
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3297858.3304021
.

.

RESEARCH-ARTICLE

Heterogeneous Isolated Execution for Commodity GPUs

INSU JANG, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
.

ADRIAN TANG, Columbia University, New York, NY, United States
.

TAEHOON KIM, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
.

SIMHA SETHUMADHAVAN, Columbia University, New York, NY, United States
.

JAEHYUK HUH, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
.

.

.

Open Access Support provided by:
.

Columbia University
.

Korea Advanced Institute of Science and Technology
.

PDF Download
3297858.3304021.pdf
26 January 2026
Total Citations: 96
Total Downloads: 1988
.

.

Published: 04 April 2019
.

.

Citation in BibTeX format
.

.

ASPLOS '19: Architectural Support for
Programming Languages and Operating
Systems
April 13 - 17, 2019
RI, Providence, USA
.

.

Conference Sponsors:
SIGARCH
SIGPLAN
SIGOPS

ASPLOS '19: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (April 2019)
hps://doi.org/10.1145/3297858.3304021

ISBN: 9781450362405

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3297858.3304021
https://dl.acm.org/doi/10.1145/3297858.3304021
https://dl.acm.org/doi/10.1145/contrib-99659359477
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/doi/10.1145/contrib-82259037557
https://dl.acm.org/doi/10.1145/institution-60030162
https://dl.acm.org/doi/10.1145/contrib-99659094565
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/doi/10.1145/contrib-81100533667
https://dl.acm.org/doi/10.1145/institution-60030162
https://dl.acm.org/doi/10.1145/contrib-81100120307
https://dl.acm.org/doi/10.1145/institution-60032144
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60030162
https://dl.acm.org/doi/10.1145/institution-60032144
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3297858.3304021&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/asplos
https://dl.acm.org/conference/asplos
https://dl.acm.org/conference/asplos
https://dl.acm.org/sig/sigarch
https://dl.acm.org/sig/sigplan
https://dl.acm.org/sig/sigops
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297858.3304021&domain=pdf&date_stamp=2019-04-04

Heterogeneous Isolated Execution for Commodity

GPUs

Insu Jang
insujang@calab.kaist.ac.kr
School of Computing, KAIST
Daejeon, Republic of Korea

Adrian Tang
atang@cs.columbia.edu

Department of Computer Science,
Columbia University
New York, NY, USA

Taehoon Kim
thkim@calab.kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Simha Sethumadhavan
simha@cs.columbia.edu

Department of Computer Science,
Columbia University
New York, NY, USA

Jaehyuk Huh
jhhuh@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Abstract

Traditional CPUs and cloud systems based on them have em-
braced the hardware-based trusted execution environments
to securely isolate computation from malicious OS or hard-
ware attacks. However, GPUs and their cloud deployments
have yet to include such support for hardware-based trusted
computing. As large amounts of sensitive data are offloaded
to GPU acceleration in cloud environments, ensuring the
security of the data is a current and pressing need. As de-
ployed today, the outsourced GPU model is vulnerable to
attacks from compromised privileged software. To support
isolated remote execution on GPUs even under vulnerable
operating systems, this paper proposes a novel hardware
and software architecture, called HIX (Heterogeneous Iso-
lated eXecution). HIX does not require modifications to the
GPU architecture to offer protections: Instead, it offers se-
curity by modifying the I/O interconnect between the CPU
and GPU, and by refactoring the GPU device driver to work
from within the CPU trusted environment. A result of the
architectural choices behind HIX is that the concept can be
applied to other offload accelerators besides GPUs. This work
implements the proposed HIX architecture on an emulated
machine with KVM and QEMU. Experimental results from
the emulated security support with a real GPU show that
the performance overhead for security is curtailed to 26% on
average for the Rodinia benchmark, while providing secure
isolated GPU computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304021

Keywords Trusted execution, Heterogeneous computing,
GPU security
ACM Reference Format:

Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan,
and Jaehyuk Huh. 2019. Heterogeneous Isolated Execution for
Commodity GPUs. In 2019 Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’19), April 13–17, 2019,

Providence, RI, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3297858.3304021

1 Introduction

In conventional CPU-based computation, hardware-based
trusted execution environments (TEE) such as Intel SGX
and ARM TrustZone have been providing trusted and iso-
lated computing environments to user applications. Such
hardware-based TEEs reduce the trusted computing base
(TCB) of the computation to the processor and critical code
running in TEE. With the TEE support, security-critical ap-
plications can be protected from compromised privileged
software as well as hardware-based attacks to the memory
and system buses, to provide secure computation running
on untrusted remote cloud servers.
With increasing use of general purpose GPU computing

from traditional high performance computing to data center
acceleration and machine learning applications, securing
the GPU computation has become critical to protect secu-
rity sensitive data [34, 45, 56, 57]. However, although even
more and more critical data are processed in GPUs, trusted
computing is yet to be supported in GPU computation. In
the current system architecture, high performance discrete
GPUs communicate with CPUs through I/O interconnects
such as PCI Express (PCIe) buses, and the GPU driver which
is part of the operating system controls the GPUs [25]. As the
privileged operating system can fully control the hardware
I/O interconnects and GPU driver, computing in GPUs is
vulnerable to potential attacks on the operating system [8].
Beyond the GPU-based computing, the proliferation of vari-
ous accelerator-based computing models has been increasing

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

455

https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1145/3297858.3304021

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

the demands for higher-level of security supports for accel-
erators under the vulnerable privileged software.
In existing architectures, both of the code and data in

GPUs can be compromised by a privileged adversary. Recent
work has demonstrated that the integrity of GPU code can
be subverted by disrupting and replacing the code at runtime
with an off-the-shelf reverse engineering tool [13]. In addi-
tion to code, data in GPU can potentially be uncovered and
leaked [45]. GPU data vulnerable to confidentiality attacks
comprises both the communication data being transferred to
and from a GPU, and the data being processed within a GPU.
The susceptibility of GPUs to confidentiality and integrity
attacks stems from the lack of access control to their inter-
faces such as the I/O interconnects and memory-mapped I/O
addresses.

To support secure computing in GPUs, this paper proposes
a novel hardware and software architecture for isolating
GPUs even from the potentially malicious privileged soft-

ware (OS and hypervisor). The proposed architecture, called
Heterogeneous Isolated eXecution (HIX), requires minor ex-
tensions to the current PCIe interconnect implementation
and the TEE support in CPUs. The goal of HIX is to extend
the security guarantees, namely confidentiality and integrity
of user data, of TEE technologies to heterogeneous com-
puting environments. At the time of writing, none of these
technologies protect accelerators in heterogeneous systems
from privileged software attacks; they only protect the code
and data in trusted “enclaves” running on the processors.
In this work, we expand the scope of a widely used trusted
isolation technology, Intel SGX, to secure general purpose
accelerators, in particular GPUs.

Our proposed architecture consists of four main hardware
and software changes. First, key functions of the GPU driver
are removed from the operating system (OS) and relocated
in a separate process in its own GPU enclave. The GPU en-
clave is an extension of the current SGX enclave, designed
to exclusively manage the GPU. Second, the PCIe intercon-
nect architecture is slightly modified to prevent the OS from
changing the routing configuration of the interconnect, once
the GPU enclave is completely initialized. Third, the memory
management unit (MMU) is augmented to protect the mem-
ory mapped GPU I/O region from unauthorized accesses.
Fourth, the CPU counterpart process of a GPU application
runs on an SGX enclave, and the SGX enclave sets up a
trusted communication path to the GPU enclave, which is
robust even against privileged adversaries.
To support the secure execution environments for GPUs

without any GPU modification, HIX does not provide the
protection against direct hardware-based attacks, as PCIe
buses and thememory of GPUs are exposed to such hardware
attacks in the current architecture. Although the security
level is lower compared to the hardware TEEs for CPUs, HIX
can be extended to other accelerators without requiring any

modification of the accelerators themselves, if the accelerator
is connected via I/O interconnects.

We evaluate the proposed architecture in terms of security
and performance. We have implemented a prototype for HIX
on KVM and QEMU, adding extra instructions for the GPU
enclave and separating the GPU driver from the operating
system. The prototype using the emulation connected to
a real GPU shows that the performance degradation intro-
duced by HIX secure GPU computation is 26% compared to
the conventional unsecure GPU computation for the bench-
marks from the Rodinia suite.
We summarize the main contributions of this work as

follows:

• We provide an attack surface assessment of GPU com-
putation.We identify key GPU components that can be
attacked from privileged software: PCIe interconnect,
memory mapped I/O region, and GPU driver.

