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ABSTRACT

By representing knowledge in a primary triple associated with additional attribute-
value qualifiers, hyper-relational knowledge graph (HKG) that generalizes triple-
based knowledge graph (KG) has been attracting research attention recently. Com-
pared with KG, HKG is enriched with the semantic difference between the primary
triple and additional qualifiers as well as the structural connection between entities
in hyper-relational graph structure. However, to model HKG, existing studies
mainly focus on either semantic information or structural information therein, fail
to capture both simultaneously. To tackle this issue, in this paper, we propose an
equivalent transformation for HKG modeling, referred to as TransEQ. Specifically,
the equivalent transformation transforms a HKG to a KG, which considers both
semantic and structural characteristics. Then a generalized encoder-decoder frame-
work is developed to bridge the modeling research between KG and HKG. In the
encoder part, KG-based graph neural networks are leveraged for structural model-
ing; while in the decoder part, various HKG-based scoring functions are exploited
for semantic modeling. Especially, we design the sharing embedding mechanism
in the encoder-decoder framework with semantic relatedness captured. We further
theoretically prove that TransEQ preserves complete information in the equivalent
transformation, and also achieves full expressivity. Finally, extensive experiments
on three benchmarks demonstrate the superior performance of TransEQ in terms of
both effectiveness and efficiency. On the largest benchmark WikiPeople, TransEQ
significantly improves the state-of-the-art models by 15% on MRR.

1 INTRODUCTION

In the past decade, knowledge graph (KG) has been widely studied in artificial intelligence area (Ji
et al., 2021). By representing facts into a triple of (s, r, o) with subject entity s, object entity o and
relation r, KG stores real-world knowledge in a graph structure. However, recent studies find that
KG with simple triples provides incomplete information (Galkin et al., 2020; Rosso et al., 2020).
For example, both (Alan Turing, educated at, Cambridge) and (Alan Turing, educated at,
Princeton) are true facts in KG, which might be ambiguous when the degree matters.

Hence, the hyper-relational KG (HKG) (Galkin et al., 2020; Rosso et al., 2020; Yu & Yang, 2021),
a.k.a., knowledge hypergraph (Fatemi et al., 2020; 2021) and n-ary knowledge base (Guan et al.,
2019; Liu et al., 2021), is proposed for more generalized knowledge representation. Formally, in
HKG, a primary triple is augmented with additional attribute-value qualifiers for rich semantics,
called the hyper-relational fact (Guan et al., 2020). Note that the triple without qualifiers is a special
case of hyper-relational facts. Taking Figure 1 as an example, both (Alan Turing, educated at,
Cambridge, (degree, Bachelor)) and (Alan Turing, educated at, Princeton, (degree, PhD))
are hyper-relational facts, where (degree, Bachelor) and (degree, PhD) are qualifiers with the
degree attribute considered. Such hyper-relational facts are ubiquitous that over 1/3 of the entities in
Freebase (Bollacker et al., 2008) involve in them (Wen et al., 2016).

To learn from HKG and further benefit the downstream tasks, HKG modeling learns low-dimensional
vector representations (embeddings) of entities and relations (Wang et al., 2021), which designs a
scoring function (SF) based on the embeddings to measure the hyper-relational fact plausibility such
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that valid ones obtain higher scores than invalid ones. Especially, existing studies mainly consider
two aspects of semantic information and structural information in HKG for modeling.

Figure 1: An example of a HKG in-
cluding primary triples and attribute-
value qualifiers. The entities/relation
in the triple are called as primary en-
tities/relation, and attributes/values in
qualifiers are called as qualifier enti-
ties/relations.

The semantic information emphasizes the interaction
between entities and relations in a hyper-relational fact.
Especially, there is a distinction, a.k.a., semantic differ-
ence (Galkin et al., 2020) between the primary triple and
attribute-value qualifiers, e.g., the primary triple (Alan
Turing, educated at, Cambridge) serves as the fun-
damental part and preserves the essential knowledge
of Alan Turing’s education experience at Cambridge,
while the attribute-value qualifier (degree, Bachelor)
serves as the auxiliary part and enriches the primary
triple. To model the semantic information, early studies
treat the primary relation and qualifier relations as an
n-ary (n≥2) composed relation (Abboud et al., 2020)
or multiple semantically equal attributes (Guan et al.,
2019; Liu et al., 2021), largely ignoring the semantic
difference. Various SFs are further developed in recent
studies (Galkin et al., 2020; Rosso et al., 2020; Yu &
Yang, 2021) with semantic difference considered.

On the other hand, the structural information focuses on the topological connection between entities
in the hyper-relational graph structure, like an entity’s neighboring entities under various hyper-
relational links, e.g., in Figure 1 Bachelor and Michelle Obama are neighbors of Alan Turing via
degree and alumni, respectively. Only few studies (Galkin et al., 2020; Yadati, 2020) extend
hypergraph neural network (HGNN) based modules to capture the structural information in HKG,
however, empirical results in (Yu & Yang, 2021) demonstrate that removing such modules will not
bring performance degradation, i.e., the direct extensions are quite immature for effective structural
information capture. Hence, to the best of our knowledge, none of existing studies achieve HKG
modeling with both semantic information and structural information completely captured, and it is
still an open problem to be addressed.

Targeting on this open problem, we look back to KG modeling with an interesting observation
that, recent studies (Vashishth et al., 2019; Yu et al., 2021) leverage an encoder-decoder framework
for KG modeling, i.e., a powerful graph neural network (GNN) based encoder and an expressive
SF-based decoder on triples are leveraged for structural information and semantic information,
respectively. Inspired by this, in this paper, we propose an EQuivalent Transformation for HKG
modeling, termed as TransEQ. Specifically, TransEQ designs an equivalent transformation on the
hyper-relational graph structure, transforming a HKG to a KG with semantic difference considered,
based on which a generalized encoder-decoder framework is further developed to capture information.
For structural information, TransEQ introduces a GNN-based encoder on transformed KG with
transformation characteristics combined. As for semantic information, to measure the plausibility
of a hyper-relational fact, TransEQ exploits various SFs in existing HKG modeling studies as the
decoder. The sharing embedding mechanism is further designed to capture the semantic relatedness
between hyper-relational facts. In this way, with the equivalent transformation, the encoder-decoder
framework in TransEQ captures not only structural information but also semantic information, which
is the very innovation of this work, just like killing two birds with one stone. Besides, the flexible
choice of SF in decoder ensures the full expressivity of TransEQ, representing all types of relations.
We further theoretically prove that the proposed transformation is equivalent between a HKG and a
KG without information loss. Extensive experiments show that TransEQ achieves the state-of-the-art
results, obtaining a 15% relative increase of MRR on the largest benchmark WikiPeople.

