
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM TEXT TO TALK: AUDIO-LANGUAGE MODEL NEEDS NON-AUTOREGRESSIVE JOINT TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have attracted significant interest in extending their capabilities to multimodal scenarios, particularly for speech-to-speech conversational systems. However, existing multimodal models handling interleaved audio and text rely on autoregressive (AR) methods, overlooking that text depends on target-target relations whereas audio depends mainly on source-target relations. In this work, we propose Text-to-Talk (TtT), a unified audio-text framework that integrates AR text generation with non-autoregressive (NAR) audio diffusion in a single Transformer. By leveraging the any-order AR property of absorbing discrete diffusion, our approach provides a unified training objective for text and audio. To support this hybrid generation paradigm, we design a modality-aware attention mechanism that enforces causal decoding for text while allowing bidirectional modeling within audio spans, and further introduce three training strategies that reduce train-test discrepancies. During inference, TtT employs block-wise diffusion to synthesize audio in parallel while flexibly handling variable-length outputs. Comprehensive experiments on Audio-QA, ASR, AAC and speech-to-speech benchmarks show that TtT consistently surpasses strong AR and NAR baselines, with additional ablation and training-strategy analyses confirming the contribution of each component. We will open-source our models, data and code to facilitate future research in this direction.

1 INTRODUCTION

The recent success of LLMs has catalyzed a paradigm shift towards general-purpose Multimodal Large Language Models (MLLMs) capable of processing and generating information across diverse modalities (Xu et al., 2025; Team et al., 2023). Among these, speech-to-speech conversational systems have emerged as a pivotal component in facilitating natural human-AI interaction. Conventional systems typically decompose this problem into a cascaded pipeline of Automatic Speech Recognition (ASR), LLM-driven response generation, and Text-To-Speech (TTS) synthesis. While effective to a degree, this modular design introduces significant latency accumulation and error propagation between modules, hindering naturalness and real-world applicability. In response, recent end-to-end approaches like Moshi (Défossez et al., 2024), GLM4-Voice (Zeng et al., 2024), and VITA-Audio (Long et al., 2025) have sought to unify speech understanding and generation within a single model. These models are typically trained through multi-stage pipelines that involve text-to-audio tokenizer training, interleaved data construction, text-audio alignment and task-oriented supervised fine-tuning (Huang et al., 2025; Li et al., 2025; Ding et al., 2025; Chu et al., 2024). As shown in Figure 1, these methods aim to generate interleaved text and speech tokens in an autoregressive (AR) manner, which are then decoded into continuous audio waveforms by a separate neural codec or diffusion-based decoder (Mehta et al., 2024; Kong et al., 2020).

However, this emerging paradigm faces a fundamental challenge. As illustrated in Figure 1, we identify a fundamental mismatch in prevailing approaches that employ a single language model to autoregressively generate both text and audio tokens (Zeng et al., 2024; Xie & Wu, 2024b; Borsos et al., 2023; Dang et al., 2024; Rubenstein et al., 2023). This uniform treatment applies identical AR training objectives across both modalities, overlooks a critical distinction in their underlying generative processes. Text generation inherently follows a sequential causal structure characterized by strong **target-target** dependencies (Box et al., 2015), where each token explicitly conditions on previously generated tokens. Consequently, an incorrect token prediction can propagate and intro-

Figure 1: (a) Distinct dependency structures for text and audio modality. (b) Due to disparate tokenization rates, the last audio span is of variable length.

duce subsequent errors due to the exposure bias inherent in AR models (Ranzato et al., 2015). In contrast, audio token generation is predominantly driven by **source-target** dependencies (Ren et al., 2020), where audio output primarily condition on the source text rather than on the preceding audio tokens. Specifically, within the current non-autoregressive (NAR) span, audio tokens generation should remain faithful to the source text even when previous audio tokens are incorrectly predicted. Applying a purely AR objective to audio generation thus introduces unnecessary sequential constraints, leading to suboptimal training dynamics and magnifying error propagation. This problem can be substantially alleviated by adopting a NAR generation strategy, which aligns better with the source-dependent nature of audio modeling. Recently, discrete diffusion has emerged as a compelling alternative to AR for discrete sequence modeling (Yu et al., 2025; Gong et al., 2024; Austin et al., 2021; Sahoo et al., 2024). Beyond empirical gains, recent theory shows that absorbing discrete diffusion can be interpreted as modeling the conditional distributions of clean tokens and admits a tight connection to any-order AR objectives (Ou et al., 2024).

Thus, we introduce Text-to-Talk (TtT), a unified audio-text MLLM that integrates AR text generation with NAR audio diffusion within a single Transformer initialized from a pretrained LLM. Text segments are trained with a standard AR cross-entropy objective, while audio segments are modeled via an NAR discrete diffusion process. During inference, the model dynamically switches between AR and NAR decoding strategies based on special control tokens. In summary, our work makes the following contributions:

- We identify and formalize the fundamental asymmetry in dependency structures between text and audio modalities—text exhibits target-target dependencies requiring causal ordering, while audio is driven by source-target dependencies. Leveraging the any-order AR nature of absorbing discrete diffusion, we establish a unified theoretical framework that proves our joint training objective provides an upper bound on the negative log-likelihood of the desired joint distribution.
- We propose TtT, a hybrid AR-NAR MLLM that seamlessly integrates AR text generation with discrete diffusion-based audio synthesis within a single Transformer initialized from a pretrained LLM. Our design preserves the reasoning and instruction-following capabilities of the base LLM while enabling efficient parallel audio generation.
- We introduce three principled training strategies to address the inherent train-test discrepancies in hybrid AR-NAR learning, enabling stable training and robust content-aware variable-length generation that bridges the gap between training and inference conditions.
- Extensive experiments across Audio-QA, ASR, AAC and speech-to-speech benchmark demonstrate that TtT consistently outperforms strong AR and NAR baselines, highlighting the advantage of the hybrid AR–NAR framework.

2 PRELIMINARY AND NOTATION

In this section, we establish the basic notation for interleaved audio-text sequences and provide brief overviews of the two core generative paradigms employed in our framework: AR modeling and absorbing discrete diffusion. These form the theoretical foundation of our proposed method in Section 3.

108 **Tokens, Vocabulary, and Interleaved layout** We consider interleaved discrete text-audio sequences of length L : $x = (x^1, \dots, x^L)$ with a unified discrete vocabulary $\mathcal{V} = \mathcal{V}_{\text{text}} \cup \mathcal{V}_{\text{audio}} \cup \mathcal{S}$, where \mathcal{S} contains special tokens such as $\langle \text{SOA} \rangle$ (start of audio), $\langle \text{EOA} \rangle$ (end of audio), $\langle \text{EOS} \rangle$ (end of sequence) and the absorbing mask token $[\text{M}]$. A sequence x is structured as a series of alternating text and audio spans: $x = (\mathcal{T}_1, \mathcal{A}_1, \dots, \mathcal{T}_M, \mathcal{A}_M, \langle \text{EOS} \rangle)$, where:

- $\mathcal{T}_m = (t_{m,1}, \dots, t_{m,|\mathcal{T}_m|}) \in (\mathcal{V}_{\text{text}} \cup \{\langle \text{EOS} \rangle, \langle \text{SOA} \rangle\})^{|\mathcal{T}_m|}$ are text tokens
- $\mathcal{A}_m = (a_{m,1}, \dots, a_{m,|\mathcal{A}_m|}) \in (\mathcal{V}_{\text{audio}} \cup \{\langle \text{EOA} \rangle\})^{|\mathcal{A}_m|}$ are quantized audio tokens

117 Let $f_\theta : \mathcal{V}^L \rightarrow \mathbb{R}^{L \times d}$ be a single Transformer (e.g. Qwen 2.5). We use a shared output head
118 $W \in \mathbb{R}^{d \times |\mathcal{V}|}$ (typically tied with input embeddings) to produce per-position logits over the entire
119 vocabulary \mathcal{V} .

120 **AR Modeling** AR models factorize the joint probability of a sequence $x = (x^1, \dots, x^L)$ into
121 a product of conditional probabilities, based on the chain rule: $p(x) = \prod_{i=1}^L p(x^i | x^{<i})$, where
122 $x^{<i} = (x^1, \dots, x^{i-1})$. This imposes a sequential, causal structure on the generation process. For a
123 detailed discussion, please refer to Appendix A.3.1.

124 **Absorbing Discrete Diffusion** Absorbing discrete diffusion models are a NAR paradigm for se-
125 quence generation. They consist of a forward process that corrupts a clean sequence by gradually
126 replacing tokens with a special absorbing mask state $[\text{M}]$, and a learned reverse process that aims to
127 recover the original sequence from the corrupted input. A key insight from Ou et al. (2024) is that
128 the learning objective simplifies to modeling a time-independent conditional probability of the clean
129 data. Specifically, the score for unmasking a token v at a corrupted position is given by:

$$\underbrace{\frac{p_t(\dots, \hat{x}^i = v, \dots)}{p_t(\dots, x^i = [\text{M}], \dots)}}_{\text{concrete score}} = \underbrace{\frac{e^{-\bar{\sigma}(t)}}{1 - e^{-\bar{\sigma}(t)}}}_{\text{time scalar}} \cdot \underbrace{p_0(v | UM)}_{\text{clean conditional probability}}. \quad (1)$$

130 where UM denotes the set of unmasked (visible) tokens and t represents the continuous time step
131 of the corruption process. This denoising formulation is precisely the objective of an Any-Order AR
132 Model (AO-ARM), predicting a token given an arbitrary context of unmasked tokens. As demon-
133 strated by Ou et al. (2024), the diffusion training objective is mathematically equivalent to this
134 AO-ARM objective, which averages the prediction loss over all possible permutations of the se-
135 quence: $\mathcal{L}_{AO}(x_0) = \mathbb{E}_{\pi \sim U_\pi} \sum_{l=1}^d -\log q_\theta(x_0^{\pi(l)} | x_0^{\pi(<l)})$, where π is a random permutation of the
136 token indices. Therefore, training an absorbing discrete diffusion model is equivalent to training a
137 powerful ensemble of AR models that can operate in any order. More details in Appendix A.3.2.

3 JOINT TEXT-AR & AUDIO-NAR MODEL

144 In this section, we introduce our proposed model, integrates AR generation for text and discrete
145 diffusion for audio within a single, unified Transformer architecture.

3.1 AR MODELING FOR TEXT

146 We model text generation using a fixed, canonical auto-regressive order. Let π_{text} denote the natural
147 left-to-right permutation over all text token positions in the sequence — that is, $\pi_{\text{text}}(1) < \pi_{\text{text}}(2) <$
148 $\dots < \pi_{\text{text}}(|\mathcal{T}_{\leq M}|)$ where $\mathcal{T}_{\leq M} = \cup_{m=1}^M \mathcal{T}_m$ is the set of all text token indices.