• We augment the design of the PCIe interconnect to
block any routing change after the GPU initializa-
tion, and to further guarantee the address mapping
immutability of the memory mapped I/O region to the
GPU.

• We extend the current SGX interface to support the
GPU enclave, which runs the GPU driver in a secure
way. The MMU design is extended to protect the GPU
memory mapped I/O region from unauthorized ac-
cesses.

• We implement a prototype on an emulated system
with KVM and QEMU to evaluate the performance
overhead of HIX. Although it is implemented in the
emulated system due to the required changes in hard-
ware, it faithfully reflects necessary changes in hard-
ware interfaces and software architectures.

The rest of the paper is organized as follows. Section 2
describes the current architecture of SGX, PCIe, and GPU dri-
ver. Section 3 discusses the threat model. Section 4 presents
the proposed architecture. Section 5 discusses the security
analysis and shows performance results. Section 6 presents
the prior work and Section 7 concludes the paper.

2 Background

HIX is designed on top of Intel SGX architecture and the
PCI Express standard. We provide a brief overview of these
technologies in this section.

2.1 Intel Software Guard Extensions (SGX)

Intel SGX is a hardware-based protection technology that
provides a trusted execution environment (TEE) called an
enclave, protected even from the privileged software and di-
rect hardware attacks. SGX protects the enclave memory and
execution contexts to support the strong isolated execution.
The SGX hardware-based isolated execution is augmented

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

456

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Untrusted Data, Code, etc

Virtual Address Space

DRAM

ELRANGE

EPC Pages

EPCM

PA
PA

VA
VA

…

Figure 1. SGX enclave memory mapping structure

by an attestation service that verifies the integrity of the
code running on the enclave [1, 35].
The main memory is untrusted under the SGX threat

model, and thus, SGX provides memory encryption and ac-
cess restriction mechanisms to protect a small region of main
memory for enclaves, called the enclave page cache (EPC).
Although SGX uses the virtual memory support provided
by the untrusted OS, it protects EPC pages from unautho-
rized accesses with hardware-based verification. Figure 1
illustrates the structure of SGX address space. In the figure,
ELRANGE (Enclave Linear Address Range) is the protected vir-
tual address range in the enclave, and the pages in the range
are guaranteed to be mapped to EPC pages. When an enclave
is created, the system software registers the virtual address
and corresponding EPC physical address of a page in the pro-
tected memory using EADD SGX instruction. During handling
of the EADD instruction, the hardware stores the mapping
information in the enclave page cache map (EPCM) to verify
future accesses to the page during address translation in
MMU [9].

2.2 PCI Express Architecture

Modern GPUs are connected to the system via the PCI Ex-
press (PCIe) interface. The PCIe interface facilitates memory-
mapped I/O (MMIO) access to PCIe devices for software.
Since the MMIO mechanism maps the hardware registers
and memory of a device to the systemmemory address space
for software, this enables the software to transparently access
the PCIe devices using regular memory addresses. Figure 2
illustrates how the system routes device access requests to
the device by using the system memory address map [49].
CPU is responsible for distinguishing accesses to the MMIO
regions from main memory accesses. It uses its internal hard-
ware registers which are initialized by BIOS at system boot
time, to route access requests for MMIO appropriately [19].
When the address of a memory access is for the MMIO

region, the PCIe root complex takes the request. As PCIe
devices are attached to the system as a tree, where the PCIe
root complex is its root, the root complex creates a PCIe
transaction packet and routes it to the desired device, using
the hardware routing registers [5, 43]. These registers are
also initialized by the BIOS at system boot time to cover the
entire physical address ranges of attached devices.
Modern PCIe devices use direct memory access (DMA)

to directly read or write the main memory without CPU
intervention. The DMA arrows in Figure 2 show how the

CPU

Software
MMIO Virtual Address

GPU

MMIO access
DMA access

MMU

System Address Map
MMIO Physical AddressMain Memory

IOMMU

PCIe Root Complex

DRAM

Figure 2. I/O path in PCI Express system architecture

system routes the DMA request. An input/output memory
management unit (IOMMU) can be used to translate device
addresses to physical addresses for DMAs [42].

2.3 Controlling GPU in Software

Given the underlying hardware I/O path described in Sec-
tion 2.2, the software is able to control the GPU by writing
commands to a GPU command buffer in the GPU MMIO
region. Once a virtual address is assigned to the GPU MMIO
physical address, the OS or a user process can access the
GPU through the MMIO virtual address, if the MMIO virtual
address is accessible from the OS or process [47]. The data
such as GPU binary codes or input data can be transferred
to the GPU via MMIO or DMA, while DMA is optimized for
bulk data transfers [15].

3 Threat Model

3.1 Attacker Model and Assumptions

The adversarial model we address is a privileged adversary
with the goal of breaking confidentiality and integrity of
the data to be processed by GPUs. We focus on attack vec-
tors comprising the hardware and software I/O data path
between a user application to the GPU. We assume that the
adversary has privileged software control over the target
system. Specifically, the adversary can control all the privi-
leged software components such as the OS kernel and device
drivers within the kernel space. In addition to being capa-
ble of controlling code execution of these components, the
adversary is also able to inspect and observe data in main
memory and manage the system address map, a set of infor-
mation indicating where main memory and MMIO access
requests should be routed. We also assume that the CPU
package and GPU card are trusted, and the GPU has its own
separate device memory.

3.2 Out of Scope

Consistent with the defense scope of SGX, we do not consider
physical attacks to the CPU package and side channel-based
attacks [9]. It is not our goal to defend against implemen-
tation bugs in user code to be run within the enclaves and

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

457

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

SGX-enabled
CPU

GPU Enclave

GPU MMIO

GPU

User Enclave Privileged Attacker

GPU Driver

PCIe
Bus

HIX Components
Protected Path
by HIX

PCIe Root Complex

Thwarted Attacks
Compromised

OS

MMUSGX EPC

GPU Enclave
Meta-data

Software
Hardware

Figure 3. HIX architecture overview

GPUs [11]. Availability attacks such as not to schedule a
specific process are not in our scope.
Apart from the limitations we inherit from Intel SGX,

HIX has several limitations specific to PCIe devices and I/O
interconnect architecture. Physical attacks on the PCIe inter-
connects and GPUs, such as directly injecting PCIe packets
in the I/O communication path with a special hardware or ac-
cessing the GPU memory physically, are out of scope of HIX.
This is an inherent trade-off we make because this study is
based on unmodified GPU hardware. Using the PCIe peer-to-
peer transaction functionality with a GPU protected by HIX
is not available. While the latest GPUs support on-demand
page-fault mechanism in GPUs [10, 16], the GPU computing
model that HIX supports is restricted to the conventional
model, which requires all the data to be in the GPU device
memory before a GPU kernel execution. In addition, we do
not address availability attacks against GPUs in the form of
resource exhaustion or denial-of-service attacks. We discuss
the limitations in more detail in Section 5.6.

4 HIX Architecture

4.1 Architecture Overview

A key tenet in the HIX design is securing the command and
data path from the user application to a GPU at the software
and hardware levels. In a typical unprotected setting, the
GPU driver is part of the operating system (OS), and the
I/O path to the GPU through MMIO is controlled by the OS.
However, in the proposed HIX architecture, the GPU driver
is separated from the OS, running in a secure enclave. The
OS cannot affect the MMIO mapping and routing to the GPU.
To provide the secure computing, the following software and
hardware components must be supported.
Isolated GPU management with GPU enclave: For se-
cure GPU computing under the vulnerable OS, HIX separates
the GPU driver from the OS space. The GPU driver runs on
a TEE environment, called GPU enclave, as illustrated in Fig-
ure 3. Only the GPU enclave is allowed to access the GPU

Table 1. Required hardware and software changes for HIX.