2 RELATED WORK

As described before, related studies mainly exploit two aspects of semantic information and structural
information for HKG modeling, considering HKG-based SF design and hyper-relational graph
structure, respectively.
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Semantic Modeling Studies. Given a hyper-relational fact (Alan Turing, educated at, Cam-
bridge, (degree, Bachelor)), some studies treat all involved relations as an n-ary composed relation
educated at_degree (here n is 3) with the fact (educated at_degree, Alan Turing, Cam-
bridge, Bachelor). For example, both m-TransH (Wen et al., 2016) and RAE (Zhang et al., 2018)
extend the SF of TransH (Wang et al., 2014) to the hyper-relational case. BoxE (Abboud et al., 2020)
combines translational idea with box embeddings. Moreover, GETD (Liu et al., 2020) and S2S
(Di et al., 2021) are both generalized from TuckER (Balazevic et al., 2019), where GETD further
introduces tensor ring decomposition while S2S applies neural architecture search techniques. The
bilinear product is also extended to multilinear product with symmetric embeddings in m-DistMult
(Yang et al., 2015), convolutional filters in HypE (Fatemi et al., 2020), and relational algebra op-
erations in ReAlE (Fatemi et al., 2021). These studies are directly extended from KG modeling
methods without multiple relational semantics considered. On the other hand, NaLP (Guan et al.,
2019) and RAM (Liu et al., 2021) decompose all involved relations into semantically equal attributes,
and treat the example fact into a collection of attribute-value qualifiers, (educated at_head,
Alan Turing, educated at_tail, Cambridge, degree, Bachelor). Nevertheless, models above
largely ignore the semantic difference in hyper-relational facts. To capture such semantic difference
between the primary triple and attribute-value qualifiers, NeuInfer (Guan et al., 2020) and HINGE
(Rosso et al., 2020) design two sub-modules for HKG modeling, i.e., one for triple modeling and the
other one for qualifier modeling, where NeuInfer mainly adopts fully connected layers while HINGE
resorts to convolutional neural networks. Besides, recent studies of GRAN (Wang et al., 2021) and
Hy-Transformer (Yu & Yang, 2021) leverage transformer and embedding processing techniques for
HKG modeling. However, these neural network based models rely on tremendous parameters for
expressivity and are prone to overfitting.

Structural Modeling Studies. G-MPNN (Yadati, 2020) ignores attribute information and treats
HKG as a multi-relational ordered hypergraph with n-ary composed relations, and further proposes
multi-relational HGNN for modeling. The rough design makes G-MPNN less competitive in practice.
StarE (Galkin et al., 2020) firstly introduces GNN for HKG modeling with a relation-specific message
passing mechanism developed. However, StarE aggregates hyper-relational fact messages for a
specific entity only when the entity involves with the primary triple, but ignores the ones when the
entity is in attribute-value qualifiers, i.e., StarE only captures connections among primary triples (Yu
& Yang, 2021). Thus, capturing structural information for HKG modeling is still immature and needs
further investigation.

Overall, existing HKG modeling studies are affected by various limitations from semantics and
structure, while our proposed TransEQ elegantly models both aspects with full expressivity achieved,
which is a quite important property for learning capacity in both KG modeling (Balazevic et al.,
2019; Sun et al., 2019) and HKG modeling (Abboud et al., 2020; Liu et al., 2020). Besides, the
inductive link prediction and logical query for HKG are investigated in recent studies (Ali et al., 2021;
Alivanistos et al., 2022), which are beyond the scope of this paper.

3 METHOD

Here we first introduce the mathematical definition of HKG as well as the investigated problem.

Definition 1 Hyper-relational Knowledge Graph. A HKG is defined as GH = (E ,R,FH), where E
and R are the sets of entities and relations, respectively. A hyper-relational fact can be expressed
as (s, r, o, {(ai, vi)}ni=1), where (s, r, o) is the primary triple and {(ai, vi) |ai∈R, vi∈E}ni=1 is the
attribute-value qualifier set. Moreover, FH⊆E ×R× E × P denotes the fact set and P denotes all
possible combinations of attribute-value qualifiers.

Note that the number of qualifiers can be zero for a hyper-relational fact, i.e., HKG reduces to KG
with an empty set P . In practice, attributes and values are also described by relations and entities,
respectively (Galkin et al., 2020; Yu & Yang, 2021). Then we state our research problem.

Problem 1 HKG Modeling Problem. Given a HKG GH = (E ,R,FH), the HKG modeling
problem aims to learn representations for entities and relations in E andR, respectively.

Especially, the HKG is always incomplete, which specifies the research problem as HKG completion
problem in practice, i.e., given an incomplete hyper-relational fact with an entity missing at triple or
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qualifiers, inferring the missing entity from E with observable facts FH . Moreover, HKG involves
semantic information of primary triple and attribute-value qualifiers as well as structural information
of hyper-relational graph structure, which should be elegantly considered in modeling.

As described before, the encoder-decoder framework has shown superior performance to capture
both structural information and semantic information in KG (Yu et al., 2021; Vashishth et al., 2019),
and thus a natural idea is to explore it for HKG modeling. Besides, standard RDF reification in
semantic web (Frey et al., 2019) as well as compound value type in Freebase (Bollacker et al., 2008)
are investigated to describe triple with metadata by transformation. These works provide a motivation
to our work transforming a HKG to a KG with the encoder-decoder framework combined. Hence, we
build TransEQ with such points in mind, which is presented in the following.

3.1 THE TRANSEQ MODEL

We now come to the details of TransEQ, the architecture of which is illustrated in Figure 2. TransEQ
first introduces the equivalent transformation with a HKG transformed to a KG, and then develops a
generalized encoder-decoder framework, where a GNN-based encoder and a SF-based decoder are
leveraged for modeling structural information and semantic information, respectively.

Figure 2: The architecture of our proposed HKG modeling model TransEQ.

3.1.1 ONE STONE: EQUIVALENT TRANSFORMATION

To identify the importance of transformation between HKG and KG, here we first introduce the
definition of equivalent transformation.

Definition 2 Equivalent Transformation. A transformation between HKG and KG is equivalent, if
the transformation preserves the complete information, i.e., given any HKG and its transformed KG
via the transformation, they can be retrieved from each other.

Moreover, a hyper-relational fact (s, r, o, {(ai, vi)}ni=1) can be viewed as a hyper-relational edge,
which connects entities of s, o, {vi}ni=1 with heterogeneous semantics of primary relation r and
attributes {ai}ni=1, as shown in Figure 3(a) with the k-th fact in a HKG. Thus, motivated by star
expansion, we propose an equivalent transformation for hyper-relational edges such that entities and
relations in the original HKG are reorganized to the transformed KG with both structural information
and semantic information preserved.

Specifically, the equivalent transformation in Figure 3(b) introduces a mediator entity bk to identify
the fact, and the primary relation r is extended with two relations rsub and robj for the relational
edges between bk and subject entity s and object entity o, respectively. The attribute information in
original hyper-relational fact is preserved by the attributed-based edges between bk and value entities.
Moreover, a relational edge r connects entities s and o for semantic difference, i.e., such operation
leads to a three-node clique motif (Milo et al., 2002), reflecting the primary role of the triple.