149 At the span level, the probability of generating the m -th text span $\mathcal{T}_m = (t_{m,1}, \dots, t_{m,|\mathcal{T}_m|})$ con-
150 ditioned on all prior context is given by: $p_\theta(\mathcal{T}_m | \mathcal{T}_{<m}, \mathcal{A}_{<m}) = \prod_{j=1}^{|\mathcal{T}_m|} p_\theta(t_{m,j} | \mathcal{T}_{<m}, \mathcal{A}_{<m}, t_{m,<j})$,
151 where $t_{m,<j} = (t_{m,1}, \dots, t_{m,j-1})$ is the prefix of text tokens within the current text span.

152 To express the joint probability of all text tokens in the sequence, we account for the conditioning on
153 preceding audio spans. The joint probability $p_\theta(x_{\text{text}})$ is therefore defined as the product of the prob-
154 abilities of each text span, conditioned on all prior spans: $p_\theta(x_{\text{text}}) = \prod_{m=1}^M p_\theta(\mathcal{T}_m | \mathcal{T}_{<m}, \mathcal{A}_{<m}) =$
155 $\prod_{m=1}^M \prod_{j=1}^{|\mathcal{T}_m|} p_\theta(t_{m,j} | \mathcal{T}_{<m}, \mathcal{A}_{<m}, t_{m,<j})$,

162 The model is trained by minimizing the standard causal cross-entropy loss over all text positions:
163

$$164 \quad \mathcal{L}_{\text{AR}}(x) = - \sum_{m=1}^M \sum_{j=1}^{|\mathcal{T}_m|} \log p_{\theta}(t_{m,j} \mid \mathcal{T}_{<m}, \mathcal{A}_{<m}, t_{m,<j}) \quad (2)$$

165
166

167 3.2 ABSORBING DISCRETE DIFFUSION FOR AUDIO SPANS 168

169 Building on the theoretical foundation established in Section 2, we apply absorbing discrete diffu-
170 sion to audio spans $\mathcal{A}_{\leq M} = \cup_{m=1}^M \mathcal{A}_m$. This design choice aligns with the fundamental difference
171 in dependency structures: audio tokens exhibit strong **source**→**target** dependencies (conditioning
172 on source text), making them well-suited for the any-order AR nature of diffusion, while text tokens
173 follow **target**→**target** causal dependencies, better handled by standard AR modeling.
174

175 **Audio-specific Corruption and Denoising** For each training sample, we sample a masking level
176 $\lambda \sim U([0, 1])$ and independently mask each audio token with probability λ , while preserving all text
177 tokens. This creates corrupted sequences where audio spans contain a mixture of original tokens and
178 mask tokens [M], but text spans remain intact. To enable efficient parallel training across all audio
179 spans simultaneously, we apply masking operations to every audio span \mathcal{A}_m in the sequence, rather
180 than processing them sequentially. This parallel masking strategy significantly improves training
181 efficiency while leveraging the time-independent nature of the denoising objective (Eq. 1).
182

183 **Training Objective for Audio Generation** The model learns to predict the original audio tokens
184 for masked positions by minimizing the λ -denoising cross-entropy loss over all audio spans. As dis-
185 cussed in (Ou et al., 2024), this objective is mathematically equivalent to the any-order AR objective,
186 and can be equivalently expressed in the AO-ARM form:
187

$$188 \quad \mathcal{L}_{\text{AO}}(x) = \sum_{m=1}^M \mathbb{E}_{\pi_m \sim U_{\pi_m}} \sum_{j=1}^{|\mathcal{A}_m|} -\log q_{\theta}(a_{m,\pi_m(j)} \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m}, a_{m,\pi_m(<j)}) \quad (3)$$

189

190 where π_m is a random permutation over the positions within audio span \mathcal{A}_m , and $a_{m,\pi_m(<j)}$ denotes
191 the audio tokens that appear before position j in the permuted order. This formulation makes explicit
192 that the audio generation objective is learning to predict each audio token conditioned on an arbitrary
193 subset of other tokens within the same span, plus the full cross-modal context from text. This any-
194 order AR nature is what enables parallel generation during inference.
195

196 3.3 MULTIMODAL FACTORIZATION AND UNIFIED OBJECTIVE 197

198 Having established AR modeling for text in Section 3.1 and discrete diffusion for audio in Sec-
199 tion 3.2, we now formalize how these two paradigms can be unified within a single probabilistic
200 framework. The key insight is to leverage the distinct dependency structures of each modality
201 through a *partial-order factorization* that respects the causal nature of text while allowing flexi-
202 ble ordering within audio spans. Recall that text tokens exhibit strong target-target dependencies
203 requiring causal ordering, while audio tokens primarily depend on source-target relationships with
204 their corresponding text. This suggests that within each audio span \mathcal{A}_m , the tokens can be generated
205 in any order as long as they condition on the appropriate cross-modal context $\mathcal{T}_{\leq m} \cup \mathcal{A}_{<m}$. We
206 formalize this intuition using partial orders over token positions.
207

208 A partial order on a set V is a binary relation \preceq that is reflexive, antisymmetric, and transitive. A
209 set equipped with such a relation is called a partially ordered set (poset). Two elements $a, b \in V$
210 are comparable if $a \preceq b$ or $b \preceq a$; otherwise, they are incomparable. An antichain is a subset of V
211 in which every pair of distinct elements is incomparable — that is, no internal ordering constraints
212 exist among them (Davey & Priestley, 2002).
213

214 **Partial-order Formulation** Let (V, \preceq) be a poset over all token indices in the sequence, where V
215 represents all token positions and \preceq encodes precedence relationships. For our interleaved text-audio
216 setting, we define: (1) Each text token $t_{m,j}$ precedes $t_{m,j+1}$ (maintaining left-to-right causality
217 within text spans). (2) All tokens in span m precede all tokens in span $m+1$ (maintaining cross-span
218 dependencies). (3) Tokens within each audio span \mathcal{A}_m form an antichain under \preceq (no *mandatory*
219

internal ordering), but the model is permitted to condition on previously generated tokens within the same span during training and inference under any linear extension.

For any token i , let $\text{Pa}(i)$ denote its set of predecessors under this partial order. By construction, each audio token $a_{m,j}$ has predecessors $\text{Pa}(a_{m,j}) = \mathcal{T}_{\leq m} \cup \mathcal{A}_{< m}$, while for text tokens $\text{Pa}(t_{m,j}) = \mathcal{T}_{< m} \cup \mathcal{A}_{< m} \cup t_{m,<j}$.

Any linear extension ℓ of the partial order (V, \preceq) induces a valid chain-rule factorization: $p(x) = \prod_{j=1}^{|V|} p(x_{\ell(j)} \mid x_{\text{Pa}(\ell(j))})$. Since audio tokens within each span form an antichain, there are multiple valid linear extensions differing only in the within-span ordering of audio tokens. Rather than committing to a single extension, we can *marginalize* over all possible orderings within audio spans.

Order-marginalized Factorization for Audio Spans For an antichain $S \subseteq V$ (such as tokens within an audio span), we define the *order-marginalized conditional* by averaging over all permutations of S : $\tilde{p}_\theta(x_S \mid x_{V \setminus S}) = \mathbb{E}_{\pi \in \text{Perm}(S)} \prod_{j \in S} q_\theta(x_{\pi(j)} \mid x_{V \setminus S}, x_{\pi(<j)})$, where $q_\theta(\cdot \mid \cdot)$ represents the any-order AR learned through discrete diffusion. When applied to our audio spans, this gives:

$$\tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m}) = \mathbb{E}_{\pi_m \sim U_{\pi_m}} \prod_{j=1}^{|\mathcal{A}_m|} q_\theta(a_{m,\pi_m(j)} \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m}, a_{m,\pi_m(<j)}) \quad (4)$$

Intuitively, this averages the likelihood over all possible within-span orderings, reflecting the fact that audio tokens can be generated in any order given the appropriate cross-modal context. Note that while tokens within \mathcal{A}_m form an antichain under the partial order (i.e., no mandatory sequential constraints), the order-marginalized conditional in Eq. 4 allows the model to leverage local target-target dependencies that may arise under specific generation orders. This flexibility enables the model to capture useful intra-span structures when beneficial.

Hybrid AR-NAR Joint Distribution Combining fixed-order AR for text with order-marginalized factorization for audio, our model induces the joint scoring function:

$$\tilde{p}_\theta(x) = \prod_{m=1}^M \underbrace{\left[\prod_{j=1}^{|\mathcal{T}_m|} p_\theta(t_{m,j} \mid \mathcal{T}_{< m}, \mathcal{A}_{< m}, t_{m,<j}) \cdot \underbrace{\tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m})}_{\text{order-marginalized any-order AR for audio}} \right]}_{\text{single-order AR for text}} \quad (5)$$

This formulation reveals that both modalities are fundamentally AR: text uses a single linear extension (left-to-right), while audio integrates over all linear extensions consistent with the partial order.

Training Objective and Upper Bound Analysis In practice, we cannot directly optimize $\tilde{p}_\theta(x)$ because the order-marginalized conditional in Eq. 4 requires computing expectations over all permutations. Instead, we use the training objectives $\mathcal{L}_{\text{AR}}(x)$ and $\mathcal{L}_{\text{AO}}(x)$ derived in Section 3.2. The key theoretical insight is that our combined training objective provides a tight upper bound on the negative log-likelihood of the desired joint distribution. To see this, consider the audio term:

$$\begin{aligned} & \mathbb{E}_{\pi_m \sim U_{\pi_m}} \sum_{j=1}^{|\mathcal{A}_m|} \left[-\log q_\theta(a_{m,\pi_m(j)} \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m}, a_{m,\pi_m(<j)}) \right] \\ & \geq -\log \mathbb{E}_{\pi_m \sim U_{\pi_m}} \prod_{j=1}^{|\mathcal{A}_m|} q_\theta(a_{m,\pi_m(j)} \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m}, a_{m,\pi_m(<j)}) \end{aligned} \quad (6)$$

The right-hand side is precisely $-\log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{< m})$ from Eq. 4. The left-hand side is exactly the audio loss term for span m in our practical training objective $\mathcal{L}_{\text{AO}}(x)$.

270 To establish the unified upper bound, we now sum the inequality in Eq. 6 over all audio spans
 271 $m = 1, \dots, M$:

$$273 \sum_{m=1}^M \mathbb{E}_{\pi_m} \sum_{j=1}^{|\mathcal{A}_m|} [-\log q_\theta(a_{m, \pi_m(j)} \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m}, a_{m, \pi_m(<j)})] \geq \sum_{m=1}^M (-\log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m})) \quad (7)$$

277 The left-hand side is exactly \mathcal{L}_{AO} . For the text terms, the \mathcal{L}_{AR} loss is defined in Eq. 2. Combining
 278 the text and audio terms according to the joint factorization in Eq. 5 yields:

$$279 \mathcal{L}_{\text{Unified}}(x) \triangleq \mathcal{L}_{\text{AR}}(x) + \mathcal{L}_{\text{AO}}(x) \geq -\log \tilde{p}_\theta(x) \quad (8)$$

281 a detailed derivation of this inequality is provided in Appendix A.1.1, where this final inequality
 282 follows from combining the text equality with the audio inequality derived above. Thus, minimizing
 283 our practical training objective $\mathcal{L}_{\text{Unified}}(x)$ corresponds to minimizing an upper bound on the
 284 negative log-likelihood of the theoretically motivated joint distribution $\tilde{p}_\theta(x)$. This result is signif-
 285 icant because: (1) It provides theoretical justification for our hybrid AR-NAR training approach.
 286 (2) It guarantees that optimizing the computationally tractable objective $\mathcal{L}_{\text{Unified}}(x)$ will not deviate
 287 arbitrarily from the theoretically optimal objective $-\log \tilde{p}_\theta(x)$.