Type Changed Component Purpose Section

SW GPU enclave Sole GPU control 4.2
HW New SGX instructions HW support for GPU enclave 4.2
HW Internal data structures HW support for GPU enclave 4.2
HW MMU page table walker MMIO access protection 4.3
HW PCIe root complex MMIO lockdown 4.3
SW Inter-enclave communication Trusted GPU usage for users 4.4

MMIO region, protecting the GPU MMIO from the malicious
OS.
Secure hardware I/O path: The GPU enclave manages the
GPU exclusively by sending commands and data through
MMIO, and thus the communication through MMIO must
be secured from the OS and other applications. It requires
several hardware extensions to the SGX support as well as
the PCIe architecture. First, similar to the enclave memory
protection, the OS is not allowed to change the virtual to
physical address mapping for the GPU MMIO region, once
the mapping is established for the GPU enclave. Second, any
accesses other than from the GPU enclave to the GPUMMIO
region must be prohibited. Third, the GPU MMIO mapping
and routing configuration in the PCIe root complex must
not be changed once the GPU enclave is initialized. Finally,
the DMA data from/to the GPU must be protected from the
malicious OS.
Trusted application-to-GPUcommunication: For secure
GPU computation, GPU requests are transferred from the
user enclave to the GPU enclave, and the GPU enclave sends
the corresponding command to the GPU on behalf of the
user enclave. HIX leverages attestation and symmetric en-
cryption to ensure the secure communication between the
user and GPU enclave.
Table 1 summarizes the required hardware and software

changes. With the hardware and software changes, HIX pro-
vides trusted GPU services to user enclaves, supporting the
confidentiality and integrity of their sensitive data and the
secure execution on them.

4.2 GPU Enclave

As illustrated in Figure 3, central to the HIX design is the
user-mode GPU enclave, which is responsible for two func-
tions: (1) sole control over the GPU, and (2) sole user access
interface to the GPU. To reduce the attack surface, HIX sepa-
rates the critical functionality for controlling the GPU from
the OS-resident driver, and isolate it within the GPU enclave.
The role of the remaining part of driver in the OS is reduced
to offering benign kernel services such as assigning new
virtual addresses for MMIO regions allocated to the GPU
enclave. During its initialization, the GPU enclave resets the
GPU state to eliminate possible untrusted GPU programs
loaded in the GPU. A required extension for SGX to sup-
port the GPU enclave is to allow the GPU enclave to access

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

458

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Size
0x200…
0x400…01:00.0 0xf000… 0x7fff…

Virtual
Address
0x7fff…01:00.0

GPU
number

0x8e00…

Physical
Address

TGMR Table

GPU Enclave ID = 2

DRAM EPC

GPU Bus/Dev/Func Number 01:00.0

01:00.0 2

Owner GPU
Enclave ID

GPU
number

GECS

TLBVAEnclave

MMU
Page Table

Walker

Insert a page table entry
after access validation

PA GPU

VA:0x7fff…PA:0x8e01…
Page Table Entry

Page Table

Enclave ID

Figure 4. Data structures for protecting MMIO accesses

the GPU MMIO region exclusively, preventing all the other
software from accessing the GPU MMIO region.

4.2.1 GPU MMIO Registration

HIX provides extended SGX instructions to safely manage
GPU MMIO regions related to GPU management and data
copy. The hardware needs to know (1) which MMIO region
should be protected (the physical addresses of MMIO region),
(2) where it is mapped in the GPU enclave’s virtual address
space (the corresponding virtual address of MMIO region),
and (3) which GPU enclave should be permitted to access, to
protect the hardware I/O path from unauthorized accesses.
To register the GPU MMIO regions, two new instructions:
EGCREATE and EGADD, similar to the Intel SGX instructions
ECREATE and EADD, are added.

Intel SGX stores SGX internal data structures in EPCmem-
ory pages that are not accessible from software. Likewise,
HIX stores additional internal data structures for GPU man-
agement in EPC memory pages. Two of the hidden data
structures are GPU enclave control structure (GECS) and
trusted GPU MMIO region (TGMR) table, which are analo-
gous to the SGX enclave control structure (SECS) and enclave
page cache map (EPCM) for regular enclaves. GECS contains
the control information regarding the GPU enclave including
the hardware GPU number and GPU enclave ID. TGMR con-
tains the virtual and physical address mapping information
of the GPUMMIO region, which is used to verify the address
mapping for the MMIO region.

Figure 4 illustrates how the security meta-data structures
for a GPU enclave are used. During its initialization, a GPU
enclave process creates a GPU enclave by using EGCREATE

instruction with the GPU number consisting of bus, device,
and function numbers, retrieved from the PCIe interface
provided by the trusted PCIe root complex. Then a pair of
the created GPU enclave ID and GPU number is stored in
the GECS. HIX hardware ensures that the given GPU is a

real hardware GPU, and no GPU is registered to two GPU
enclaves at the same time. After creation, the GPU enclave
registers virtual address and MMIO physical address pairs
to HIX with EGADD instruction. During the registration, HIX
checks whether the virtual address and MMIO address are
valid for the GPU enclave and owning GPU device, and stores
it into the TGMR table, if they are verified. The registered
MMIO regions are access-protected through verification us-
ing a virtual to physical address mapping protection, similar
to SGX regular enclaves. The MMIO access protection mech-
anism is detailed in Section 4.3.1.

4.2.2 GPU Initialization and Measurement

Once the GPU enclave is created and loaded, it initializes the
GPU state to clean up any potentially malicious code in the
GPU. In addition, the GPU enclave reads and measures the
GPU BIOS, which may have been compromised before the
GPU enclave is created. Note that once the GPU enclave is
created, the GPU enclave has the exclusive control over the
GPU, and thus even the operating system cannot change the
BIOS of GPU.

Attesting the GPU hardware is done through two steps: (1)
verifying the integrity of the GPU BIOS, and (2) resetting the
GPU to eliminate potential malicious codes. TheGPU enclave
reads the GPU BIOS bytecode from the address stored in the
PCIe expansion ROM base address register. Once the GPU
BIOS is verified to be genuine, HIX initiates the reset step
for the GPU, cleansing the GPU device state.

4.2.3 GPU Protection on GPU Enclave Termination

Although HIX does not address availability attacks, HIX is
still responsible for protecting the data in the GPU when
the GPU enclave becomes unavailable. Even if the adversary
forcefully kills the GPU enclave, the GPU is protected by HIX
hardware. As the killed GPU enclave process still owns the
GPU, the GPU can no longer be accessed by any software, and
even a newly created GPU enclave process cannot own the
GPU. Hence the user data in the GPU remains inaccessible
and protected. The GPU can only be used again after the
system is shutdown and booted again. During the system
cold boot procedure, the GPU memory and register states
are all reset, and the GPU registration information stored in
GECS and TGMR table is cleared.

If the OS asks a graceful termination to the GPU enclave,
the GPU enclave aborts the entire GPU execution, clears the
GPU data, and returns the GPU to the OS. User enclaves are
notified that the GPU enclave is terminated and the GPU is
no longer trusted.

4.3 Securing I/O Path: MMIO and DMA

The next step to secure GPU computing is to protect com-
mand and data path to the GPU. The command path to the
GPU is through PCIe interconnect accessed via MMIO, and

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

459

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

the data can be transferred by MMIO and DMA. This section
presents the I/O path protection by HIX.

4.3.1 MMIO Access Protection

The baseline SGX EPC access protection mechanism vali-
dates the virtual-to-physical mapping in a translation looka-
side buffer (TLB) with the information in EPCM. HIX extends
it to protect address translation for the MMIO region, using
GECS and TGMR, as illustrated in Figure 4. When a soft-
ware accesses the MMIO region with a virtual address, the
MMU translates it to physical address using the TLB. For a
TLB miss, before adding a TLB entry into the TLB, the hard-
ware page table walker validates it with the following four
comparisons: (1) the current process is the GPU enclave by
comparing its enclave ID with GECS, (2) the virtual address
in the new TLB entry matches that the GPU enclave requests,
(3) the virtual address in the new TLB entry matches that in
TGMR, and (4) the physical address in the new TLB entry
matches that in TGMR. The entry will be added into the TLB
only if the validation succeeds. Otherwise, the access will
be denied. The validation guarantees only a qualified GPU
enclave can access its own MMIO region.

This access validation step shares mostly the same mech-
anism as regular enclaves, partially sharing the same hard-
ware logic component for verification. One minor difference
from the regular SGX enclave is to use the enclave meta-
data dedicated to the GPU enclave (GECS and TGMR) to
protect the GPU MMIO regions. For regular enclaves, the
unchanged SGX does not consider to protect accesses to the
MMIO region.