For better understanding, we present the execution process of the equivalent transformation in
Algorithm 1. Especially, in lines 7-8, TransEQ utilizes different transformation operations to model
the semantic difference. Besides, the original structure of the triple fact, i.e., hyper-relational fact
without qualifiers, is kept to avoid redundancy. As proved later, such transformation brings no
information loss, and provides a good basis for the following encoder-decoder framework.
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Figure 3: The illustration of
the equivalent transformation.

Algorithm 1: The algorithm for equivalent transformation.

Input: HKG GH = (E ,R,FH);
Init: Transformed KG G = (E ,R,F) with F ← ∅;

1 Obtain the set of primary relations for facts in FH ,Rpri;
2 for r ∈ Rpri do
3 Define new relations rs, ro, andR ← R∪ {rsub, robj};
4 end
5 for k-th fact (s, r, o, {(ai, vi)}ni=1) ∈ FH do
6 Define mediator entity bk, and E ← E ∪ {bk};
7 F←F ∪ {(s, r, o), (bk, rsub, s), (bk, r

obj, o)};
8 F ← F ∪ {(bk, ai, vi)}ni=1;

// semantic difference modeling in
lines 7-8.

9 end
Output: Transformed KG G = (E ,R,F).

3.1.2 TWO BIRDS: ENCODER-DECODER FRAMEWORK

To model both structural information and semantic information in the original HKG, TransEQ further
introduces a generalized encoder-decoder framework on the transformed KG.

GNN-based Encoder. The powerful GNN is developed to capture structural information, where
the semantic relatedness in HKG and the mediator entities in equivalent transformation are also
incorporated therein. Especially, the semantic relatedness explicitly lies in the shared primary relations
across hyper-relational facts. For example, the hyper-relational facts of (Alan Turing, educated
at, Cambridge, (degree, Bachelor)) and (Alan Turing, educated at, Princeton, (degree,
PhD)) share the same primary relation, which indicates a strong semantic relatedness. On the other
hand, in our proposed equivalent transformation, each mediator entity plays an important role of
relaying connections among the entities in an original hyper-relational fact, and thus mediator entities
aggregate the semantics of corresponding facts.

Hence, we introduce the sharing embedding for mediator entities to capture the semantic relatedness,
and further combine it with three steps of unified multi-relational message passing mechanism in
KG-based GNN (Schlichtkrull et al., 2018; Vashishth et al., 2019).

• Initialized embedding. Given the embedding dimension d, for the mediator entity b, we denote
ψ(b) the mapping from b to its involved primary relation, and initialize its representation as
h0
b=[eψ(b); eb], where eψ(b)∈R⌊α·d⌋ and eb∈Rd−⌊α·d⌋ are sharing and independent embeddings,

respectively. α is the hyperparameter to tune the sharing embedding ratio. Thus, mediator entities
involved with the same primary relation ψ(b) share part of embedding eψ(b).

• Message calculation. Considering the stacking layers of GNN, we denote ml+1,ent
urt and ml+1,rel

urt the
messages from a triple (u, r, t) for target entity t and relation r at the (l + 1)-th layer, respectively,
which are calculated as follows,

ml+1,ent
urt = MSGent(hlu,h

l
r,h

l
t), m

l+1,rel
urt = MSGrel(hlu,h

l
r,h

l
t),

where hlu,h
l
t,h

l
r∈Rd are the embeddings of entities and relation at the l-th layer, while MSGent

and MSGrel can be composition function in CompGCN (Vashishth et al., 2019), relation-specific
projection in R-GCN (Schlichtkrull et al., 2018) and etc. Besides, the entity representations at the
input layer are expressed as,

h0
x =

{
[eψ(x); ex] if x is mediator entity
e′x ∈ Rd if x is original entity

, for x ∈ {u, t},

• Message aggregation. Then neighborhood messages of M l+1
t and M l+1

r are aggregated as follows,

M l+1
t =AGGent(ml+1,ent

urt |r∈R, u∈N r
t ), M

l+1
r =AGGrel(ml+1,rel

urt |(u, t)∈Nr),
where N r

t denotes the entities linked to t via relation r and Nr denotes the entity pair linked by
relation r. AGGent and AGGrel are aggregation functions like mean/sum pooling function.
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• Representation update. Finally, the representations at the (l + 1)-th layer are updated with
aggregated messages and former layer representations:

hl+1
t = UPDent(M l+1

t ,hlt), h
l+1
r = UPDrel(M l+1

r ,hlr),

where UPDent and UPDrel can be nonlinear activation functions.

Owing to above encoding process, TransEQ fully exploits the topological connections between
entities for structural information.

SF-based Decoder. The decoder part exploits various SFs to model semantic information. For each
hyper-relational fact, the encoder part feeds the representations of corresponding entities and relations
into the SF-based decoder to model the interaction between entities and relations therein. Especially,
the choice of SF is orthogonal to the encoder, and most existing SFs on HKG modeling can be
modified in the decoder. For example of the hyper-relational fact x :=(s, r, o, {(ai, vi)}ni=1)∈FH ,
we rewrite m-DistMult’s SF as:

ϕ(x) = ⟨φ(hLr ,hLa1 , · · · ,h
L
an),h

L
s ,h

L
o ,h

L
v1 , · · · ,h

L
vn⟩,

where ϕ(x) is plausibility score measured by TransEQ, ⟨·⟩ denotes the multilinear product1, and L
denotes the number of GNN layers in encoder part. Since m-DistMult adopts a composed relation
for SF, we introduce the function φ to aggregate the embeddings of involved primary relation and
attributes for the composed relation embedding, such as mean/sum pooling function. Note that the
semantic difference in HKG is also modeled by the SF in decoder. Various SFs are further investigated
in experiments later.

Model Training. To learn the model parameters, we adopt the cross-entropy loss for training. For
the hyper-relational fact x ∈ FH with ϕ(x), the practical loss can be written as:

L =
∑
x∈FH

Lx(ϕ) =
∑
x∈FH

− log
eϕ(x)

eϕ(x) +
∑
x′∈Nx

eϕ(x′)
, (1)

where Nx denotes the negative samples, i.e., entities in triple and attribute-value qualifiers of x are
replaced by other entities in E . The training algorithm of TransEQ is presented in Appendix B for
better understanding. The overall model is trained in a mini-batch way with batch normalization and
dropout utilized for regularization.

Overall, the proposed TransEQ develops an equivalent transformation that transforms a HKG to a
KG. Then a generalized encoder-decoder framework associates KG modeling research with HKG
ones, where KG-based GNN encodes structural information while HKG-based SF in decoder focuses
on semantic information.

Table 1: A comparison of representative HKG modeling studies. ne, nr and npri
r denote the numbers

of entities, relations and primary relations. d is the embedding dimension. na is the maximum
number of attribute-value qualifiers for facts, and N =

∣∣FH ∣∣ is the total number of facts in HKG.
Neural: neural network based SF, Multilinear: multilinear product based SF.