288 **Training Pipeline and Loss Computation** Our training pipeline starts from a pretrained text
 289 LLM and expands its vocabulary with discrete audio codebook tokens and control symbols ($\langle \text{SOA} \rangle$,
 290 $\langle \text{EOA} \rangle$). Each training sequence is organized as interleaved text spans and audio spans. We provide
 291 an illustration of loss computation in Appendix A.5. Despite its theoretical and practical advantages,
 292 the hybrid AR-NAR paradigm introduces a significant train-test discrepancies that can degrade gen-
 293 eration quality. During training, audio spans are partially masked according to the diffusion process,
 294 while during inference, the model must generate audio and text tokens conditioned on complete text
 295 context and previously generated clean audio tokens. To bridge this gap, we propose three principled
 296 training strategies:

- 297 • **Batchwise AR & NAR Objective Mixing (BANOM):** With probability p_{mix} , we skip the diffu-
 298 sion noise addition process for certain samples and compute gradients only on text tokens using
 299 AR loss. This ensures that during training, text tokens occasionally observe clean, unmasked audio
 300 spans—matching the inference scenario where text generation conditions on previously generated
 301 complete audio content rather than partially masked spans.
- 302 • **Prefix Preservation Masking (PPM):** For a fraction p_{prefix} of training samples, we randomly se-
 303 lect a cutoff index m and ensure that all preceding audio spans $\mathcal{A}_{<m} = \{\mathcal{A}_1, \dots, \mathcal{A}_{m-1}\}$ remain
 304 unmasked, while applying NAR diffusion loss only to spans $\mathcal{A}_{\geq m} = \{\mathcal{A}_m, \mathcal{A}_{m+1}, \dots, \mathcal{A}_M\}$.
 305 This strategy ensures that during training, when generating span \mathcal{A}_m , the model observes clean
 306 representations of all previous spans $\mathcal{A}_{<m}$, matching the inference scenario where audio spans are
 307 generated sequentially and each span \mathcal{A}_m conditions on fully generated, clean preceding spans
 308 $\mathcal{A}_{<m}$ rather than their corrupted, partially masked versions.
- 309 • **Stochastic Span Truncation (SST):** We address the positional bias in $\langle \text{EOA} \rangle$ prediction by ran-
 310 domly truncating audio span \mathcal{A}_M during training. Due to disparate tokenization rates between
 311 text and audio, audio tokens significantly outnumber text tokens, resulting in fixed-size spans
 312 $\mathcal{A}_1, \dots, \mathcal{A}_{M-1}$ and a variable-length final span \mathcal{A}_M . Since all audio spans undergo simultaneous
 313 diffusion training, the model learns to predict $\langle \text{EOA} \rangle$ at fixed positions for early spans, creating
 314 a strong positional bias that hinders content-aware termination learning for the final span. To
 315 mitigate this, we implement stochastic truncation: with probability p_{trunc} , we randomly select a
 316 truncation length $k < |\mathcal{A}_M|$ and create a truncated span $\mathcal{A}_M^{\text{trunc}} = (a_{M,1}, \dots, a_{M,k})$ by removing
 317 the original $\langle \text{EOA} \rangle$ token and suffix tokens $(a_{M,k+1}, \dots, a_{M,|\mathcal{A}_M|})$. This creates training sam-
 318 ples where span termination occurs at arbitrary positions rather than fixed boundaries, forcing the
 319 model to predict $\langle \text{EOA} \rangle$ based on semantic content and contextual text rather than positional cues.

321

3.4 MODALITY-AWARE ATTENTION MECHANISM

322 Our attention design enforces a step-wise pattern across three content types: (1) the input prompt
 323 uses standard causal attention; (2) text tokens \mathcal{T}_m apply strict causal attention to the prompt, all

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
21

378 Table 1: Comprehensive evaluation of TtT framework. Higher (\uparrow) is better for Audio-QA, lower (\downarrow)
379 is better for ASR. Datasets abbreviations are available in Table 7

Models	Audio-QA (\uparrow)					ASR (\downarrow)				
	AE.	LQ.	TQA.	WQ.	Fzh.	A2.	A1.	WS.m.	WS.n.	Fen.
<i>Main Results</i>										
Qwen2.5-1.5B (AR)	17.99	16.78	1.61	2.32	99.08	59.73	80.27	85.55	81.76	96.16
Qwen2.5-1.5B (NAR)	10.70	0.00	0.40	0.20	86.97	224.37	191.11	123.96	143.76	108.25
TtT-1.5B (AR-NAR)	15.68	23.75	3.47	7.70	44.36	14.89	16.72	52.23	41.52	49.00
Qwen2.5-3B (AR)	14.42	10.00	0.60	0.70	90.32	54.94	72.01	80.01	73.64	74.47
Qwen2.5-3B (NAR)	11.31	0.67	1.21	0.70	68.94	212.27	160.58	89.22	111.29	83.51
TtT-3B (AR-NAR)	17.46	34.68	6.53	11.61	55.67	12.53	13.65	53.83	44.29	64.31
<i>Ablation Study</i>										
TtT-3B w/o BANOM	13.87	19.87	2.81	5.12	58.25	18.58	21.35	58.48	49.52	68.90
TtT-3B w/o PPM	14.27	22.79	2.71	5.54	58.86	15.63	18.83	57.76	47.92	67.37
TtT-3B w/o SST	14.12	10.20	1.30	3.72	56.39	25.43	31.03	64.41	56.70	62.60
TtT-3B (AR-NAR)	17.46	34.68	6.53	11.61	55.67	12.53	13.65	53.83	44.29	64.31
<i>Training Strategy Comparison</i>										
TtT-3B (AR-NAR)	17.46	34.68	6.53	11.61	55.67	12.53	13.65	53.83	44.29	64.31
Pretrain+AR	29.45	15.93	3.61	11.45	23.37	9.79	12.67	26.75	20.91	19.49
Pretrain+TtT	26.73	40.07	11.07	21.43	18.99	6.80	5.78	27.59	19.85	19.10

398 to assess semantic correctness against ground-truth answers; (2) For the ASR task, we directly
399 measure transcription accuracy using Word Error Rate (WER); (3) For the AAC task, we adopt
400 the evaluation prompt from CLAIR-A (Wu et al., 2024), using thinking model Qwen3-30B-A3B
401 to judge the caption quality; (4) For URO-Bench, we directly use the official evaluation code and
402 protocol to ensure a fair comparison with existing systems; More details are in Appendix A.7.1.

404 **Baselines** We compare TtT with state-of-the-art audio-language models, including Moshi
405 Défossez et al. (2024), SpeechGPT Zhang et al. (2023), Kimi-Audio Ding et al. (2025), VITA-Audio
406 Long et al. (2025), LLaMA-Omni Fang et al. (2025), GLM-4-Voice Zeng et al. (2024), Mini-Omni
407 Xie & Wu (2024b) and SLAM-Omni Chen et al. (2025) (detailed descriptions in Appendix A.8).

409 **Model Configuration** We adopt the Qwen2.5-Base model as the backbone, experimenting with
410 parameter scales of 1.5B and 3B, and fine-tune all parameters during training. For the audio compo-
411 nents, we directly follow the audio tokenizer and decoder design introduced in GLM-4-Voice (Zeng
412 et al., 2024). These modules have been shown to provide efficient and high-quality speech tok-
413 enization and synthesis, and they allow our framework to leverage strong audio modeling without
414 requiring additional architectural modifications. The training details are provide in Appendix A.9.

416 4.2 VALIDATING THE HYBRID AR-NAR ARCHITECTURE

418 To evaluate the effectiveness of our proposed TtT framework, we compare it with two represen-
419 tative variants, purely AR backbone and purely diffusion based NAR backbone. For fairness and
420 scalability, all three frameworks are instantiated with backbones of 1.5B and 3B parameters.

422 **Performance Analysis on Audio-QA and ASR Tasks** Table 1 (Main Results) provides the
423 comparative results for the Audio-QA and ASR tasks. Our proposed TtT framework consistently out-
424 performs both pure AR and NAR variants across all metrics. Specifically, at the 3B scale, TtT-
425 3B surpassing Qwen2.5-3B (AR) by +3.04, +24.68, +5.93, and +10.91. For ASR tasks, TtT-3B
426 yielding improvements of 42.41 and 58.36 absolute WER points over Qwen2.5-3B (AR). These
427 substantial gains stem from our hybrid AR-NAR design: the NAR diffusion component enables
428 efficient parallel denoising for tighter audio-text alignment, capturing audio’s inherent source-target
429 dependencies, while AR text generation maintains coherent cross-modal conditioning and respects
430 target-target dependencies. In contrast, purely NAR models perform notably worse due to order
431 confusion from applying order-agnostic objectives to inherently sequential text-audio sequences.
432 We also observe consistent scaling trends, where TtT-3B substantially outperforms TtT-1.5B across
433 all tasks.