4.3.2 MMIO Lockdown and Securing PCIe Routing

In the conventional architecture, the privileged system soft-
ware can remap the MMIO region, or even maliciously mod-
ify PCIe packet routing direction by modifying PCIe device
registers such as Base Address Registers (BARs) that store
the information about the MMIO region. To guarantee that
the MMIO region mapping and routing of PCIe messages
to the GPU are not modified by malicious software, HIX
provides an MMIO lockdown mechanism in the PCIe root
complex.
The MMIO lockdown feature is enabled when EGCREATE

is called, to freeze the MMIO address map. The processor
must freeze the MMIO configuration registers of all PCIe
devices between the PCIe root complex and GPU. All the
information about the MMIO regions and PCIe routing is
stored in hardware registers. When the lockdown is enabled,
the PCIe root complex rejects all PCIe configuration write
requests that attempt to modify the MMIO address map and
routing configuration. The root complex is able to inspect
the destination of a write request to modify register values
by inspecting the target device number and register offset
in the PCIe configuration transaction packet [5, 19, 43]. If
the packet is intended to modify the registers related to PCIe

GPU Enclave Process

GPU

User Process

User Enclave
HIX Trusted
User Library

Shared
Symmetric Key

Trusted Entities Untrusted Entities

Msg
Queue

GPU Enclave

MMIO

Inter-Enclave Shared Memory
Bulk Data Copy

Req

Resp

Direct Copy
to GPU

Figure 5. HIX software architecture. The GPU enclave coor-
dinates the communication between a user enclave and the
GPU. In the user enclave, the trusted user runtime handles
the interaction with the GPU enclave.

routing or MMIO mapping, the root complex simply discards
it. In addition to the lockdown during EGCREATE, HIX extends
SGX to securely measure the MMIO configuration register
values as part of the GPU enclave measurement.

4.3.3 Trusted DMA

Under the malicious OS, the data transfer through DMA is
not secure. The DMA memory region is not protected by
SGX, and in addition, the OS can route the DMA data to any
memory pages by assigning the target buffer to arbitrary
memory pages or by compromising the IOMMU page table.
Therefore, to support the confidentiality and integrity of
DMAed data in HIX, the data transferred via DMA must be
encrypted and integrity-protected with message authentica-
tion code (MAC). With the protection for DMA data, only
the encrypted DMA data exist in the unprotected buffer and
the integrity is validated by MAC. Therefore, the OS cannot
break the confidentiality and integrity of DMA data. Across
user enclaves, the GPU enclave, and GPU, keys are securely
exchanged as discussed in Section 4.4.1. With the secure
key exchange, the communication through untrusted DMA
mechanism is protected.

4.4 Application-to-GPU Communication

As the GPU enclave solely controls the GPU, it should pro-
vide a trusted interface for GPU service to user enclaves.
Figure 5 shows the communication path between a user en-
clave and the GPU enclave. Note that the GPU enclave can
make secure connections with different keys against multiple
user enclaves simultaneously.
Trusted Runtime User Library: HIX provides the trusted
user runtime library for applications, which runs in each
application enclave. This library consists of GPU APIs such
as memory copy or GPU kernel launch operation, the se-
curity module containing key initialization and user data
encryption, and the communication module for data trans-
fers. The library facilitates the application development for
the trusted GPU execution with HIX. In the user enclave of a
GPU application, the trusted user runtime is in charge of the

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

460

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

secure interaction with the GPU enclave, hiding the details
of user-side software components of HIX.

4.4.1 Secure Inter-Enclave Communication

GPU management and GPU service functions are moved
from the OS device driver to the GPU enclave, which runs as
a separate user space process. Therefore, a communication
channel that ensures the confidentiality and integrity of the
transferred data among a user enclave, the GPU enclave,
and the GPU has to be established. To provide the confiden-
tiality and integrity of transmitted data via untrusted inter-
enclave shared media, HIX uses a symmetric authenticated
encryption. A user enclave and the GPU enclave perform
SGX-supported local attestation to verify each other. Once
they establish the trust through attestation, they create a
shared symmetric key by using the Diffie-Hellman key ex-
change protocol. As the Diffie-Hellman key exchange can be
done among multiple parties, the GPU also participates in
this key setup procedure and generates a shared symmetric
key.

The GPU enclave uses two communication channels with
each user enclave; a message queue and shared memory. The
message queue is used for communication synchronization,
and the shared memory is for the actual encrypted data
transmission. The user enclave first writes an encrypted
data into the inter-enclave shared memory, and transfers
a request through the message queue, waking up the GPU
enclave. Then, the GPU enclave handles the request with
the data in the shared memory after decrypting it with the
shared key.

4.4.2 Secure Communication between the GPU

Enclave and GPU

Once the trust is set and a key is shared, two enclaves can
communicate securely through an unsecure medium such as
shared memory. Between the GPU enclave and GPU itself,
the secure communication path is established through the
trusted MMIO to the GPU device. A GPU command buffer is
allocated in the trusted MMIO region and secured by HIX’s
MMIO access protection. The GPU enclave sends commands
that the user enclave requests to the GPU through the secure
command buffer.

A naive design for memory copy operation from the user
enclave to the GPU, is to copy the user encrypted data to the
GPU enclave first. The GPU enclave decrypts and re-encrypts
with a different key, and copies the data again to GPU. To
eliminate unnecessary data copy and encryption, the HIX
design adopts a single-copy mechanism, as the user enclave,
GPU enclave, and GPU share a key. The GPU enclave sends
a command to the GPU to copy the user encrypted data
in the inter-enclave shared memory to the GPU memory
(cuMemcpyHtoD), or copy the data in the GPU memory to the
inter-enclave shared memory (cuMemcpyDtoH) directly. This
design mitigates the overheads from cryptography and data

copy. The GPU enclave performs in-GPU decryption after
copying encrypted data from the shared memory to the GPU
memory, or performs in-GPU encryption before copying
the data from the GPU memory to the shared memory. HIX
supports two ways for data copy; (1) directly writing data
to the trusted MMIO that is mapped to the GPU memory,
and (2) using a GPU DMA engine to copy data [26]. In both
ways, the single-copy mechanism is used.

4.4.3 Communication Example

This section describes how data is securely transferred be-
tween endpoints, i.e. a user enclave and the GPU. For a mem-
ory copy from host to device (cuMemcpyHtoD), the user enclave
first copies the encrypted metadata for the request such as
data size, and sends a cuMemcpyHtoD request to the GPU en-
clave through the message queue. After the GPU enclave
decrypts the request and accepts it, the user enclave encrypts
the actual data and copies it into the inter-enclave shared
memory, and notifies the GPU enclave again. Unlike the re-
quest metadata that is decrypted in the GPU enclave, the
user data heading to the GPU is directly copied from the
inter-enclave shared memory to the GPU memory, through
either MMIO or DMA, by the GPU enclave. Then, the GPU
enclave launches an in-GPU decryption kernel to decrypt
data in the GPU, and replies to the user enclave that the data
copy is done. Then, the user enclave can send a next request,
such as launching a kernel.

4.5 Support for Multiple User Contexts

The pre-Volta Multi-Process Server (MPS) from NVIDIA al-
lows the concurrent multi-kernel execution in GPU from
different user processes. However, the pre-Volta MPS plat-
form merges kernels from different user processes into a
single GPU context with multiple streams, since the current
GPU allows only one GPU context to be executed in GPU at
a time [24, 37]. As kernels even from different user processes
share the same GPU context including the address space,
a kernel can access the address range used by a different
kernel [37].

Unlike the pre-Volta MPS, HIX creates multiple GPU con-
texts, each of which is for each user enclave, to isolate a user
GPU address space from the others. Each user enclave sets
up a unique key with the GPU enclave for secure commu-
nication. The GPU enclave creates separate GPU contexts
for user enclaves and maintains per-user keys. The GPU
multi-context execution is done by context switches in GPU.
If the current context does not have any pending request
for kernel execution, a context switch occurs to a different
context [16].
Prior studies reported that the GPU context switch and

memory deallocation, if not carefully done, can leak in-
formation through the shared memory and global mem-
ory [17, 45, 51]. To prevent such data leaks, the GPU runtime
system must cleanse the deallocated global memory and

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

461

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

Table 2. HIX Trusted Computing Base (TCB) breakdown

Components Software Attack Surface

Protection Mechanism

Related Section(s)Access Restriction Memory Encryption

GPU Enclave Memory Access (MemAcc.) SGX EPC Protection§ 4.2, 4.3, 4.4
GECS & TGMR MemAcc. & HIX Instructions SGX EPC Protection 4.2

GPU BIOS† MMIO MMU 4.2
GPU Registers MMIO MMU 4.2, 4.3
GPU Memory MMIO & DMA MMU OCB-AES 4.2, 4.3

PCIe Infrastructure‡ MMIO PCIe Root Complex 4.3
User Enclave & HIX Library MemAcc. SGX EPC Protection 4.4

Inter-Enclave Shared Memory MemAcc. & DMA OCB-AES 4.4
§ - SGX EPC protection consists of access restriction with EPCM, and memory encryption with MEE.
† - GPU BIOS is first restricted to be accessed, and measured by the GPU enclave.
‡ - PCIe routing mechanism is protected by modification on the PCIe root complex.

shared memory. The high cost of context switch in GPUs
will adversely affect the performance of HIX. The latest
NVIDIA Volta architecture supports a better isolated simul-
taneous execution with a fully separate GPU address space
for each client [38]. If the GPU-side support for concurrent
multi-context execution is available, improving HIX with
the support is our future work.

