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Abstract
Contextual optimization problems are prevalent
in decision-making applications where historical
data and contextual features are used to learn
predictive models that inform optimal actions.
However, practical applications often suffer from
model misspecification due to incomplete knowl-
edge of the underlying data-generating process,
leading to suboptimal decisions. Existing ap-
proaches primarily address the well-specified
case, leaving a critical gap in handling misspeci-
fied models. In this paper, we propose a novel In-
tegrated Learning and Optimization (ILO) frame-
work that explicitly accounts for model misspeci-
fication by introducing a tractable surrogate loss
function with strong theoretical guarantees on
generalizability, tractability, and optimality. Our
surrogate loss aligns with the true decision perfor-
mance objective, ensuring robustness to misspeci-
fication without imposing restrictive assumptions.
The proposed approach effectively mitigates the
challenges of non-convexity and non-smoothness
in the target loss function, leading to efficient
optimization procedures. We provide rigorous
theoretical analysis and experimental validation,
demonstrating superior performance compared to
state-of-the-art methods. Our work offers a princi-
pled solution to the practically relevant challenge
of model misspecification in contextual optimiza-
tion.

1. Introduction
Many real-world decision-making problems require opti-
mizing decisions based on uncertain parameters that can
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be estimated using contextual information. A canonical
example is traffic routing, where the costs of traversing net-
work edges—initially unknown—depend on observable fea-
tures such as weather, time of day, and construction activity.
Given historical data, the goal of contextual optimization is
to learn a policy that maps observed contexts to near-optimal
decisions (Sadana et al., 2024).

A standard framework for contextual optimization assumes
that the unknown cost vector c ∈ Rd is correlated with an
observed context x ∈ Rk , and the objective is to minimize
expected decision cost:

min
π∈Π

E(x,c)∼P

(
c⊤π(x)

)
. (1)

Here, P is the joint distribution of (x, c), and Π is a set of
feasible policies that map contexts to decisions in a bounded
convex set W ⊂ Rd. Since the true cost function is un-
known in practice, it must be approximated using a predic-
tion model from a hypothesis class H.

The widely used predict-then-optimize approach first learns
a predictor ĉ(x) from H and then selects a decision by
solving:

π̂(x) ∈ arg min
w∈W

ĉ(x)⊤w. (2)

Prior works mainly adopt two approaches: Sequential Learn-
ing and Optimization (SLO) (Bertsimas and Kallus, 2020;
Hu et al., 2022) and Integrated Learning and Optimization
(ILO) (Donti et al., 2017; Elmachtoub and Grigas, 2022;
Sun et al., 2023). SLO focuses solely on minimizing predic-
tion error for c, ignoring the downstream optimization task,
while ILO prioritizes decision performance over accurate
cost prediction. Recent research in Integrated Learning and
Optimization (ILO) refines cost prediction to improve down-
stream decisions, under the assumption that H contains the
true cost function. In other words, previous ILO approaches
assume that H is well-specified.

However, real-world settings often violate the above assump-
tion. We say that H is misspecified when it does not contain
a predictor that perfectly captures the true cost function.
In real-world applications, this situation can arise due to
incomplete feature sets, unmodeled dependencies, or distri-
bution shifts. Despite its practical significance, contextual
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optimization under model misspecification remains under-
explored in the literature. Most existing research in ILO
assumes H is well-specified and focuses on design of surro-
gate loss functions and algorithms to maximally reduce the
decision error. While some recent empirical works (Donti
et al., 2017; McKenzie et al., 2023; Kotary et al., 2023;
Huang and Gupta, 2024) explore decision-aware learning
under misspecification, they lack theoretical guarantees for
global optimality and generalization. Additional literature
review is available in Appendix A.3.

We argue that the key challenge lies in distinguishing be-
tween two forms of misspecification (see Appendix A.4 for
further details):

1. Prediction Misspecification: The inability of a model
ĉ(x) to accurately estimate c(x);

2. Decision Misspecification: The inability of a model
ĉ(x) to produce the same decisions as those derived
from the true cost function.

Thus, in contextual optimization, the challenge is to design
tractable approaches to tackle decision misspecification. In-
deed, a model can yield poor predictions yet still make
optimal decisions–and vice versa. Yet, standard methods
such as Sequential Learning and Optimization (SLO) and
Smart Predict-then-Optimize (SPO+) (Elmachtoub and Gri-
gas, 2022) fail to guarantee optimal decision-making in the
presence of misspecification, leading to suboptimal policies.

1.1. Problem setup

For simplicity, we consider that unknown parameters appear
linearly in the objective function of the stochastic optimiza-
tion problem:

min
w∈W

E(x,c)∼P

(
c⊤w|x

)
= min

w∈W
E(x,c)∼P (c|x)⊤w. (3)

Since c is unknown, we approximate it using a predictor
ĉ ∈ H, where ĉ(x) is learned using historical data. Impor-
tantly, H can be misspecified. The decision-making process
is as follows: first, observe the context x and predict the
cost vector ĉ(x). Next, compute a decision w(ĉ(x)) that
minimizes the predicted cost:

w(ĉ(x)) ∈ arg min
w∈W

ĉ(x)⊤w. (4)

We consider that the hypothesis set H is parametric, i.e. it
can be written as H = {ĉθ, θ ∈ Rm}. Our goal is to find a
predictor ĉθ that minimizes decision error, defined as:

ℓP (θ) = E(x,c)∼P

(
max

w∈W⋆(ĉθ(x))
c⊤w

)
, (5)

where W ∗(c̃) := argminw∈W c̃⊤w represents the set of
optimal solutions given a predicted cost vector c̃.

To illustrate why traditional approaches such as SLO and
(SPO+) fail to handle misspecified H, consider a simple
binary classification example: suppose the decision space
is W = [−1/2, 1/2], and the cost vector c takes values in
{−1, 1}, and the minimization in (3) is replaced by maxi-
mization. The optimization problem then reduces to mini-
mizing:

ℓP (ĉ) = −1

2
+ E(x,c)∼P

(
1sign(ĉ(x)) ̸=c

)
. (6)

This formulation is closely related to minimizing classifica-
tion error in binary classification. We can observe that SLO
and SPO+ lead to suboptimal solutions in such a setting.
Example 1. Consider the following hypothesis class: H =
{ĉ1, ĉ2}, and the context x takes only two values 1 and
2 equally likely, and c always takes the value 1. Assume
that ĉ1(1) = 1

8 , ĉ1(2) = 1
8 , ĉ2(1) = 1, and ĉ2(2) = − 1

6 .
Although ĉ1 leads to optimal decision-making, both SPO+
and SLO select ĉ2, a suboptimal predictor (refer to Appendix
A.1). ◁

This example demonstrates that SPO+ and SLO do not nec-
essarily yield optimal decisions. Similar conclusions can be
drawn for a more practical traffic routing problem, where the
goal is to allocate traffic across roads to minimize travel time
based on contextual factors like weather, time of day, and
road construction. Suppose the true travel cost depends on
all three factors, but due to model limitations, only weather
and time of day are considered, ignoring road construction
effects. This model misspecification leads both SLO and
SPO+ to learn systematically biased cost estimates, which
fail to anticipate congestion caused by construction. As a
result, traffic is misallocated, leading to longer travel times
during construction periods. SLO fails because it prioritizes
prediction accuracy over decision performance, while SPO+
fails because its decision-aware learning is constrained by
an incomplete hypothesis class. This demonstrates how
standard methods can yield suboptimal decisions, even if
predictions appear reasonable, highlighting the need for
a method that directly optimizes decision quality despite
misspecification.

1.2. Our contribution

To address these limitations, we propose a novel decision-
aware surrogate loss function that explicitly minimizes de-
cision error regardless of whether or not H is misspecified.
Our approach ensures optimal decision performance un-
der model misspecification and provides strong theoretical
guarantees, ensuring both optimality and generalization per-
formance. Importantly, our tractable surrogate loss function
matches the optimal solutions of the true objective (5), has
favorable optimization properties, avoiding bad local min-
ima, and generalizes well to new distributions. We prove
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that our surrogate loss:

• Yields globally optimal decision policies (Theorem 1).

• Exhibits strong generalization properties (Theorem 2).

• Is computationally tractable, enabling efficient opti-
mization via first-order methods (Theorem 4).

We also evaluate our approach against SPO+ and SLO,
showing superior performance under varying degrees of
misspecification.

The remainder of the paper is structured as follows. Section
2 formalizes the problem and introduces our surrogate loss
function. Section 3 establishes theoretical guarantees. Sec-
tion 4 presents empirical results comparing our approach to
existing methods. Section 5 concludes with future research
directions.

2. Our approach
2.1. Rewriting ℓP under a generic assumption

Recall from (5) that the generic form of the target loss func-
tion in our contextual optimization problem involves the
worst case value of c⊤w when w ∈ argminw∈W ĉθ(x)

⊤w
because the solution to minw∈W ĉθ(x)

⊤w is not nec-
essarily unique in theory. In practice, however,
argminw∈W ĉθ(x)

⊤w is likely to be unique. For example,
in the common case where ĉθ(x) is a continuous random
variable and W is a polyhedron (or more generally when the
set of directions c̃ for which the solution to minw∈W c̃⊤w
is not unique is of Lebesgue measure equal to zero), unique-
ness holds with probability 1. Hence, due to practical rea-
sons and theoretical convenience, we make the following
assumption henceforth:

Assumption 1. For any θ ∈ Rm such that ĉθ(x) ̸= 0
almost surely, minw∈W ĉθ(x)

⊤w has a unique solution with
probability 1 when (x, c) ∼ P .

We denote WP the set of measurable mappings from the
support of the joint probability P of (x, c) to the set of
feasible decisions W . Under Assumption 1, we can see
that the problem of minimizing target loss can be written as
follows:

min
θ∈Rm

ℓP (θ) = min
θ∈Rm

min
wP∈WP

E(x,c)∼P

(
c⊤wP (x)

)
(7)

s.t. ∀x ∈ Rk, wP (x) ∈ arg min
w∈W

ĉθ(x)
⊤w.

(8)

We formulate a proposition that provides a sufficient condi-
tion for Assumption 1 to hold when W is a polyhedron in
Appendix A.5.

Our task now becomes to solve the optimization problem
(7). Since known approaches cannot be directly applied to
solve (7), we develop an approach based on a surrogate loss
function that enjoys two properties:

1. Consistency: The optimal solutions for the surrogate
loss are also optimal for the target loss;

2. Tractability: The surrogate loss is tractable to opti-
mize.

2.2. Introducing our surrogate loss function

We introduce a new surrogate loss function – referred as
Consistent Integrated Learning and Optimization (CILO)
loss – for contextual optimization under misspecification.

Definition 1. (CILO loss) For β ∈ R, we define the function
ℓβP as

∀θ ∈ Rm, ℓβP (θ) := min
wβ

P∈W
β
P

E(x,c)∼P

(
ĉθ(x)

⊤wβ
P (x)

)
− min

wP∈WP

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)
,

where W
β

P =
{
wP ∈ WP , E(x,c)∼P

(
c⊤wP (x)

)
≤ β

}
.

In (Elmachtoub and Grigas, 2022), authors show that in the
binary classification setting, the SPO+ loss is equal to the
hinge loss, i.e.

∀c, c̃ ∈ Rd, ℓSPO+(c̃, c) = max(0, 1− 2cc̃).

We introduce the following notation, for every β ∈ R and
measurable function ĉ,

ℓβP (ĉ) = min
wβ

P∈W
β
P

E(x,c)∼P

(
ĉ(x)⊤wβ

P (x)
)

− min
wP∈WP

E(x,c)∼P

(
ĉ(x)⊤wP (x)

)
.

We denote β⋆
H,P := minĉ∈H ℓP (ĉ) and βmax,P =

E(x,c)∼P (maxw∈W c⊤w). The following proposition
shows that the CILO loss also has an interesting expres-
sion in the binary classification setting when the hypothesis
set is decision-well-specified.

Proposition 2.1. In the binary classification setting, when
β = β⋆

H,P and c is a deterministic function of x, for every
measurable function ĉ, when H is decision-well-specified,
we have

ℓβP (ĉ) = E(x,c)∼P (|ĉ(x)|1sign(ĉ(x)) ̸=c). (9)

The proof of this proposition is in Appendix A.6. We can
see in Proposition 2.1 that the CILO loss nearly matches
the expression of the target loss when the hypothesis set is
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decision-well-specified (and not necessarily prediction-well-
specified) and c is deterministic in x. Furthermore, when ĉ
does not take the value zero, the consistency or the CILO
loss is clear from its expression.

The following example shows that whereas SLO and SPO+
fail to provide a minimizer for ℓP , this new surrogate suc-
cessfully does so.