432 Table 2: Performance comparison on Audio-QA, ASR, and AAC tasks. Higher (\uparrow) is better for
 433 Audio-QA and AAC; lower (\downarrow) is better for ASR. Datasets abbreviations are available in Table 7
 434

435 Models	436 Size	437 Audio-QA (\uparrow)				438 ASR (\downarrow)				439 AAC (\uparrow)			
		440 AE.	441 LQ.	442 TQA.	443 WQ.	444 Fzh.	445 A2.	446 A1.	447 WS.m.	448 WS.n.	449 Fen.		
<i>Large Models ($> 7B$)</i>													
Moshi	7B	25.63	48.30	16.75	16.85	-	-	-	-	-	4.32	12.01	
SpeechGPT	7B	10.00	30.96	16.53	24.53	101.45	120.77	111.81	123.15	124.86	45.15	2.10	3.95
Kimi-Audio	7B	19.49	57.53	43.51	43.20	2.87	2.53	0.61	6.34	5.39	4.87	55.92	64.90
VITA-Audio	7B	40.20	54.30	18.59	30.75	6.35	5.56	4.58	20.38	15.88	9.58	6.18	7.94
LLaMA-Omni	8B	39.59	48.46	21.80	30.28	-	-	-	-	-	2.53	4.56	
GLM-4-Voice	9B	44.87	62.67	44.99	48.47	158.47	425.84	414.77	207.14	270.21	223.07	13.15	12.67
<i>Efficient Models ($\leq 3B$)</i>													
Mini-Omni	0.5B	15.73	2.00	1.10	2.42	182.73	342.40	442.06	294.42	335.80	22.74	3.61	4.45
SLAM-Omni	0.5B	17.47	24.75	3.51	7.90	-	-	-	-	-	-	54.52	50.46
Qwen2.5-3B (AR)	3B	14.42	10.00	0.60	0.70	90.32	54.94	72.01	80.01	73.64	74.47	9.73	48.64
Qwen2.5-3B (NAR)	3B	11.31	0.67	1.21	0.70	68.94	212.27	160.58	89.22	111.29	83.51	9.54	27.40
TtT	3B	17.46	34.68	6.53	11.61	55.67	12.53	13.65	53.83	44.29	64.31	12.63	48.87
Pretrain+TtT	3B	26.73	40.07	11.07	21.43	18.99	6.80	5.78	27.59	19.85	19.10	11.55	42.86

449 **Ablation Study** To better understand the contribution of each training strategy in our hybrid AR-
 450 NAR framework, we perform an ablation study based on the full model TtT-3B (AR-NAR). The
 451 variant w/o BANOM corresponds to removing batchwise AR & NAR objective mixing from the
 452 full model, w/o PPM removes prefix preservation masking, and w/o SST removes stochastic span
 453 truncation. Table 1 ablation study part presents the detailed results of our ablation experiments.
 454 From these results we draw the following conclusions: (1) All three training strategies have a pos-
 455 itive impact on model performance, and removing any one of them leads to clear degradation. For
 456 instance, on the LLaMAQuestions dataset, removing SST reduces the score from 34.68 to 10.20.
 457 This drop occurs because stochastic truncation mitigates positional bias in $\langle \text{EOA} \rangle$ prediction, for-
 458 eing span termination by semantic content rather than position. Removing it weakens variable-length
 459 audio generation and reduces flexibility in conversational outputs. (2) Removing BANOM yields
 460 the largest performance degradation. For example, on the AISHELL-2 dataset, the performance de-
 461 creases from 12.53 to 18.58 when the strategy is removed. This mechanism is essential for exposing
 462 text tokens to clean audio prefixes during training, better matching inference. Without it, the model
 463 faces sharper train-test discrepancy, weakening cross-modal consistency and alignment.

464 **Effect of multimodal alignment pretraining.** To further investigate the effectiveness of our
 465 method on top of a multimodally aligned pretrained model, we perform large-scale multimodal
 466 pretraining based on the Qwen2.5-3B-Base model. Specifically, we construct a corpus of approxi-
 467 mately 200B tokens covering ASR, TTS, text-only data, and interleaved text-audio data. The model
 468 is trained with a standard AR objective using a global batch size of 256 for 140k steps. This
 469 pretraining stage equips the backbone model (Qwen2.5-3B-Base) with strong cross-modal align-
 470 ment ability before applying our hybrid AR-NAR learning framework. Table 1 compares the AR-
 471 only and AR-NAR frameworks under two different training strategies, specifically training directly
 472 from Qwen2.5-3B-Base without multimodal pretraining (TtT-3B) and initialization from the mul-
 473 timodally aligned pretrained model (Pretrain+AR and Pretrain+TtT). From the table, we observe
 474 that: (1) When trained directly from Qwen2.5-3B-Base, our TtT framework achieves comparable or
 475 even superior performance to the AR-only baseline, indicating that the hybrid AR-NAR design is
 476 already competitive without pretraining; (2) when applied on top of the multimodally aligned pre-
 477 trained model, Pretrain+TtT consistently matches or surpasses Pretrain+AR across both Audio-QA
 478 and ASR tasks. These results demonstrate that TtT not only performs strongly from scratch, but
 479 also benefits significantly when built upon large-scale multimodal alignment pretraining. Having
 480 validated the effectiveness of our hybrid architecture and the benefits of multimodal pretraining, we
 481 now compare our best model (Pretrain+TtT) against state-of-the-art audio-language models.

4.3 BENCHMARKING AGAINST STATE-OF-THE-ART MODELS

482 Building on the demonstrated strengths of our hybrid AR-NAR architecture and multimodal pre-
 483 training, we now evaluate Pretrain+TtT against state-of-the-art audio-language models. Tables 2
 484 and 3 group results by model scale, distinguishing efficient models from large ones. Notably,

486
487
488 Table 3: Evaluation results on URO-Bench. Higher (\uparrow) is better for all tasks.
489
490

Models	Size	Basic Task (\uparrow)			Pro Task (\uparrow)			Perceptual Quality (\uparrow)	
		Under-standing	Reasoning	Oral Conversation	Under-standing	Reasoning	Oral Conversation	NMOS	UTMOS
<i>Large Models ($> 7B$)</i>									
Moshi	7B	18.23	24.21	36.65	26.38	21.06	33.93	3.10	3.05
SpeechGPT	7B	9.26	13.34	35.50	19.03	14.29	28.88	4.04	3.92
Kimi-Audio	7B	83.89	53.88	54.44	53.25	41.44	50.17	3.52	2.93
VITA-Audio	7B	52.08	51.45	54.97	32.36	54.77	45.81	3.95	4.24
LLaMA-Omni	8B	53.71	41.93	64.05	34.66	51.51	43.91	4.09	4.00
GLM-4-Voice	9B	85.82	61.63	69.90	55.47	51.89	61.30	3.86	4.15
<i>Efficient Models ($\leq 3B$)</i>									
Mini-Omni	0.5B	15.01	14.80	29.71	23.51	33.09	33.46	4.15	4.42
SLAM-Omni	0.5B	31.55	26.45	42.20	34.49	27.39	40.23	4.23	4.44
Qwen2.5-3B (AR)	3B	34.32	13.15	23.68	16.32	34.99	25.90	3.96	4.16
Qwen2.5-3B (NAR)	3B	7.22	10.12	20.01	12.59	13.70	25.64	3.47	2.35
TtT	3B	43.39	24.00	30.08	23.37	33.78	34.82	3.89	4.25
Pretrain+TtT	3B	57.63	39.30	45.68	32.38	43.76	46.10	3.90	4.23

504
505 Moshi does not support ASR, and the official releases of LLaMA-Omni and SLAM-Omni lack
506 ASR prompting, hence no ASR results are reported. GLM-4-Voice exhibits poor ASR performance
507 due to the absence of task-specific system prompts. Mini-Omni and SpeechGPT exhibit poor gen-
508 eralization to Chinese ASR tasks, as they are trained solely on English speech. Among efficient
509 models, Pretrain+TtT achieves state-of-the-art performance across Audio-QA, ASR, and AAC. It
510 substantially outperforms 0.5B baselines such as Mini-Omni and SLAM-Omni on Audio-QA and
511 ASR. While SLAM-Omni reports higher AAC scores (54.52 on Clotho, 50.46 on MACS), its offi-
512 cial implementation relies on a separate 7B Vicuna model fine-tuned specifically for AAC. Notably,
513 Pretrain+TtT also exceeds several 7B-scale models on some tasks: it outperforms SpeechGPT (7B)
514 across all Audio-QA and ASR benchmarks, and surpasses Moshi (7B) on WQ. and AE. tasks. These
515 results demonstrate that our hybrid AR–NAR design enables a compact 3B model to match or ex-
516 ceed the task-specific capabilities of significantly larger systems.

517 Beyond the standard benchmarks, we further validate our model on URO-Bench (Yan et al., 2025) a
518 comprehensive speech-to-speech benchmark that assesses speech understanding, reasoning, and oral
519 conversation across basic and pro difficulty levels. As shown in Table 3, among efficient models,
520 Pretrain+TtT achieves the best performance across both basic and pro difficulty levels. Compared to
521 large models, Pretrain+TtT outperforms Moshi (7B) and SpeechGPT (7B) across all task categories,
522 and achieves comparable performance to VITA-Audio (7B) and LLaMA-Omni (8B) on pro reasoning
523 tasks and pro oral conversation tasks. While GLM-4-Voice (9B) and Kimi-Audio (7B) achieve
524 the highest scores overall, the performance gap is reasonable given their 3x model size. The per-
525 ceptual quality of both TtT and Pretrain+TtT falls within the 3.89–4.5 range (NMOS & UTMOS),
526 confirming consistently good audio synthesis quality. However, Kimi-Audio exhibits notably lower
527 perceptual quality (UTMOS: 2.93, NMOS: 3.52) despite its strong task completion performance.
528 This degradation stems from language consistency issues: Kimi-Audio frequently generates mixed
529 Chinese-English audio or produces Chinese audio for English tasks. While the semantic content
530 may be correct, such cross-lingual inconsistencies significantly degrade perceptual audio quality.

531 5 CONCLUSION

532

533
534 In this work, we introduce a unified framework that combines autoregressive text generation with
535 non-autoregressive audio diffusion. By explicitly respecting the asymmetry between text and au-
536 dio dependencies, our framework bridges the strengths of AR and NAR modeling within a single
537 Transformer. We further propose simple yet effective strategies to mitigate train–test discrepancies,
538 enabling robust and flexible audio generation. Experiments on Audio-QA and ASR benchmarks
539 demonstrate clear improvements over strong AR and NAR baselines. Our results highlight the im-
portance of modality-aware design for building scalable and effective speech-to-speech systems.

REPRODUCIBILITY STATEMENT

The anonymous downloadable source code is available at: <https://anonymous.4open.science/r/TtT>. For theoretical results, a complete proof of the claim is included in the Section A.1.1 in Appendix.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing Systems*, 34:17981–17993, 2021.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolum: a language modeling approach to audio generation. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 31:2523–2533, 2023.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. *Time series analysis: forecasting and control*. John Wiley & Sons, 2015.

Junyi Chen, Shuming Shen, Andi Chen, Wen Wu, Jiantao Kang, Haohe Li, Weijiang Zhou, Yi Ren, Yanmin Qian, Xipeng Qiu, et al. Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing. *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*, 2022.

Wenxi Chen, Ziyang Ma, Ruiqi Yan, Yuzhe Liang, Xiquan Li, Ruiyang Xu, Zhikang Niu, Yanqiao Zhu, Yifan Yang, Zhanxun Liu, Kai Yu, Yuxuan Hu, Jinyu Li, Yan Lu, Shujie Liu, and Xie Chen. Slam-omni: Timbre-controllable voice interaction system with single-stage training. In *Proceedings of Findings of the Association for Computational Linguistics*, Vienna, Austria, July 2025.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*, 2024.

Trung Dang, David Aponte, Dung Tran, and Kazuhito Koishida. Livespeech: Low-latency zero-shot text-to-speech via autoregressive modeling of audio discrete codes. *arXiv preprint arXiv:2406.02897*, 2024.

Brian A Davey and Hilary A Priestley. *Introduction to lattices and order*. Cambridge university press, 2002.

Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue. *arXiv preprint arXiv:2410.00037*, 2024.

Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song, Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 736–740. IEEE, 2020.

Harishchandra Dubey, Ashkan Aazami, Vishak Gopal, Babak Naderi, Sebastian Braun, Ross Cutler, Alex Ju, Mehdi Zohourian, Min Tang, Mehrsa Golestaneh, et al. Icassp 2023 deep noise suppression challenge. *IEEE Open Journal of Signal Processing*, 5:725–737, 2024.