Model Structure
Modeling

Semantic
Difference

Scoring
Function Expressive Otime Ospace

NaLP % % Neural % O(d2) O(ned+ nrd)

m-DistMult % % Multilinear % O(d) O(ned+ npri
r d)

HypE % % Multilinear ! O(d) O(ned+ npri
r d)

HINGE % ! Neural % O(d2) O(ned+ nrd)

G-MPNN HGNN % Multilinear % O(Nd2) O(ned+ npri
r d+ nad)

StarE GNN ! Neural % O(Nd2 + nad
2) O(ned+ nrd)

TransEQ Transformation
& GNN ! Arbitrary SF ! O(Nd2) O(ned+ nrd+Nd)

3.2 THEORETICAL UNDERSTANDING

Complexity Analysis. To distinguish our proposed TransEQ model design, in Table 1, we present a
comparison of HKG modeling studies with structural modeling, semantic modeling, full expressivity

1⟨h1,h2, · · · ,hn⟩ =
∑

i h1[i] h2[i] · · ·hn[i]
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as well as time and space complexity. According to the table, structural information is rarely
explored in existing studies, while HGNN in G-MPNN is at its early stage and thus fails to model
attribute semantics. StarE only captures triple-based connections (Yu & Yang, 2021), while TransEQ
combines the equivalent transformation with GNN for structural information. As for semantic
modeling, TransEQ not only captures the semantic difference between the primary triple and attribute-
value qualifiers, but also applies for arbitrary SFs. Compared with the weak expressive power
of most studies, the flexible choice of SF guarantees the full expressivity of TransEQ to model
various HKGs, and brings performance improvement. Besides, the message passing mechanism
in modeling structural information leads to the time complexity of O(Nd2), and Transformer
module in StarE brings an additional complexity of O(nad2). Since the equivalent transformation
introduces a mediator entity for each hyper-relational fact, TransEQ builds the space complexity of
O(ned+nrd+Nd) with original entities and relations considered. Owing to parallel implementation
and GPU acceleration, TransEQ obtains comparable efficiency to the fastest current studies in
experiments. In this way, TransEQ achieves efficient and expressive HKG modeling with both
structural information and semantic information captured.

Information Preserving Transformation. Following the structural information loss concern in
hyperedge expansion (Arya et al., 2021; Dong et al., 2020; Zhou et al., 2006), here we investigate the
information loss problem for our proposed transformation on HKG, which emphasizes on preserving
both structural information and semantic information. Based on the equivalent transformation in
Definition 2 and the proposed transformation in TransEQ, we identify the property with following
theorem.

Theorem 1 In the conversion from a HKG to a KG, the proposed transformation in TransEQ is an
equivalent transformation and preserves the complete information.

Full Expressivity. To demonstrate the expressivity of TransEQ, here we introduce the full expressivity
property (Abboud et al., 2020; Fatemi et al., 2020; Liu et al., 2021). A HKG modeling model is
fully expressive if, for any given HKG, the model can separate valid hyper-relational facts from
invalid ones by appropriate parameter configuration. Considering the encoder-decoder framework
in TransEQ, such property is mainly determined by the SF in decoder part, thus we establish the
expressivity of TransEQ with the following theorem.

Theorem 2 With encoder parameters configured appropriately, the expressivity of TransEQ is in
accord with that of the scoring function it uses in decoder, i.e., TransEQ is fully expressive if the
scoring function used in decoder is fully expressive.

Thus, with appropriate choice of SF like HypE (Fatemi et al., 2020) as well as model parameters, a
fully expressive TransEQ model has the potential to represent all types of relations in HKG including
symmetric relations, inverse relations, etc. (Liu et al., 2021; Sun et al., 2019), which generally
outperforms the weak ones in practice, as validated in Section 4.3.

The proofs of above theorem are provided in Appendix C

Manually-designed v.s. Learnable Transformations. According to the TransEQ model design, with
theoretical guarantee on preserving information, the manually-designed equivalent transformation
paves the way for capturing both semantic information and structural information in HKG. Although
such transformation design can be learnable, the learning process is over complex without theoretical
guarantee, while TransEQ with the manually-designed transformation has achieved the state-of-the-art
performance, as validated by results in Section 4.2. Moreover, the simple yet effective manually-
designed transformation takes the semantic difference into consideration, which offers valuable
insights and rethinking discussion to the HKG modeling research.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. The experiments are conducted on three benchmark HKG datasets, i.e., WikiPeople (Guan
et al., 2019), JF17K (Zhang et al., 2018) and FB-AUTO (Fatemi et al., 2020). We follow the standard
splits (Guan et al., 2019) of these datasets. Detailed statistics can be found in Appendix D.
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Baselines. As for performance comparison, we compare with several state-of-the-art HKG modeling
approaches, including semantic modeling ones of BoxE (Abboud et al., 2020) S2S (Di et al., 2021),
HypE (Fatemi et al., 2020), NeuInfer (Guan et al., 2020), RAM (Liu et al., 2021), HINGE (Rosso
et al., 2020), m-TransH (Wen et al., 2016) as well as structural modeling ones of StarE (Galkin et al.,
2020) and G-MPNN (Yadati, 2020). Besides, in TransEQ, we mainly adopt CompGCN (Vashishth
et al., 2019) as encoder and m-DistMult (Fatemi et al., 2020) as decoder.

Task and Evaluation Metrics. Following typical settings (Abboud et al., 2020; Fatemi et al., 2020;
Guan et al., 2019; Liu et al., 2020; Wang et al., 2021), we evaluate HKG modeling approaches on
HKG completion task in transductive setting, and predict the missing entity at each position including
triple and qualifier parts. Note that this task is more generalized than only predicting positions in
triple part (Galkin et al., 2020; Rosso et al., 2020; Yu & Yang, 2021). As for evaluation metrics, the
standard mean reciprocal ranking (MRR) and Hit@1,3,10 are utilized in filtered setting (Bordes et al.,
2013; Guan et al., 2019). Code and data available: https://anonymous.4open.science/
r/TransEQ_Implementation-03FB.

4.2 HKG COMPLETION RESULTS

Table 2: Results of HKG completion on all datasets. Results of baselines are collected from original
papers and (Di & Chen, 2022; Fatemi et al., 2020; Liu et al., 2021). Best results are highlighted in
bold, and second best results are highlighted with underlines. "-" denotes missing results.

