s)) comprises the uniform subset B∗ ⊆ B or B∗r ⊆ Br:

A∗(s) =

{
B∗ if s = s0
{Stop} ∪ R1 ∪ {(r, b)|r ∈ R2, b ∈ B∗r} otherwise

(5)

Forward policy. To estimate the forward policy PF (s
′|s) = F (s→ s′)/F (s) from the partial action

space A∗, we estimate the state flow F (s) with a subset of outgoing edge flows F (s→ s′). Since
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Algorithm 1 Training GFlowNets with action space subsampling
1: input Entire action space A, Maximum trajectory length N
2: repeat
3: Sample partial action spaces A∗

0, A∗
1, ..., A∗

N−1 from subsampling policy P(A)
4: Sample trajectory τ from sampling policy πθ(−|−;A∗

(−))
5: Update model θ ← θ − η∇L̂TB(τ)
6: until model converges

we introduce importance sampling for action types, we weight the edge flow F (s → s′) of edge
a : s→ s′ according to the subsampling ratio:

wa = w(s→s′) =


|B|/|B∗| if a ∈ B
|Br|/|B∗r | if a is (r, b) where r ∈ R2

1 if a is Stop or a ∈ R1

(6)

By weighting edge flows, we can estimate the state flow F̂θ(s;A∗) as:

F̂θ(s;A∗) =
∑

(s→s′)∈A∗(s)

w(s→s′)Fθ(s→ s′), (7)

which the estimated forward policy is P̂F (s
′|s;A∗; θ) = Fθ(s→ s′)/F̂θ(s;A∗).

Action embedding. In the standard implementation [3] of the flow function Fθ and its neural network
ϕθ, the edge flow of the edge a : s→ s′ is computed with the corresponding action-specific parameter
θa: Fθ(s→ s′) = Fθ(s, a) = ϕflow

θa
(ϕstate

θ (s)).

However, large action spaces require numerous parameters which increase model complexity. To
address this, we use an additional network ϕblock

θ for AddFirstReactant and ReactBi, which
embeds the building block b into a continuous action space with its structural information:

Fθ(s0, b) = ϕflow
θ (ϕstate

θ (s), ϕblock
θ (b)), Fθ(s, (r, b)) = ϕflow

θ (ϕstate
θ (s), δ(r), ϕblock

θ (b)) (8)

where δ(r) is the one-hot encoding for a bi-molecular reaction template r.

GFlowNet training. In this work, we use the trajectory balance [TB; 41] as the training objective of
GFlowNets from Eq. (9) and train models following Algorithm 1. The action space subsampling is
performed for each transition st → st+1: A∗

t ∼ P(A).

L̂TB(τ) =

(
log

Zθ

∏n
t=1 P̂F (st|st−1;A∗

t−1; θ)

R(x)
∏n

t=1 PB(st−1|st)

)2

(9)

For online training, we use the sampling policy πθ proportional to P̂F (−|−;A∗; θ), given by:

πθ(s
′|s;A∗) =

w(s→s′)Fθ(s→ s′)∑
(s→s′′)∈A∗(s) w(s→s′′)Fθ(s→ s′′)

(10)

3.4 Joint Selection of Templates and Blocks

For bi-molecular reactions, existing synthesis-oriented methods [17, 9, 33] formulated a hierarchical
MDP which selects a reaction template r first and then the corresponding reactant block b sequentially
from Eq. (11). However, as shown in Figure 2, the probability of selecting each reaction template r
is fixed after training in a hierarchical MDP, and this rigidity can lead to incorrect policy estimates
in modified block libraries. Therefore, we formulate a non-hierarchical MDP that jointly selects
reaction templates and reactant blocks (r, b) at once, as given by Eq. (12), resulting in more consistent
estimates of forward policy PF .

PF (T (s, (r, b))|s; θ) =
Fθ(s, r)∑

r′∈R1∪R2∪{Stop} Fθ(s, r′)
× Fθ(s, (r, b))∑

b′∈Br
Fθ(s, (r, b′))

(11)

PF (T (s, (r, b))|s; θ) =
Fθ(s, (r, b))∑

r′∈R1∪{Stop} Fθ(s, r′) +
∑

r′∈R2

∑
b′∈Br′

Fθ(s, (r′, b′))
(12)
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Figure 2: Comparison of using modified building block library for the generation: (a) a
hierarchical MDP, and (b) a non-hierarchical MDP. More details are in Figure 7.

4 Experiments

Overview. We validate the effectiveness of RXNFLOW in two common SBDD tasks: pocket-specific
optimization (Sec. 4.1) and pocket-conditional generation (Sec. 4.2). To the best of our knowledge,
this is the first synthesis-oriented approach for pocket-conditional generation. We also investigate the
applicability of RXNFLOW in real-world drug discovery pipelines where new further objectives may
be introduced (Sec. 4.3) and the building block libraries are constantly expanded (Sec. 4.4). Lastly,
we conduct an ablation study in Sec. 4.5 and a theoretical analysis in Sec. D.3.

Setup. We use the reaction template set constructed by Cretu et al. [9] including 13 uni- and 58
bi-molecular reaction templates. For the building blocks, we use 1.2M blocks from the Enamine
comprehensive catalog. We use up to 3 reaction steps for generation following Enamine REAL Space
[21], while SynFlowNet and RGFN allow 4 steps. For the subsampling policy, we set a sampling
ratio of 1%. The experimental details are provided in Sec. C.

Synthesizability estimation. To assess the synthesizability of the generated compounds, we used the
computationally intensive retrosynthetic analysis tool AiZynthFinder [18] with the Enamine building
block library. We note that the molecule is identified as synthesizable only if it can be synthesized
using the USPTO reactions [38] and given building blocks.

4.1 Pocket-Specific Optimization with GPU-accelerated Docking

Setup. Since GFlowNets sample a large number of molecules for online training, we employed
a GPU-accelerated UniDock [59] with Vina scoring [56]. It is well known that docking can be
hacked by increasing molecule size [46], so the appropriate constraints are required. We select QED
[5] as a comprehensive molecular property constraint, QED>0.5, and set the reward function as
R(x) = w1QED(x) + w2V̂ina(x) where w1, w2 are used as the input of multi-objective GFlowNets
[28] and are set to 0.5 for non-GFlowNet baselines. V̂ina is a normalized docking score (Eq. (30)).