Example 2. We revisit Example 1. We have seen that SPO+
and SLO do not favor the best element of the hypothesis
set H. Since H is decision-well-specified, by choosing β =
β⋆
H,P = − 1

2 , from proposition 2.1, equality (9) is satisfied.
Consequently, we have ℓβP (ĉ1) = 0 and ℓβP (ĉ2) = 1

12 >

ℓβP (ĉ1). We see that indeed here, the global minimum of this
new loss is optimal for the target loss. ◁

It is important to keep in mind that in the example above, the
model is prediction misspecified, but decision well-specified.
Hence, even when there exists a cost predictor that yields
the same decisions as c, SPO+ and SLO may fail to favor
the best cost predictor in term of decisions. Decision-well-
specification is not necessary for the CILO loss’ consistency
to hold in the example. To see that, it suffices to add a third
point in the distribution of P which is labeled the same way
by ĉ1 and ĉ2. This example will yield the same results.

We will now prove that the consistency observed in example
2 holds in general. The lemma below will be useful when
proving our main consistency theorem.

Lemma 1. For every β ∈ R such that β⋆
H,P ≤ β, ℓβP is

non-negative.

We now formulate our main consistency theorem.

Theorem 1. Let β ∈ R such that β⋆
H,P ≤ β < βmax,P .

Under Assumption 1, for every θ ∈ Rm with ĉθ(x) ̸= 0
almost surely, ℓP (θ) ≤ β if and only if θ is a minimizer of
ℓβP . In particular, when β = β⋆

H,P , θ is a minimizer of ℓβP if
and only if it is a minimizer of ℓP .

The proof of this theorem is in Appendix A.7.

This result suggests a natural approach to minimizing ℓP :
first, find a tractable method to minimize the CILO loss
ℓβP for a suitable choice of auxiliary parameter β, ensuring
the candidate minimizer θ satisfies ĉθ(x) ̸= 0 almost surely.
While β⋆

H,P is unknown, achieving a sufficiently small value
of ℓβP during optimization likely ensures that the target loss
ℓP remains below β. To select β, one can perform a line
search over a suitable interval [β, β] and choose the value
that minimizes the CILO loss. We now develop a tractable
(in the sense that it runs in polynomial time in theory and
is efficient in practice) procedure to optimize ℓβP —making
the line search feasible—and formalize the relationship be-
tween near-optimal ℓβP values and the target loss ℓP . This
addresses a key limitation in contextual optimization litera-

ture: existing surrogate losses, though tractable, guarantee
optimality only under well-specified settings. While some
perform well experimentally in misspecified cases, no exist-
ing approach ensures global optimality across all levels of
misspecification. We close this gap in Section 3.

3. Technical approach
In this section, we formalize our technical approach based
on the CILO loss function and the consistency result. We
first mention three key issues that our approach seeks to
address. In the remainder of the paper, we denote by ∥.∥ the
L2 norm.

Firstly, we do not have access to the joint distribution P of
random variables (x, c); instead we assume that we have
access to a historical dataset S = {(x1, c1), . . . , (xn, cn)},
where n is the number of samples and each sample (xi, ci),
i ∈ [n] is sampled from P . Thus, we seek to optimize
the empirical version of CILO, denoted ℓβPn

, where Pn is
the uniform distribution over the dataset S. The question
we need to address is whether by minimizing empirical
CILO, we can obtain good generalization performance (i.e.,
guarantees on out-of-sample CILO loss). Theorem 2 shows
that this is indeed the case.

Secondly, the CILO loss ℓβP is a non-convex and non-
smooth function, and we need a technique to optimize it in a
tractable manner. We provide one way to address this issue
by leveraging the Moreau envelope smoothing technique
(Sun and Sun, 2021) to transform the problem of minimizing
ℓβP into another optimization problem whose objective func-
tion enjoys good landscape; in particular it is smooth and
has no “bad” first-order stationary points or local minima
(see Theorem 4). Consequently, this smoothed optimization
problem is conducive to gradient descent.

Thirdly, to guarantee consistency, we must ensure that the
optimization procedure is able to find minimizer θ that veri-
fies ĉθ(x) ̸= 0 almost surely (see Theorem 1). We address
this issue by refining our smoothing procedure so that gradi-
ent descent on smoothed CILO loss results in a minimizer
that verifies ĉθ(x) ̸= 0 almost surely (see Theorem 6).

These three steps together ensure that we have a tractable
approach to minimizing empirical CILO loss, resulting in
a solution that has good generalization perform optimality
guarantee.

3.1. Generalization performance

We study the generalization performance of the empirical
version of CILO loss and show that by optimizing the em-
pirical CILO loss ℓβPn

, we can ensure a nearly optimal value
for its out of sample counterpart ℓβP . We first make the
following boundedness assumptions.
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Assumption 2. W is closed and bounded and there exists
K ≥ 0 such that for all x ∈ Rk, ∥c(x)∥ ≤ K. We denote
BW = supw∈W ∥w∥.

Assumption 3. When θ = 0, ĉθ(x) = 0. Furthermore,
there exists BΦ ≥ 0 such that the gradient with respect to
θ, ∇ĉθ(x), is piecewise continuous and bounded by BΦ for
every θ ∈ Rm and x ∈ Rk.

The first part of Assumption 3 is natural when we as-
sume that there exists θ0 ∈ Rm such that ĉθ0 = 0. By
reparametrizing the hypothesis set as H′ = ĉθ+θ0 , θ ∈ Rm,
we obtain ĉ0 = 0. Furthermore, a direct consequence of this
assumption is that for every x ∈ Rk and θ ∈ Rm,

∥ĉθ(x)∥ =

∥∥∥∥∫ 1

0

∇ĉtθ(x)
⊤θdt

∥∥∥∥
≤
∫ 1

0

∥∥∇ĉtθ(x)
⊤θ
∥∥ dt ≤ BΦ ∥θ∥ .

We now present our main generalization result.

Theorem 2. Let β ≥ β⋆
H,P . Let θ⋆ ∈ Rm such that

ℓβPn
(θ⋆) ≤ ε. Assume that there exists D ≥ 0 such that

∥θ⋆∥ ≤ D. Under assumptions 2, and 3, and assuming
β⋆
H,P > βmin,P , with probability at least 1− δ, we have

ℓβP (θ
⋆) ≤ ε+O

 1

β − βmin,P

√
log 1

δ

n

 .

Notice here that when the hypothesis set H is decision-
misspecified, we have β⋆

H,P > βmin,P , and consequently
the term 1

β−βmin,P
is bounded. If H is (nearly) well-specified,

we can choose a larger β to guarantee the generalization
bound to be good. This theorem implies that our surrogate
loss can generalize when n is large and hence minimizing
the empirical version of the surrogate loss ℓβPn

yields small
optimality gap for its out-of-sample counterpart ℓβP . Using
Theorem 1 and Theorem 2, we can deduce that finding θ
such that ĉθ(x) ̸= 0 almost surely and minimizing ℓβPn

yields an optimal value for ℓP (θ).

Theorem 1 ensures that the closer θ is to optimality for ℓβP
for a well-chosen β ∈ R, the closer it is to optimality for ℓP .
When θ is nearly optimal for ℓβP , we aim to quantify how
close it is to optimality for ℓP . By adopting a stability as-
sumption regarding the linear optimization problem, we can
establish a more concrete accuracy bound for the solution
obtained from the empirical version ℓβPn

.

3.2. Stronger consistency result

For ease of presentation, we make the following assumption
from now on:

Assumption 4. For θ ̸= 0, ĉθ(x) ̸= 0 almost surely.

Assumption 4 holds when for every θ ∈ Rm \ {0}, ĉθ is a
nonzero analytic function and x has a continuous distribu-
tion. In this case, the set of zeroes of ĉθ is of measure equal
to zero (see (Mityagin, 2015)) and consequently x does not
belong to this set almost surely. This assumption, coupled
with Assumption 1, implies that for any θ ∈ Rm \ {0}, the
problem minw∈W ĉθ(x)

⊤w has a unique solution almost
surely.

We give a more concrete optimality guarantee obtained by
minimizing ℓβP , which sharpens Theorem 1. We first make
an assumption similar to the assumption in (Hu et al., 2022)
which enables the authors to get good generalization guar-
antees for SLO in the well-specified case. However, our
assumption add conditions on the hypothesis set rather than
the ground truth cost.

Assumption 5. Assume that W is a polyhedron. We denote
W∠ the set of extreme points of W . For a given context
x ∈ Rk, we denote for every θ ∈ Rm,

∆θ(x) =


min

w∈W∠\W⋆(ĉθ(x))
ĉθ(x)

⊤w − min
w∈W∠

ĉθ(x)
⊤w

if W ⋆(ĉθ(x)) ̸= W

0 else.

Assume that for some α > 0 and γ ≥ 0, for every θ ∈ Rm

∀t > 0, P(0 < ∆θ(x) ≤ ∥θ∥ t) ≤
(

γt

BW

)α

.

The assumption above ensures the stability of the target
loss ℓP . Specifically, it strengthens the uniqueness guar-
antee provided by Assumption 1. Besides ensuring that
minw∈W ĉθ(x)

⊤w has a unique solution almost surely, it
offers a sharper measure for how sensitive the mapping
w 7−→ ĉθ(x)

⊤w is to deviations from w(ĉθ(x)) with high
probability. Assumption 5 is reasonable when ĉθ(x) has
a continuous distribution, since it is equivalent to say that
ĉθ(x) is likely to have a direction that is not too close to
being perpendicular to one of the faces of the polyhedron
W–that is, the probability of this direction to be falling
within one of the red cones shown in Figures 1 and 4 decays
to 0 as the cones get more narrow. More details about this
assumption are provided in Appendix A.8.

The following theorem provides a relationship between op-
timality gaps of ℓβP (θ) and ℓP (θ) when θ is bounded away
from 0, i.e. there exists u > 0 such that ∥θ∥ ≥ u.

Theorem 3. Under assumptions 2, 3 and 5, there exists
α > 0 such that for all θ ∈ Rm bounded away from 0 and
β ≥ β⋆

H,P ,

ℓP (θ) ≤ β +O
(
ℓβP (θ)

1− 1
1+α

)
.
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ĉθ(x)

ω(θ, x)

w(ĉθ(x))

w(θ, x)

W

Figure 1. Less likely directions for ĉθ(x) relative to W when it is
a polyhedron in R2

The proof of this theorem can be found in Appendix A.12.
Assuming that θ is bounded away from 0 is crucial here, be-
cause when θ = 0, the uniqueness property in Assumption
1 is not guaranteed, and the consistency in Theorem 1 is not
satisfied. Similarly, when θ is close to 0, ℓβP exhibits poor
behavior, as it approaches the scenario where consistency
breaks down. Although Assumption 5 requires W to be a
polyhedron, it is possible to consider a similar yet reason-
able assumption that does not impose this requirement. This
alternative leads to a stronger consistency inequality (see
Appendix A.8).
Remark 1. This theorem suggests that to minimize ℓP ,
one should seek an approximate minimizer θ of ℓβP for a
well-chosen β ∈ R with ∥θ∥ kept away from zero. By ap-
plying Theorem 2, it follows that it suffices to find some
θ ∈ Rm such that ℓβPn

(θ) is small while ensuring ∥θ∥ re-
mains bounded away from zero.

3.3. Optimizing our surrogate

Based on theorems 1, 2, and 3, it is sufficient to find a
θ ∈ Rm such that ℓβPn

is small and θ is kept bounded away
from zero to minimize ℓP . The empirical surrogate loss ℓβPn

can be written as:

∀θ ∈ Rm, ℓβPn
(θ) = gPn

(θ)− gβPn
(θ),

where

gPn
(θ) := −E(c,x)∼Pn

(
min
w∈W

ĉθ(x)
⊤w

)
(10)

= − min
wPn∈WPn

E(c,x)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

(11)

gβPn
(θ) := − min

wPn∈W
β
Pn

E(c,x)∼Pn

(
ĉθ(x)

⊤wβ
Pn

(x)
)
. (12)

The equality in (11) is satisfied because choosing a policy
wP minimizing E(c,x)∼Pn

(
ĉθ(x)

⊤wβ
Pn

(x)
)

is equivalent

to choosing wP (x) minimizing ĉθ(x)
⊤wP (x) for every x

in Rk.

Landscape properties and smoothing. We take a closer
look at the structure of our surrogate. We make the following
mild assumption.

Assumption 6. The function θ 7−→ ĉθ(x) is differentiable
for every x ∈ Rk, and there exists BL > 0 such that for all
θ, θ′ ∈ Rm and x ∈ Rk,

∥∇θ ĉθ(x)−∇θ ĉθ′(x)∥ ≤ BL ∥θ − θ′∥ .

This assumption is sufficient for ℓβPn
to be written as a

difference of two convex functions. Specifically, we have
the following result:

Proposition 1. Under assumptions 2 and 6, ℓβPn
is a DC

(difference of two convex functions) function.

The proof of the proposition above (see Appendix A.11)
relies on the fact that under assumptions 6 and 2, gPn

and
gβPn

are both weakly convex functions, and consequently
their difference is a difference of convex functions.