Qingkai Fang, Shutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni: Seamless speech interaction with large language models. In *Proceedings of the 13th International Conference on Learning Representations*, Singapore, April 2025.

Guohao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, and Di He. Theoretical benefit and limitation of diffusion language model. *arXiv preprint arXiv:2502.09622*, 2025.

594 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
595 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
596 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

597

598 Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen,
599 Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent
600 speech interaction. *arXiv preprint arXiv:2502.11946*, 2025.

601

602 Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
603 efficient and high fidelity speech synthesis. *Advances in Neural Information Processing Systems*,
604 33:17022–17033, 2020.

605

606 Gen Li and Changxiao Cai. A convergence theory for diffusion language models: An information-
607 theoretic perspective. *arXiv preprint arXiv:2505.21400*, 2025.

608

609 Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li,
610 Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end speech
611 interaction. *arXiv preprint arXiv:2502.17239*, 2025.

612

613 Alexander H Liu, Sang-gil Lee, Chao-Han Huck Yang, Yuan Gong, Yu-Chiang Frank Wang,
614 James R Glass, Rafael Valle, and Bryan Catanzaro. Uniwav: Towards unified pre-training for
615 speech representation learning and generation. *arXiv preprint arXiv:2503.00733*, 2025.

616

617 Zuwei Long, Yunhang Shen, Chaoyou Fu, Heting Gao, Lijiang Li, Peixian Chen, Mengdan Zhang,
618 Hang Shao, Jian Li, Jinlong Peng, et al. Vita-audio: Fast interleaved cross-modal token generation
619 for efficient large speech-language model. *arXiv preprint arXiv:2505.03739*, 2025.

620

621 Justin Lovelace, Varsha Kishore, Yiwei Chen, and Kilian Weinberger. Diffusion guided language
622 modeling. *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14936–
623 14952, 2024.

624

625 Irene Martín-Morató and Annamaria Mesaros. What is the ground truth? reliability of multi-
626 annotator data for audio tagging. In *2021 29th European Signal Processing Conference (EUSIPCO)*, pp. 76–80. IEEE, 2021.

627

628 Shivam Mehta, Ruibo Tu, Jonas Beskow, Éva Székely, and Gustav Eje Henter. Matcha-tts: A fast
629 tts architecture with conditional flow matching. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 11341–11345. IEEE, 2024.

630

631 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
632 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.

633

634 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
635 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

636

637 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
638 Robust speech recognition via large-scale weak supervision, 2022. URL <https://arxiv.org/abs/2212.04356>.

639

640 Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
641 ing with recurrent neural networks. *arXiv preprint arXiv:1511.06732*, 2015.

642

643 Yi Ren, Jinglin Liu, Xu Tan, Zhou Zhao, Sheng Zhao, and Tie-Yan Liu. A study of non-
644 autoregressive model for sequence generation. *arXiv preprint arXiv:2004.10454*, 2020.

645

646 Paul K Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
647 Félix de Chaumont Quirky, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, et al.
648 Audiopalm: A large language model that can speak and listen. *arXiv preprint arXiv:2306.12925*,
649 2023.

648 Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hi-
649 roshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. *arXiv preprint*
650 *arXiv:2204.02152*, 2022.

651 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
652 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
653 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

654 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
655 ized masked diffusion for discrete data. *Advances in Neural Information Processing Systems*, 37:
656 103131–103167, 2024.

657 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
658 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
659 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

660 Chengyi Wang, Sanyuan Chen, Yu Wu, Ziyang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
661 Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
662 synthesizers. *arXiv preprint arXiv:2301.02111*, 2023.

663 Tsung-Han Wu, Joseph E Gonzalez, Trevor Darrell, and David M Chan. Clair-a: Leveraging large
664 language models to judge audio captions. *arXiv preprint arXiv:2409.12962*, 2024.

665 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
666 streaming. *arXiv preprint arXiv:2408.16725*, 2024a.

667 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
668 streaming. *arXiv preprint arXiv:2408.16725*, 2024b.

669 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
670 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.

671 Ruiqi Yan, Xiquan Li, Wenxi Chen, Zhikang Niu, Chen Yang, Ziyang Ma, Kai Yu, and Xie Chen.
672 Uro-bench: A comprehensive benchmark for end-to-end spoken dialogue models. *arXiv preprint*
673 *arXiv:2502.17810*, 2025.

674 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
675 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
676 *arXiv:2505.09388*, 2025a.

677 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
678 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025b.

679 Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
680 Beyond autoregression: Discrete diffusion for complex reasoning and planning. *arXiv preprint*
681 *arXiv:2410.14157*, 2024.

682 Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
683 model with parallel decoding. *arXiv preprint arXiv:2505.16990*, 2025.

684 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
685 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv*
686 *preprint arXiv:2412.02612*, 2024.

687 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Shengmin Jiang, Yuxiao Dong, and Jie
688 Tang. Scaling speech-text pre-training with synthetic interleaved data. In *Proceedings of the 13th*
689 *International Conference on Learning Representations*, Singapore, April 2025.

690 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
691 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
692 ities. *arXiv preprint arXiv:2305.11000*, 2023.

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**

703

704 **A.1 MATHEMATICAL DERIVATION**

705

706 **A.1.1 DERIVATION OF THE TRAINING OBJECTIVE UPPER BOUND**

707

708 Recall from Eq. 5 that the joint distribution factors as:

709

710
$$\tilde{p}_\theta(x) = \prod_{m=1}^M \left[\prod_{j=1}^{|\mathcal{T}_m|} p_\theta(t_{m,j} \mid \mathcal{T}_{<m}, \mathcal{A}_{<m}, t_{m,<j}) \cdot \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m}) \right]. \quad (9)$$

711

712

713 Taking the negative logarithm of both sides gives:

714

715

716
$$\begin{aligned} -\log \tilde{p}_\theta(x) &= -\sum_{m=1}^M \sum_{j=1}^{|\mathcal{T}_m|} \log p_\theta(t_{m,j} \mid \mathcal{T}_{<m}, \mathcal{A}_{<m}, t_{m,<j}) - \sum_{m=1}^M \log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m}) \\ &= \mathcal{L}_{\text{AR}}(x) + \sum_{m=1}^M (-\log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m})). \end{aligned} \quad (10)$$

717

718

719

720

721

722 By Eq. 6 and its summation over m , we have:

723

724
$$\mathcal{L}_{\text{AO}}(x) \geq \sum_{m=1}^M (-\log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m})). \quad (11)$$

725

726

727 Therefore, combining both components:

728

729
$$\mathcal{L}_{\text{AR}}(x) + \mathcal{L}_{\text{AO}}(x) \geq \mathcal{L}_{\text{AR}}(x) + \sum_{m=1}^M (-\log \tilde{p}_\theta(\mathcal{A}_m \mid \mathcal{T}_{\leq m}, \mathcal{A}_{<m})) = -\log \tilde{p}_\theta(x), \quad (12)$$

730

731

732 which establishes Eq. 8. This confirms that our practical training objective $\mathcal{L}_{\text{Unified}}(x)$ is a valid
733 upper bound on the true negative log-likelihood, enabling tractable optimization while preserving
734 consistency with the target joint distribution $\tilde{p}_\theta(x)$.

735

736 **A.2 RELATED WORK**

737

738 **A.2.1 AUDIO-LANGUAGE MODEL PRETRAINING**

739

740 Recent advances in end-to-end audio-language models have moved beyond traditional cascaded
741 architectures (Chen et al., 2022; Wang et al., 2023) toward unified multimodal frameworks. Repre-
742 sentative works include Moshi (Défossez et al., 2024), which achieves real-time duplex speech
743 conversation through hierarchical Transformer architectures; GLM4-Voice (Zeng et al., 2024), which
744 builds upon GLM-4-9B for robust Chinese and English speech processing; and VITA-Audio (Long
745 et al., 2025), which introduces a lightweight Multiple Cross-modal Token Prediction (MCTP) mod-
746 ule for fast audio-text generation with significantly reduced first-token latency. More recent efforts
747 have focused on scaling and production readiness: Step-Audio (Huang et al., 2025) presents a 130B-
748 parameter unified speech-text model with generative speech data engine and instruction-driven fine
749 control across dialects, emotions, singing, and RAP, while Baichuan-Audio (Li et al., 2025) features
750 text-guided aligned speech generation with multi-codebook discretization to preserve both semantic
751 and acoustic information. UniWav (Liu et al., 2025) proposes the first unified encoder-decoder
752 framework that jointly learns representation encoders and generative audio decoders for both dis-
753 criminative and generative speech tasks.

754 A key limitation shared by these approaches is their reliance on uniform autoregressive objectives for
755 both text and audio tokens, which overlooks the distinct dependency structures of these modalities.
Our work addresses this gap by proposing a hybrid AR-NAR framework that respects the inherent
asymmetries between text and audio generation.

756 A.2.2 DISCRETE DIFFUSION MODELS
757

758 Discrete diffusion models have emerged as a compelling alternative to autoregressive generation,
759 offering non-autoregressive approaches that can generate entire sequences in parallel. The founda-
760 tional work of D3PMs (Austin et al., 2021) generalized diffusion processes to discrete data through
761 flexible transition matrices, with absorbing processes that progressively mask tokens proving partic-
762 ularly effective. This framework has since evolved through both theoretical advances and practical
763 improvements. From a theoretical perspective, recent work has deepened our understanding of dis-
764 crete diffusion dynamics. Ou et al. (2024) revealed that absorbing diffusion’s concrete score can
765 be expressed as time-independent conditional probabilities, leading to RADD—a reparameterized
766 model that removes explicit time conditioning while establishing connections to any-order auto-
767 regressive generation. Building on this foundation, Li & Cai (2025) formally characterized conver-
768 gence rates, proving that KL divergence decays at $O(1/T)$ with bounds scaling linearly with token
769 mutual information. However, Feng et al. (2025) identified a fundamental trade-off: while masked
770 diffusion achieves near-optimal perplexity in constant steps, sequence-level tasks like reasoning may
771 require steps linear in sequence length. Practical advances have focused on training efficiency and
772 application domains. Shi et al. (2024) reformulated the variational objective as a weighted inte-
773 gral of cross-entropy losses, unifying prior approaches while achieving state-of-the-art results that
774 even surpass comparable autoregressive baselines. For complex reasoning tasks where autoregres-
775 sive models struggle with subgoal imbalance, Ye et al. (2024) demonstrated that Multi-Granularity
776 Diffusion Modeling can achieve near-perfect accuracy by prioritizing harder subgoals during train-
777 ing. The scalability challenge has been addressed through innovative adaptation strategies. Rather
778 than training from scratch, Gong et al. (2024); Nie et al. (2025) showed that pretrained autoregres-
779 sive models can be efficiently converted to diffusion models via continual pre-training, maintaining
780 competitive performance while enabling parallel generation. Meanwhile, hybrid approaches are
781 gaining traction: Lovelace et al. (2024) combined diffusion-based latent proposals with autoregres-
782 sive decoding for controllable generation, while Yang et al. (2025b) developed MMaDA, a unified
783 multimodal diffusion foundation model that processes text, images, and reasoning within a single
784 architecture.