WikiPeople JF17K FB-AUTO
Model MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

m-TransH - - 0.444 0.370 0.581 0.727 0.728 0.728
HINGE 0.333 0.259 0.477 0.473 0.397 0.618 0.678 0.630 0.765
NeuInfer 0.350 0.282 0.467 0.517 0.436 0.675 0.737 0.700 0.805

m-DistMult 0.318 0.213 0.478 0.452 0.375 0.599 0.784 0.745 0.845
HypE 0.292 0.162 0.502 0.507 0.421 0.669 0.804 0.774 0.856
RAM 0.370 0.293 0.507 0.539 0.463 0.690 0.830 0.803 0.876
S2S 0.372 0.277 0.533 0.528 0.457 0.690 - - -

BoxE 0.395 0.293 0.503 0.560 0.472 0.722 0.844 0.814 0.898

G-MPNN 0.367 0.258 0.526 0.530 0.459 0.688 0.763 0.724 0.838
StarE 0.378 0.265 0.542 0.542 0.454 0.685 0.764 0.725 0.838

TransEQ 0.454 0.373 0.593 0.569 0.489 0.722 0.870 0.842 0.909

We present the benchmark comparison of HKG completion in Table 2. According to the results, our
proposed TransEQ model achieves the state-of-the-art performance on all benchmarks. On the hardest
dataset WikiPeople with the most entities and relations, TransEQ significantly improves the best
baseline (BoxE) by 27% and 15% on Hit@1 and MRR, respectively. Considering hyper-relational
connections provided in WikiPeople, this improvement demonstrates that our proposed equivalent
transformation preserves complete HKG information. Besides, TransEQ significantly outperforms m-
DistMult, its original decoder model without GNN-based encoder, which indicates the effectiveness
and necessity to consider structural information in HKG modeling. Such results also imply that with
powerful SFs like BoxE, TransEQ can obtain even better performance. Moreover, compared with
structural modeling approaches of G-MPNN and StarE, the substantial improvement of TransEQ
owes to subtle design of the equivalent transformation as well as the semantic information captured
in the decoder part.

4.3 ENCODER-DECODER CHOICE COMPARISON

To further investigate the effects of different GNN-based encoders along with HKG-based SFs as
decoders, we compare the performance of different encoder-decoder choices in Table 3. In the table,
each result corresponds to the TransEQ model with X as encoder and Y as decoder.

According to the results of each row in Table 3, compared with original models (X=No Encoder),
TransEQ models with various GNN-based encoders bring substantial improvement, which again
demonstrates the effectiveness of structural information encoding. Since neural network models
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Table 3: Performance comparison of different encoder-decoder choices on JF17K. "OOM" indicates
out of memory. Best results for each encoder are highlighted in bold.

JF17K
Encoder X → CompGCN R-GCN No Encoder
Decoder Y ↓ MRR Hit@10 MRR Hit@10 MRR Hit@10

m-TransH 0.542 0.694 OOM 0.444 0.581
Transformer 0.526 0.677 OOM 0.504 0.648
m-DistMult 0.569 0.722 0.483 0.632 0.452 0.599

HypE 0.572 0.715 0.550 0.702 0.507 0.669

with tremendous parameters easily overfit, the performance improvement of GNN-based encoder
for Transformer is much lower than that for other models. As for the encoder in each column, the
decoder choices of HypE achieve the best performance, mainly attributed to the linear complexity
and full expressivity property. Benefited from the generalized encoder-decoder framework, TransEQ
can flexibly adapt to various GNNs and SFs for both superior performance and full expressivity.

4.4 INFORMATION SHARING STUDY

To validate whether the semantic relatedness in HKG is captured by sharing embedding on mediator
entities, we obtain hyper-relational facts of top ten primary relations and visualize their mediator entity
embeddings via t-SNE (Maaten & Hinton, 2008), as shown in Figure 4(a). We select WikiPeople for
visualization considering explicit attribute information therein, and mediator entities belonging to
the same primary relation are marked in the same color. From the figure, we observe that mediator
entities are neatly clustered according to their mapping primary relations, which is in accord with our
sharing embedding design in GNN-based encoder.

(a) Visualization
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Figure 4: (a) The visualization of mediator entity embeddings with top ten primary relations in
WikiPeople via t-SNE; The effects of share embedding ratio α on (b) JF17K and (c) FB-AUTO.

We further investigate the effect of sharing hyperparameter α in Figure 4(b) and (c). An extreme
point can be observed in both datasets, which estimates the semantic relatedness in corresponding
datasets. Moreover, a higher sharing ratio α brings fewer model parameters, e.g., α = 0 corresponds
to the case that each mediator entity has independent embedding while α = 1 means all mediator
entities with the same primary relation own the same representation. Thus, a tradeoff between model
parameter complexity and practical performance can be achieved.

5 CONCLUSION

In this paper, we propose TransEQ for HKG modeling. With the equivalent transformation developed,
TransEQ successfully transforms a HKG to a KG without information loss. Especially, TransEQ
builds the generalized encoder-decoder framework, which firstly captures both structural information
and semantic information for HKG. Experiment results show that TransEQ obtains the state-of-
the-art results on benchmark datasets. For future work, we would like to make the transformation
design automated, such that each hyper-relational fact can be automatically transformed into a
multi-relational subgraph following relation-specific transformation. Moreover, we plan to introduce
specific GNN modules on the transformed KG to process the attribute information as well as primary
information attached on the mediator entities.

9



Under review as a conference paper at ICLR 2023

REFERENCES
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A OTHER RELATED WORK

A.1 KNOWLEDGE GRAPH (KG) MODELING

Learning representations for entities and relations in KGs has been investigated thoroughly (Ji et al.,
2021; Wang et al., 2017), which designs various SFs to model the semantics in triple knowledge
(s, r, o). Based on translational thought, TransE (Bordes et al., 2013), TransH (Wang et al., 2014) and
RotatE (Sun et al., 2019) measure the distance between subject and object entities in a relation-specific
latent space. Besides, ConvE (Dettmers et al., 2018) adopts the convolutional neural networks for SF
design. TuckER (Balazevic et al., 2019) employs Tucker decomposition for SF design. Furthermore,
several models combine the bilinear product with various types of embeddings (Cao et al., 2021;
Trouillon et al., 2016; Yang et al., 2015). For example, ComplEx (Trouillon et al., 2016) and DulE
(Cao et al., 2021) employ complex-valued embeddings and dual quaternion embeddings, respectively.
However, models above ignore the multi-relational graph structure of KGs.

Until the emergence of message passing mechanism with GNN, structural information capture
becomes an important topic in KG modeling. An encoder-decoder framework is developed in recent
KG-based GNN studies, where GNNs encode structural information of KG and various SFs are
combined for semantic information. Specifically, both R-GCN (Schlichtkrull et al., 2018) and SACN
(Shang et al., 2019) treat the multi-relational KG as multiple single-relational graphs, and apply
relational graph convolutional network (GCN) for entity representations. Moreover, VR-GCN (Ye
et al., 2019) combines the translational idea with GNN to learn both entity and relation representations.
CompGCN (Vashishth et al., 2019) develops three entity-relation composition operators to update
entity representations in GCN, and KE-GCN (Yu et al., 2021) further incorporates the composition
with relation update. NBFNet (Zhu et al., 2021) and RED-GNN (Zhang & Yao, 2022) also explore
GNN with subgraph for KG completion. Overall, GNN-based models achieve promising results in
KG modeling, which demonstrates the importance of capturing structural information.