We aim to find θ ∈ Rm \ {0} that minimizes ℓβPn
. A natural

approach is to identify a stationary point of ℓβPn
(i.e., a

θ where the subgradient of ℓβPn
contains 0). Despite ℓβPn

having a DC structure, it may still be non-smooth, making
the task of finding a stationary point challenging. To address
this, we introduce a smoothed version of ℓβPn

.

Definition 2. (s-CILO loss) For all λ ∈ Rm and β ≥
βH,Pn

, we denote g1Pn
= gPn

and g2Pn
= gβPn

. For i ∈
{1, 2}, let

M i
Pn

(λ) := min
θ∈Rm

(giPn
(θ) +

1

2
∥λ− θ∥2),

θiPn
(λ) = arg min

θ∈Rm
(giPn

(θ) +
1

2
∥θ − λ∥2).

We define a smooth surrogate to the CILO loss, which we
call the s-CILO loss rβPn

(λ) := M1
Pn

(λ)−M2
Pn

(λ). When
there is an ambiguity about the value of β, we denote θPn

:=

θ1Pn
, θ

β

Pn
:= θ2Pn

, MPn
:= M1

Pn
, M

β

Pn
:= M2

Pn
.

Following (Sun and Sun, 2021) (proposition 1, page 10),
the smooth surrogate above has the following property: for
every stationary point λ of rβPn

, θ
β

Pn
(λ) and θPn

(λ) are
equal and are stationary points of ℓβPn

. Similar to ℓβPn
, s-

CILO satisfies the positivity property and the fact that its
minimum value is equal to 0 from ℓβPn

.

We now have a way to find a stationary point of ℓβPn
. A

practical way to ensure that the iterates of an optimiza-
tion algorithm for ℓβPn

do not converge to θ = 0 is to add
a constraint ∥θ∥ ≥ z where z > 0. Since the function
θ 7−→ z − ∥θ∥ can be written as a difference of two con-
vex functions, we can find a constrained stationary point to

6
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rβPn
(see (Pang et al., 2017) for tractability results for DC

constrained minimization).

The DC structure of our surrogate enables us to find a sta-
tionary point of ℓβPn

, thus allowing us to approximately min-
imize the target loss ℓP . Moreover, as we will demonstrate
(see Theorem 4 below), for specific choices of the hypoth-
esis set (e.g., a linear hypothesis set), our surrogate has a
favorable landscape, meaning that every stationary point of
ℓβPn

is a global minimum. Consequently, first-order opti-
mization algorithms can effectively find a global minimum
of our surrogate.

From now on, we assume that our hypothesis set H is lin-
ear, meaning there exists a mapping Φ : Rk −→ Rm×d

such that for all θ ∈ Rm, ĉθ(x) = Φ(x)θ. In this sce-
nario, Assumption 4 is satisfied if Φ(x) is full rank almost
surely. Additionally, Assumption 6 is inherently satisfied,
and Assumption 3 can be replaced with the following:

Assumption 7. For any x, the largest singular value of
Φ(x) is bounded above by BΦ.

With this special choice of hypothesis set, our surrogate
loss and its smoothed version enjoy good landscape proper-
ties. In particular, every stationary point of ℓβPn

is a global
minimum. We formulate our main landscape result.

Theorem 4. rβPn
is everywhere differentiable. If λ is a sta-

tionary point of rβPn
such that ĉ

θ
β
Pn

(λ)
(x) ̸= 0 almost surely,

then θ
β

Pn
(λ) is a global minimum of ℓβPn

. In particular, un-
der assumptions 2 and 3, we have for every θ ∈ Rm and
ε ≥ 0, ∥∥∥∇rβPn

∥∥∥ ≤ ε =⇒ ℓβPn
(θ) ≤ 8BWBΦε.

A more complete version of this theorem along with its
proof is provided in Appendix A.13. Assuming a priori that
running gradient descent to optimize our smooth surrogate,
we do not fall into the case ĉθ(x) = 0 almost surely, our
practical procedure to optimize ℓP simply consists of finding
a suitable β using line search and run gradient descent on
ℓβPn

.

Now, the only remaining problem to address is the case
where the algorithm gives θ = 0.

Avoiding zero solutions. Even if we successfully mini-
mize ℓβPn

, we could encounter the pathological case where
θ = 0, which would fail to ensure that ĉθ(x) ̸= 0 almost
surely. In this situation, the conditions for Theorems 1 and
3 would not be satisfied. To prevent this, we leverage the
linear structure of the hypothesis set. We begin by stating a
proposition that highlights key properties of our surrogate
when the hypothesis set is linear.

Definition 3. For a set V in Rm and element u ∈
Rm, denote −V = {−v, v ∈ V } and d(u, V ) =
minv∈V ∥u− v∥ the L2 distance between u and V .
Proposition 2. Let λ ∈ Rm and β ≥ β⋆

H,Pn
, we denote

VPn
:=
{
E(x,c)∼P

(
Φ⊤(x)wPn

(x)
)
, wPn

∈ WPn

}
,

V
β

Pn
:=
{
E(x,c)∼P

(
Φ⊤(x)wPn

(x)
)
, wPn

∈ W
β

Pn

}
.

rβPn
can be rewritten as

rβPn
(λ) =

1

2

(
d(λ,−V

β

Pn
)2 − d(λ,−VPn)

2
)
.

The proof of this proposition can be found in Appendix
A.15.

We observe that rβPn
exhibits an interesting property: re-

covering a candidate solution θ ∈ Rm that is equal to zero
is equivalent to finding λ ∈ Rm such that d(λ,−V

β

Pn
) =

d(λ,−VPn) = 0, and hence, we would like to find a near sta-
tionary point for rβPn

such that these distances are non zero.
In order to do that, we introduce the following log-barrier
surrogate.
Definition 4. (log-CILO loss) Let β ≥ β⋆

H,P , we define for
every θ ∈ Rm,

fβ
Pn

(λ) = log d(λ,−V
β

Pn
)− log d(λ,−VPn

). (13)

We call this function the log-CILO loss.

The function fβ
Pn

inherits the properties we previously

observed in rβPn
. Specifically, since d(λ,−V

β

Pn
) ≥

d(λ,−VPn) for every λ ∈ Rm (due to the fact that V
β

Pn
⊂

VPn
), and because the logarithm is a non-decreasing func-

tion, we have fβ
Pn

(λ) ≥ 0 for every λ ∈ Rm. Furthermore,
similar to rβPn

, if λ is a minimizer of fβ
Pn

, then the distances

d(λ,−V
β

Pn
) and d(λ,−VPn) are equal. Additionally, it can

be shown that any stationary point of fβ
Pn

is also a stationary
point of rβPn

(see Theorem 6).

If gradient descent is used to optimize rβPn
and a subse-

quence of the iterates converges outside the set −VPn
(and

hence outside −V
β

Pn
as well), we can recover from the limit

of this sequence a θ ∈ Rm that is bounded away from zero
and serves as a minimizer of ℓβPn

. As a result, by Theorems
2 and 3, we successfully obtain a desirable approximate
minimizer of ℓP . However, if every limit point of the gra-
dient descent iterates converges within the sets −VPn

and
−V β

Pn
, the function fβ

Pn
can be used instead. Gradient de-

scent applied to fβ
Pn

will not yield iterates converging inside
the sets −VPn

and −V β
Pn

due to the presence of log barriers.
The following proposition outlines the possible outcomes
when running gradient descent on fβ

Pn
.
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VPn V
β

Pn

λ λ̃
FVPn

(λ)

FV
β
Pn

(λ)

Figure 2. Construction of λ̃: when λ is close to the sets V
β
Pn

and
VPn , we construct a new approximately stationary point by moving
away from VPn orthogonally to its boundary.

Proposition 3. Consider the backtracking line search gra-
dient descent method applied to the function fβ

Pn
, ensuring

sufficient decrease at each iteration (refer to Algorithm 3.1
in (Nocedal and Wright, 1999)). Suppose the gradient de-
scent sequence has at least one limit point. There are two
possible cases:

1. The limit point lies strictly outside the interior of −VPn

or −V
β

Pn
;

2. The limit point lies on the common boundary of −VPn

and −V
β

Pn
.

The proof of this proposition is provided in Appendix A.17.

If the gradient sequence {λit} converges to the common
boundary of −VPn

and −V
β

Pn
, the corresponding sequence

{θβPn
(λit)} approaches zero, which is not a desirable so-

lution. Fortunately, this issue can be addressed. Since the
sequence converges to a limit point on the boundary of
−VPn

and −V
β

Pn
which is also a stationary point of rβPn

,
there must exist some λit such that is an ε-stationary point
of rβPn

. We then move λit orthogonally away from the
boundary of −VPn (see Figure 5). This yields a new approx-
imate stationary point that is sufficiently distant from both
−VPn

and −V β
Pn

. As a result, the corresponding θ is an
approximate global minimizer of ℓβPn

that is bounded away
from zero.

Theorem 6 in Appendix A.16 provides an overview of this
procedure, as well as a relationship between the optimality
for fβ

Pn
and rβPn

.

4. Computational experiments
We make a similar comparison to the one performed by (Hu
et al., 2022). In their work, SLO is compared to SPO+,
showing that when the hypothesis set is well-specified, SLO
achieves a smaller value of ℓP than SPO+. Conversely, when
the model is misspecified, SPO+ performs better. Here, we

Figure 3. Comparison of SPO+, SLO, and our approach compari-
son for different levels of misspecification

compare our method with SPO+ and SLO in misspecified
setting.

We write the ground truth cost as c(x) = θ⋆ϕ(x) for some
matrix θ⋆ ∈ R20×s and for all x ∈ Rk, where ϕ(x) ∈ Rs.
Furthermore, the predictors in the hypothesis set take the
form ĉθ(x) = θϕ̃(x) for any θ ∈ R20×5 and for all x ∈ Rk,
where ϕ̃(x) ∈ R5 is equal to ϕ(x) truncated to its first 5 co-
ordinates. When s = 5, the hypothesis set is well-specified,
and when s grows, the misspecification level of the hypoth-
esis set grows as well. In this setting, the hypothesis set is
linear (see Appendix A.18 for more details). To optimize
ℓβPn

, we ran gradient descent on its surrogate loss rβPn
(we

did not need to optimize the surrogate fβ
Pn

because the it-
erates did not converge to 0). We chose β by line search.
We used βmin,P = E(x,c)∼Pn

(
c⊤w(c)

)
as a lower bound to

β, and βSPO+ = E(x,c)∼Pn

(
c⊤w

(
ĉθ⋆

SPO+
(x)
))

where θ⋆SPO+
is the solution obtained by optimizing the SPO+ loss. For
every value of s, we tested 96 evenly spaced values of β
in the interval [βmin,P , βSPO+], and picked β yielding the
solution with the best decision performance. The optimal
β is likely to fall into (or near) the interval [βmin,P , βSPO+],
and hence for at least one of the values of β that we test, ℓβP
enjoys good optimality guarantees, which ensures that the
solution we obtain yields a small value for ℓP . For every
value of s, we run 96 experiments to get the distribution of
the testing loss ℓP for every method, and get results in the
box plots in Figure 3. We also include the same plot with
relative regret instead of absolute regret in Appendix D.

In Figure 3, we plot the regret yielded by SLO, SPO+ and
our approach, i.e. the value of ℓ′P (θ) = ℓP (θ)− βmin,P ≥ 0.
We observe that in the well-specified setting (s = 5), SLO
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performs best among the other two methods, whereas in the
misspecified setting (s > 5), the more the misspecification
level grows, the more our method performs better than SLO
and SPO+, and SLO performs the worst. This is coherent
with results in (Hu et al., 2022) and (Elmachtoub et al., 2023)
in one hand, but also with our consistency and generalization
results in the other hand (Theorems 1 and 2).

5. Conclusion
This paper presents a novel approach to addressing model
misspecification in contextual optimization. State-of-the-art
methods optimize the decision cost effectively only when
the hypothesis set is well-specified, leaving the misspecified
case largely unresolved. Our surrogate loss function success-
fully optimizes the decision cost and retrieves a good cost
predictor in terms of decision performance from the hypoth-
esis set in reasonable time. Despite its non-convexity and
non-smoothness, we exploit its structure as a difference of
convex functions, enabling optimization through smoothing.
We theoretically and experimentally demonstrate that our ap-
proach outperforms state-of-the-art methods in misspecified
settings. To our knowledge, this is the first approach to prov-
ably optimize the decision cost ℓP under misspecification.
While almost all of our results only require generic bound-
edness and smoothness assumptions, global optimality for
our surrogate loss holds for linear hypothesis sets, although
we believe it extends to a broader class of predictors and
contextual optimization problems beyond the case where
the objective to optimize is linear. We have validated our
method on synthetic data and plan further experiments on
real-world datasets for comparison with existing methods.