5 Evaluation

This section presents the HIX prototype implementation on
an emulated system, and evaluates its performance over-
heads. In addition, the section provides a qualitative assess-
ment of the security of HIX built upon its design principles.

5.1 Trusted Computing Base (TCB)

HIX is secured with a combination of memory encryption
and access restriction [36]. In Table 2, we enumerate the com-
ponents of HIX’s TCB, together with their respective attack
surfaces and protection mechanisms. To operate on commod-
ity GPUs without any modification, we protect GPU hard-
ware resources with access restriction, where the modified
MMU denies all accesses other than from the GPU enclave.
The trusted PCIe I/O routing mechanism guarantees packets
to reach the desired GPU with the MMIO lockdown from
the PCIe root complex. Furthermore, auxiliary control data
structures used for access validation are further secured with
the hardware-based SGX protection, which stores the data as
encrypted in EPC pages, and allows no software accesses to
it. Enclaves, secured with Intel SGX, communicate with the
inter-enclave shared memory, protected by authenticated
encryption.

5.2 Prototype Implementation

We implemented a prototype of HIX using the system vir-
tualization and emulation. The software components such
as the trusted GPU driver in the GPU enclave, and the pro-
tected communication mechanism across the user enclave,
GPU enclave, and GPU, are implemented on top of the em-
ulated system. The system emulation uses KVM-SGX [22]

Table 3. Prototype system configurations

Host Guest

OS Ubuntu 16.04.4 LTS 64bit Ubuntu 16.04.5 LTS 64bit
Kernel 4.14.28 4.13.0
CPU Intel Core i7 6700 3.40GHz 4C/8T
GPU - NVIDIA Geforce GTX 580
SGX KVM-SGX & QEMU-SGX SGX SDK ver 2.0

and QEMU-SGX [23] that are provided by Intel to enable
SGX functionalities in a guest virtual machine.
The required hardware modifications such as the MMIO

lockdown and new instructions are supported via emulation.
For the new HIX instructions, we used the conditional VM
exit mechanism for SGX instructions by using the ENCLS-
exiting bitmap [18]. It is a 64-bit field in the virtual machine
control structure (VMCS), and each bit position of the bitmap
forces the corresponding SGX instruction to incur a VM
exit. The instructions and internal data structures are imple-
mented in KVM and managed by the VM exit handler. PCIe
MMIO lockdown is implemented in the QEMU’s emulated
IOH3420 PCIe root port device. The modified PCIe root de-
vice rejects write requests to the PCIe configuration space
if the request modifies the registers for MMIO routing. TLB
entry validation, checking whether the MMIO addresses are
modified or whether an adversary is accessing the trusted
MMIO, is emulated in the EPT violation handling procedure
of KVM [54].
For the GPU driver running on the GPU enclave, we

use Gdev, an open-source CUDA platform for GPU com-
puting [27, 28]. Gdev is modified to run on the modified SGX
enclave as the GPU enclave. In the Gdev design, synchro-
nization between the GPU driver and GPU is done via MMIO
polling, not interrupts.

The static HIX trusted library is linked to the user enclave
for inter-enclave communication, and provides an essential
application programming interface (API) almost identical to
the corresponding CUDA driver API. Therefore, program-
mers can easily use HIX in the same way as they use the
existing CUDA API. We use the OCB-AES-128 authenticated

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

462

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Table 4. Size of matrix and the corresponding data size

Matrix size HtoD size DtoH size Total mem requirement

2048x2048 32MB 16MB 48MB

4096x4096 128MB 64MB 192MB

8192x8192 512MB 256MB 768MB

11264x11264 968MB 484MB 1452MB

encryption algorithm for data confidentiality and integrity
protection [33]. Intel SGX-SSL library is used for encryp-
tion and decryption in enclaves, and we implemented the
GPU cryptography functions based on the OpenSSL OCB
implementation and RFC7253 specification [14, 21, 33, 46].
To mitigate the cryptography overheads, the memory

copies in HIX are pipelined; i.e. authenticated encryption or
decryption and actual copy operation are operated in par-
allel. HIX divides a large data block into multiple smaller
chunks, and encrypts the n+1th chunk during the transfer
of the encrypted nth chunk.

5.3 Performance Overhead

We evaluate the overheads of HIX for performance with two
workload scenarios. First, we use micro-benchmarks for ma-
trix add and multiplication to evaluate the entire execution
stages from the application initiation originated from the
user enclave to the completion in the GPU. Next, we use
the Rodinia benchmarks for more realistic workload scenar-
ios [6, 7]. Each test is measured five times, and an average is
shown.
We perform our evaluation on a system with a GPU and

SGX-enabled CPU. Table 3 presents the system configuration
for the evaluation. In this section, Gdev denotes runs with
the original unsecure Gdev platform.

5.3.1 Matrix Operation Microbenchmarks

To analyze the performance of HIX, we first use simple ma-
trix operations: integer matrix addition (A + B = C) and
integer matrix multiplication (A × B = C), and compare the
results between HIX and the original Gdev with various data
sizes. Table 4 represents the sizes of input and output data
in terms of the matrix size. Note the GPU we used for tests
(NVIDIA Geforce GTX 580 1) has 1.5GB memory capacity,
hence we could not measure the performance for matrix
operations with larger than 1.5GB memory usage.

The results are illustrated in Figure 6. For matrix addition
with a low ratio of computation over communication, the
overhead from the cryptographic operations dominates the
other costs, causing the execution to be 2.5x times slower
than Gdev. For matrix multiplication, however, computation
time drastically increases compared to the addition, making
security overheads account for a much less portion of the

1The particular GPU was selected in this study, due to the availability of
Gdev support for the GPU architecture.

0 1000 2000 3000 4000 5000

Matrix addition execution time (ms)

2048

4096

8192

11264

M
at

ri
x

si
ze

251

433

1181

2081

259

729

2621

4881

Close

MemcpyDtoH

Execution

MemcpyHtoD

Init

Gdev

HIX

0 10000 20000 30000 40000 50000

Matrix multiplication execution time (ms)

2048

4096

8192

11264

M
at

ri
x

si
ze

511

2580

18167

44919

521

2880

19609

47770

Figure 6. Execution time of matrix addition and matrix mul-
tiplication on Gdev and HIX.

Table 5. List of Rodinia benchmark applications

App Memcpy (HtoD / DtoH) Problem Size

Back Propagation (BP) 117.0MB / 42.75MB 589,824 nodes
Breadth-First Search (BFS) 45.78MB / 3.81MB 1,000,000 nodes
Gaussian Elimination (GS) 32.00MB / 32.00MB 2048×2048 points
Hotspot (HS) 8.00MB / 4.00MB 1024×1024 points
LU Decomposition (LUD) 16.00MB / 16.00MB 2048×2048 points
Needleman-Wunsch (NW) 128.1MB / 64.03MB 4096×4096 points
K-nearest Neighbors (NN) 334.1KB / 167.05KB Default inputs
Pathfinder (PF) 256.0MB / 32.00KB 8192×8192 points
SRAD 24.23MB / 24.19MB 3096×2048 points

execution time. For multiplication with the 11264×11264 in-
put size, HIX is slower than the original Gdev by only 6.34%.
As shown by the analysis, the majority of performance over-
heads in HIX are from the authenticated encryption over-
heads between the user enclave and GPU. The performance
cost of HIX highly depends on the ratios of the computation
in GPUs and communication between the CPU and GPU.

5.3.2 Rodinia Microbenchmarks

Table 5 presents the list of applications selected from the
Rodinia benchmark suite, and the data amounts transferred
between the CPU and GPU along with the problem sizes. The
application selection follows the ones used for the original
Gdev evaluation, although there are minor changes due to
the porting issues.