785 A.3 AUTOREGRESSIVE MODELING & ABSORBING DISCRETE DIFFUSION
786

787 A.3.1 AUTOREGRESSIVE MODELING
788

789 Autoregressive (AR) models are a fundamental class of generative models that factorize the joint
790 probability distribution of a sequence $x = (x^1, \dots, x^L)$ into a product of conditional probabilities,
791 based on the chain rule:

792
$$p(x) = \prod_{i=1}^L p(x^i | x^{<i}) \quad (13)$$

793 where $x^{<i} = (x^1, \dots, x^{i-1})$ represents the tokens preceding the current token x^i . This factoriza-
794 tion imposes a sequential, causal structure on the generation process. Such models, typically imple-
795 mented with Transformer decoders, are trained by minimizing the negative log-likelihood (NLL) of
796 the data, which corresponds to a cross-entropy loss at each position.

797 A.3.2 ABSORBING DISCRETE DIFFUSION
798

799 Discrete diffusion models offer a non-autoregressive alternative for sequence generation. We focus
800 on absorbing discrete diffusion (Austin et al., 2021; Ou et al., 2024), which involves a forward
801 corruption process and a learned reverse denoising process.

802 **Forward Process.** The forward process is a continuous-time discrete Markov chain that corromps
803 a clean sequence x_0 over a time interval $t \in [0, T]$. Its dynamics are governed by a time-dependent
804 transition rate matrix $Q_t = \sigma(t)Q$, where $\sigma(t)$ is a positive noise schedule. For absorbing diffusion,
805 the constant matrix $Q = Q^{\text{abs}}$ is defined as:

806
$$Q^{\text{abs}}(x \rightarrow x') = \begin{cases} 1, & \text{if } x' = [\mathbf{M}] \text{ and } x \neq [\mathbf{M}], \\ -1, & \text{if } x' = x \neq [\mathbf{M}], \\ 0, & \text{otherwise.} \end{cases} \quad (14)$$

810 This structure dictates that any token $x \neq [\text{M}]$ transitions to a special mask token $[\text{M}]$ at a rate
 811 of $\sigma(t)$. The state $[\text{M}]$ is an **absorbing state** because the transition rate out of it is zero (i.e.,
 812 $Q^{\text{abs}}([\text{M}] \rightarrow x') = 0$ for all x'), meaning once a token is masked, it remains masked. Over time,
 813 the sequence converges to a fully masked state. The probability that a token is masked by time t is
 814 given by $\lambda(t) = 1 - e^{-\int_0^t \sigma(s)ds}$.
 815

816 **Reverse Process.** The reverse process is also a continuous-time Markov chain that learns to de-
 817 noise a corrupted sequence x_t back towards the clean data x_0 . Its reverse transition rate matrix \tilde{Q}_t
 818 is related to the forward rate matrix by:
 819

$$820 \tilde{Q}_t(x_t \rightarrow \hat{x}_t) = \begin{cases} \mathbf{Q}_t(\hat{x}_t \rightarrow x_t) \frac{p_t(\hat{x}_t)}{p_t(x_t)}, & x_t \neq \hat{x}_t, \\ -\sum_{k \neq x} \tilde{Q}_t(x_t, k), & \hat{x}_t = x_t. \end{cases} \quad (15)$$

822 The term $p_t(\hat{x}_t)/p_t(x_t)$ is known as the *concrete score*. Since the forward process only allows
 823 transitions to the $[\text{M}]$ state, the only non-trivial reverse transitions are from $[\text{M}]$ back to a vocabulary
 824 token. This simplifies the learning task to modeling the score for these specific denoising transitions.
 825

826 **Time-Independent Score and the Denoising Objective.** A key theoretical insight for absorbing
 827 diffusion is that the concrete score analytically decomposes into a known, time-dependent scalar and
 828 a *time-independent* conditional probability over the clean data (Ou et al., 2024). Specifically, for a
 829 transition that unmasks position i from $[\text{M}]$ to a token v , the score is:
 830

$$831 \underbrace{\frac{p_t(\dots, \hat{x}^i=v, \dots)}{p_t(\dots, x^i=[\text{M}], \dots)}}_{\text{concrete score}} = \underbrace{\frac{e^{-\bar{\sigma}(t)}}{1 - e^{-\bar{\sigma}(t)}}}_{\text{time scalar}} \cdot \underbrace{p_0(v \mid UM)}_{\text{clean conditional probability}}. \quad (16)$$

834 where UM denotes the set of unmasked (visible) tokens in the corrupted sequence. This decom-
 835 position is crucial because it decouples the time-dependent dynamics from the data distribution. It
 836 implies that the model q_θ does not need to learn a complex function of time t . Instead, its sole
 837 objective is to learn to approximate the clean conditional distribution $p_0(v \mid UM)$, which is a static,
 838 time-independent property of the data. The learning task is thus simplified to a denoising objective:
 839 given a corrupted sequence with some tokens masked, predict the original tokens for the masked
 840 positions based on the visible context.
 841

842 **Equivalence to Any-Order Autoregressive Modeling.** This denoising perspective reveals a pro-
 843 found connection to autoregressive modeling. A standard AR model learns to predict a token based
 844 on a fixed, causal context. The diffusion model, through its denoising objective, learns to predict a
 845 token given an arbitrary context of unmasked tokens. This ability to condition on any subset of the
 846 context is the defining feature of an Any-Order Autoregressive Model (AO-ARM).
 847

848 In fact, the principled training objective for the diffusion model, known as the λ -denoising cross-
 849 entropy loss, is mathematically equivalent to the training objective of an AO-ARM (Ou et al., 2024),
 850 which averages the prediction loss over all possible permutations (or orderings) of the sequence:
 851

$$852 \mathcal{L}_{AO}(\mathbf{x}_0) = \mathbb{E}_{\pi \sim U_\pi} \sum_{l=1}^d -\log q_\theta(x_0^{\pi(l)} \mid x_0^{\pi(<l)}). \quad (17)$$

853 where π is a random permutation of the token indices. Therefore, training an absorbing discrete
 854 diffusion model is equivalent to training a powerful ensemble of autoregressive models that can
 855 operate in any order. This inherent flexibility is what enables parallel, non-autoregressive generation
 856 at inference time and makes it a suitable choice for modeling source-dependent modalities like audio.
 857

858 A.4 BLOCK-WISE MASKED DIFFUSION GENERATION FOR AUDIO TOKENS

859 For NAR audio generation, we employ a block-wise denoising approach adapted from Nie et al.
 860 (2025). Unlike full-sequence diffusion, it processes audio in fixed-length blocks, balancing paral-
 861 lelism and controllability.
 862

863 As detailed in Algorithm 1, the model generates audio in fixed-size blocks of length B , where
 864 each block is progressively denoised over T steps using an absorbing discrete diffusion process.
 865

864 At each denoising step t , the model predicts tokens for all currently masked positions in parallel.
 865 The algorithm then selectively commits the most confident predictions (determined by predicted
 866 probability or random sampling) while remasking the remaining positions for further refinement.
 867 This progressive denoising continues until all positions in the current block are decoded. Crucially,
 868 if an $\langle \text{EOA} \rangle$ token is generated within a block, decoding terminates immediately at that position,
 869 truncating the remainder and seamlessly returning control to the AR text generation mode.
 870

871 **Algorithm 1** Block-wise Masked Diffusion for Autoregressive Audio Generation

872 **Require:** Context tokens $\mathbf{c} \in \mathbb{N}^{1 \times L_c}$, max generation length $L_{\max} \in \mathbb{N}$,
 873 1: Sampling steps $T \in \mathbb{N}$, block length $B \in \mathbb{N}$, temperature $\tau \geq 0$,
 874 2: CFG scale $\gamma \geq 0$, remasking strategy $\mathcal{R} \in \{\text{low_confidence}, \text{random}\}$,
 875 3: Special token IDs: mask m_{mask} , end-of-audio \mathcal{E} .
 876 **Ensure:** Generated token sequence $\mathbf{s} \in \mathbb{N}^{1 \times L}$ with $L \leq L_c + L_{\max}$.
 877 4: Initialize $\mathbf{s} \leftarrow \mathbf{c}$ ▷ Start from context
 878 5: **while** $|\mathbf{s}| < |\mathbf{c}| + L_{\max}$ **do**
 879 6: $\mathbf{x} \leftarrow \text{pad}(\mathbf{s}, B, \text{value} = m_{\text{mask}})$ ▷ Append B mask tokens
 880 7: $\mathcal{M}_{\text{block}} \leftarrow \{i \mid \mathbf{x}_i = m_{\text{mask}} \wedge i \geq |\mathbf{s}|\}$ ▷ Masked block indices
 881 8: $\{n_t\}_{t=1}^T \leftarrow \text{schedule}(|\mathcal{M}_{\text{block}}|, T)$ ▷ Tokens to decode per step
 882 9: **for** $t = 1$ to T **do**
 883 10: $\mathcal{M}_t \leftarrow \{i \mid \mathbf{x}_i = m_{\text{mask}}\}$ ▷ Current mask positions
 884 11: **if** $\gamma > 0$ **then**
 885 12: $\mathbf{x}_{\text{uncond}} \leftarrow \mathbf{x}$; $\mathbf{x}_{\text{uncond}}[\neg \mathcal{M}_t] \leftarrow m_{\text{mask}}$ ▷ Unconditional input
 886 13: $\ell_{\text{cond}}, \ell_{\text{uncond}} \leftarrow \text{model}([\mathbf{x}; \mathbf{x}_{\text{uncond}}])$ ▷ Batched forward
 887 14: $\ell \leftarrow \ell_{\text{uncond}} + (\gamma + 1) \cdot (\ell_{\text{cond}} - \ell_{\text{uncond}})$
 888 15: **else**
 889 16: $\ell \leftarrow \text{model}(\mathbf{x})$
 890 17: **end if**
 891 18: $\hat{\mathbf{x}} \leftarrow \arg \max(\text{Gumbel}(\ell, \tau))$ ▷ Gumbel sampling
 892 19: **if** $\mathcal{R} = \text{low_confidence}$ **then**
 893 20: $\mathbf{p} \leftarrow \text{softmax}(\ell)$; $\mathbf{c}_i \leftarrow \mathbf{p}_i[\hat{\mathbf{x}}_i]$ ▷ Confidence = predicted prob
 894 21: **else if** $\mathcal{R} = \text{random}$ **then**
 895 22: $\mathbf{c}_i \leftarrow \text{Uniform}(0, 1)$ for $i \in \mathcal{M}_t$
 896 23: **end if**
 897 24: $\mathbf{c}_i \leftarrow -\infty$ for $i < |\mathbf{s}|$ ▷ Protect context tokens
 898 25: $\hat{\mathbf{x}}_i \leftarrow \mathbf{x}_i$ for $i \notin \mathcal{M}_t$ ▷ Only update masked positions
 899 26: $\mathcal{K}_t \leftarrow \text{TopK}(\{\mathbf{c}_i \mid i \in \mathcal{M}_t\}, k = n_t)$ ▷ Select n_t most confident/random tokens
 900 27: $\mathbf{x}_i \leftarrow \hat{\mathbf{x}}_i$ for all $i \in \mathcal{K}_t$ ▷ Commit tokens to sequence
 901 28: **end for**
 902 29: $\mathbf{b} \leftarrow \mathbf{x}[|\mathbf{s}| : |\mathbf{s}| + B]$ ▷ Extract generated block
 903 30: **if** $\mathcal{E} \cap \mathbf{b} \neq \emptyset$ **then**
 904 31: $p \leftarrow \min\{i \mid \mathbf{b}_i \in \mathcal{E}\}$; $\mathbf{s} \leftarrow [\mathbf{s}, \mathbf{b}_{:p+1}]$; **return** \mathbf{s} ▷ Early termination at first end token
 905 32: **end if**
 906 33: $\mathbf{s} \leftarrow [\mathbf{s}, \mathbf{b}]$ ▷ Append full block
 907 34: **end while**
 908 35: **return** \mathbf{s}