Impact Statement
This paper introduces a tractable method for contextual op-
timization under model misspecification, with theoretical
guarantees and improved decision performance. The con-
tribution is purely methodological; we do not anticipate
any broader societal or ethical impact beyond this technical
advance.
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A. Appendix
A.1. More details about Example 1

For any predictor ĉ, we use the following abuse of notation

ℓP (ĉ) = E(x,c)∼P

(
max

w∈W⋆(ĉ(x))
c⊤w

)
,

ℓSPO+(ĉ) := E(x,c)∼P

(
max
w∈W

(c⊤w − 2(ĉ⊤w − ĉ⊤w(c)))

)
ℓSLO(ĉ) =

√
E(x,c)∼P

(
∥c− ĉ(x)∥2

)
.

Notice that whereas ℓP (ĉ1) = − 1
2 and ℓP (ĉ2) = 0 > ℓP (ĉ1), we have ℓSPO+(ĉ1) = 3

4 , ℓSPO+(ĉ2) = 2
3 <

ℓSPO+(ĉ1), ℓSLO(ĉ1) = 7
8 , ℓSLO(ĉ2) = 7

12 < ℓSLO(ĉ1). Although ĉ2 leads to suboptimal decisions while ĉ1 results in
optimal decisions, both SLO and SPO+ appear to favor ĉ2.

A.2. Equivalence of the target loss in binary classification

Proof. For every ĉ : Rk −→ Rd, we denote

ℓP (ĉ) = E(x,c)∼P

(
min

w∈W⋆(ĉ(x))
c⊤w

)
.

We have for every ĉ : Rk −→ Rd, for every x ∈ Rk, if sign(ĉ(x)) = c, then W ⋆(ĉ(x)) = W ⋆(c) = {c/2}. Consequently,
we have minw∈W⋆(ĉ(x)) c · w = 1

2 . If sign(ĉ(x)) ̸= c, then minw∈W⋆(ĉ(x)) c · w = − 1
2 . Consequently, we have for any

x ∈ Rk,

1

2
+ min

w∈W⋆(ĉ(x))
c · w =

{
1 if sign(ĉ(x)) = c

0 else.

This directly gives

ℓP (ĉ) = E(x,c)∼P

(
1sign(ĉ(x))=c

)
+

1

2
.

□

A.3. Previous approaches to Integrated Learning and Optimization

A more comprehensive review of contextual optimization approaches can be found in the survey by (Sadana et al., 2024).

Directly optimizing the target loss. One of the first instances of the ILO method can be traced back to (Donti et al.,
2017) who provide a practical way to differentiate the target loss ℓP under some regularity conditions. Similarly, others
have attempted to directly minimize ℓP using some estimation of its gradient, such as unrolling (Domke, 2012; Monga
et al., 2021), which consists of keeping track of operations while running gradient descent in order to differentiate the final
gradient descent iterate as a function of the model parameters, and implicit differentiation (Amos and Kolter, 2017; Agrawal
et al., 2019; Sun et al., 2022; McKenzie et al., 2023). However, ℓP is non-differentiable in general, and even if it were, there
is no guarantee that it would be convex. This implies that gradient-based algorithms mentioned above do not guarantee
convergence to optimum of the target loss. In contrast, our approach consists of minimizing a tractable smooth surrogate that
has the same set of minimizers as ℓP . This allows us to avoid the challenge coming from the lack of regularity properties for
ℓP .

Optimizing a surrogate loss. Another increasingly popular approach, which is most relevant to ours, is optimizing the
target loss using a smooth convex surrogate loss. In (Elmachtoub and Grigas, 2022), a new convex surrogate function,
named SPO+. Minimizing SPO+ is proven to also minimize the target loss when the hypothesis set is well-specified, but no
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consistency results are provided when the chosen predictor class is misspecified. Furthermore, SPO+ seems to outperform
SLO (i.e. yield better decision performance) when H is misspecified, since SLO only focuses on the accuracy of the
prediction step, but completely disregards the performance in the optimization step, whereas ILO specifically focuses on the
decision performance, and when the hypothesis set is misspecified, maximizing the prediction accuracy of the underlying
cost will not necessarily result in good decision performance. Moreover, when H is well-specified, SLO methods outperform
ILO (Hu et al., 2022; Elmachtoub and Grigas, 2022). (Hu et al., 2022) give theoretical and experimental evidence showing
that classical SLO methods generalize better than SPO+ when the hypothesis set is well-specified. In fact, evidence in
(Elmachtoub et al., 2023) suggests that in the well-specified case, SLO might likely have better performance than ILO
approaches, and such a behavior is inverted in the misspecified case. Most previous works have not theoretically considered
the misspecified case. In (Huang and Gupta, 2024), a new surrogate is introduced based on an approximation of the
directional derivative of ℓP , and is shown to be theoretically consistent with ℓP . However, only local optimality results are
provided for this surrogate, whereas in our work, we provide global optimality guarantees.

Another alternative is the surrogate introduced by (Sun et al., 2023), which attempts to maximize the nonbasic reduced costs
(when the cost is taken equal to the predicted cost) of past realizations of ground truth optimal decisions. Such a method
does not require the knowledge of historical costs, but only solutions of previously seen linear programs. In order for this
surrogate to be consistent, authors assume that the chosen hypothesis set is well-specified in the sense of our definition, i.e.
γdec(H) = 0. On one hand, this assumption is weaker than the usual definition of well-specification, which requires that the
hypothesis set contains the ground truth predictor. On the other hand, this surrogate is only designed for linear objectives
with linear constraints. Our surrogate only requires the set of feasible decisions W to be convex and bounded. In a related
paper, (Liu et al., 2021) use a neural network structure in an inventory management problem to learn a mapping which
provides the optimal merchandise order quantity and order time, and give theoretical guarantees in the well-specified setting.
Other surrogates have been considered in the literature (Loke et al., 2022; Jeong et al., 2022; Kallus and Mao, 2023), which
despite having good practical performance benefits, do not seem to theoretically tackle the misspecified case as opposed
to our work, though practical toolkits such as PyEPO (Tang and Khalil, 2024) provide implementations of some of these
approaches.

A.4. Predicition misspecification and decision misspecification

In the litterature, a classical metric to quantify the level of prediction misspecification of a given hypothesis set H is the L1

or L2 norm of the distance between the parameter (or the function) one seeks to estimate and the chosen hypothesis set. In
our setting, it can be written as

γpred(H) =
√

min
ĉ∈H

E(x,c)∼P ((ĉ(x)− c(x))2).

This metric has been previously adopted in statistics and contextual bandits (Foster et al., 2020), (Krishnamurthy et al.,
2021). We argue that γpred(H) can be a good metric for evaluating the effect of misspecification for prediction problems, but
not for contextual optimization problems in which parameter estimates enter in downstream optimization problem. This can
be seen by noting that in our setting, the best achievable cost should not change when multiplying the elements of H by a
positive constant, whereas γpred(H) is not invariant to such a transformation. To address this, we introduce a new metric to
quantify misspecification in contextual optimization.
Definition 5. We define the decision misspecification gap as

γdec(H) = min
ĉ∈H

E(x,c)∼P

(
max

w∈W⋆(ĉ(x))
c(x)⊤w

)
− E

(
min
w∈W

c(x)⊤w

)
.

The function class H is decision-well-specified if γdec(H) = 0, and decision-misspecified otherwise.

First, note that the first term is the smallest possible value of the target loss when choosing a cost predictor from H,
and the second term is the smallest possible value of the target loss in the case where H contains the ground truth cost
predictor. Hence, it follows to conclude that γdec(H) captures the optimality gap (in terms of decision performance) caused
by model misspecification. Second, notice that if H is decision-misspecified, i.e. γdec(H) > 0, then necessarily it is
prediction-misspecified, i.e. γpred(H) > 0. Third, γdec(H) is clearly invariant when multiplying the cost predictors by a
constant. In Example 1, that we have γpred(H) > 0 but γdec(H) = 0. This means that while SPO+ and SLO are consistent
when the hypothesis set is prediction-well-specified, their consistency property no longer holds even when the hypothesis
set is decision-well-specified in general.

12
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For a given cost predictor ĉ, denoting γdec(ĉ) = E(x,c)∼P

(
maxw∈W⋆(ĉ(x)) c

⊤w
)
− E

(
minw∈W c⊤w

)
and γpred(ĉ) =√

E(x,c)∼P ((ĉ(x)− c(x))2), we can see that SLO focuses on bringing γpred(ĉ) as close as possible to γpred(H), whereas it
is more natural to focus on bringing γdec(ĉ) as close to γdec(H) as possible, since small prediction error does not necessarily
mean good decision performance in the misspecified case. In the other hand, even if current ILO methods such as SPO+ aim
to bring γdec(ĉ) as close to γdec(H), it is unclear whether they can do so in the misspecified case, whereas our surrogate
loss’s optimality gap dominates γdec(ĉ) (see Theorem 3).

A.5. Sufficient condition for uniqueness assumption to hold when W is a polyhedron

Proposition 4. If the context variable x has a continuous probability distribution and the mapping x 7−→ ĉθ(x) is a
nonzero analytic function for any θ ̸= 0, then Assumption 1 holds for any polyhedron W that satisfies ĉθ(x)⊤v ̸= 0 for any
θ ∈ Rm \ {0} and any nonzero v ∈ W .

Proof. Let {Si}i∈I be all the faces of W , where I is a finite index set. Let vi be an arbitrary tangent direction of
Si and let V = {vi}i∈I be a finite set. Let U be the set containing all u such that the solution to the linear program
minw∈W u⊤w, u ∈ U is not unique. Then any u ∈ U satisfies u⊤vi = 0 for some i. Therefore, ĉθ(x) ∈ U if ĉθ(x)⊤vi = 0
for some i. Let X0 := {x ∈ Rk | ĉθ(x) ∈ U} and Xi := {x ∈ Rk | ĉθ(x)⊤vi = 0}. We have X0 ⊆

⋃
i∈I Xi. By the

assumption in the Proposition, ĉθ(x)⊤vi is a nonzero analytic function and then by (Mityagin, 2015), Xi is a zero-measure
set. Therefore, X0 =

⋃
i∈I Xi is a zero-measure set since I is finite. Finally, since X0 is of measure zero and x is a

continuous random variable, x lies outside of X0 almost surely, i.e. the solution to minw∈W ĉθ(x)
⊤w is unique almost

surely. □

A.6. Proof of Proposition 2.1

In the binary classification setting, when H is decision-well-specified, we have β⋆
H,P = − 1

2 . For any ĉ : Rk −→ Rd, when
β = β⋆

H,P ,

ℓβP (ĉ) = − max
wβ

P∈W
β
P

E(x,c)∼P

(
ĉ(x) · wβ

P (x)
)
+ max

wP∈WP

E(x,c)∼P (ĉ(x) · wP (x))

= − max
E(x,c)∼P (c·wβ

P (x))≥ 1
2

w
β
P

∈WP

E(x,c)∼P

(
ĉ(x) · wβ

P (x)
)
+

1

2
E(x,c)∼P (|ĉ(x)|)

= −1

2
E(x,c)∼P (ĉ(x) · c) + 1

2
E(x,c)∼P (|ĉ(x)|)

=
1

2
E(x,c)∼P (|ĉ(x)| (1− sign(ĉ(x)) · c))

= E(x,c)∼P

(
|ĉ(x)|1sign(ĉ(x))̸=c

)
.

A.7. Proof of Theorem 1

Proof. We denote β⋆
H,P = minθ∈Rm ℓP (θ), βmax,P = E(x,c)∼P (maxw∈W c⊤w), and βmin,P = E(x,c)∼P

(
minw∈W c⊤w

)
.

Let β ∈ R. We first study the property ℓP (θ) ≤ β when β satisfies β⋆
H,P ≤ β < βmax,P and ĉθ(x) ̸= 0 almost surely.

The inequality β⋆
H,P ≤ β ensures that the condition ℓP (θ) ≤ β is feasible, and the inequality β < βmax,P ensures that the

condition ℓP (θ) ≤ β is not trivial. Notice that if we take β = β⋆
H,P , any θ ∈ Rm satisfying ℓP (θ) ≤ β is a minimizer of

ℓP (θ). When Assumption 1 holds, and when ĉθ(x) ̸= 0 almost surely, W ⋆(ĉθ(x)) contains only one element for almost
every x. Hence, we denote w(ĉθ(x)) to be the unique solution in W ⋆(ĉθ(x)) when W ⋆(ĉθ(x)) contains only one element.
The condition ℓP (θ) ≤ β can be rewritten as E(x,c)∼P (c

⊤w(ĉθ(x))) ≤ β when ĉθ(x) ̸= 0 almost surely. For a given
θ ∈ Rm and wP ∈ WP , if wP satisfies

wP ∈ arg min
wP∈WP

E(x,c)∼P (ĉθ(x)
⊤wP (x)), (14)

then we have, wP (x) = w(ĉθ(x)) almost surely, as for each x, the unique minimizer of ĉθ(x)⊤w over w ∈ W is given by
w (ĉθ(x)), according to Assumption 1.