Figure 7 presents the result of the selected Rodinia bench-
mark applications. HIX showed 26.8% slower performance
than the unsecure Gdev on average. When the computa-
tion to communication ratio is high as shown in GS, HIX
exhibits a comparable performance to Gdev. However, the
performance degradations are higher for the applications
with large data transfers (BP, NW, and PF), with 81.5%, 70.1%,
and 154% performance degradations respectively. In addition,

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

463

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

BP BFS GS HS LUD NW NN PF SRAD
0

500

1000

1500

2000

2500

E
xe

cu
ti

on
ti

m
e

(m
s)

325
209

2466

212 272
439

179 246

780
590

270

2420

108
219

747

97

626

952

Close

MemcpyDtoH

Execution

MemcpyHtoD

Init

Gdev

HIX

Figure 7. Execution time of Rodinia benchmarks with single-
user execution

BP BFS GS HS LUD NW NN PF SRAD mean
0

1

2

3

4

5

6

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e

1.
35

x

1.
96

x

2.
01

x

2.
51

x

Gdev parallel

HIX parallel

Gdev serial

HIX serial

Figure 8.Multi-user execution (two users): Rodinia bench-
mark execution time with two users, normalized to Gdev
one user.

BP BFS GS HS LUD NW NN PF SRAD mean
0

2

4

6

8

10

12

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e

2.
14

x

2.
99

x

4.
01

x

5.
02

x

Gdev parallel

HIX parallel

Gdev serial

HIX serial

Figure 9. Multi-user execution (four users): Rodinia bench-
mark execution time with four users, normalized to Gdev
one user.

the task initialization overhead is slightly lower in HIX, and
thus small kernel launches in HS, LUD, and NN, are faster
in HIX than Gdev.

5.4 Multi-User Execution

In this section, we evaluate the performance when multiple
users request the GPU service simultaneously. The results
are illustrated in Figure 8 (service to 2 users) and Figure 9
(service to 4 users). The execution times are normalized to
those with Gdev with one user. As HIX includes multiple
in-GPU cryptography kernel executions, the overheads from
the cryptography kernel execution itself, increased context
switches, and resource underutilization for small data cryp-
tography make HIX performance worse than Gdev. HIX
parallel execution shows performance about 45.2% worse
with two users, 39.7% worse with four users, than the Gdev
parallel execution. However, the performance is still better
than the execution scenario that the GPU enclave runs the

received requests sequentially. Once the concurrent multi-
user execution without context switches is supported with
the introduction of the latest NVIDIA Volta architecture,
the performance degradation is expected to be significantly
reduced.

5.5 Security Analysis

We first present a minimal set of security axioms that HIX is
founded upon and analyze how HIX defends against classes
of attacks given these axioms. We assume that the following
security axioms hold valid for HIX:

Axiom #1 - Hardware root of trust: Both the
GPU and SGX-enabled CPU are trusted and not subject
to physical attacks.

Axiom #2 - SGX-enabled security: SGX preserves
the integrity of code running within enclaves and the
confidentiality of data stored at runtime in the enclaves.

Axiom #1 guarantees the presence of trusted CPU that
ensures SGX operates correctly as designed. In addition, it
assumes that the GPU hardware itself is trusted, as a physical
attack on it is out of scope.Axiom #2 ensures the confidential-
ity and integrity of code and data within the SGX enclaves.
The code that executes in the enclaves (both in the user and
GPU enclaves) can be attested and verified to be as intended.

In Figure 10, we illustrate the round-trip user data flow to
and from the user app and the GPU, and highlight the attack
surface of HIX indicated with circled numbers. We design
HIX to guard against these possible attack points.
Data Confidentiality and Integrity Attacks:An attacker
can target two forms of data, namely (1) communication data
between two entities at runtime, and (2) the computational

data that is being used in the entity or stored at rest.
First, to protect communication data outside the trusted en-

tities covered by Axiom #1, HIX safeguards the inter-enclave
shared memory communication channel (1), the MMIO
path (3), and the PCIe routing path (4). To secure the
inter-enclave communication, HIX uses the Intel SGX local
attestation and Diffie-Hellman key exchange protocol [12] to
negotiate the initial session encryption keys between the en-
claves. The subsequent inter-enclave communication flows
of the request messages and user data are then encrypted
with the OCB-AES authenticated encryption algorithm to
ensure their confidentiality and integrity. An incrementing
nonce is also used to ensure freshness of the encryption
messages and to prevent replay attacks. When the data is
transferred, they remain encrypted with the key, hence the
confidentiality and integrity are still guaranteed until the
data reaches to the GPU.
Second, we ensure that the critical ephemeral data, such

as the session cryptographic keys, remain protected within
the confines of SGX hardware enforced isolation (2). Axiom

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

464

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

User Process
User

Enclave

GPU Enclave Process

GPU EnclaveInter-Enclave
Shared Memory MMIO PCIe

Controller GPU
1

2
2

3 4
6

IOMMU 5

Figure 10. Attack surface analysis illustrates possible attacks and HIX defense at different stages of the secure dataflow.

#2 ensures that the secret data remains confidential and inac-
cessible to the adversary. The session cryptographic keys are
created and stored in the GPU, still they cannot be accessed
from the adversary as the MMIO can only be accessed by
the eligible GPU enclave, which is detailed in Section 4.3.
Code Integrity Attacks: Since the GPU enclave mediates
sole access to the GPU, an attacker may attempt to compro-
mise the code running within the GPU enclave (2) during
the setup process. Axiom #2 ensures the integrity of the code
running within the enclaves. Furthermore, the user lever-
ages SGX to perform a remote attestation [20] on the code
running within the GPU enclave. As part of the attestation
process, the GPU enclave code cryptographically confirms
its provenance (as being the code provided by the GPU ven-
dor) and further verifies that it has not been modified and is
indeed executing on a genuine Intel SGX-enabled system.
MMIO Address Translation Attacks: To subvert the se-
cure hardware I/O path established between the GPU and
GPU enclave via the MMIO (3), an attacker can try to redi-
rect one of the path endpoints to an attacker-controlled en-
tity. Two potential ways to achieve this are: (1) registering
an erroneous address pair during TGMR registration, and (2)
modifying the page table entry related to the MMIO. These
attacks are thwarted by HIX’s design. For the first type of
attacks, the execution of EGADD validates that the virtual and
physical addresses are within the proper range of the GPU
enclave virtual address space and physical MMIO region.
In the second type of attacks, after registering the trusted
MMIO region, the attacker can attempt to modify a page
table entry for the MMIO to redirect traffic between the GPU
and GPU enclave to a memory region the attacker controls.
To guard against this, the page table entry retrieved by the
page table walker is validated before being used, as detailed
in Section 4.3.
DMA Attacks: An attacker can modify the target physical
address of DMA and allow attacker-controlled data to be
copied to/from the GPU (5). However, this attack will not
work in the presence of HIX’s use of authenticated encryp-
tion. The integrity of the encrypted data is checked based
on the OCB-AES algorithm. If an attacker attempts to inject
compromised data at runtime, the GPU and user enclave
will detect the failure in the integrity check and abort. This
protection is still valid when a malicious IOMMU is used for
DMA [58].

PCIe Routing Modification Attacks: An attacker can at-
tempt to intercept PCIe packets heading to the GPU by mod-
ifying the intermediate PCIe routing path (4). In addition,
an attacker can redirect packets from the GPU enclave to
an untrusted destination, which can potentially induce the
GPU enclave to create a secret key with an untrusted device
other than the GPU. To prevent the PCIe routing table from
modification, the GPU enclave locks the MMIO routing in-
formation through MMIO lockdown, and then validates the
routing information from the PCIe root complex to the GPU
during initialization, as illustrated in Section 4.3.2. After the
GPU enclave is initialized, the attacker cannot modify the
routing path from the host to the GPU.
GPU Enclave Termination Attacks: As discussed in Sec-
tion 4.2.3, the forcefully terminated GPU enclave (2) is still
registered in the hardware (GECS and TGMR) as the owner
process of the GPU. Therefore, even a newly created GPU
enclave process cannot access the GPU, as the GPU enclave
registration is not reset with the GPU enclave termination.
The GPU can be used only after a power recycling and sys-
tem reboot, removing any remaining information in the GPU
and its memory.
GPU Emulation Attacks: A privileged adversary can set
up an emulated GPU (6). However, during the secure initial-
ization of the GPU enclave, HIX checks the hardware status
of the GPU. Since the trusted PCIe root complex retrieves
only the real devices attributes, HIX can prevent an emulated
GPU from being used and guarantee the trusted routing to
the actual hardware GPU.