Each method generates up to 64,000 molecules for each of the 15 proteins in the LIT-PCBA dataset
[55]. We then filter the molecules with the property constraint and select the top 100 diverse candidates
based on the docking score, using a Tanimoto distance threshold of 0.5 to ensure structural diversity.
The selected molecules are evaluated with the following metrics: Hit ratio (%) measures the fraction
of hits, defined as the molecules that are identified as synthesizable by AiZynthFinder and having
better docking scores than known active ligands [35]. Vina (kcal/mol) measures the average docking
score. Synthesizability (%) is the fraction of synthesizable molecules. Synthetic complexity, which
is highly correlated to yield and cost, is evaluated as the average number of synthesis steps [8].

Baselines. We perform comparisons to various synthetic-oriented approaches: genetic algorithm
(SynNet) [17], conditional generative model (BBAR2) [53], and GFlowNets (SynFlowNet, RGFN)
[9, 33]. For SynFlowNet and RGFN, we used 6,000 and 350 blocks, respectively, and set the
maximum reaction step to 4 following the original papers. Moreover, we consider fragment-based
GFlowNets (FragGFN) to analyze the effects of synthetic constraints on the performance. For
FragGFN, we also consider additional synthesizability objectives with commonly-used synthetic
accessibility score [SA; 12] (FragGFN+SA).

2Since BBAR requires labeled training data with QED and docking score, we perform docking with random
62,720 ZINC molecules for training and evaluate 1,280 samples according to the reported splitting ratio.
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Table 1: Hit ratio. Mean and standard deviation over 4 runs. The best results are in bold.
Hit Ratio (%, ↑)

Category Method ADRB2 ALDH1 ESR_ago ESR_antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 0.25 (± 0.43) 0.25 (± 0.43) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 4.00 (± 1.58) 0.25 (± 0.43) 0.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 45.83 (± 7.22) 25.00 (± 25.00) 0.00 (± 0.00) 0.00 (± 0.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 18.25 (± 1.92) 3.50 (± 1.12) 2.25 (± 1.09) 11.75 (± 2.59)
SynFlowNet 52.75 (± 1.09) 57.00 (± 6.04) 30.75 (± 10.03) 11.25 (± 1.48) 53.00 (± 8.92)
RGFN 46.75 (± 6.87) 39.75 (± 8.17) 4.50 (± 1.66) 1.25 (± 0.43) 19.75 (± 4.32)
RXNFLOW 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 46.00 (± 7.00) 65.50 (± 4.09)

Table 2: Vina. Mean and standard deviation over 4 runs. The best results are in bold.
Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR_ago ESR_antago FEN1

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71)
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10)

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09)
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07)
SynFlowNet -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02)
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06)
RXNFLOW -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02)

Table 3: Synthesizability. Mean and standard deviation over 4 runs. The best results are in bold.

Percentage of Synthesizable Molecules (%, ↑)

Category Method ADRB2 ALDH1 ESR_ago ESR_antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 1.00 (± 1.00) 3.75 (± 1.92) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 6.00 (± 2.55) 4.00 (± 2.24) 1.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 50.00 (± 0.00) 25.00 (± 25.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 19.50 (± 3.20) 17.50 (± 1.50) 19.50 (± 3.64) 20.00 (± 2.12)
SynFlowNet 52.75 (± 1.09) 57.00 (± 6.04) 53.75 (± 9.52) 56.50 (± 2.29) 53.00 (± 8.92)
RGFN 46.75 (± 6.86) 47.50 (± 4.06) 50.25 (± 2.17) 49.25 (± 4.38) 48.50 (± 6.58)
RXNFLOW 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 66.50 (± 4.03) 65.50 (± 4.09)

Table 4: Synthetic complexity. Mean and standard deviation over 4 runs. The best results are in
bold.

Average Number of Synthesis Steps (↓)

Category Method ADRB2 ALDH1 ESR_ago ESR_antago FEN1

Fragment FragGFN 3.60 (± 0.10) 3.83 (± 0.08) 3.76 (± 0.20) 3.76 (± 0.16) 3.34 (± 0.18)
FragGFN+SA 3.73 (± 0.09) 3.66 (± 0.04) 3.66 (± 0.07) 3.67 (± 0.21) 3.79 (± 0.19)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.00 (± 0.00) 4.13 (± 0.89) 3.50 (± 0.00)
BBAR 3.60 (± 0.17) 3.62 (± 0.19) 3.76 (± 0.04) 3.72 (± 0.11) 3.59 (± 0.14)
SynFlowNet 2.64 (± 0.07) 2.48 (± 0.07) 2.60 (± 0.25) 2.45 (± 0.09) 2.56 (± 0.29)
RGFN 2.88 (± 0.21) 2.65 (± 0.09) 2.78 (± 0.19) 2.91 (± 0.23) 2.76 (± 0.17)
RXNFLOW 2.42 (± 0.23) 2.19 (± 0.12) 1.95 (± 0.20) 2.15 (± 0.18) 2.23 (± 0.18)

Results. The results for the first five targets are shown in Tables 1 and 2, and additional results for the
10 remaining targets are reported in Sec. D.1. RXNFLOW outperforms the baselines across all test
proteins, demonstrating that the expanded sample space with the large action space enabled the model
to generate more potent and diverse molecules. Additionally, as shown in Tables 3 and 4, RXNFLOW
ensures the synthesizability of the generated molecules more effectively than the other synthesis-
oriented methods and GFlowNets which employ the same reactions as ours. These results support
our primary assertion that existing synthesis-oriented approaches using more synthetic steps with
smaller building block libraries can increase overall synthesis complexity and reduce synthesizability.
Furthermore, FragGFN+SA does not show meaningful improvement in synthesizability, implying
that optimization of a cheap synthesizability estimation function is suboptimal.
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Table 5: CrossDocked2020 benchmark. We report the average and median values over the average
properties for each test pocket. The best results are in bold and the second ones are in underlined. We
denote the Validity as Valid, Synthesizability as Synthesiz, and Diversity as Div. Reference means
the known binding active molecules in the test set.

Valid (↑) Vina (↓) QED (↑) Synthesiz (↑) Div (↑) Time (↓)
Category Model Avg. Avg. Med. Avg. Med. Avg. Med. Avg. Avg.

Reference - - -7.71 -7.80 0.48 0.47 36.1% - - -

Atom
Pocket2Mol 98.3% -7.60 -7.16 0.57 0.58 29.1% 22.0% 0.83 2504a
TargetDiff 91.5% -7.37 -7.56 0.49 0.49 9.9% 3.2% 0.87 3428a
DecompDiff 66.0% -8.35 -8.25 0.37 0.35 0.9% 0.0% 0.84 6189a

Fragment TacoGFN 100.0% -8.24 -8.44 0.67 0.67 1.3% 1.0% 0.67 4b

Reaction RXNFLOW 100.0% -8.85 -9.03 0.67 0.67 34.8% 34.5% 0.81 4

Figure 3: Visualization of generated molecules in a zero-shot manner. (a-b) Docking results of
generated molecules and known reference ligands of TBK1 (PDB Id: 1FV, SU6). (c) Generative
trajectory, which is the generated synthetic pathway of the left molecule in (a).