If θ ∈ Rm satisfies ℓP (θ) ≤ β, and wP is the measurable mapping satisfying condition (14) (and hence wP (x) =
w(ĉθ(x)) almost surely), then we have E(x,c)∼P

(
c⊤wP (x)

)
≤ β. This suggests that adding the linear constraint

13
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E(x,c)∼P

(
c⊤wP (x)

)
≤ β to (14) does not change the set of minimizers of wP 7−→ E(x,c)∼P (ĉθ(x)

⊤wP (x)) when

ℓP (θ) ≤ β. Defining W
β

P =
{
wP ∈ WP , E(x,c)∼P

(
c⊤wP (x)

)
≤ β

}
, our latter statement means that if ℓP (θ) ≤ β, the

two optimization problems
min

wP∈WP

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)

(15)

and
min

wP∈W
β
P

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)

(16)

would result in identical values of the objective function.

Let β ∈ R such that β⋆
H,P ≤ β < βmax,P and θ ∈ Rm satisfying ĉθ(x) ̸= 0 almost surely. Assume that θ is optimal for ℓβP ,

i.e. ℓβP (θ) = 0. Let wP (x) be the solution of (16). Then ℓβP (θ) = 0 implies

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)− ĉθ(x)
⊤w (ĉθ(x))

)
= 0.

Since the random variable ĉθ(x)
⊤wP (x) − ĉθ(x)

⊤w (ĉθ(x)) is positive almost surely, the equality above implies that
ĉθ(x)

⊤wP (x) − ĉθ(x)
⊤w (ĉθ(x)) = 0 almost surely, i.e. wP is also a minimizer of wP 7−→ E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)
,

and hence under Assumption 1, we have wP (x) = w(ĉθ(x)) almost surely. This finally gives

ℓP (θ) = E(x,c)∼P (c
⊤w (ĉθ(x))) = E(x,c)∼P (c

⊤wP (x)) ≤ β.

□

A.8. More details about Assumption 5

We first mention the assumption in (Hu et al., 2022) which enables the authors to get good generalization guarantees for
SLO in the well-specified case. Note that we will not be making this assumption, but we mention it just for reference.

Assumption 8. Assume that W is a polyhedron. We denote W∠ the set of extreme points of W . For a given context x ∈ Rk,
we denote

∆(x) =

{
minw∈W∠\W⋆(c(x)) c(x)

⊤w −minw∈W∠ c(x)⊤w if W ⋆(c(x)) ̸= W

0 else.

Assume that for some α, γ ≥ 0,

∀t > 0, P(0 < ∆(x) ≤ t) ≤
(

γt

BW

)α

.

We provide further justification of the remarks following Assumption 5. When W is a polyhedron, denoting for θ ̸= 0,
w(θ, x) = argminw∈W∠\{w(ĉθ(x))} ĉθ(x)

⊤w, and

cos (ω(θ, x)) =
ĉθ(x)

⊤(w(θ, x)− w(ĉθ(x))

∥ĉθ(x)∥ ∥w(θ, x)− w(ĉθ(x))∥
,

Assumption 5 can be rewritten as

P (∥ĉθ(x)∥ ∥w(θ, x)− w(ĉθ(x))∥ cos(ω(θ, x)) ≤ ∥θ∥ t) ≤
(

γt

BW

)α

. (17)

We do not need to focus on the term ∥w(θ, x)− w(ĉθ(x))∥, as it is both upper bounded and bounded away from zero.
Therefore, inequality (17) is equivalent to ĉθ(x) having a norm that is bounded away from zero with high probability, and
an angle ω(θ, x) that is bounded away from π

2 when θ is bounded away from 0. In other words, ĉθ(x) is likely to have a
direction that is not too close to being perpendicular to one of the faces of the polyhedron W . In other words, the probability
of this direction to be falling within one of the red cones shown in Figure 1 and 4 decays to 0 as the cones get more narrow.
When ĉθ(x) follows a continuous distribution, such a property on the direction of ĉθ(x) is reasonable.
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The key idea of the proof of Theorem 3 relies on the following sensitivity inequality resulting from Assumption 5 which
holds for every t ≥ 0 and mapping w ∈ WP :

E(x,c)∼P

(∣∣ĉθ(x)⊤w(ĉθ(x))− ĉθ(x)
⊤w(x)

∣∣) ≥ tA1 ∥θ∥E(x,c)∼P (∥w(ĉθ(x))− w(x)∥)−A2 ∥θ∥ tα,

where A1, A2 are positive constants. The left-hand side equals ℓβP (θ) for a well-chosen w ∈ WP , while the right-hand side
is directly related to ℓP (θ)− β. Optimizing over t in the right-hand side yields the desired inequality. By omitting the term
A2|θ|tα and the dependence of the right-hand side on t, it is possible to obtain a stronger bound that does not require W
to be a polyhderon. Specifically, if we assume the existence of Bs > 0 such that for every θ ∈ Rm and every mapping
w ∈ WP ,

E(x,c)∼P

(∣∣ĉθ(x)⊤w(ĉθ(x))− ĉθ(x)
⊤w(x)

∣∣) ≥ Bs ∥θ∥E(x,c)∼P (∥w(ĉθ(x))− w(x)∥) , (18)

the bound ℓP (θ) ≤ β +O
(
ℓβP (θ)

)
holds when ∥θ∥ is bounded away from 0. This bound is stronger since 1− 1

1+α < 1 for
every α > 0 and does not require W to be a polyhedron. This assumption is also reasonable when P is continuous.

A.9. Proof of Theorem 2

Proof. We proceed in two steps.

Step 1. We first prove the Lipschitz continuity of the generalization, i.e. that there exists a constant A ≥ 0 such that for
every θ, θ′ ∈ Rm, ∣∣∣ℓβPn

(θ)− ℓβP (θ)−
(
ℓβPn

(θ′)− ℓβP (θ
′)
)∣∣∣ ≤ A ∥θ − θ′∥ . (19)

For every θ ∈ Rm, using Lagrangian duality,

ℓβPn
(θ) = min

wβ
Pn

∈W
β
Pn

E(x,c)∼Pn

(
ĉθ(x)

⊤wβ
Pn

(x)
)
− min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

(20)

= min
wβ

Pn
∈WPn

max
y≥0

E(x,c)∼Pn

(
ĉθ(x)

⊤wβ
Pn

(x)
)
+ y

(
E(x,c)∼Pn

(
c(x)⊤wβ

Pn
(x)
)
− β

)
(21)

− min
wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

(22)

= max
y≥0

min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + yc(x))

⊤
wβ

Pn
(x)
)
− yβ − min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)
. (23)

In (23), we have switched the min and the max because of strong duality, since the objective function we are optimizing is
linear. For a given θ ∈ Rm, we denote y⋆(θ) to be the optimal dual variable corresponding to θ in the minimization problem
above. Let θ, θ′ ∈ Rm and D ≥ max(∥θ∥ , ∥θ′∥). We have∣∣∣ℓβPn

(θ)− ℓβP (θ)−
(
ℓβPn

(θ′)− ℓβP (θ
′)
)∣∣∣ ≤ ∣∣∣ℓβPn

(θ)− ℓβPn
(θ′)
∣∣∣+ ∣∣∣ℓβP (θ)− ℓβP (θ

′)
∣∣∣ .

We now bound the two terms above on the right side of the inequality. We have∣∣∣ℓβPn
(θ)− ℓβPn

(θ′)
∣∣∣ = ∣∣∣∣∣max

y≥0
min

wβ
Pn

∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + yc(x))

⊤
wβ

Pn
(x)
)
− yβ − min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

− max
y≥0

min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ′(x) + yc(x))

⊤
wβ

Pn
(x)
)
− yβ − min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ′(x)⊤wPn

(x)
)∣∣∣∣∣

=

∣∣∣∣∣ min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + y⋆(θ)c(x))

⊤
wβ

Pn
(x)
)
− y⋆(θ)β

− min
wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn(x)
)

− min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ′(x) + y⋆(θ′)c(x))

⊤
wβ

Pn
(x)
)

−y⋆(θ′)β − min
wPn∈WPn

E(x,c)∼Pn

(
ĉθ′(x)⊤wPn(x)

)∣∣∣∣ .
15
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In the left hand side of the inequality above, we can see that if ℓβPn
(θ) ≥ ℓβPn

(θ′), then replacing y⋆(θ′) by y⋆(θ) gives a
larger term than the one above, and when ℓβPn

(θ) ≤ ℓβPn
(θ′), replacing y⋆(θ) by y⋆(θ′) gives a larger term than the one

above as well. Let ỹ ∈ {y⋆(θ), y⋆(θ′)} such that replacing y⋆(θ) and y⋆(θ′) by ỹ makes the expression above larger. We
have, by replacing y⋆(θ) and y⋆(θ′) by ỹ in the inequality above, we get

∣∣∣ℓβPn
(θ)− ℓβPn

(θ′)
∣∣∣ ≤ ∣∣∣∣∣ min

wβ
Pn

∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + ỹc(x))

⊤
wβ

Pn
(x)
)
− min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

− min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ′(x) + ỹc(x))

⊤
wβ

Pn
(x)
)
+ min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ′(x)⊤wPn(x)

)∣∣∣∣∣
=

∣∣∣∣E(x,c)∼Pn

(
min
w∈W

(ĉθ(x) + ỹc(x))
⊤
w

)
− E(x,c)∼Pn

(
min
w∈W

ĉθ(x)
⊤w

)
− E(x,c)∼Pn

(
min
w∈W

(ĉθ′(x) + ỹc(x))
⊤
w

)
+ E(x,c)∼Pn

(
min
w∈W

ĉθ′(x)⊤w

)∣∣∣∣
= |fỹ,Pn

(θ)− fỹ,Pn
(θ′)| ,

where for every θ ∈ Rm,

fỹ,Pn(θ) = E(x,c)∼Pn

(
min
w∈W

h1(θ,w,x)︷ ︸︸ ︷
(ĉθ(x) + ỹc(x))

⊤
w

)
− E(x,c)∼Pn

(
min
w∈W

h2(θ,w,x)︷ ︸︸ ︷
ĉθ(x)

⊤w

)

W is a convex bounded set, and for all x ∈ Rk and the two functions w ∈ Rd, θ 7−→ h1(θ, w, x), θ 7−→ h2(θ, w, x)
are both differentiable with respect to θ. Moreover, ∂h1

∂θ 7−→ ∇ĉθ(x)
⊤w and ∂h2

∂θ 7−→ ∇ĉθ(x)
⊤w (where ∇ĉθ(x) is

the jacobian of θ 7−→ ĉθ(x) at θ) are both continuous with respect to w for all θ ∈ Rm and x ∈ Rk. Hence, using
Danskin’s theorem, we can say that for all x ∈ Rk, h1(θ, x) = minw∈W h1(θ, w, x) and h2(θ, x) := minw∈W h2(θ, w, x)
are both subdifferentiable, and that for all θ ∈ Rm, ∂h1(θ, x) = conv{∇ĉθ(x)

⊤w, w ∈ argminw∈W h1(θ, w, x)},
∂h2(θ, x) = conv{∇ĉθ(x)

⊤w, w ∈ argminw∈W h2(θ, w, x)}. These two sets are bounded by BWBΦ because of
Assumption 3. This means that the two functions in the equality above are both BWBΦ lipschitz, which makes fỹ,Pn

2BWBΦ lipschitz.

We can also easily prove that the inequality above is also true when we replace Pn by P . Hence, we can deduce that

∣∣∣ℓβPn
(θ)− ℓβP (θ)−

(
ℓβPn

(θ′)− ℓβP (θ
′)
)∣∣∣ ≤ ∣∣∣ℓβPn

(θ)− ℓβPn
(θ′)
∣∣∣+ ∣∣∣ℓβP (θ)− ℓβP (θ

′)
∣∣∣

≤ |fỹ,Pn
(θ)− fỹ,Pn

(θ′)|+ |fỹ,P (θ)− fỹ,P (θ
′)|

≤ 4BWBΦ ∥θ − θ′∥ ,

which yields the desired result of step 1.