5.6 Limitations

In this section, we discuss the limitations of HIX, stemmed
from the key design principle: no modification to the GPU

architecture.
Physical Attacks on GPUs: GPUs do not have a trusted
memory region, and the data in the GPU memory exist in
plaintext. Therefore, direct physical accesses on the GPU
memory will expose the user data. In addition, as PCIe in-
terconnects are exposed, injecting malicious PCIe packets
via a special hardware is possible. For such packet injections,
securing the routing path to the GPU is not sufficient to
secure the control of the GPU via MMIO.
NoPCIe Peer-to-Peer Transaction Service: PCIe peer-to-
peer (P2P) transaction services, such as NVIDIA GPUDirect,
are used for high performance systems. The HIX design in
this paper is focused on a single GPU or multi-GPU system

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

465

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

without P2P connection across GPUs, providing protection
only for the communication path between a user enclave
and GPU. Investigating the P2P communication with HIX is
our future work.
PCIe feature not supported for MMIO Lockdown: The
PCI specification specifies a way of getting the MMIO size
[41]. However, the sizing inquiry involves a BAR write with
all 1’s, which is not allowed after theMMIO lockdown in HIX.
This problem is implementation specific; it can be solved
with additional mechanism, such as the PCIe root complex
exceptionally accepts a MMIO modification if it is writing
all 1’s for the sizing inquiry.
No GPU Demand Paging Support: Recent GPUs support
demand paging which dynamically copies data from the host
to the GPU with page faults to extend GPU memory to the
main memory [44, 47, 48]. Supporting such demand paging
requires additional encryption and integrity protection for
the pages before writing back to the main memory. However,
our prototype does not provide the feature due to the lack of
demand paging supports in the open source Gdev platform.
Adding the demand paging will be our future work.

6 Related Work

A recent study, Graviton, conducted in parallel to HIX, pro-
posed a trusted computation on GPUs by the GPU-provided
isolated execution [52]. Graviton proposed to modify the
GPU hardware to prevent the device driver from directly
accessing several critical GPU interfaces, such as communi-
cation channels, page table entry, etc. Unlike Graviton, HIX
is focused on protecting commodity GPUs with hardware
extensions of the I/O components and SGX supports in the
CPU side.
There have been several recent studies to improve the

security of the current systems with SGX. In SCONE [2], a
docker container runs inside SGX enclave. It uses an asyn-
chronous system call interface to pass container’s system
call requests to outside the enclave fast. Kim et al. used SGX
to enhance the security of anonymity network software to
address its current limitations [30]. There are several recent
studies to reduce the limitation of memory capacity of SGX.
Eleos proposed a general library for storing data on the se-
cure memory pool outside of the enclave [40]. ShieldStore
and SPEICHER proposed application-specific approaches
for key-value storage to keep data securely on untrusted
memory [3, 31].
There are several studies that analyzed the security vul-

nerabilities of GPUs. CUDA Leaks [45] showed how GPU
data can be leaked to a malicious user, and Zhu et al. [58]
analyzed the GPU architecture and its potential security
holes. PixelVault uses the GPU hardware as a secure storage
of keys, exploiting the physical isolation between GPU and
CPU [51]. Since GPUs typically reusememory blocks that are
not initialized to zero in memory allocations or deallocations,

residual information from past computational sessions can be
examined by attackers from the GPUmemory [17, 29, 34, 56].
Recent studies investigate the security aspects of I/O de-

vices and their computations. Border Control proposed the
security of heterogeneous systems with accelerators [39].
The study is focused on protecting the system from the po-
tentially malicious accelerators, while HIX provides secure
GPU and accelerator computation isolated from compro-
mised privileged software. SUD isolates potentially mali-
cious device drivers from the kernel space by providing an
emulated kernel environment in the user space [4].

Several studies investigated a hypervisor-based approach [53,
57] and systemmanagementmode (SMM) -based approach [32]
to improve the security between the user and I/O devices
under an untrusted OS. SGXIO utilized a formally verified hy-
pervisor to provide a trusted path between user applications
and I/O devices [53]. The trusted device driver on the hyper-
visor provides device services to the user application in an
enclave. However, SGXIO does not investigate its approach
for performance-oriented GPU computing. SGXIO relies on
device virtualization, which has high performance overheads
for GPUs. Recent studies for full GPU virtualization showed
that the performance overheads are significantly higher than
native executions [50, 55].

7 Conclusion

This paper proposed a hardware and software architecture
to protect GPU computation from malicious privileged soft-
ware. HIX isolates the I/O interconnect and GPU driver from
the control of the OS, without requiring any change to the
hardware GPU architecture. Although this paper focuses on
the discrete GPU platform connected with PCIe buses, HIX
can be extended to support various accelerator architectures
communicating with CPUs over I/O interconnects by apply-
ing the proposed device isolation principles. The prototype
implementation on an emulated system demonstrates the
feasibility of secure GPU computation with minor hardware
I/O interconnect changes.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF-2016R1A2B4013352) and by the Institute
for Information & communications Technology Promotion
(IITP-2017-0-00466). Both grants are funded by the Ministry
of Science and ICT, Korea. This work is partially supported
by HR0011-18-C-0017 (DARPA) and a gift from Bloomberg.
Opinions, findings, conclusions and recommendations ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the US Government or
commercial entities. Simha Sethumadhavan has a significant
financial interest in Chip Scan Inc.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

466

Heterogeneous Isolated Execution for Commodity GPUs ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

References

[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013.
Innovative Technology for CPU Based Attestation and Sealing. In The

2nd International Workshop on Hardware and Architectural Support for

Security and Privacy (HASP ’13), Vol. 13. 1–6.
[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-

dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’Keeffe, Mark Stillwell, David Goltzsche, Dave Eyers, RÃĳdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI ’16). 689–703.
[3] Maurice Bailleu, Jörg Thalehim, Pramod Bhatotia, Christof Fetzer,

Michio Honda, and Kapil Vaswani. 2019. SPEICHER: Securing LSM-
based Key-Value Stores using Shielded Execution. In 17th USENIX

Conference on File and Storage Technologies (FAST ’19).
[4] Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Ma-

licious Device Drivers in Linux. In 2010 USENIX Annual Technical

Conference (USENIX ATC ’10). 1–9.
[5] Ravi Budruk, Don Anderson, and Tom Shanley. 2004. PCI Express

System Architecture.
[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In IEEE International Symposium

on Workload Characterization (IISWC ’09). 44–54.
[7] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn,

Liang Wang, and Kevin Skadron. 2010. A Characterization of the
Rodinia Benchmark Suite with Comparison to Contemporary CMP
Workloads. In IEEE International Symposium on Workload Characteri-

zation (IISWC ’10). 1–11.
[8] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why

the System Call API is a Bad Untrusted RPC Interface. In The 18th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’13). 253–264.
[9] Victor Costan and Srinivas Devadas. 2017. Intel SGX Explained. IACR

Cryptology ePrint Archive (Feb 2017), 1–118.
[10] Advanced Micro Devices. 2017. Radeon’s Next Generation Vega Archi-

tecture. Technical Report. Advanced Micro Devices, Santa Clara, CA,
USA.

[11] Bang Di, Jianhua Sun, and Hao Chen. 2016. A Study of Overflow
Vulnerabilities on GPUs. In IFIP International Conference on Network

and Parallel Computing (NPC ’16). 103–115.
[12] Whitfield Diffie and Martin E. Hellman. 1976. New Directions in

Cryptography. Transactions on Information Theory 22, 6 (Nov 1976),
644–654.

[13] Envytools. 2016. Envytools - Tools for People Envious of NVIDIA’s
Blob Driver. Retrieved August 6, 2018 from https://github.com/
envytools/envytools

[14] OpenSSL Software Foundation. 2003. OpenSSL: The Open Source
toolkit for SSL/TLS. Retrieved July 14, 2018 from https://openssl.org

[15] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and
Masato Edahiro. 2013. Data Transfer Matters for GPU Computing. In
International Conference on Parallel and Distributed Systems (ICPADS

’13). 275–282.
[16] Peter N Glaskowsky. 2009. NVIDIA’s Fermi: The First Complete GPU

Computing Architecture. Technical Report. NVIDIA, Santa Clara, CA,
USA.