A.2 HYPERGRAPH & HYPEREDGE EXPANSION

A hypergraph is a generalization of graph, where a hyperedge can join any number of nodes (Ouvrard,
2020). Especially, hyperedge expansion (Agarwal et al., 2006; Dong et al., 2020; Zhou et al., 2006)
is introduced to transform a hypergraph to a homogeneous graph, such that graph learning methods
can work on hypergraphs (Feng et al., 2019; Yadati et al., 2019). Since HKG is viewed as a multi-
relational ordered hypergraph (Yadati, 2020), here we investigate the representative expansion strategy
of star expansion for additional insights.

(a) a hyperedge (b) star expansion

Figure 5: The illustration of star expansion on a hyperedge.

Figure 5 presents an example of a hyperedge with four nodes and its transformed graph by star
expansion2. Specifically, for a hyperedge, the star expansion introduces a mediator node (like
the blank node in the center of Figure 5(b)), which is then connected with all original nodes in
the hyperedge. With the elegant transformation, hyperedge expansion has been widely applied in
recommender systems (Xia et al., 2021), link prediction (Sun et al., 2021), etc.

On the other hand, the structural information loss has always been a concerned issue with hyperedge
expansion strategy (Arya et al., 2021; Dong et al., 2020; Zhou et al., 2006). To be specific, an
expansion strategy on hypergraph suffers from structural information loss, if there can be two distinct
hypergraphs on the same node set reduced to the same graph by the expansion (Dong et al., 2020).

2The expansion strategy is named according to its graph illustration.

14



Under review as a conference paper at ICLR 2023

According to (Arya et al., 2021; Dong et al., 2020), the star expansion preserves the complete
structural information. However, such traditional hyperedge expansion strategy cannot handle the
HKG with hyper-relational semantics considered, which also guides our research that both structural
and semantic information loss should be concerned in transforming a HKG to a KG.

B METHOD DETAILS

B.1 OTHER VARIANTS OF TRANSFORMATIONS

To demonstrate the effectiveness of our proposed equivalent transformation in Section 3.1.1, here we
further show other variants of transformations in Figure 6. Especially, the plain transformation in
Figure 6(a) follows star expansion without attributes considered.

Figure 6: The illustration of other variants of transformations.

In comparison to the star expansion, clique expansion is also a popular hyperedge expansion strategy
(Dong et al., 2020; Zhou et al., 2006), which transforms the hyperedge into a clique subgraph, i.e.,
each pair of nodes in the hyperedge are connected in the transformed graph. Thus, we also extend
clique expansion into the HKG case, e.g., the clique-based plain transformation in Figure 6(b) with
only primary relations considered. To model the attribute information, in Figure 6(c), for each
attribute ai, the clique-based semantic transformation decomposes it into two relations of rsub

ai and
robj
ai , which connect the value entity with subject and object entities, respectively. Each pair of value

entities are also connected by devised relations between attributes to satisfy the clique structure.
However, these variants of transformations bring information loss while our proposed equivalent one
preserves complete information, as validated by both theoretical proof and experimental performance
later.

B.2 TRAINING PROCEDURE

Algorithm 2: TransEQ training algorithm.

Input: HKG GH = (E ,R,FH);
Init: E for e ∈ E , R for r ∈ R, θEnc for GNN-based encoder, θDec for SF-based decoder;

1 Build encoder module Enc() with θEnc;
2 Build decoder module Dec() with θDec;
3 Transform HKG GH to KG G with Algorithm 1;
4 for t = 1, · · · , niter do
5 Sample a mini-batch Fbatch ∈ FH of size mb, L←0;
6 E,R = Enc(G,E,R,θEnc);
7 for x := (s, r, o, {(ai, vi)}ni=1) ∈ Fbatch do
8 Construct negative samples Nx;
9 ϕ(x) = Dec(x,E,R,θDec);

10 ϕ(x′) = Dec(x′,E,R,θDec), ∀x′ ∈ Nx;
11 Update loss L←L+Lx(ϕ) with Lx in equation 1;
12 end
13 Update learnable parameters w.r.t. the gradients∇L;
14 end

Output: Embeddings E,R and parameters θEnc,θDec.
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C THEORETICAL DETAILS

C.1 SCORING FUNCTION COMPARISON

In Table 4, we present a comparison of representative HKG modeling studies with SF. Especially,
TransEQ can leverage any SF therein for SF-based decoder.

Table 4: A comparison of representative HKG modeling studies with scoring function. pi is the
position embedding in G-MPNN. Conv: convolutional neural network, FCN: fully connected network,
Trf: Transformer, [·; ·]: vector concatenation, Mean(·): element-wise average. min(·): element-wise
minimization.

Model Scoring Function

NaLP (Guan et al., 2019) FCN(mind(Conv([[hrs ;hs]; [hro ;ho]; [hai ;hvi ]])))
m-DistMult (Fatemi et al., 2020) ⟨hr,hs,ho,hv1 , · · · ,hvn⟩

HypE (Fatemi et al., 2020) ⟨hr,Conv(hs),Conv(ho),Conv(hv1), · · · ,Conv(hvn)⟩
HINGE (Rosso et al., 2020) FCN(mind([Conv([hr;hs;ho]);Conv([hr;hs;ho;hai ;hvi ])]))

G-MPNN (Yadati, 2020) ⟨hr,p1, · · · ,pn+2,hs,ho,hv1 , · · · ,hvn⟩
StarE (Galkin et al., 2020) h⊤

o FCN(Mean(Trf(hr,ha1 , · · · ,han ,hs,hv1 , · · · ,hvn)))

TransEQ Arbitrary SF

C.2 COMPLEXITY ANALYSIS ON TRANSFORMATIONS

Based on the description in Section B.1, we analyze the parameter complexity of different transfor-
mations in Table 5.

Table 5: The parameter complexity of different transformations, in terms of entity/node, relation
and edge. ne = |E| and nr = |R| are the number of entities and relations in HKG. npri

r and nqua
r

are the numbers of primary and qualifier relations, respectively. na is the maximum number of
attribute-value qualifiers for facts. N qua and N pri are the number of hyper-relational facts with and
without attribut-value qualifiers, such that N pri +N qua = |F|.

Transformation Oent/Onode Oedge Orel

plain O(ne+N qua) O(N pri+N qua(na+2)) O(npri
r )

clique-based plain O(ne) O(N pri+N qua(na + 2)2) O(npri
r )

clique-based
semantic O(ne) O(N pri+N qua(na + 2)2) O(npri

r +nan
qua
r )

equivalent O(ne+N qua) O(N pri+N qua(na+3)) O(3npri
r +nqua

r )

According to the transformation design, clique-based transformations introduce pairwise edges for
relatedness while star-based ones of plain transformation and equivalent transformation rely on
additional mediator entities. Therefore, clique-based transformations keep the node complexity of
O(ne) while star-based ones build O(ne+N qua) nodes. On the other hand, the plain transformation
keeps the same edge complexity with the original HKG structure, while a relational edge between
subject and object entities is added in equivalent transformation for semantic difference, bringing
the complexity increase of O(N qua). Compared with the relation complexity of about O(npri

r +nqua
r )

in the original HKG, the equivalent transformation introduces O(npri
r ) relations to distinguish links

between subject and object entities, which are acceptable in practice.