Furthermore, it is noteworthy that RXNFLOW outperformed FragGFN which does not consider
synthesizability. This improvement can be attributed to two key factors. First, the Enamine building
block library is specifically curated for drug discovery, limiting the search space X to a drug-like
chemical space and simplifying the optimization complexity. Second, RXNFLOW needs shorter
trajectories compared to FragGFNs since it assembles molecules with large building blocks instead
of atoms or small fragments. This is beneficial for trajectory balance objectives where stochastic
gradient variance tends to increase over longer trajectories [41].

4.2 Zero-Shot Sampling via Pocket Conditioning

Setup. We extend our works to a pocket-conditional generation problem to design binders for arbitrary
pockets without additional training oracles [48, 36, 47, 22, 23, 51]. To address this challenge, we
follow TacoGFN [54], which is a fragment-based GFlowNet for pocket-conditional generation.
Since it requires more training oracles to learn pocket-conditional policies than target-specific
generation, TacoGFN used pre-trained proxies that predict docking scores against arbitrary pockets
using pharmacophore representation [52]. Since RXNFLOW explicitly considers synthesizability, we
exclude the SA score from the TacoGFN’s reward function as described in Sec. C.2.

We generate 100 molecules for each of the 100 test pockets in the CrossDocked2020 benchmark
[14] and evaluate them with the following metrics: Vina (kcal/mol) measures the average docking
score from QuickVina [1]. QED measures the average drug-likeness of molecules. Synthesizability
(%) is the fraction of synthesizable molecules. Diversity measures an average pairwise Tanimoto
distance of ECFP4 fingerprints [42]. Moreover, we report the Validity (%) which is the percentage
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Figure 4: Property distribution of sampled
molecules with “all" building blocks and “low”-
TPSA building blocks. Vina score was calculated
against the KRAS-G12C target.

Figure 5: QED reward distribution
of generated molecules for each of the
“seen", “unseen", and “all" blocks. Addi-
tional results are in Figure 8.

of unique RDKit-readable molecules, and Time (sec.) which is the average sampling time to generate
100 molecules.

Baselines. We compare RXNFLOW with state-of-the-art distribution learning-based models trained
on a synthesizable drug set: an autoregressive model (Pocket2Mol [47]) and diffusion models
(TargetDiff [22], DecompDiff [23]). We also perform a comparison with an optimization-based
TacoGFN [54]. For a fair comparison with the distribution learning-based approaches, we used the
docking proxy trained on CrossDocked2020.

Result. As shown in Table 5, RXNFLOW achieves significant improvements in drug-related properties.
In particular, RXNFLOW attains the best average docking score of -8.85 kcal/mol, significantly
outperforming TacoGFN at -8.24 kcal/mol and the state-of-the-art diffusion model (DecompDiff)
at -8.35 kcal/mol while achieving high drug-like properties. Moreover, RXNFLOW ensures the
synthesizability comparable to known active ligands, outperforming the fragment-based TacoGFN
trained on the SA score objective and the distributional learning-based models trained on synthesizable
drug molecules. Figure 3 illustrates generated molecules against TANK-binding kinase 1 (TBK1)
which is not included in the training set.

An important finding is that RXNFLOW maintains high structural diversity (0.81) despite the typical
trade-off between optimization power and diversity [16]. This is a significant improvement over the
fragment-based TacoGFN, which scored 0.67 and is comparable to the distributional learning-based
models that range from 0.83 to 0.87. We attribute this enhancement to our action space, which
contains chemically diverse building blocks, in contrast to the small and limited fragment sets used in
fragment-based GFlowNets. This suggests that our model can effectively balance the potency and
diversity of generated molecules.

4.3 Introducing Additional Objective without Retraining

In drug discovery, new objectives often arise during the research process, such as enhancing solubility,
reducing toxicity, or improving selectivity [13, 30]. These additional objectives typically not only
require retraining models but also increase the optimization complexity. In this context, RXNFLOW
can achieve some additional objectives by simply introducing constraints to MDP without retraining
thanks to the non-hierarchical action space (Sec. 3.4).

As shown in Figure 4, we explore the scenario of adding a solubility objective to a pre-trained
GFlowNet in Sec. 4.2. Specifically, we target the generation of hydrophobic molecules by restricting
the building blocks with topological polar surface area (TPSA) in the bottom 15% (“low") and sampled
500 molecules for the KRAS-G12C mutant (PDB Id: 6oim). While there are slight differences in the
QED distributions due to the correlation between TPSA and QED, the generated molecules are more
hydrophobic and retain similar overall reward distributions.

4.4 Scaling Action Space without Retraining

The building block libraries for drug discovery continue to grow, from 60,000 in 2020 to over 1.2
million blocks today, to enhance chemical diversity and novelty [21]. However, existing generative

9



Figure 6: Optimization power, diversity, and generation time according to building block library
size. (a-c) Average and standard deviation of properties of the top-1000 high-affinity molecules over 4
runs on pocket-specific generation. (a) Average docking score. (b) The uniqueness of Bemis-Murcko
scaffolds. (c) Average Tanimoto distance. (d) Average runtime to generate 100 molecules over the
CrossDocked2020 test pockets in a zero-shot manner.

models require retraining to accommodate newly discovered building blocks, limiting their scalability
and adaptability. On the other hand, RXNFLOW can integrate new building blocks without retraining
by understanding the chemical context of actions through action embedding. We first divide the
1M-sized block library (“all") into two sets: 500,000 blocks for training (“seen") and the remaining
blocks (“unseen"). After training with the QED objective on various reward exponent settings (Rβ),
we generate 5,000 molecules from each set (“seen", “unseen", and “all"). Figure 5 shows that the
reward distributions of samples are nearly identical, demonstrating that RXNFLOW performs robustly
with unseen building blocks. This result highlights the generalization ability and scalability of
RXNFLOW, a significant advantage for real-world applications.

4.5 Ablation Study: the effect of building block library size

Expanding the size of building block libraries provides an opportunity to discover more diverse
and potent drug candidates [21]. In Sec. 4.1, RXNFLOW outperforms SynFlowNet and RGFN
which use smaller block libraries, but differences in model architectures may have contributed to
these results. To isolate the effect of the building block library size, we conduct an ablation study
using partial libraries with a pocket-specific optimization task against the kappa-opioid receptor
(PDB Id: 6b73), as illustrated in Figure 6(a-c). The results indicate that increasing the library size
enhances both optimization power, in terms of docking scores, and diversity, in terms of a higher
number of unique Bemis-Murcko scaffolds [2] and an increased Tanimoto diversity of the generated
molecules. Additionally, as shown in Figure 6(d), the generation time only doubles on the 10,000-fold
larger action space, highlighting the efficiency of RXNFLOW. These results demonstrate the forte of
RXNFLOW in navigating a broader chemical space to discover novel drug candidates by overcoming
the computational limitations for expanding the action space.