Step 2. We will now prove the desired generalization bound by bounding the generalization gap locally in balls covering the
set which represents the possible values of θ⋆. Let B be a set of balls of radius γ > 0 (for the norm ∥.∥) such that

⋃
B∈B B =

B∥.∥(0, D). According to (Wainwright, 2019), it is possible to choose B such that log |B| ≤ d log
(
1 + 2D

γ

)
. For every

B ∈ B, let θB be an element of B. For a given ε > 0 we would like to bound the probability P
(∣∣∣ℓβPn

(θ)− ℓβP (θ)
∣∣∣ > ε

)
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using Hoeffding’s inequality. In order to do that, we first notice that using Lagrangian duality, we get

ℓβP (θ)− ℓβPn
(θ) = max

y≥0
min

wβ
P∈WP

E(x,c)∼P

(
(ĉθ(x) + yc(x))

⊤
wβ

P (x)
)
− yβ − min

wP∈WP

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)

−max
y≥0

min
wβ

Pn
∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + yc(x))

⊤
wβ

Pn
(x)
)
− yβ − min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
)

= min
wβ

P∈WP

E(x,c)∼P

(
(ĉθ(x) + y⋆P (θ)c(x))

⊤
wβ

P (x)
)
− y⋆P (θ)β − min

wP∈WP

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)

−

(
min

wβ
Pn

∈WPn

E(x,c)∼Pn

((
ĉθ(x) + y⋆Pn

(θ)c(x)
)⊤

wβ
Pn

(x)
)
− y⋆Pn

(θ)β

− min
wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
))

,

where y⋆P (θ) and y∗Pn
(θ) are respectively optimal dual variables in the bottom and top line above. As we have seen before,

replacing y∗Pn
(θ) by y⋆P (θ) makes the above term larger. Hence, we have

ℓβP (θ)− ℓβPn
(θ) ≤ min

wβ
P∈WP

E(x,c)∼P

(
(ĉθ(x) + y⋆P (θ)c(x))

⊤
wβ

P (x)
)
− min

wP∈WP

E(x,c)∼P

(
ĉθ(x)

⊤wP (x)
)

−

(
min

wβ
Pn

∈WPn

E(x,c)∼Pn

(
(ĉθ(x) + y⋆P (θ)c(x))

⊤
wβ

Pn
(x)
)
− min

wPn∈WPn

E(x,c)∼Pn

(
ĉθ(x)

⊤wPn
(x)
))

= E(x,c)∼P

(
min
w∈W

(ĉθ(x) + y⋆P (θ)c(x))
⊤
w − min

w∈W
ĉθ(x)

⊤w

)
︸ ︷︷ ︸

ℓ̃βP (θ)

− E(x,c)∼Pn

(
min
w∈W

(ĉθ(x) + y⋆P (θ)c(x))
⊤
w − min

w∈W
ĉθ(x)

⊤w

)
︸ ︷︷ ︸

ℓ̃βPn
(θ)

Hence, we have P
(
ℓβP (θ)− ℓβPn

(θ) > ε
)
≤ P

(
ℓ̃βP (θ)− ℓ̃βPn

(θ) > ε
)

. This enables us to apply Hoeffding’s inequality to
the term on the right given that we bound the random variable

m(x, θ) := min
w∈W

(ĉθ(x) + y⋆P (θ)c(x))
⊤
w − min

w∈W
ĉθ(x)

⊤w.

It is easy to see that using Cauchy-Schwartz inequality, we have

|m(x, θ)| ≤ (∥ĉθ(x)∥+ |y⋆P (θ)| ∥c(x)∥)BW + ∥ĉθ(x)∥BW

In order to upper bound the right-hand side, we need to upper bound y⋆P (θ). In order to do this, we prove that the Lagrange
multiplier y⋆P (θ) is bounded for any θ ∈ Rm. Indeed, we have

min
wP∈WP

E(x,c)∼P (ĉθ(x)
⊤wP (x)) ≤ min

wP∈WP

max
y≥0

E(x,c)∼P (ĉθ(x)
⊤wP (x)) + y(E(x,c)∼P (c(x)

⊤wP (x))− β) (24)

= min
wP∈WP

E(x,c)∼P (ĉθ(x)
⊤wP (x)) + y⋆P (θ)(E(x,c)∼P (c(x)

⊤wP (x))− β) (25)

≤ E(x,c)∼P (ĉθ(x)
⊤w(c(x))) + y⋆P (θ)(E(x,c)∼P (c(x)

⊤w(c(x)))− β). (26)

Inequality (24) holds because the left-hand side is the evaluation of the right-hand side at y = 0. Hence,

min
wP∈WP

E(x,c)∼P (ĉθ(x)
⊤wP (x)) ≤ E(x,c)∼P (ĉθ(x)

⊤w(c(x))) + y⋆P (θ)(E(x,c)∼P (c(x)
⊤w(c(x)))− β)

= E(x,c)∼P (ĉθ(x)
⊤w(c(x))) + y⋆P (θ)(βmin,P − β).

This yields

y⋆P (θ) ≤
E(x,c)∼P (ĉθ(x)

⊤w(c(x)))− E(x,c)∼P (ĉθ(x)
⊤w(ĉθ(x)))

β − βmin,P
≤ 2DBWBΦ

β − βmin,P
.
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Hence, we get the following upper bound for the random variables we are working with

|m(x, θ)| ≤ 2DBWBΦ +KBW
2DBWBΦ

β − βmin,P
:= U

we can apply Hoeffding’s inequality, and say that

P
(
ℓ̃βP (θ)− ℓ̃βPn

(θ) > ε
)
≤ 2e−

nε2

2U2 .

This yields

P
(
sup
B∈B

(
ℓ̃βP (θB)− ℓ̃βPn

(θB)
)
> ε

)
≤ |B| 2e−

nε2

2U2 .

By denoting δ := |B| 2e−
nε2

2U2 , we can say that with probability at least 1− δ, we have

∀B ∈ B, ℓ̃βP (θB)− ℓ̃βPn
(θB) ≤ U

√
2

√
log |B|+ log 2

δ

n
,

which gives

∀B ∈ B, ℓβP (θB)− ℓβPn
(θB) ≤ U

√
2

√
log |B|+ log 2

δ

n
≤ U

√
2

√√√√d log
(
1 + 2D

γ

)
+ log 2

δ

n
.

Now we have for every θ ∈ B∥.∥(0, D), denoting B ∈ B such that θ ∈ B,

ℓβP (θ)− ℓβPn
(θ) ≤ ℓβP (θB)− ℓβPn

(θB) +
∣∣∣ℓβPn

(θ)− ℓβP (θ)−
(
ℓβPn

(θB)− ℓβP (θB)
)∣∣∣ (27)

≤ U
√
2

√√√√d log
(
1 + 2D

γ

)
+ log 2

δ

n
+ 4BWBΦ ∥θ − θB∥ (28)

≤ U
√
2

√√√√d log
(
1 + 2D

γ

)
+ log 2

δ

n
+ 4BWBΦγ. (29)

Inequality (29) is resulting from the Lipschitz inequality (19). Taking γ = O

(√
log 1

δ

n

)
, we get

ℓβP (θ)− ℓβPn
(θ) ≤ O

(U + 4BWBΦ)

√
log 1

δ

n

 .

Since we have ℓβPn
(θ⋆) ≤ ε, we can replace in the inequality above θ by θ⋆ and get

ℓβP (θ
⋆) ≤ ℓβPn

(θ⋆) +O

(U + 4BWBΦ)

√
log 1

δ

n

 ≤ ε+O

 1

β − βmin,P

√
log 1

δ

n

 .

□

A.10. Proof of Lemma 1

Proof. Since the only difference between the right and left optimization problems in ℓβP is an additional constraint added to
the right problem, it is clear that it will yield a higher value than the right one for any θ ∈ Rm, and consequently we have
that indeed ℓβP is positive. □

18
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A.11. Proof of Proposition 1

Proof. We denote for every w ∈ W and θ ∈ Rm, f(θ;w) = −ĉθ(x)
⊤w. We want to prove that for every w ∈ W ,

θ −→ f(θ;w) is weakly convex. More precisely, we want to prove that there exists α ≥ 0 such that for every w ∈ W ,
θ 7−→ f(θ;w) + α ∥θ∥2 is convex. We have for every θ1, θ2 ∈ Rm, using assumptions 6 and 2,

∥∇f(θ1;w)−∇f(θ2;w)∥ =
∥∥∥(∇ĉθ1(x)−∇ĉθ2(x))

⊤
w
∥∥∥

≤ BW ∥∇ĉθ1(x)−∇ĉθ2(x)∥
≤ BWBL ∥θ1 − θ2∥ .

We denote for every θ ∈ Rm and w ∈ W , h(θ;w) = f(θ;w) + 2BWBL ∥θ∥2. We have for every θ1, θ2 ∈ Rm,

(∇h(θ1;w)−∇h(θ2;w))
⊤(θ1 − θ2) = (∇f(θ1;w)−∇f(θ2;w))

⊤(θ1 − θ2) + 2BWBL ∥x− y∥2

≥ −∥∇f(θ1;w)−∇f(θ2;w)∥ ∥θ1 − θ2∥+ 2BWBL ∥θ1 − θ2∥2

≥ −BWBL ∥θ1 − θ2∥2 + 2BWBL ∥θ1 − θ2∥2

= BWBL ∥θ1 − θ2∥2 ≥ 0.

Hence, for every w ∈ W , θ 7−→ h(θ;w) is convex. This implies that for any measurable mapping w : Rk −→
W , θ 7−→ E(x,c)∼Pn

(h(θ;w(x))) is convex. Consequently, θ 7−→ maxwPn∈WPn
E(x,c)∼Pn

(h(θ;w(x))) and θ 7−→
max

wPn∈W
β
Pn

E(x,c)∼Pn
(h(θ;w(x))) are both maximums of a family of convex functions, and hence are also convex

functions. Finally we have for every θ ∈ Rm,

max
wPn∈WPn

E(x,c)∼Pn
(h(θ;w(x))) = gPn(θ) + 2BL ∥θ∥2

max
wPn∈W

β
Pn

E(x,c)∼Pn
(h(θ;w(x))) = gβPn

(θ) + 2BL ∥θ∥2 .

Finally, we can write for every θ ∈ Rm,

ℓβPn
(θ) = gPn

(θ) + 2BL ∥θ∥2 −
(
gβPn

(θ) + 2BL ∥θ∥2
)

which is indeed a difference of convex functions. □

A.12. Proof of Theorem 3

Proof. Let θ ∈ Rm and t > 0. Assumption 5 gives

P(0 < ∆θ(x) ≤ ∥θ∥ t) ≤
(
γt

B

)α

.

where

∆θ(x) =

{
minw∈W∠\W⋆(ĉθ(x)) ĉθ(x)

⊤w −minw∈W∠ ĉθ(x)
⊤w if W ⋆(ĉθ(x)) ̸= W

0 else.
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We have for θ ̸= 0, denoting W∠ = {w1, . . . , wN}, N ∈ N,

∆θ(x) > ∥θ∥ t =⇒ ∀w∠ ∈ W∠ \ {w(ĉθ)}, ĉθ(x)⊤w∠ − ĉθ(x)
⊤w(ĉθ(x)) > ∥θ∥ t

=⇒ ∀w∠ ∈ W∠ \ {w(ĉθ)}, ĉθ(x)⊤w∠ − ĉθ(x)
⊤w(ĉθ(x)) > ∥θ∥ ∥w(ĉθ(x))− w∠∥

2BW
t

=⇒ ∀λ1, . . . , λn ≥ 0 s.t. λ1 + · · ·+ λn = 1,

N∑
i=1

λi

(
ĉθ(x)

⊤wi − ĉθ(x)
⊤w(ĉθ(x))

)
>

1

2BW
∥θ∥ t

N∑
i=1

λi ∥w(ĉθ(x))− wi∥

=⇒ ∀λ1, . . . , λn ≥ 0 s.t. λ1 + · · ·+ λn = 1,

ĉθ(x)
⊤

N∑
i=1

λiwi − ĉθ(x)
⊤w(ĉθ(x)) >

1

2BW
∥θ∥ t

∥∥∥∥∥w(ĉθ(x))−
N∑
i=1

λiwi

∥∥∥∥∥
=⇒ ∀w ∈ W, ĉθ(x)

⊤w − ĉθ(x)
⊤w(ĉθ(x)) >

1

2BW
∥θ∥ ∥w(ĉθ(x))− w∥ t.

Hence, we have

P
(
∀w ∈ W, ĉθ(x)

⊤w − ĉθ(x)
⊤w(ĉθ(x)) >

1

2BW
∥θ∥ ∥w(ĉθ(x))− w∥ t

)
≥ P (∆θ(x) > ∥θ∥ t) > 1−

(
γt

B

)α

(30)

We denote for w ∈ W , t ≥ 0, and θ ∈ Rm \ {0},

G(x, θ, w, t) = ĉθ(x)
⊤w − ĉθ(x)

⊤w(ĉθ(x))−
1

2BW
∥θ∥ ∥w(ĉθ(x))− w∥ t

and the event A(x, θ, t) defined by

A(x, θ, t) = {∀w ∈ W, G(x, θ, w(x), t) > 0} .

Hence, we have for every mapping w : Rk −→ w and θ ∈ Rm \ {0},

E(x,c)∼P (G(x, θ, w(x), t)) = E(x,c)∼P (G(x, θ, w(x), t)1A(x,θ,t)) + E(x,c)∼P (G(x, θ, w(x), t)1A(x,θ,t)c)

≥ E(x,c)∼P (G(x, θ, w(x), t)1A(x,θ,t)c).