C.3 PROOF OF INFORMATION PRESERVATION

To demonstrate the zero information loss in the equivalent transformation, in Algorithm 3, we present
the process that can equivalently recover the original HKG from the transformed KG.

Note that Nbk in line 3 is a subgraph, and attribute-value qualifiers can be extracted from direct
relational links to mediator bk in line 5. Here we consider hyper-relational fact with at least one
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qualifier, while triple facts can be directly added in recovered HKG due to no mediator. Thus,
Algorithm 1 and Algorithm 3 form an equivalent conversion between HKG and KG, i.e., the equivalent
transformation preserves the complete information. In comparison, the plain transformation and
clique-based plain transformation only keep primary relations in conversion, which cannot be
recovered due to attribute loss. Besides, clique-based semantic transformation inherits the structural
information loss of clique expansion in hyperedge expansion (Dong et al., 2020).

Algorithm 3: The algorithm for recovering HKG from the transformed KG by equivalent
transformation.
Input: Transformed KG G = (E ,R,F);
Init: Recovered HKG GH = (EH ,RH ,FH) with EH ← ∅,RH ← ∅,FH ← ∅;

1 Obtain the set of mediator entities from E , Emed;
2 for bk ∈ Emed do
3 Find bk’s neighbor entities and their connected relations from F , Nbk = {ri, ei}ni=1;
4 Extract (s, r, o) from Nbk via motif-structure discovery;
5 Extract {(ai, vi)}n−2

i=1 from left parts of Nbk ;
// part of {ri, ei}ni=1 corresponds to {(ai, vi)}n−2

i=1 .
6 EH ← EH ∪ {ei}ni=1,R ← R∪ {r} ∪ {ai}n−2

i=1 ;
7 FH ← FH ∪ {(s, r, o, {(ai, vi)}n−2

i=1 )};
8 end

Output: Recovered HKG GH = (EH ,RH ,FH).

C.4 PROOF OF FULL EXPRESSIVITY

Our proposed TransEQ firstly transforms a HKG to a KG, then develops a GNN-based encoder for
representation encoding, and calculates plausibility scores based on existing SFs in HKG modeling
studies with entity and relation embeddings from encoder part. Meanwhile, several SFs from HypE
(Fatemi et al., 2020), BoxE (Abboud et al., 2020), RAM (Liu et al., 2021), etc., have been proved
to be fully expressive with an assignment of entity and relation embeddings in their original papers.
Hence, with a fully expressive SF in decoder, the TransEQ model is fully expressive if the output
embeddings from encoder part follow corresponding assignment required by SF, which is proved
as follows, Proof. For t ∈ E , r ∈ R, let h0

t ,h
0
r denote their initialized representations, while

hLt ,h
L
r denote corresponding embeddings outputted from encoder part. We also denote hSF

t ,h
SF
r the

required input embeddings of SF in decoder. Then, in mathematical, with hLt =Enc(h
0
t ,θEnc) and

hLr =Enc(h
0
t ,θEnc), we should prove hLt = hSF

t and hLr = hSF
r can be achieved with appropriate

choice of encoder parameters θEnc
3 and initialized embeddings h0

t ,h
0
r .

Taking the example of R-GCN (Schlichtkrull et al., 2018) as encoder, the message passing process of
each GCN layer can be written as,

hl+1
t = σ(

∑
r∈R

∑
u∈N r

t

1

|N r
t |
W l

rh
l
u +W l

0h
l
t),

where σ denotes nonlinear activation function like ReLU, which is unnecessary and can be removed
(Wu et al., 2019).

Now, we describe a feasible assignment of encoder parameters: For each layer l ∈ {1, · · · , L} and
r ∈ R, relation-specific matrix W l

r is set to null matrix, while W l
0 is set to identity matrix, where

both W l
r and W l

0 belong to encoder parameters θEnc.

Following the assignment above, we have hl+1
t = hlt, i.e., hLt = h0

t . Hence, we can set the values
of h0

t according to hSFt . In R-GCN, hLr is directly initialized and can be set to hSF
r . Overall, the

encoder’s output embeddings follow the required embedding assignment of SF with above assignment
on θEnc, h0

t and h0
r . Thus, the expressivity of TransEQ is proved to be in accord with that of the SF it

uses in decoder. Finally, we note that the proof can be trivially extended to other GNN-based encoders
like CompGCN (Vashishth et al., 2019) by introducing extra assignments on encoder parameters. □

3Note that here we simplify the expression of encoder module, which is still in accord with the form in
Algorithm 2.
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D EXPERIMENT DETAILS

Here we provide more experiment details to support our claim. Moreover, we further perform
experiments on five datasets to validate the robustness of our proposed TransEQ model.

D.1 DATASET DETAILS

We detail the dataset statistics in Table 6.

Table 6: Dataset statistics.
Dataset |E| |R| #Train #Valid #Test

WikiPeople 47,765 707 305,725 38,223 38,281
JF17K 28,645 322 61,104 15,275 24,568

FB-AUTO 3,388 8 6,778 2,255 2,180

To validate the robustness, we further consider a recently developed dataset WD50K and its variant
WD50K(100) (Galkin et al., 2020), where all facts contain qualifiers, i.e., no simple triple facts therein.
We also consider four datasets of WikiPeople-3, JF17K-3, WikiPeople-4, JF17K-4, developed from
(Liu et al., 2020), where facts have a fixed number of qualifiers in accord with the dataset name.
Table 7 presents dataset statistics.

Table 7: Dataset statistics.
Dataset |E| |R| #Train #Valid #Test

WD50K 47,156 532 166,435 23,913 46,159
WD50K(100) 18,792 279 22,738 3,279 5,297
WikiPeople-3 12,270 66 20,656 2,582 2,582

JF17K-3 11,541 104 27,635 3,454 3,455
WikiPeople-4 9,528 50 12,150 1,519 1,519

JF17K-4 6,536 23 7,607 951 951

D.2 IMPLEMENTATION DETAILS

We implement TransEQ in PyTorch (Paszke et al., 2019) with Adam optimizer. The embedding
dimension d is set to the typical size 200 (Abboud et al., 2020; Fatemi et al., 2020; Galkin et al.,
2020; Wang et al., 2021; Yu & Yang, 2021). The batch size, learning rate and dropout are chosen
from {64, 128}, {0.0001, 0.0005, 0.001, 0.005} and [0.1, 0.5] with step 0.1, respectively. Besides, we
mainly adopt CompGCN (Vashishth et al., 2019) as encoder and m-DistMult (Fatemi et al., 2020) as
decoder. For the encoder part, the number of GNN layers and sharing ratio α are chosen from {1, 2,
3, 4} and [0.0, 1.0] with step 0.2, respectively. The composition operation in encoder is set to rotate
function (Sun et al., 2019). We tune hyperparameters over the validation set with early stopping
strategy employed. All experiments are run on a RTX 2080 Ti GPU.