5 Conclusion

In this work, we introduce RXNFLOW, a synthesis-oriented generative framework designed to explore
broader chemical spaces, thereby enhancing both diversity and potency for drug discovery. Our
framework efficiently handles massive action spaces to expand the search space without significant
computational or memory overhead by employing a novel action space subsampling technique.
RXNFLOW can effectively identify diverse drug candidates with desired properties and synthetic
feasibility by learning the objective of generative flow networks on synthetic pathways. Additionally,
by formulating a non-hierarchical MDP, RXNFLOW can model generative flows on modified action
spaces, allowing it to achieve additional objectives and incorporate newly discovered building blocks
without retraining. These results highlight the potential of RXNFLOW as a practical and versatile
solution for real-world drug discovery.
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A Theoretical Analysis

In this section, we provide the theoretical background of action subsampling. We define U as the
uniform subsampling policy, i.e., B∗ ∼ Uniform({B∗ ⊆ B | |B∗| = k}).

Bias of log forward policy. In this section, we prove that the log forward policy estimation is
unbiased (Eq. (7)) with the following weights:

wa =


|B|/|B∗| if a ∈ B
|Br|/|B∗r | if a is (r, b) and r ∈ R2

1 if a is Stop or a ∈ R1

For readability, we express the edge flow F and forward policy PF where the action a is s→ s′ as
follows:

Fθ(s→ s′; θ) = Fθ(s, a; θ), PF (s
′|s; θ) = PF (a|s; θ)

Then, the forward policy PF and the estimated policy P̂F (Eq. (7)) can be rewritten as follows:

PF (s
′|s; θ) = PF (a|s; θ) =

Fθ(s, a)

Fθ(s)
=

Fθ(s, a)∑
a′∈A(s) Fθ(s, a′)

P̂F (s
′|s;A∗; θ) = P̂F (a|s;A∗; θ) =

Fθ(s, a)

F̂θ(s;A∗)
=

Fθ(s, a)∑
a′∈A∗(s) wa′Fθ(s, a′)

The expectation of the estimated initial state flow F̂θ(s0;A∗) =
∑

a∈A∗ waFθ(s0, a) is given by

EA∗∼P(A)[F̂θ(s0;A∗)] = EB∗∼U(B)

[
|B|
|B∗|

∑
b∈B∗

Fθ(s0, b)

]
=
∑
b∈B

Fθ(s0, b) = Fθ(s0), (13)

For a later state s ̸= s0, the expectation of the state flow F̂θ(s;A∗) is given by

EA∗∼P(A)[F̂θ(s;A∗)] =
∑

a∈R1∪{Stop}

Fθ(s, a) +
∑
r∈R2

EB∗
r∼U(Br)

 |Br|
|B∗r |

∑
b∈B∗

r

Fθ(s, (r, b))


=

∑
a∈R1∪{Stop}

Fθ(s, a) +
∑
r∈R2

∑
b∈Br

Fθ(s, (r, b))

= PF (s
′|s; θ) (14)

Variance of log forward policy. We define the standard deviation of the probability PF (−|s; θ) as
σθ(−|s). For the initial state s0, the variance of log P̂F (s

′|s0;A∗; θ) is given by

VarA∗∼P(A)

[
log P̂F (s

′|s0;A∗; θ)
]

= VarB∗∼U(B)

[
(((((((
logFθ(s0 → s′) − log

(
�
�
�|B|

|B∗|
∑
b∈B∗

Fθ(s0, b)

)]

= VarB∗∼U(B)

[
log

∑
b∈B∗

PF (b|s0; θ)

]
(by normalizing with Fθ(s0))

≈ |B|
2(|B| − |B∗|)
|B∗|(|B| − 1)

σθ(−|s0)2 (by Eq. (24)) (15)
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For the later state s ̸= s0, the variance of log P̂F (s
′|s;A∗; θ) is:

VarA∗∼P(A)

[
log P̂F (s

′|s;A∗; θ)
]

= VarA∗∼P(A)

log
 ∑

a∈R1∪{Stop}

PF (a|s; θ) +
∑
r∈R2

|Br|
|B∗r |

∑
b∈B∗

r

PF ((r, b)|s; θ)


≈

VarA∗∼P(A)

[
(((((((((((∑

a∈R1∪{Stop} PF (a|s; θ) +
∑

r∈R2

|Br|
|B∗

r |
∑

b∈B∗
r
PF ((r, b)|s; θ)

]
EA∗∼P(A)

[∑
a∈R1∪{Stop} PF (a|s; θ) +

∑
r∈R2

|Br|
|B∗

r |
∑

b∈B∗
r
PF ((r, b)|s; θ)

]2
=

1

�����������(∑
a∈A(s) PF (a|s; θ)

)2 VarA∗∼P(A(s))

∑
r∈R2

|Br|
|B∗r |

∑
b∈B∗

r

PF ((r, b)|s; θ)


=
∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|s)2 (by Eq. (22)) (16)

Finally, we get the variance of log P̂F (τ ; θ) where τ = (s0 → ...→ sn = x):

VarA∗∼P(A)

[
log P̂F (τ ;A∗; θ)

]
≈|B|

2(|B| − |B∗|)
k|B∗|(|B| − 1)

σθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|st)2 (17)

Expectation of trajectory balance loss. Due to the variance of forward policy, there is a bias of
the trajectory balance loss equal to the variance of log P̂F (τ):

EA∗∼P(A)[L̂TB(τ)]

= EA∗∼P(A)

[
log

ZθP̂F (τ ; θ)

R(x)PB(τ |x)

]2
+ VarA∗∼P(A)

[
log

ZθP̂F (τ ; θ)

R(x)PB(τ |x)

]
= LTB(τ) + VarA∗∼P(A)

[
log P̂F (τ ; θ)

]
(18)

≈ LTB(τ) +
|B|2(|B| − |B∗|)
|B∗|(|B| − 1)

σθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|st)2 (19)

Therefore, the gradient of trajectory balance loss is:

EA∗∼P(A)

[
∇θL̂TB(τ)

]
≈ ∇θLTB(τ) +

|B|2(|B| − |B∗|)
|B∗|(|B| − 1)

∇θσθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
∇θσθ((r,−)|st)2

(20)