Furthermore, we have for every w ∈ W

|G(x, θ, w, t)| =
∣∣∣∣ĉθ(x)⊤w − ĉθ(x)

⊤w(ĉθ(x))−
1

2BW
∥θ∥ ∥w(ĉθ(x))− w∥ t

∣∣∣∣
≤ BΦBW ∥θ∥+BΦBW ∥θ∥+ ∥θ∥ t = ∥θ∥ (2BWBΦ + t) .

Notice that (30) can be rewritten as P (A(x, θ, t)) > 1−
(
γt
B

)α
. Hence, we have

E(x,c)∼P (G(x, θ, w(x), t)) ≥ −(2BWBΦ + t) ∥θ∥P(A(x, θ, t)c)

≥ −(2BWBΦ + t) ∥θ∥
(
γt

B

)α

.

In conclusion, we have for every t ≥ 0 and every θ ∈ Rm, and mapping w : Rk −→ W ,

E(x,c)∼P

(
ĉθ(x)

⊤w(x)− ĉθ(x)
⊤w(ĉθ(x))

)
≥ 1

2BW
∥θ∥E(x,c)∼P (∥w(ĉθ(x))− w(x)∥) t− (2BWBΦ + t) ∥θ∥

(
γt

B

)α

.

the inequality above is trivially verified when θ = 0. Also, when taking w ∈ argmin
w∈W

β
P
E(x,c)∼P

(
ĉθ(x)

⊤w(x)
)
, we

get

ℓβP (θ) ≥
1

2BW
∥θ∥E(x,c)∼P (∥w(ĉθ(x))− w(x)∥) t− (2BWBΦ + t) ∥θ∥

(
γt

B

)α

≥ ∥θ∥ t
2KBW

(ℓP (θ)− β)− (2BWBΦ + t) ∥θ∥
(
γt

B

)α
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Let ε > 0. Assume that θ is bounded away from 0. We have

ℓP (θ)− β ≤ 2KBW

t

(
ℓβP (θ)

∥θ∥
+ (2BWBΦ + t)

(
γt

B

)α
)

≤ O

(
1

t

(
ℓβP (θ) + tα

))

To optimize the right hand side and ignoring the constant, we take t = ℓβP (θ)
1

1+α . This gives

ℓP (θ) ≤ β +O
(
ℓβP (θ)

1− 1
1+α

)
.

□

A.13. A more complete version of Theorem 4

Theorem 5.

1. For all θ ∈ Rm, gβPn
and gPn have a non-empty subgradient at θ, and ℓβPn

(θ) = θ⊤v(θ) for some v(θ) ∈ ∂ℓβPn
:=

∂gβPn
(θ)− ∂gβPn

(θ) := {uβ − u, (uβ , u) ∈ ∂gβPn
(θ)× ∂gPn(θ)}, where ∂gβPn

(θ) and ∂gPn(θ) are respectively the
subgradients of gβPn

and gPn at θ;

2. For all θ ∈ Rm, if v(θ) = 0 for some v(θ) ∈ ∂ℓβPn
(θ), then ℓβPn

(θ) = 0, hence θ is a minimizer.

3. rβPn
is everywhere differentiable. If λ is a stationary point of rβPn

such that ĉ
θ
β
Pn

(λ)
(x) ̸= 0 almost surely, then θ

β

Pn
(λ)

is a global minimum of ℓβPn
. In particular, under assumptions 2 and 3, we have for every θ ∈ Rm and ε ≥ 0,∥∥∥∇rβPn

∥∥∥ ≤ ε =⇒ ℓβPn
(θ) ≤ 8BWBΦε.

Proof.

1. We denote for all (θ, v) ∈ Rm × VP , ϕ(θ, v) = θ⊤v, vβ and for all (θ, vβ) ∈ Rm × VP , ϕ(θ, vβ) = θ⊤vβ , In this case,
for all θ ∈ Rm, the loss writes as

ℓβP (θ) = gP (θ)− gβP (θ) = min
vβ∈V β

P

ϕ(θ, vβ)− min
v∈VP

ϕ(θ, v).

Let Vβ
P (θ) and VP (θ) be the set of minimizers of respectively vβ 7−→ ϕ(θ, vβ) over V β

P and v 7−→ ϕ(θ, v) over VP .
Given that VP and V β

P are compact sets, and θ 7−→ ϕ(θ, v) for all v ∈ VP ∪ V β
P is differentiable, and ϕ is continuous,

we can say by Danskin’s theorem that for all θ ∈ Rm,

∂gP (θ) = conv
{
∂ϕ(θ, v)

∂θ
, v ∈ VP (θ)

}
= conv VP (θ) =

(∗)
VP (θ),

∂gβP (θ) = conv
{
∂ϕ(θ, vβ)

∂θ
, vβ ∈ Vβ

P (θ)

}
= conv Vβ

P (θ) =
(∗∗)

Vβ
P (θ).

The two inequalities (∗) and (∗∗) are due to the fact that VP (θ) and Vβ
P (θ) are convex sets. Furthermore, we have for

all θ ∈ Rm,

ℓβP (θ) = min
vβ∈V β

P

ϕ(θ, vβ)− min
v∈VP

ϕ(θ, v) = θ⊤v⋆β − θ⊤v⋆ = θ⊤
(
v⋆β − v⋆

)︸ ︷︷ ︸
:=v(θ)

,

where (v⋆β , v
⋆) ∈ Vβ

P (θ)× VP (θ). All of the above clearly yields

v(θ) ∈ Vβ
P (θ)− VP (θ) = ∂gβP (θ)− ∂gP (θ),

which is the result we were seeking to prove.
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2. From the above, it is clear that for a given θ ∈ Rm if v(θ) = 0, then ℓβP (θ) = 0. Furthermore, using the very first

definition of ℓβP , since W
β

P ⊂ WP , we have for all θ ∈ Rm,

ℓβP (θ) = min
wP∈W

β
P

E(c,x)∼P

(
(ĉθ(x)

⊤wP (x))
)
− min

wP∈WP

E(c,x)∼P

(
ĉθ(x)

⊤wP (x)
)
≥ 0.

In conclusion, 0 is a lower bound of ℓβP , and if for a given θ, v(θ) = 0, then ℓβP (θ) = 0, i.e. θ is a minimizer of ℓβP .

3. rβP is the difference of the Moreau envelope of two convex functions, hence it is the difference between two differentiable
convex functions. this yields that rβP is differentiable. Furthermore, if λ is a stationary point of rβP then using proposition
1 from (Sun and Sun, 2021), θβP (λ) is indeed a stationary point of ℓβP . Furthermore, we have for every ε ≥ 0, We

consider λ ∈ Rm an ε-stationary point of rβPn
, i.e.

∥∥∥∇rβPn
(λ)
∥∥∥ ≤ ε. Using Danskin’s theorem, we get

∇rβPn
(λ) = ∇MPn(λ)−∇M

β

Pn
(λ)

= λ− θPn(λ)− (λ− θ
β

Pn
(λ))

= θ
β

Pn
(λ)− θPn

(λ),

Where θ
β

Pn
(λ) = argminθ∈Rm gβPn

(θ) + 1
2 ∥λ− θ∥2 and θPn(λ) = argminθ∈Rm gPn(θ) + 1

2 ∥λ− θ∥2. By
looking at the proof of Lemma 2, we can easily see that we also have θPn

(λ) = λ + vPn
(θPn

(λ)) where
vPn(θPn(λ)) ∈ argminv∈VPn

θPn(λ)
⊤v = ∂gPn(θPn(λ)) and θ

β

Pn
(λ) = λ + vβPn

(θ
β

Pn
(λ)) where vβPn

(θ
β

Pn
(λ)) ∈

argmin
v∈V

β
Pn

θ
β

Pn
(λ)⊤v = ∂gβPn

(θ
β

Pn
(λ)). Let vPn

(θ
β

Pn
(λ)) ∈ argminv∈VPn

θ
β

Pn
(λ)⊤v = ∂gPn

(θ
β

Pn
(λ)). We have

ℓβPn
(θ

β

Pn
(λ)) = θ

β

Pn
(λ)⊤vβPn

(θ
β

Pn
(λ))− θ

β

Pn
(λ)vPn

(θ
β

Pn
(λ)) (31)

≤
∣∣∣θβPn

(λ)⊤vβPn
(θ

β

Pn
(λ))− θ

β

Pn
(λ)⊤vPn

(θPn
(λ))

∣∣∣ (32)

+
∣∣∣θPn

(λ)⊤vPn
(θPn

(λ))− θ
β

Pn
(λ)⊤vPn

(θ
β

Pn
(λ))

∣∣∣ (33)

+
∣∣∣θPn

(λ)⊤vPn
(θPn

(λ))− θ
β

Pn
(λ)⊤vPn

(θPn
(λ))

∣∣∣ (34)

≤
∥∥∥θβPn

(λ)
∥∥∥ ∥∥∥vβPn

(θ
β

Pn
(λ))− vPn

(θPn
(λ))

∥∥∥+ ∣∣∣κ(θβPn
(λ))− κ(θPn

(λ))
∣∣∣ (35)

+ ∥vPn
(θPn

(λ))∥
∥∥∥θPn

(λ)− θ
β

Pn
(λ)
∥∥∥ (36)

≤ (2BWBΦ + 5BWBΦ)ε+
∣∣∣κ(θβPn

(λ))− κ(θPn
(λ))

∣∣∣ (37)

≤ (3BWBΦ + 5BWBΦ)ε = 8BWBΦε (38)

Here, κ is defined for any θ ∈ Rm as κ(θ) = minv∈VPn
θ⊤v. The last equality 38 is due to the fact that the subgradient

of κ at some θ ∈ Rm is in VPn (which can be proven thanks to Danskin’s theorem) and is hence bounded by BWBΦ.
We can see that inequality 38 is indeed the inequality we were seeking to obtain. Taking ε = 0 gives that stationarity
for rβPn

implies global optimality for ℓβPn
.

□

A.14. Key lemma to prove Proposition 2

Lemma 2. For every λ ∈ Rm and β ≥ β⋆
H,P , we denote V 1

Pn
= VPn

and V 2
Pn

= V
β

Pn
. We have for i ∈ {1, 2},

θiPn
(λ) = λ+ vi with vi = arg min

v∈V i
Pn

1

2
∥λ+ v∥2 and M i

Pn
(λ) = 1

2 ∥λ∥
2 − min

v∈V i
Pn

1

2
∥λ+ v∥2.

Proof. The main idea of the proof is to switch min and max in the definitions of Mβ
P and M

β

P .
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1. We have for all λ ∈ Rm,

MP (λ) = min
θ∈Rm

gβP (θ) +
1

2
∥λ− θ∥2 (39)

= min
θ∈Rm

(
− min

wP∈WP

E(ĉθ(x)⊤wP (x))

)
+

1

2
∥λ− θ∥2 (40)

= min
θ∈Rm

max
wP∈WP

−E(ĉθ(x)⊤wP (x)) +
1

2
∥λ− θ∥2 (41)

= min
θ∈Rm

max
wP∈WP

−θ⊤ E(Φ(x)⊤wP (x))︸ ︷︷ ︸
v

+
1

2
∥λ− θ∥2 (42)

= min
θ∈Rm

max
v∈VP

−θ⊤v +
1

2
∥λ− θ∥2 (43)

= max
v∈VP

min
θ∈Rm

−θ⊤v +
1

2
∥λ− θ∥2 (44)

The equality between 44 and 43 holds because of Sion’s minimax theorem: since Rm and VP are convex sets,
v 7−→ −θ⊤v is upper semi-continuous and concave for any θ ∈ Rm, and θ 7−→ −θ⊤v + 1

2 ∥λ− θ∥2 is lower
semicontinuous and convex for any v ∈ VP , we can switch min and max. In 44, the minimum is reached when the
gradient with respect to θ is zero, i.e. −v + θ − λ = 0, which gives θ = v + λ. In this case, we get

MP (λ) = max
v∈VP

−(v + λ)⊤v +
1

2
∥v∥2

= max
v∈VP

−λ⊤v − 1

2
∥v∥2

=
1

2
∥λ∥2 + max

v∈VP

−1

2
∥λ+ v∥2

=
1

2
∥λ∥2 − min

v∈VP

1

2
∥λ+ v∥2 .

The calculations above also give us immediately that θP (λ) = λ+ v where v = argminv∈VP

1
2 ∥λ+ v∥2.

2. The proof of the second property is almost identical to the previous one. It suffices to replace VP by V
β

P and WP by
W

β

P .

□

A.15. Proof of Proposition 2

This proposition immediately follows from Lemma 2.

A.16. More details on avoiding θ = 0

Theorem 6. We define FVPn
(λ) := argminλ′∈−VPn

∥λ− λ′∥ and F
V

β
Pn

(λ) := argmin
λ′∈−V

β
Pn

∥λ− λ′∥ to be respec-

tively the projection of λ on −VPn
and on −V

β

Pn
. Suppose that λ is an ε-solution of fβ

Pn
, i.e.