D.3 EFFICIENCY COMPARISON
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Figure 7: Comparison on clock time of model training vs. testing MRR.
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Furthermore, we compare the learning processes of TransEQ with structural modeling approaches
on three datasets in Figure 7. The learning curve of HypE with linear time complexity is also
plotted for comparison. It can be observed that TransEQ achieves similar convergence speed with
HypE in practice, which owes to the multilinear product based SF (Liu et al., 2021) and efficient
implementation. With a similar form of SF adopted, G-MPNN achieves a close convergence rate
but inferior performance, which demonstrates the strength of GNN-based encoder compared with
HGNN. As for StarE with Transformer-based SF, tremendous parameters lead to time-consuming
training on all datasets.

D.4 TRANSFORMATION COMPARISON

To analyze the effects of various transformations, we present the performance comparison in Table 8.
Due to space limitation, results with Hit@3 are omitted, which are in accord with other metrics.
As described in Section 3.1.1, our proposed equivalent transformation connects subject and object
entities via a relational edge r to form the motif for semantic difference. Thus, we investigate
the effectiveness of such operation by removing the edge in the transformation, referred to as w/o
distinction transformation.

Table 8: Performance comparison of different transformations. Best results are highlighted in bold.
JF17K FB-AUTO

Transformation MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

plain 0.504 0.422 0.669 0.836 0.809 0.884
clique-based plain 0.557 0.478 0.706 0.824 0.804 0.859

clique-based semantic 0.552 0.474 0.706 0.831 0.809 0.869

w/o distinction 0.536 0.456 0.695 0.849 0.810 0.884
equivalent 0.569 0.489 0.722 0.870 0.842 0.909

From the table, we can observe that the equivalent transformation outperforms other variants of
transformations, which is in accord with the information loss analysis in Section 3.2, i.e., only equiv-
alent transformation preserves complete information. Moreover, removing the relational edge in the
equivalent transformation leads to a Hit@1 performance drop of 7% on JF17K, which demonstrates
the effectiveness and necessity of considering semantic difference in the transformation. Besides,
since any two entities are connected in two clique-based transformations, the relatedness between
entities is largely captured and thus they obtain close performance, i.e., the clique structure makes
these transformations insensitive to semantic information. In comparison, the star structure in plain
transformation and equivalent transformation is quite simple, and additional information including
hyper-relational semantics and semantic difference should be incorporated in transformation, which
also accounts for the obvious gap between these two transformations. Considering the zero informa-
tion loss and experimental performance, the equivalent transformation becomes the best choice for
TransEQ in HKG modeling.

D.5 ENCODER-DECODER CHOICE COMPARISON

We also compare the performance of different encoder-decoder choices of TransEQ models on
FB-AUTO in Table 9. These results further validate the observations in Section 4.3.

D.6 ADDITIONAL HKG COMPLETION RESULTS

Since on WD50K and WD50K(100) former studies (Galkin et al., 2020; Yu & Yang, 2021) only
predict missing entities at primary triple, not comparable to HKG completion task in Section 4.1,
we select competitive baselines in Table 2 and report their performance on these datasets, as shown
in Table 10. Here we evaluate TransEQ models with m-DistMult and Transformer as decoders,
denoted by TransEQ-DM and TransEQ-Trf, respectively. According to the table, TransEQ model
with Transformer-based decoder generally performs well on both datasets, which again demonstrates
the effectiveness of model design.

In Table 11, with m-DistMult and HypE(HP) as decoders, we further investigate TransEQ’s perfor-
mance on HKG datasets with fixed number of qualifiers, compared with HINGE (Rosso et al., 2020),
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Table 9: Performance comparison of different encoder-decoder choices on FB-AUTO. "OOM"
indicates out of memory. Best results for each encoder are highlighted in bold.

FB-AUTO
Encoder X → CompGCN R-GCN No Encoder
Decoder Y ↓ MRR Hit@10 MRR Hit@10 MRR Hit@10

m-TransH 0.825 0.873 OOM 0.728 0.728
Transformer 0.846 0.899 OOM 0.834 0.897
m-DistMult 0.870 0.909 0.834 0.892 0.784 0.845

HypE 0.860 0.902 0.840 0.892 0.804 0.856

Table 10: Results of HKG completion on WD50K(100) and WD50K. Best results are highlighted in
bold. "-" denotes exceeding time limit.

WD50K(100) WD50K
Model MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

NeuInfer 0.289 0.252 0.358 0.179 0.141 0.250
HypE 0.436 0.339 0.617 0.233 0.158 0.377
BoxE 0.672 0.609 0.747 - - -

TransEQ-DM 0.553 0.516 0.621 0.290 0.232 0.400
TransEQ-Trf 0.661 0.608 0.756 0.343 0.278 0.465

NeuInfer (Guan et al., 2020), n-TuckER (Liu et al., 2020) and GETD (Liu et al., 2020). Note that
n-TuckER and GETD can only handle datasets with a fixed number of qualifiers with competitive
performance. According to the results, TransEQ models obtain the state-of-the-art performance on
most datasets, indicating the robustness and effectiveness of the proposed equivalent transformation
as well as the generalized encoder-decoder framework.

Table 11: Results of HKG completion on datasets with fixed number of attribute-value qualifiers.
Results of baselines are collected from original papers and (Di & Chen, 2022; Liu et al., 2020).

WikiPeople-3 JF17K-3 WikiPeople-4 JF17K-4
Model MRR H@10 MRR H@10 MRR H@10 MRR H@10

HINGE 0.338 0.508 0.587 0.738 0.352 0.557 0.745 0.842
NeuInfer 0.355 0.521 0.622 0.770 0.361 0.566 0.765 0.871

n-TuckER 0.373 0.558 0.727 0.852 0.362 0.570 0.804 0.902
GETD 0.373 0.558 0.732 0.856 0.386 0.596 0.810 0.910

TransEQ-DM 0.382 0.557 0.685 0.827 0.378 0.614 0.820 0.923
TransEQ-HP 0.370 0.557 0.726 0.847 0.394 0.602 0.805 0.908

D.7 ADDITIONAL VISUALIZATION RESULTS

Following the settings in Section 4.4, in Figure 8, we compare the visualization results of utilizing
independent embedding (α = 0.0) and sharing embedding (the best setting with α = 0.8), which
further validates the effectiveness of TransEQ capturing semantic relatedness for mediator entities.
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(a) α = 0.0 (b) α = 0.8

Figure 8: The visualization of mediator entity embeddings with top ten primary relations in WikiPeo-
ple via t-SNE on share embedding ratio (a) α = 0.0 and (b) α = 0.8.
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