Given that σθ(·), which is the standard deviation of probability to select actions, is inversely propor-
tional to |B| or |Br|, the bias is highly dependent on the subsampling size (e.g. |B∗|) rather than the
subsampling ratio (e.g. |B∗|/|B|). Moreover, we can decrease the bias by MC sampling for state flow
estimation, and the bias is reversely proportional to the number of samples k. However, in the same
computational cost (proportional to O(k ×

∑
r |B∗r |)), using the larger partial action spaces without

MC sampling is more precise than using smaller partial action spaces with multiple MC samples. In
Sec. D.3, we expermentally show that the bias is relatively small to trajectory balance loss with the
toy experiment.
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A.1 Theoretical backgrounds

Variance of uniformly sampled subset For the set X with a size of n, we define its uniformly
sampled subset with size m as X ′ ∼ P(X ). For the function F (X ) =

∑
x∈X f(x), we define the

unbiased estimation:
F̂ (X ) = n

m
F (X ′) =

n

m

∑
x∈X ′

f(x)

When the mean and standard deviation of f(x) is µf and σf , variance of F̂ (X ) is:

VarX ′∼P(X )

[
F̂ (X )

]
= EX ′∼P(X )

[
F̂ (X )2

]
− EX ′∼P(X )

[
F̂ (X )

]2
=

1
nCm

∑
X ′∈P(X )

(
n

m

∑
x∈X ′

f(x)

)2

− F (X )2

=
1

nCm

n2

m2

n−1Cm−1

n∑
i=1

f(bi)
2 +n−2 Cm−2

n∑
i=1

n∑
j>i

2f(bi)f(bj)

−(∑
x∈X

f(x)

)2

=
n

m

n∑
i=1

f(xi)
2 +

2n(m− 1)

m(n− 1)

n∑
i=1

n∑
j>i

f(xi)f(xj)−

 n∑
i=1

f(xi)
2 + 2

n∑
i=1

n∑
j>i

f(xi)f(xj)


=

n−m

m(n− 1)

(n− 1)

n∑
i=1

f(xi)
2 − 2

n∑
i=1

n∑
j>i

f(xi)f(xj)


=

n−m

m(n− 1)

n∑
i=1

n∑
j>i

(f(xi)− f(xj))
2

=
n2(n−m)

m(n− 1)
σ2
f (21)

For MC sampling with k samples, the variance is:

VarX ′∼P(X )

[
F̂ (X )

]
=

n2(n−m)

km(n− 1)
σ2
f (22)

The variance of log F̂ (X ) is:

VarX ′∼P(X )

[
log F̂ (X )

]
≈

VarX ′∼P(X )

[
F̂ (X )

]
EX ′∼P(X )

[
F̂ (X )

]2 =
(n−m)

km(n− 1)
(σf/µf )

2 (23)

When the F (X ) = 1, the variance is:

VarX ′∼P(X )

[
log F̂ (X )

]
≈ m2(n−m)

km(n− 1)
σ2
f (24)
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B RXNFLOW Architecture

B.1 Forward policy

For the model architecture, we used a graph transformer [60] as the backbone fθ following Bengio
et al. [3] and a multi-layer perceptron (MLP) for action embedding gθ. The graph embedding
dimension is d1, and the building block embedding dimension is d2. The molecular graph for a state
is s, and the GFlowNet condition vector is c which includes a reward exponent and multi-objective
optimization weights [28]. a∥b means the concatenation of two feature vectors a and b.

Initial block selection. For the first action, the model always selects AddFirstReactant action
which selects b ∈ B for the starting molecule with MLPAddFirstReactant : Rd1+d2 → R.

Fθ(s0, b, c) = MLPAddFirstReactant(fθ(s0, c)∥gθ(b)) (25)

Reaction selection. For the later states s ̸= s0, the model calculates the logits for the Stop action,
ReactUni actions r1 ∈ R1, and ReactBi actions (r2, b) ∈ R2 × B.

The logit for Stop is calculated by MLPStop : Rd1 → R:

Fθ(s, Stop, c) = MLPStop(fθ(s, c)). (26)

The logit for a ReactUni action r1 ∈ R1 is calculated by MLPr1
ReactUni : Rd1 → R:

Fθ(s, r1, c) = MLPr1
ReactUni(fθ(s, c)). (27)

Finally, the logit for a ReactBi action (r2, b) is calculated by the one-hot embedding of reaction
template δ(r2) : {0, 1}|R2| and MLPReactBi : Rd1+|R2|+d2 → R:

Fθ(s, (r2, b), c) = MLPReactBi(fθ(s, c)∥δ(r2)∥gθ(b)). (28)

Pocket conditioning. For a pocket-conditional generation, the model uses a K-NN pocket residual
graph GP and encodes GVP-GNN [29] according to Shen et al. [54]. The pocket conditions are
included in the GFlowNet condition vector c.

B.2 Backward policy.

Malkin et al. [41] introduced a uniform backward policy for small-scale drug discovery. However,
in a directed acyclic graph (DAG) on synthetic pathways, where each state has numerous outgoing
edges but few incoming ones, there is a significant imbalance in the number of trajectories along each
incoming edge, depending on the distance from the initial state. In a uniform backward policy, where
the flow of all incoming edges is equal, this imbalance diminishes the flow of trajectories that reach a
state via shorter routes, i.e., those with fewer reaction steps. To facilitate shorter synthetic pathways
as trajectories, we set the backward transition probability proportional to the expected number of
trajectories along each incoming edge of the state, a : s′′ → s:

PB(s
′′|s) = P ((s′′ → s) ∈ τ |s ∈ τ) =

∑
τ∈T :τ=(s0→...→s′′→s) |A(s)|N−|τ |∑

τ∈T :τ=(s0→...→s) |A(s)|N−|τ | (29)

where N is the maximum length of trajectories.

B.3 Building block representation for action embedding.

To represent building blocks, we used both physicochemical properties, chemical structural properties,
and topological properties. For physicochemical properties, we used 8 molecular features: molecular
weight, the number of atoms, the number of H-bond acceptors/donors (HBA, HBD), the number
of aromatic/non-aromatic rings, LogP, and TPSA. For chemical properties, we used the MACCS
fingerprint [11], which represents the composition of the chemical functional groups in the molecule.
For topological information, we used the Morgan ECFP4 fingerprint [42] with a dimension of 1024,
which is widely used in fingerprint-based deep learning researches. All properties are calculated with
RDKit [34].
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B.4 Non-hierarchical Markov decision process
Table 6: Comparison with SynFlowNet and RGFN. RGFN investigates scaling up to 64,000 building
blocks, but their experimental validation and proof-of-principle implementations use only 350.