∥∥∥∇fβ
Pn

(λ)
∥∥∥ ≤ ε for some ε > 0,

and λ /∈ V β
Pn

. We have
∥∥∥∇rβPn

∥∥∥ ≤ 27B2
WB2

Φε. Furthermore, if d(λ,−VPn
) ≤ BWBΦ, letting λ̃ = λ + r

λ−FVPn
(λ)

∥λ−FVPn
(λ)∥

with r ∈ [3BWBΦ, 8BWBΦ] and ε′ = 27B2
WB2

Φε, we have

• The value of rβPn
(λ̃) is dominated by ε. In particular, we have rβPn

(λ̃) ≤ 11BWBΦε
′ and

∥∥∥∇rβPn
(λ̃)
∥∥∥ ≤

√
11BWBΦε′.

• The norm of the resulting candidate solution for ℓβPn
is bounded from above and below. In particular, BWBΦ ≤

∥θ̄βPn
(λ̃)∥ ≤ 11BWBΦ.
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Figure 5 summarizes the construction of λ̃.

The theorem above provides us with an algorithm to optimize ℓβPn
:

1. Run gradient descent on rβPn
.

2. If we obtain a solution reasonably far from VPn
, we simply return that iterate as an output. Else, we run gradient

descent on fβ
Pn

.

3. If the gradient descent iterates do not converge to a common boundary to −VPn
and −V

β

Pn
, we return the final iterate

as an output. Else, we use the procedure in Theorem 6 to obtain a near stationary point which is far from the boundary,
and return it as an output.

Proof. We will sequentially prove the two points. We assume that λ ∈ Rm is a stationary point of fβ
Pn

. In this case, we have

0 = ∇fβ
Pn

(λ) =
λ− F

V
β
Pn

(λ)∥∥∥λ− F
V

β
Pn

(λ)
∥∥∥2 −

λ− FVPn
(λ)∥∥λ− FVPn
(λ)
∥∥2 .

This yields

λ− F
V

β
Pn

(λ)∥∥∥λ− F
V

β
Pn

(λ)
∥∥∥2 =

λ− FVPn
(λ)∥∥λ− FVPn
(λ)
∥∥2 .

Taking the norm in both sides, we get
∥∥∥λ− F

V
β
Pn

(λ)
∥∥∥ =

∥∥λ− FVPn
(λ)
∥∥, and finally, replugging this in the equality above,

we directly get F
V

β
Pn

(λ) = FVPn
(λ), i.e. ∇rβPn

(λ) = 0. Let us now prove the second result. We denote Dβ
n = λ−F

V
β
Pn

(λ)

and Dn = λ− FVPn
(λ). We assume now that

∥∥∥fβ
Pn

(λ)
∥∥∥ ≤ ε. This inequality gives us two inequalities∣∣∣∣∣∣ 1

∥Dn∥
− 1∥∥∥Dβ

n

∥∥∥
∣∣∣∣∣∣ ≤ ε and

∥∥∥∥∥∥∥
Dn

∥Dn∥2
− Dβ

n∥∥∥Dβ
n

∥∥∥2
∥∥∥∥∥∥∥ ≤ ε.

Hence, we have ∥∥∥∇rβPn

∥∥∥ =
∥∥∥F

V
β
Pn

(λ)− FVPn
(λ)
∥∥∥

=
∥∥Dβ

n −Dn

∥∥
= ∥Dn∥2

∥∥∥∥∥ Dn

∥Dn∥2
− Dβ

n

∥Dn∥2

∥∥∥∥∥
≤ ∥Dn∥2


∥∥∥∥∥∥∥

Dn

∥Dn∥2
− Dβ

n∥∥∥Dβ
n

∥∥∥2
∥∥∥∥∥∥∥+

∥∥Dβ
n

∥∥
∣∣∣∣∣∣∣

1

∥Dn∥2
− 1∥∥∥Dβ

n

∥∥∥2
∣∣∣∣∣∣∣


≤ 9B2
WB2

Φε+ 9B2
WB2

Φ

1 +
∥Dn∥∥∥∥Dβ

n

∥∥∥
∣∣∣∣∣∣ 1

∥Dn∥
− 1∥∥∥Dβ

n

∥∥∥
∣∣∣∣∣∣

≤ 27B2
WB2

Φε.

Let λ ∈ Rm such that
∥∥∥∇rβPn

(λ)
∥∥∥ ≤ ε, i.e. ∥∥∥F

V
β
Pn

(λ)− FVPn
(λ)
∥∥∥ ≤ ε. (45)
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We have ∥∥∥λ̃− F
V

β
Pn

(λ̃)
∥∥∥ ≤

∥∥∥λ̃− F
V

β
Pn

(λ)
∥∥∥ (46)

≤
∥∥∥λ̃− FVPn

(λ)
∥∥∥+ ∥∥∥FVPn

(λ)− F
V

β
Pn

(λ)
∥∥∥ (47)

≤
∥∥∥λ̃− FVPn

(λ̃)
∥∥∥+ ε. (48)

The last inequality is due to inequality 45 and FVPn
(λ̃) = F

V
β
Pn

(λ). We finish by proving this last equality. We have for
every v ∈ −VPn

, ∥∥∥λ̃− v
∥∥∥2 =

∥∥∥∥λ+ r
λ− FVPn

(λ)

∥λ− FVPn
(λ)∥

− v

∥∥∥∥2 (49)

= ∥λ− v∥2 + r2 + 2r

〈
λ− v,

λ− FVPn
(λ)

∥λ− FVPn
(λ)∥

〉
(50)

≥ ∥λ− v∥2 + r2. (51)

Notice that when the left-hand side in 51 is minimized (i.e. v = FVPn
(λ), the right-hand side takes the same value. Hence,

v = FVPn
(λ) is also a minimizer of the left-hand side, i.e. FVPn

(λ̃) = F
V

β
Pn

(λ). Finally, inequality 48 yields∥∥∥λ̃− F
V

β
Pn

(λ̃)
∥∥∥− ∥∥∥λ̃− FVPn

(λ̃)
∥∥∥ ≤ ε,

Which gives

rβPn
(λ̃) =

1

2

∥∥∥λ̃− F
V

β
Pn

(λ̃)
∥∥∥2 − 1

2

∥∥∥λ̃− FVPn
(λ̃)
∥∥∥2

=
1

2

(∥∥∥λ̃− F
V

β
Pn

(λ̃)
∥∥∥− ∥∥∥λ̃− FVPn

(λ̃)
∥∥∥)(∥∥∥λ̃− F

V
β
Pn

(λ̃)
∥∥∥+ ∥∥∥λ̃− FVPn

(λ̃)
∥∥∥)

≤ 1

2

(∥∥∥λ̃− F
V

β
Pn

(λ̃)
∥∥∥+ ∥∥∥λ̃− FVPn

(λ̃)
∥∥∥) ε

≤ 1

2
(6BWBΦ + 2r)ε ≤ 11BWBΦε.

Using this, we also prove the bound on the gradient of rβPn
. Using the properties of the projection FVPn

(λ̃), we have∥∥∥∇rβPn
(λ̃)
∥∥∥ =

√∥∥∥F
V

β
Pn

(λ̃)− FVPn
(λ̃)
∥∥∥2

=

√∥∥∥F
V

β
Pn

(λ̃)− λ̃
∥∥∥2 − ∥∥∥FVPn

(λ̃)− λ̃
∥∥∥2 − 2

〈
F
V

β
Pn

(λ̃)− FVPn
(λ̃), FVPn

(λ̃)− λ̃
〉

︸ ︷︷ ︸
≥0≤

√
rβPn

(λ̃) ≤
√
11BWBΦε.

We finish by proving the bound on θ
β

Pn
(λ̃). Using Lemma 2, we have θ

β

Pn
(λ̃) = λ̃+ F

V
β
Pn

(λ̃), hence,

BWBΦ ≤
∥∥∥θβPn

(λ̃)
∥∥∥ ≤ 11BWBΦ.

□

A.17. Proof of Proposition 3

Proof. Let {λi} be the sequence of iterates generated by applying gradient descent to fβ
Pn

. Suppose a subsequence

{λit} of this sequence converges to a limit point λ⋆. If λ⋆ is not on the boundary of −VPn or −V
β

Pn
, then by (Nocedal

and Wright, 1999), λ⋆ is a stationary point of fβ
Pn

. We now show that if the limit point λ⋆ lies on the boundary of

−VPn
, then it must also lie on the boundary of −V

β

Pn
. Indeed, on the one hand, the objective function fβ

Pn
(λit) is

non-increasing, so fβ
Pn

(λit) ≤ fβ
Pn

(λ0) for all t. On the other hand, − log(d(λit ,−VPn
)) → ∞, which implies that

− log(d(λit ,−V
β

Pn
)) → ∞. Therefore, d(λ⋆,−V

β

Pn
) → 0, yielding the desired result. □
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A.18. Experimental setting

We set (d, j) = (20, 5) and W to be a polyhedron and written as W = {w ∈ Rd, Aw = b, 10 ≥ w ≥ 0} where A ∈ Rj×d

(j ≤ d) and b ∈ Rj . W is closed and bounded, so Assumption 2 holds. In every experiment, we sample x ∼ N (0, I) while
all of its coordinates are conditioned to be between 0 and 10. and the coefficients of A from a standard normal Gaussian
distribution, and b to be equal to A |w|, where w has standard normal random coefficients and |w| is the vector whose
coordinates are equal to the absolute value of the coordinates of w.

To create a framework where we can enforce misspecification and progressively analyze how the performance of different
methods varies with the level of misspecification γdec(H), we need to define a model that allows for easy adjustment of the
misspecification level while still yielding meaningful results. In order to do so, we define for x ∈ Rk, c(x) to be a linear
combination of polynomial functions of x. This could be written in a compact way as c(x) = Mϕ(x) where M is a real
valued matrix, and ϕ(x) is a vector whose coordinates are polynomial in x, defined by

∀x ∈ Rk, ϕ(x) =
(
x1 . . . xk x1x2 . . . x1 . . . xk

)⊤
=

(
k∏

i=1

xyi

i

)
y∈{0,1}5,y ̸=0

.

Furthermore, we define ĉθ(x) for x ∈ Rk and θ ∈ Rm as ĉθ(x) = M ′(θ)ϕ̃(x) where ϕ̃(x) is equal to ϕ(x) truncated to its
5 first coordinates, and M ′(θ) is a matrix representation of θ. To increase the level of misspecification, increase the size of x
and consequently the gap between ϕ(x) and ϕ̃(x) in terms of number of features. To show that this experimental setting
indeed corresponds to the theoretical setting studied in this paper, we can see that both the elements of the hypothesis set
and the ground truth can be written for all x ∈ Rk as ĉθ(x) = Φ̃(x)θ and c(x) = Φ(x)θ⋆, θ⋆ ∈ Rm, where

Φ̃(x) =

ϕ̃(x)⊤ 0
. . .

0 ϕ̃(x)⊤

 ∈ R20×100, Φ(x) =

ϕ(x)⊤ 0
. . .

0 ϕ(x)⊤

 ∈ R20×20s.

Furthermore, for any matrix M , we denote Lr(M) the r−th row of M . In this case, we have θ⋆ =(
L1(M) . . . L20(M)

)⊤ ∈ R20s and θ =
(
L1(M

′(θ)) . . . L20(M
′(θ))

)⊤ ∈ R100.

B. Additional Figures

Figure 4. Less likely directions for ĉθ(x): ĉθ(x) is less likely to have a direction included in the red cones, which represent nearly
perpendicular directions to one of the faces of the polyhedron (see Assumption 5).

C. Notation table

Symbol Meaning
x ∈ Rk Context or input features
c ∈ Rd True cost vector
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W ⊂ Rd Feasible set of decisions (convex and bounded)
w∗(c) Optimal decision under true cost: argminw∈W c⊤w
Φ(x) Feature transformation (e.g., polynomial basis) applied to context x
θ ∈ Rp Parameters of the predictive model
ĉθ(x) Predicted cost vector, typically Φ(x)⊤θ
w(ĉ) Decision minimizing ĉ⊤w over W
H Hypothesis class for cost prediction
Pn Empirical distribution over n i.i.d. samples
ℓP (θ) True decision loss under distribution P

ℓβP (θ) CILO surrogate loss with cost threshold β

gPn
, gβPn

Piecewise linear surrogate components of CILO loss
rβ,λPn

Smoothed CILO (s-CILO) via Moreau envelope
fβ
Pn

Log-barrier surrogate (log-CILO)
VPn

Set of expected feature-weighted decisions under Pn

V̄ β
Pn

Subset of VPn
with expected cost ≤ β

β Threshold defining near-optimal decision region
λ Smoothing parameter used in the Moreau envelope

D. Plot with relative regret

Figure 5. Experiment with relative regret results
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