908 A.5 ILLUSTRATION OF TRAINING LOSS AND ATTENTION DESIGN

909
 910 Figure 3(a) shows the training loss of our framework: AR loss is applied to text spans, while NAR
 911 loss—based on discrete diffusion—is used for audio spans. Although we employ discrete diffusion,
 912 our framework is extensible to other NAR generation methods. Figure 3(b) visualizes the attention
 913 pattern described in Section 3.4.

914
 915 A.6 DATASET DETAILS

916
 917 Table 4 provides a summary of the training datasets, with detailed examples provided in the Ap-
 918 pendix A.9.1. During training, we aim to construct a balanced corpus that supports effective learning

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 3: Training loss and attention design. (a) Training pipeline. Starting from a pretrained text LLM, we expand the vocabulary with audio tokens and control symbols. Text spans use AR cross-entropy loss while audio spans use NAR diffusion loss, sharing a single Transformer backbone. **(b) Attention pattern.** Text spans follow causal attention (left-to-right), while audio spans use bidirectional attention within spans but causal attention across spans, enabling parallel audio generation while preserving cross-modal dependencies.

Specifically, we randomly sample one million instances from the ASR dataset, the TTS dataset, and the audio chat dataset respectively. In addition, we create bilingual interleaved text and audio data, ensuring that Chinese and English are represented in approximately equal proportions. To build the audio chat corpus, we rely on the text-to-audio dataset VoiceAssistant-400K together with the text-based datasets OpenHermes-2.5 and Firefly-Train-1.1M, and we employ a TTS model, namely CosyVoice2, to convert text into synthetic audio so as to enrich the training data. To further enhance cross-modal alignment between text and audio, we follow prior work (Zeng et al., 2025) and supplement the training corpus with interleaved text and audio data derived from the large-scale pretrained corpus FineWeb-Edu. This strategy not only expands task coverage but also strengthens the model’s ability to jointly learn from and align textual and acoustic modalities. The evaluation datasets are shown in Table 7.

A.7 EVALUATION DETAILS

A.7.1 EVALUATION TASKS

URO-Bench We leverage URO-Bench Yan et al. (2025) for a more comprehensive evaluation of our proposed method against existing baselines. URO-Bench is specifically designed for audio-in, audio-out tasks, directly simulating real-world conversational scenarios. In this framework, the spoken outputs from each model are first transcribed into text using Whisper-large Radford et al. (2022), and the resulting transcripts are then evaluated for correctness, coherence, and task alignment. This evaluation employs a hybrid scoring framework comprising three components: (1) an LLM-as-a-judge (originally implemented via commercial LLM APIs) to assess semantic correctness and task alignment; (2) rule-based metrics for automatic Word Error Rate (WER) computation; and (3) a fine-tuned emotion-aware model to evaluate the appropriateness of affective expression in spoken responses. Together, these components ensure that model outputs are judged not merely on surface-level textual fidelity, but on semantic accuracy, transcription quality, and emotional coherence.

URO-Bench structures its evaluation across two difficulty levels: Basic and Pro. Each level comprises three distinct categories: Understanding tasks, Reasoning tasks, and Oral Conversation tasks. This hierarchical design facilitates a fine-grained assessment of model capabilities across increasing levels of linguistic and cognitive demand, covering both single-round and multi-round scenarios. In our experiments, we report results on the English subset of URO-Bench’s evaluation set. Due to limited access to the original evaluation APIs (Gemini Flash and GPT-4o-mini), we substitute the

972
973
974 Table 4: Summary of datasets used in training.
975
976
977

974 Dataset	975 Language	976 Samples	977 Task Type
978 Emilia_zh	979 Chinese	980 500000	981 TTS
982 Emilia_en	983 English	984 500000	985 TTS
986 AISHELL2	987 Chinese	988	989 ASR
990 AISHELL3	991 Chinese	992	993 ASR
994 CommonVoice	995 Chinese, English	996	997 ASR
998 GigaSpeech	999 English	1000 600000	1001 ASR
1002 LibriSpeech	1003 English	1004	1005 ASR
1006 MLS-Eng	1007 English	1008	1009 ASR
1010 PeopleSpeech	1011 English	1012	1013 ASR
1014 VoxPopuli	1015 English	1016	1017 ASR
1018 WenetSpeech	1019 Chinese	1020 400000	1021 ASR
1022 VoiceAssistant-400K	1023 English	1024 1000000	1025 Audio Chat
1026 OpenHermes-2.5	1027 English	1028	1029 Audio Chat
1030 Firefly-Train-1.1M	1031 Chinese	1032	1033 Audio Chat
1034 MathInstruct	1035 English	1036 262039	1037 Text Chat
1038 MACS	1039 English	1040	1041 AAC
1042 Clotho-v2	1043 English	1044	1045 AAC
1046 Nonspeech7k	1047 English	1048 59282	1049 SEC
1050 VocalSound	1051 English	1052	1053 SEC
1054 CochIScene	1055 English	1056	1057 ASC
1059 Chinese-Fineweb-Edu (Skypile)	1060 Chinese	1061 1500000	1062 Interleaved Data
1063 FineWeb-Edu	1064 English	1065 1500000	1066 Interleaved Data
Total		—	6321321

998
999
1000 LLM-as-a-judge component with thinking model Qwen3-30B-A3B, while keeping all other components—including the Whisper-based ASR pipeline and rule-based scoring—identical to the original
1001 implementation.
1002

1003 Furthermore, the benchmark integrates a perceptual quality evaluation mechanism. We employ
1004 the strong UTMOS Saeki et al. (2022) for the UTMOS score and DNSMOS Dubey et al. (2024)
1005 for the NMOS score evaluation, enabling the joint assessment of content accuracy and acoustic
1006 quality. Importantly, none of the URO-Bench data was used during training or validation, ensuring
1007 an unbiased assessment of generalization.

1008
1009 **Audio-QA Task** In addition to URO-Bench, we also evaluate our model with the Audio-QA tasks
1010 established by Kimi-Audio Ding et al. (2025). Previous evaluation framework in Kimi-Audio assess
1011 Audio-QA performance using the text portion of interleaved outputs, which overlooks the fact that
1012 the audio output of an end-to-end speech model more directly reflects its ability to generate natural
1013 and semantically faithful responses. To address this limitation, we evaluate Audio-QA directly on
1014 the audio outputs of our framework by first applying an ASR model to transcribe the generated audio
1015 into text, where Whisper-Large-v3 Radford et al. (2022) is used for English audio and Paraformer-
1016 zh for Chinese audio, with a comparison of ASR performance across different models provided
1017 in Table 5. The transcribed text is then combined with the original QA queries and the ground
1018 truth answers and passed to a large scale reasoning model, Qwen3-235B-A30B, which serves as an
1019 LLM-as-a-Judge model to determine whether the response semantically matches the reference and
1020 to provide either a correctness label or a graded score. We report the average accuracy or score
1021 on the benchmark, and this evaluation pipeline provides a more faithful assessment of our model’s
1022 audio-to-audio QA ability in realistic conversational scenarios where speech serves as the output
1023 modality.

1024
1025 **ASR Task** To assess the model’s capability in aligning speech with textual representations, we
1026 evaluate it on the ASR task, where the model generates text transcriptions from input audio and per-
1027 formance is measured using word error rate (WER). A lower WER indicates more accurate recogni-

Table 5: WER performance of different ASR models on Chinese (zh) and English (en).

Model	WER-zh (↓)	WER-en (↓)
Whisper-Large-v3	0.5054	0.2167
Paraformer-zh	0.1028	0.3946

tion, which reflects not only strong ASR ability but also effective cross modal consistency achieved by our hybrid AR-NAR modeling framework.

AAC Task To assess the model’s capacity to comprehend complex or acoustically challenging audios, we evaluate its audio captioning (AAC) performance on two established benchmarks: Clotho-v2 Drossos et al. (2020) and MACS Martín-Morató & Mesaros (2021). We input audio clips and generate corresponding textual captions. The quality of these captions is then evaluated using Qwen3-30B-A3B Yang et al. (2025a), guided by the evaluation prompt introduced in CLAIR-A Wu et al. (2024), which emphasizes semantic relevance, completeness, and naturalness. The judge assigns a score on a 0–100 scale, where higher scores indicate better caption quality.

A.7.2 EVALUATION DATASETS

URO-Bench We use the English portion of URO-Bench Yan et al. (2025) to evaluate our model’s performance. As detailed in Table 6, the benchmark consists of 10 basic tasks and 12 pro tasks. The basic tasks include 4 oral conversation, 4 reasoning, and 2 understanding tasks, while the pro tasks comprise 4 understanding, 4 reasoning, and 4 oral conversation tasks. The final score is obtained by first averaging the model’s performance on each dataset, and then averaging these scores within each (difficulty, category) group.

Table 6: Evaluation datasets used from URO-Bench.