Methods Hierarchical Action Embedding ReactUni Num Blocks Max Reaction Steps

Enamine REAL - - ⃝ >1M 3

SynFlowNet ⃝ × ⃝ 6,000 4
RGFN ⃝ ⃝ × 350∼64,000 4
RXNFLOW × ⃝ ⃝ >1M 3

While RXNFLOW shares similar rules with SynFlowNet [9] and RGFN [33], there are several major
differences as described in Table 6. In particular, we formulate the non-hierarchical MDP instead of
the hierarchical MDP for bi-molecular reactions.

To describe the difference, we supposed the situation that the toxicity is observed in molecules
containing a functional group −NR3, thereby excluding blocks with the function group from the
building block library. In trained hierarchical MDP, the modification of the block library cannot
change the probability of reaction templates, leading to the overestimation or underestimation of edge
flows (the red color of Figure 7(a)). However, in the non-hierarchical MDP, the exclusion of some
reactants does not affect actions that share the same reaction template (Figure 7(b)).

Figure 7: Illustration of a situation where an additional objective is introduced: excluding building
blocks (reactants) containing the functional group −NR3. The Gray dashed lines mean masked
actions. (a) GFlowNet on hierarchical MDP. (b) GFlowNet on non-hierarchical MDP.
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C Experimental details

C.1 Action space details

Reaction templates. In this work, we used the reaction template set constructed by Cretu et al. [9]
from two public collections Hartenfeller et al. [24], Button et al. [7]. The entire reaction template set
includes 71 reaction templates, 13 for uni-molecular reactions and 58 for bi-molecular reactions. In
in silico reactions with bi-molecular reaction templates, the products depend on the order of the input
reactants. To ensure the consistency of the action, we consider two templates for each bi-molecular
template according to the order of reactants, i.e. |R1| = 13, |R2| = 116. We note that our template
set does not contain templates that have the same first and second reactant patterns.

Building blocks. We used the Enamine comprehensive catalog with 1,309,385 building blocks
released on 2024.06.10 [21]. We filtered out building blocks that are not RDKit-readable, have no
possible reactions, or contain unallowable atoms3, resulting in 1,193,871 remaining blocks.

C.2 GFlowNet Training details

To minimize optimization performance influencing factors, we mostly followed the standard
GFlowNet’s model architecture and hyperparameters4 except for some parameters in Table 7. All
experiments were performed on a single NVIDIA RTX A4000 GPU.

Table 7: Default hyperparameters used in RXNFLOW training.

Hyperparameters Values

Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 4 (maximum reaction steps: 3)

GFN temperature β Uniform(0, 64)
Train random action probability 0.05 (5%)
Action space subsampling ratio 1%
Building block embedding size 64

For action space subsampling, we randomly subsample 1% actions for AddFirstReactant and each
bi-molecular reaction template r ∈ R2. However, for bi-molecular reactions with small possible
reactant block sets Br ∈ B, the memory benefit from the action space subsampling is small while
a variance penalty is large. Therefore, we set the minimum subsampling size to 100 for each bi-
molecular reaction, and the action space subsampling is not performed when the number of actions is
smaller than 100.

The number of actions for each action type is imbalanced, and the number of reactant blocks (Br) for
each bi-molecular reaction template r is also imbalanced. This can make some rare action categories
not being sampled during training. We empirically found that ReactBi action were only sampled
during 20,000 iterations (1.28M samples) in a toy experiment that uses one bi-molecular reaction
template and 10,000 building blocks in some random seeds. Therefore, we set the random action
probability as the default of 5%, and the model uniformly samples each action category in the
random action sampling. This prevents incorrect predictions by ensuring that the model experiences
trajectories including rare actions. We note that this random selection is only performed during model
training.

3The allowable atom types are B, C, N, O, F, P, S, Cl, Br, I.
4Default hyperparameters in https://github.com/recursionpharma/gflownet/blob/trunk/src/

gflownet/tasks/seh_frag.py
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C.3 Experimental details

Pocket-specific optimization. For pocket-specific optimization with GPU-accelerated UniDock,
we normalize the Vina and SA scores for multi-objective optimization:

V̂ina(x) = −0.1max(Vina(x), 0), ŜA(x) = (10− SA(x))/9. (30)

For FragGFN, we set the maximum trajectory length to 9, and for SynFlowNet and RGFN, we used
the same hyperparameters as our framework except for the maximum trajectory length and building
block library size. According to their default setting, we set a the maximum trajectory length to 5
rather than 4, and we randomly sampled 350 building blocks for RGFN and 6000 building blocks for
SynFlowNet. Moreover, we do not perform action subsampling for SynFlowNet and RGFN.

Pocket-conditional generation in a zero-shot manner. We used the modified version of the
TacoGFN’s reward function and training set. Since we don’t need to optimize SA [12], we excluded
the SA term from the reward functions:

raffinity(x) =


0 if 0 ≤ Proxy(x)
−0.04× Proxy(x) if − 8 ≤ Proxy(x) ≤ 0

−0.2× Proxy(x)− 1.28 if − 13 ≤ Proxy(x) ≤ −8
1.32 if Proxy(x) ≤ −13

rQED(x) =

{
QED(x)/0.7 if QED(x) ≤ 0.7

1 otherwise

Reward(x) =
raffinity(x)× rQED(x)

3
√

HeavyAtomCounts(x)
(31)

For hyperparameters, we set the pocket embedding dimension to 128 and the training GFN tem-
perature to Uniform(0, 64) which are used in TacoGFN. We trained the model with 40,000 oracles
whereas TacoGFN is trained for 50,000 oracles.

Introducing further objectives without retraining. For the restricted block library (TPSA<30),
we set the action space subsampling ratio as 10% for both AddFirstReactant and ReactBi, and
we set that as 1% for an entire library.

Scaling action space without retraining. For action space subsampling, we set the subsampling
ratio as 2% for both AddFirstReactant and ReactBi for the “seen" and “unseen" libraries. For
the “all" library (“seen" + “unseen"), we set the subsampling ratio as 1%.

Ablation study. We set different subsampling ratios according to the building block library size.
For 100-sized, 1k-sized, and 10k-sized libraries, we do not perform the action space subsampling.
We set an action space subsampling ratio of 10% for a 100k-sized one and 1% for a 1M-sized one.

C.4 Softwares

Molecular docking software. For a fair comparison with the baseline model, we used UniDock
[59] for target-specific generation and QuickVina 2.1 [1] for SBDD. The initial ligand conformer is
generated with srETKDG3 [58] in RDKit [34]. For QuickVina, we converted the molecule format
to pdbqt with OpenBabel [45] and AutoDock Tools [26]. To set up an exhaustive search, we set the
search mode to balance for UniDock and the exhaustiveness to 8 for QuickVina. We kept the seed
fixed at 1 throughout the ETKDG and the whole docking process.

Docking proxy. We used the QuickVina proxy proposed by Shen et al. [54] which is implemented
in PharmacoNet [52]. We used a proxy model trained on the CrossDocked2020 training set rather
than the model trained on the ZINCDock15M training set.

Synthetic accessibility estimation. To evaluate the synthetic accessibility of molecules, we used
the retrosynthesis planning tool AiZynthFinder [18]. AiZynthFinder uses MCTS to find synthesis
paths and estimate the number of steps, search time, success rate, and synthetically accessible score
as metrics to indicate synthesis complexity or synthesizability.
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C.5 Baselines

SynNet. For SynNet [17], we perform multi-objective optimization with the following reward
function:

R(x) = 0.5QED(x) + 0.5V̂ina(x). (32)
According to the standard setting for optimization, we set the number of offspring to 512 and the
number of oracles to 125. To use pre-trained models, we used SynNet’s template set (91 templates)
instead of a template set (71 templates) used in our work.

RGFN. Since the code of RGFN is not released, we reimplement the RGFN.

BBAR. Since BBAR [53] allows multi-conditional generation, we directly used QED and docking
scores without any processing. We split 64,000 ZINC20 molecules according to the reported splitting
of BBAR: 90% for the training set, 8% for the validation set, and 2% for the test set (in our case, the
number of sampling molecules). We performed UniDock for training and validation set to prepare
the label of the molecules. Since BBAR requires the desired property value, we used the average
docking score of the top 100 diverse modes from our model.

Pocket2Mol, TargetDiff, DecompDiff, TacoGFN. We followed the reported generative setting to
generate 100 molecules for each CrossDocked test pocket. We set the center of the pockets with the
reference ligands in the CrossDocked2020 database. We reuse reported runtime in Shen et al. [54],
which is measured on NVIDIA A100 for Pocket2Mol, TargetDiff, and DecompDiff, and NVIDIA
RTX3090 for TacoGFN.

C.6 LIT-PCBA Pockets

Table 8 describes the protein information used in pocket-specific optimization with UniDock, which
is performed on Sec. 4.1.

Table 8: The basic target information of the LIT-PCBA dataset and PDB entry used in this work.

Target PDB Id Target name

ADRB2 4ldo Beta2 adrenoceptor
ALDH1 5l2m Aldehyde dehydrogenase 1
ESR_ago 2p15 Estrogen receptor α with agonist
ESR_antago 2iok Estrogen receptor α with antagonist
FEN1 5fv7 FLAP Endonuclease 1
GBA 2v3d Acid Beta-Glucocerebrosidase
IDH1 4umx Isocitrate dehydrogenase 1
KAT2A 5h86 Histone acetyltransferase KAT2A
MAPK1 4zzn Mitogen-activated protein kinase 1
MTORC1 4dri PPIase domain of FKBP51, Rapamycin
OPRK1 6b73 Kappa opioid receptor
PKM2 4jpg Pyruvate kinase muscle isoform M1/M2
PPARG 5y2t Peroxisome proliferator-activated receptor γ
TP53 3zme Cellular tumor antigen p53
VDR 3a2i Vitamin D receptor

22



D Additional results

D.1 Additional results for Pocket-specific generation task

We reported the additional results of Sec. 4.1 for the remaining 10 pockets on the LIT-PCBA
benchmark.

Table 9: Hit ratio (%). Average and standard deviation for 4 runs. The best results are in bold.

Hit ratio (%, ↑)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 0.00 (± 0.00)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 2.00 (± 1.73) 0.00 (± 0.00)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 29.17 (± 18.16) 37.50 (± 21.65) 0.00 (± 0.00)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 0.00 (± 0.00)
SynFlowNet 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 0.00 (± 0.00)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 38.00 (± 4.12) 0.00 (± 0.00)
RXNFLOW 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 0.00 (± 0.00)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 0.50 (± 0.50) 7.25 (± 1.92) 0.75 (± 0.43) 4.25 (± 1.64) 0.00 (± 0.00)
FragGFN+SA 0.50 (± 0.87) 4.50 (± 1.50) 1.00 (± 0.71) 2.25 (± 1.92) 0.00 (± 0.00)

Reaction

SynNet 0.00 (± 0.00) 0.00 (± 0.00) 33.33 (± 20.41) 8.33 (± 14.43) 0.00 (± 0.00)
BBAR 2.50 (± 1.12) 20.00 (± 0.71) 10.50 (± 2.69) 14.00 (± 3.94) 0.00 (± 0.00)
SynFlowNet 23.50 (± 5.94) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 0.00 (± 0.00)
RGFN 2.50 (± 2.06) 34.75 (± 6.57) 29.00 (± 6.52) 37.00 (± 6.60) 0.00 (± 0.00)
RXNFLOW 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 1.75 (± 0.83)

Table 10: Vina. Average and standard deviation for 4 runs. The best results are in bold.

Average Vina Docking Score (kcal/mol, ↓)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN -8.76 (± 0.46) -9.91 (± 0.32) -9.27 (± 0.20) -8.93 (± 0.18) -10.51 (± 0.31)
FragGFN+SA -8.92 (± 0.27) -9.76 (± 0.64) -9.14 (± 0.43) -8.28 (± 0.40) -10.14 (± 0.30)

Reaction

SynNet -7.60 (± 0.09) -8.74 (± 0.08) -7.64 (± 0.38) -7.33 (± 0.14) -9.30 (± 0.45)
BBAR -8.70 (± 0.05) -9.84 (± 0.09) -8.54 (± 0.06) -8.49 (± 0.07) -10.07 (± 0.16)
SynFlowNet -9.27 (± 0.06) -10.40 (± 0.08) -9.41 (± 0.04) -8.92 (± 0.05) -10.84 (± 0.03)
RGFN -8.48 (± 0.06) -9.49 (± 0.13) -8.53 (± 0.11) -8.22 (± 0.15) -9.89 (± 0.06)
RXNFLOW -9.62 (± 0.04) -10.95 (± 0.05) -9.73 (± 0.03) -9.30 (± 0.01) -11.39 (± 0.09)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN -10.28 (± 0.15) -11.24 (± 0.27) -9.54 (± 0.12) -7.90 (± 0.02) -10.96 (± 0.06)
FragGFN+SA -9.58 (± 0.44) -10.83 (± 0.34) -9.19 (± 0.29) -7.61 (± 0.27) -10.66 (± 0.61)

Reaction

SynNet -8.70 (± 0.36) -9.55 (± 0.14) -7.47 (± 0.34) -5.34 (± 0.23) -10.98 (± 0.57)
BBAR -9.84 (± 0.10) -11.39 (± 0.08) -8.69 (± 0.10) -7.05 (± 0.09) -11.07 (± 0.04)
SynFlowNet -10.34 (± 0.07) -11.98 (± 0.12) -9.40 (± 0.05) -7.90 (± 0.10) -11.62 (± 0.13)
RGFN -9.61 (± 0.11) -10.96 (± 0.18) -8.53 (± 0.07) -7.07 (± 0.06) -10.86 (± 0.11)
RXNFLOW -10.84 (± 0.03) -12.53 (± 0.02) -9.73 (± 0.02) -8.09 (± 0.06) -12.30 (± 0.07)

23



Table 11: Synthesizability. Average and standard deviation for 4 runs. The best results are in bold.