Dataset	Task /Evaluation Aspect	data nums	Category
<i>Basic tasks</i>			
AlpacaEval	Authentic, open-ended dialogue	199	Oral Conversation
CommonEval	Authentic, open-ended dialogue	200	Oral Conversation
WildchatEval	Real-world conversation	349	Oral Conversation
StoralEval	Deduce morals from a given story	201	Reasoning
Summary	Summarize a given story or statement	118	Oral Understanding
TruthfulEval	Factual questions about life	470	Reasoning
GaokaoEval	English listening questions	303	Understanding
Gsm8kEval	Practical mathematical problems	582	Reasoning
MLC	Mathematics, logic, and common sense	177	Reasoning
Repeat	Repeat the user's words verbatim	252	Understanding
<i>Pro Tasks</i>			
CodeSwitching-en	Understand code switching sentences	70	Understanding
GenEmotion-en	Respond in a specified tone	54	Oral Conversation
GenStyle-en	Respond in a specified style	44	Oral Conversation
MLCpro	Difficult mathematical, scientific questions	91	Reasoning
Safety-en	Reject answering privacy-related questions	24	Reasoning
SRT-en	Sing, recite poems, read tongue twisters	43	Oral Conversation
UnderEmotion-en	Understand the speaker's mood	137	Understanding
Multilingual	Respond in multiple languages	1108	Oral Conversation
ClothoEval-en	Comprehension of general ambient sounds	265	Understanding
MuChoEval-en	Comprehension of music	311	Understanding
MtBenchEval-en	Multi-round spoken dialogue	190	Reasoning
SpeakerAware-en	Multi-speaker multi-round dialogues	55	Reasoning

Audio-QA, ASR and AAC Task We evaluate model performance on a diverse set of benchmarks covering both Audio Question Answering (Audio-QA), Automatic Speech Recognition (ASR), and

1080 automatic audio caption (AAC) tasks. For Audio-QA, we use four datasets: AlpacaEval, TriviaQA, and WebQuestions (English), along with LLaMAQuestions (English), assessing cross-lingual
 1081 reasoning and comprehension from speech. For ASR, we include five datasets: Fleurs-zh/en (multi-
 1082 lingual), AISHELL-1/2, and WenetSpeech (all Chinese), covering varied domains, accents, and
 1083 recording conditions to robustly measure transcription accuracy. For AAC, we include two datasets:
 1084 Clotho-v2 (English) and MACS (English), covering natural audios collected from various environmental
 1085 sound clips, not limited to human-to-human dialogue, which helps assess the model’s ability
 1086 to understand the environment rather than simple language processing. Dataset details are summarized
 1087 in Table 7.
 1088

1089 Table 7: Evaluation datasets used for Audio-QA, ASR and AAC tasks.
 1090

1091 Dataset	1092 Language	1093 Task Type	1094 Abbreviation
1093 AlpacaEval	1094 English	1095 Audio-QA	1096 AE.
1094 LLaMAQuestions	1095 English	1096 Audio-QA	1097 LQ.
1095 TriviaQA	1096 English	1097 Audio-QA	1098 TQA.
1096 WebQuestions	1097 English	1098 Audio-QA	1099 WQ.
1097 Fleurs-zh	1098 Chinese	1099 ASR	1100 Fzh.
1098 AISHELL-2	1099 Chinese	1100 ASR	1101 A2.
1099 AISHELL-1	1100 Chinese	1101 ASR	1102 A1.
1100 WenetSpeech-test_meeting	1101 Chinese	1102 ASR	1103 WS_m.
1101 WenetSpeech-test_net	1102 Chinese	1103 ASR	1104 WS_n.
1102 Fleurs-en	1103 English	1104 ASR	1105 Fen.
1103 Clotho-v2	1104 English	1105 AAC	1106 Clo.
1104 MACS	1105 English	1106 AAC	1107 MACS

1108 A.8 BASELINES

1109 We compare our TtT model with the following state-of-the-art large audio-language models to evaluate
 1110 its effectiveness:
 1111

- 1112 • Moshi Défossez et al. (2024): It unifies streaming speech and text understanding within a single
 1113 autoregressive framework, aligning acoustic and linguistic representations for low-latency real-
 1114 time dialogue and robust multimodal instruction following.
- 1115 • SpeechGPT Zhang et al. (2023): It incorporates discrete speech tokens into a single language
 1116 model and follows a three-stage training pipeline to enable unified speech–text understanding and
 1117 cross-modal instruction following within one framework.
- 1118 • Kimi-Audio Ding et al. (2025): It uses a multi-task training pipeline to align speech, text and
 1119 semantics through contrastive and generative objectives, enabling robust instruction-following and
 1120 long-form audio dialogue understanding.
- 1121 • VITA-Audio Long et al. (2025): It tackles the latency bottleneck in LSLMs by introducing a fast
 1122 interleaved decoding mechanism and dynamic token predictor, allowing efficient and streaming-
 1123 capable audio response generation.
- 1124 • LLaMA-Omni Fang et al. (2025): It extends a unified language model to support real-time speech
 1125 understanding and generation by integrating low-latency audio streaming, codec-based tokeniza-
 1126 tion, and tightly aligned speech–text representations for seamless multimodal interaction.
- 1127 • GLM-4-Voice Zeng et al. (2024): It introduces a unified end-to-end spoken language model
 1128 that interleaves speech and text modalities using a supervised speech tokenizer and joint train-
 1129 ing paradigm, enabling high-quality spoken dialogue generation.
- 1130 • Mini-Omni Xie & Wu (2024a): It enables real-time speech interaction by generating text and
 1131 audio tokens in parallel within one model, using text-instructed parallel decoding and a lightweight
 1132 training pipeline to preserve the base model’s reasoning ability.

1134 • SLAM-Omni Chen et al. (2025): It enables end-to-end spoken dialogue by modeling text and
 1135 semantic audio tokens in parallel within a single model, supporting zero-shot timbre control and
 1136 low-latency voice interaction through single-stage training.

1137

1138

1139 **A.9 TRAINING DETAILS**

1140

1141

We train our model using the AdamW optimizer with a global batch size of 2048, a learning rate
 1142 of $2e^{-5}$, and a weight decay factor of $1e^{-2}$. The learning rate follows a cosine decay schedule
 1143 with a linear warmup ratio of 0.01. Training incorporates three stochastic strategies: (1) batchwise
 1144 AR & NAR objective mixing with probability 0.3; (2) prefix preservation masking with ratio 0.3;
 1145 (3) stochastic span truncation with probability 0.5. During inference, the model alternates between
 1146 AR text decoding and NAR diffusion-based audio generation, where text decoding uses nucleus
 1147 sampling with $k = 10$ and $p = 0.95$, and audio spans are generated with 200 diffusion steps, a block
 1148 length of 32 tokens, and a total diffusion span length of 640 tokens under classifier-free guidance
 1149 with scale 0.1. Since different training strategies lead to varying convergence speeds, reported results
 1150 are based on checkpoints where training loss has converged. All experiments are conducted on 4
 1151 nodes with 8 NVIDIA A100 GPUs per node using the DeepSpeed runtime.

1152

1153

1154

A.9.1 DATA FORMAT OF TRAINING DATA

1155

1156

1157

1158

1159

1160

1161

1162

To enable unified training across diverse tasks, we transform all datasets into a consistent in-
 1156 put–output format. On the one hand, this standardization allows the model to seamlessly integrate
 1157 heterogeneous modalities such as speech, text, and interleaved audio–text sequences. On the other
 1158 hand, a unified design is essential for supporting our training strategies, including batchwise AR &
 1159 NAR objective mixing, prefix preservation masking, and stochastic span truncation. These strate-
 1160 gies rely on a shared representation to operate across modalities in a consistent way. For clarity, we
 1161 provide representative examples of the adopted data formats as follow, covering ASR, TTS, audio
 1162 chat, text chat, AAC, SEC, ASC, and interleaved text–audio data.

1163

1164

1165

1166

Automatic Speech Recognition (ASR) Data Format

```

"messages": [
  {
    "content": "You are an Automatic Speech Recognition (ASR) model. The user will
    provide you with an audio input. Your task is to transcribe the audio into text and output the
    result in an interleaved format: generate 13 text tokens followed by 26 audio tokens, and repeat
    this pattern until the transcription is complete.",
    "role": "system"
  },
  {
    "content": "<SOA>AUDIO_Sequence<EOA>",
    "role": "user",
  },
  {
    "content": "TEXT_Sequence_1<SOA>AUDIO_Sequence_1<EOA>
                TEXT_Sequence_2<SOA>AUDIO_Sequence_2<EOA><EOS>",
    "role": "assistant"
  }
]

```

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 4: Example of ASR data format.

```

1188
1189
1190
1191 Text-to-speech (TTS) Data Format
1192
1193 "messages": [
1194   {
1195     "content": "You are a Text to Speech (TTS) model. The user will provide you with a text
1196     input. Your task is to transcribe the text into audio and output the result in an interleaved format:
1197     generate 13 text tokens followed by 26 audio tokens, and repeat this pattern until the
1198     transcription is complete.",
1199     "role": "system"
1200   },
1201   {
1202     "content": "TEXT_Sequence",
1203     "role": "user",
1204   },
1205   {
1206     "content": "TEXT_Sequence_1<SOA>AUDIO_Sequence_1<EOA>
1207           TEXT_Sequence_2<SOA>AUDIO_Sequence_2<EOA><EOS>",
1208     "role": "assistant"
1209   }
1210 ]

```

Figure 5: Example of TTS data format.

```

1212
1213
1214
1215
1216
1217
1218 Audio Chat Data Format
1219
1220
1221 "messages": [
1222   {
1223     "content": "You are an audio-to-audio chat model. The user will provide you with an
1224     audio input. Your task is to respond in an interleaved format: generate 13 text tokens followed
1225     by 26 audio tokens, and repeat this pattern until the response is complete.",
1226     "role": "system"
1227   },
1228   {
1229     "content": "<SOA>AUDIO_Sequence<EOA>",
1230     "role": "user",
1231   },
1232   {
1233     "content": "TEXT_Sequence_1<SOA>AUDIO_Sequence_1<EOA>
1234           TEXT_Sequence_2<SOA>AUDIO_Sequence_2<EOA><EOS>",
1235     "role": "assistant"
1236   }
1237 ]

```

Figure 6: Example of audio chat data format.

```

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

Text Chat Data Format

```

"messages": [
  {
    "content": "You are a helpful model.",
    "role": "system"
  },
  {
    "content": "TEXT_Sequence",
    "role": "user",
  },
  {
    "content": "TEXT_Sequence<EOS>",
    "role": "assistant"
  }
]

```

Figure 7: Example of text chat data format.

```

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

AAC/SEC/ASC Data Format

```

"messages": [
  {
    "content": "You are a helpful audio model. The user will provide you with a text-based instruction and an audio input. Your task is to follow the instruction based on the audio and output the result in an interleaved format: generate 13 text tokens followed by 26 audio tokens, and repeat this pattern until the transcription is complete.",
    "role": "system"
  },
  {
    "content": "TEXT_Sequence<SOA>AUDIO_Sequence<EOA>",
    "role": "user",
  },
  {
    "content": "TEXT_Sequence_1<SOA>AUDIO_Sequence_1<EOA>
                TEXT_Sequence_2<SOA>AUDIO_Sequence_2<EOA><EOS>",
    "role": "assistant"
  }
]

```

Figure 8: Example of AAC/SEC/ASC data format.

```

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

Interleaved Data Format

```

{
  "text": "TEXT_Sequence_1<SOA>AUDIO_Sequence_1<EOA>
          TEXT_Sequence_2<SOA>AUDIO_Sequence_2<EOA><EOS>"
}

```

Figure 9: Example of interleaved data format.

1296
1297

A.10 USAGE OF LLM

1298 In this paper, the LLM is employed solely for text refinement—correcting typos, fixing spelling
1299 errors, and enhancing readability. It is not used for generating research ideas, producing results, or
1300 creating original content.

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349