Percentage of Synthesizable Molecules (%, ↑)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 2.75 (± 1.30)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 3.25 (± 1.48) 3.50 (± 2.50)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 45.83 (± 27.32) 50.00 (± 0.00) 54.17 (± 7.22)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 18.75 (± 3.90)
SynFlowNet 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 57.00 (± 7.58)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 42.00 (± 3.00) 44.50 (± 4.03)
RXNFLOW 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 70.50 (± 2.87)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 2.50 (± 2.29) 8.75 (± 3.11) 0.75 (± 0.43) 4.25 (± 1.64) 3.50 (± 2.18)
FragGFN+SA 3.25 (± 1.79) 9.75 (± 2.28) 1.25 (± 1.09) 2.25 (± 1.92) 3.75 (± 2.77)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 54.17 (± 7.22) 29.17 (± 18.16) 45.83 (± 7.22)
BBAR 13.75 (± 3.11) 20.00 (± 0.71) 15.50 (± 2.29) 18.50 (± 3.28) 12.25 (± 3.34)
SynFlowNet 56.50 (± 7.63) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 53.50 (± 1.80)
RGFN 48.00 (± 2.55) 48.50 (± 3.20) 47.00 (± 5.83) 53.25 (± 3.63) 46.50 (± 2.69)
RXNFLOW 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 66.75 (± 2.28)

Table 12: Synthetic complexity. Average and standard deviation for 4 runs. The best results are in
bold.

Average Number of Synthesis Steps (↓)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 3.94 (± 0.11) 3.74 (± 0.10) 3.78 (± 0.09) 3.72 (± 0.18) 3.84 (± 0.18)
FragGFN+SA 3.94 (± 0.15) 3.84 (± 0.23) 3.66 (± 0.18) 3.69 (± 0.21) 3.94 (± 0.08)

Reaction

SynNet 3.38 (± 0.22) 3.38 (± 0.22) 3.46 (± 0.95) 3.50 (± 0.00) 3.29 (± 0.36)
BBAR 3.71 (± 0.12) 3.68 (± 0.02) 3.63 (± 0.05) 3.73 (± 0.05) 3.77 (± 0.09)
SynFlowNet 2.48 (± 0.18) 2.61 (± 0.13) 2.45 (± 0.37) 2.81 (± 0.24) 2.44 (± 0.27)
RGFN 2.77 (± 0.20) 2.97 (± 0.15) 2.78 (± 0.10) 2.86 (± 0.19) 2.92 (± 0.06)
RXNFLOW 2.10 (± 0.08) 2.16 (± 0.11) 2.29 (± 0.05) 2.29 (± 0.11) 2.05 (± 0.09)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 3.82 (± 0.13) 3.71 (± 0.12) 3.73 (± 0.24) 3.73 (± 0.23) 3.75 (± 0.06)
FragGFN+SA 3.62 (± 0.12) 3.84 (± 0.21) 3.71 (± 0.04) 3.66 (± 0.05) 3.67 (± 0.25)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.29 (± 0.36) 3.67 (± 0.91) 3.63 (± 0.22)
BBAR 3.70 (± 0.17) 3.61 (± 0.05) 3.72 (± 0.13) 3.65 (± 0.05) 3.77 (± 0.16)
SynFlowNet 2.49 (± 0.33) 2.62 (± 0.10) 2.56 (± 0.12) 2.51 (± 0.27) 2.55 (± 0.09)
RGFN 2.81 (± 0.12) 2.82 (± 0.10) 2.82 (± 0.18) 2.64 (± 0.10) 2.84 (± 0.18)
RXNFLOW 2.00 (± 0.09) 2.34 (± 0.19) 2.21 (± 0.06) 2.12 (± 0.12) 2.12 (± 0.12)

D.2 Additional results for scaling action space without retraining

We reported the additional results for additional reward exponent settings (Rβ).

Figure 8: QED reward distribution of generated molecules.
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D.3 Theoretical analysis

To assess the impact of action space subsampling in GFlowNet training, we conduct a toy experiment
using a simplified setup with 10,000 blocks, one uni-molecular reaction template, one bi-molecular
reaction template, and the QED objective. We used the Hell-Volhard-Zelinsky reaction as a uni-
molecular reaction and the Amide reaction as a bi-molecular reaction, which are illustrated in Fig. 9.
We used a minimum trajectory length of 1, max trajectory length of 2, constant GFN temperature of
1.0, and learning rate decay of 3,000 for PF and logZ. For the GFlowNet sampler, we used the same
weights of the proxy model, i.e. EMA factor of 0. We performed optimization for 30,000 oracles
with a batch size of 64.

As shown in Figures 10(a) and 10(b), we compare a baseline GFlowNet trained without subsampling
(“base") to models using various subsampling ratios and Monte Carlo (MC) sampling. The differences
in logZθ are relatively small (<0.005) across all settings, and increasing MC samples for state
flow estimation Fθ further reduced the bias. In Figures 10(c) and 10(d), we also evaluate the
bias in the trajectory balance loss (L̂TB) and its gradient norm (∥∇θL̂TB∥) during training, finding
negligible differences compared to the true values. These results indicate that our importance
sampling reweighting approach effectively mitigates bias from action space subsampling, enabling
efficient and accurate policy estimation.

Figure 9: Reaction templates employed in toy experiments. (a) Hell-Volhard-Zelinsky reaction.
(b) Amide reaction.

Figure 10: Bias estimation. (a) logZθ according to the action space subsampling ratio (left) and
the number of MC samples where the subsampling ratio is 1/9 (right). (b) The trajectory balance
loss (LTB, L̂TB) where the subsampling ratio is 1/9 under 4 MC samples. (c) The loss gradient norms
(∥∇θLTB∥, ∥∇θL̂TB∥) where the subsampling ratio is 1/9 under 4 MC samples.
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