[17] Ari B Hayes, Lingda Li, Mohammad Hedayati, Jiahuan He, Eddy Z
Zhang, and Kai Shen. 2017. GPU Taint Tracking. In 2017 USENIX

Annual Technical Conference (USENIX ATC ’17). 209–220.
[18] Intel. 2014. Intel Software Guard Extensions Programming Reference.

Technical Report. Intel, Santa Clara, CA, USA. https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf

[19] Intel. 2016. 6th Generation Intel Processor Datasheet for S-

Platforms. Technical Report. Intel, Santa Clara, CA, USA.

https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/desktop-6th-gen-core-family-datasheet-vol-2.pdf

[20] Intel. 2016. Intel Software Guard Extensions Remote At-
testation End-to-End Example. Retrieved Jan 2, 2019
from https://software.intel.com/en-us/articles/intel-software-guard-
extensions-remote-attestation-end-to-end-example

[21] Intel. 2018. Intel Software Guard Extensions SSL. Retrieved December
29, 2018 from https://github.com/intel/intel-sgx-ssl

[22] Intel. 2018. KVM-SGX. Retrieved December, 29, 2018 from https:
//github.com/intel/kvm-sgx

[23] Intel. 2018. QEMU-SGX. Retrieved December 29, 2018 from https:
//github.com/intel/qemu-sgx

[24] Qing Jiao, Mian Lu, Huynh Huynh Phung, and Tulika Mitra. 2015.
Improving GPGPU Energy-Efficiency through Concurrent Kernel Ex-
ecution and DVFS. In IEEE/ACM International Symposium on Code

Generation and Optimization (CGO ’15). 1–11.
[25] Asim Kadav and Michael M. Swift. 2012. Understanding Modern

Device Drivers. In The 17th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’12). 87–98.
[26] Shinpei Kato. 2013. Implementing Open-Source CUDA Runtime. Tech-

nical Report. Nagoya University.
[27] Shinpei Kato, Yuki Abe, Jason Aumiller, Takuya Edahiro, Yuseke Fujii,

Masaki Iwata, Marcin Koscielnicki, Michael McThrow, Martin Peres,
Hiroshi Sasaki, Yuske Suzuki, Hisashi Usuda, Kaibo Wang, and Hiroshi
Yamada. 2014. Gdev: Open-Source GPGPU Runtime and Driver Soft-
ware. Retrieved June 17, 2018 from https://github.com/shinpei0208/
gdev

[28] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott A. Brandt.
2012. Gdev: First-Class GPU Resource Management in the Operating
System. In 2012 USENIX Annual Technical Conference (USENIX ATC

’12). 401–412.
[29] Michael Kerrisk. 2012. XDC2012: Graphics Stack Security.
[30] Seong Min Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu

Han. 2017. Enhancing Security and Privacy of Tor’s Ecosystem by
Using Trusted Execution Environments. In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI ’17). 145–161.
[31] Taehoon Kim, Joonun Park, Jaewook Woo, Seungheun Jeon, and Jae-

hyuk Huh. 2019. ShieldStore: Shielded In-memory Key-value Storage
with SGX. In 14th European Conference on Computer Systems (EuroSys

’19).
[32] Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeongboo

Baek, Brent Byunghoon Kang, and Hyunsoo Yoon. 2016. On-demand
bootstrapping mechanism for isolated cryptographic operations on
commodity accelerators. Computers & Security 62 (Sep 2016), 33–48.

[33] Ted Krovetz and Phillip Rogaway. 2014. The OCB authenticated-

encryption algorithm. Technical Report. 1–19 pages.
[34] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing

webpages rendered on your browser by exploiting GPU vulnerabilities.
In IEEE Symposium on Security and Privacy (SP ’14). 19–33.

[35] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution. In
The 2nd International Workshop on Hardware and Architectural Support

for Security and Privacy (HASP ’13). 1–8.
[36] Zhenyu Ning, Fengwei Zhang, Weisong Shi, and Weidong Shi. 2017.

Position Paper: Challenges Towards Securing Hardware-assisted Exe-
cution Environments. In The Hardware and Architectural Support for

Security and Privacy (HASP ’17). 1–8.
[37] NVIDIA. 2017. Multi Process Service. Technical Report. NVIDIA, Santa

Clara, CA, USA. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf

[38] NVIDIA. 2017. NVIDIA Volta Architecture. Technical Report. NVIDIA,
Santa Clara, CA, USA.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

467

https://github.com/envytools/envytools
https://github.com/envytools/envytools
https://openssl.org
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-2.pdf
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/kvm-sgx
https://github.com/intel/kvm-sgx
https://github.com/intel/qemu-sgx
https://github.com/intel/qemu-sgx
https://github.com/shinpei0208/gdev
https://github.com/shinpei0208/gdev
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA I. Jang, et al.

[39] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. 2015.
Border Control: Sandboxing Accelerators. In Proceedings of the 48th

International Symposium on Microarchitecture (MICRO ’15). 470–481.
[40] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.

2017. Eleos: ExitLess OS Services for SGX Enclaves. In 12th European

Conference on Computer Systems (EuroSys ’17). 238–253.
[41] PCI-SIG. 2004. PCI Local Bus Specification Specification, Revision 3.0.

Technical Report. PCI-SIG, Beaverton, OR, USA.
[42] PCI-SIG. 2009. Address Translation Services Specification, Revision 1.1.

Technical Report. PCI-SIG, Beaverton, OR, USA.
[43] PCI-SIG. 2010. PCI Express Base Specification Specification, Revision 3.0.

Technical Report. PCI-SIG, Beaverton, OR, USA.
[44] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architec-

tural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In The

19th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’14). 743–758.
[45] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. 2016. CUDA

Leaks: A Detailed Hack for CUDA and a (Partial) Fix. ACMTransactions

on Embedded Computing Systems (TECS) 15, 1, Article 15 (Feb 2016),
25 pages.

[46] Phillip W. Rogaway. 2006. Method and Apparatus for Facilitating
Efficient Authenticated Encryption. Patent No. U.S. 7,046,802, Filed
July 30th., 2001, Issued May 16th., 2006.

[47] Phil Rogers. 2013. Heterogeneous System Architecture Overview. In
A Symposium on High Performance Chips (Hot Chips ’13). 1–41.

[48] Nikolay Sakharnykh. 2017. Unified Memory on Pascal and Volta.
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-
nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf GPU
Technology Conference ’17.

[49] Darmawan Salihun. 2014. System Address Map Initialization in x86/64
Architecture Part 2: PCI Express-Based Systems. Retrieved Jan

2, 2019 from http://resources.infosecinstitute.com/system-address-
map-initialization-x86x64-architecture-part-2-pci-express-based-
systems/

[50] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014.
GPUvm: Why Not Virtualizing GPUs at the Hypervisor?. In 2014

USENIX Annual Technical Conference (USENIX ATC ’14). 109–120.
[51] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and

Sotiris Ioannidis. 2014. PixelVault: Using GPUs for Securing Cryp-
tographic Operations. In ACM SIGSAC Conference on Computer and

Communications Security (CCS ’14). 1131–1142.
[52] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:

Trusted Execution Environments on GPUs. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI ’18). 681–696.
[53] Samuel Weiser and Mario Werner. 2017. SGXIO: Generic Trusted I/O

Path for Intel SGX. InACMConference on Data and Application Security

and Privacy (CODASPY ’17). 261–268.
[54] Sheng Yang. 2008. Extending KVM with new Intel Virtualization Tech-

nology. https://www.linux-kvm.org/images/c/c7/KvmForum2008%
24kdf2008_11.pdf KVM Forum.

[55] Hangchen Yu and Christopher J. Rossbach. 2017. Full Virtualization
for GPUs Reconsidered. In 14th Annual Workshop on Duplicating, De-

constructing, and Debunking (WDDD ’17). 1–11.
[56] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and Rui

Liu. 2017. Vulnerable GPUMemoryManagement: Towards Recovering
Raw Data from GPU. Proceedings on Privacy Enhancing Technologies

(PoPETs) 2017, 2 (2017), 57–73.
[57] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M.

McCune. 2012. Building Verifiable Trusted Path on Commodity x86
Computers. In Symposium on Security and Privacy (SP ’12). 616–630.

[58] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel,
and Mark Silberstein. 2017. Understanding The Securty of Discrete
GPUs. In Proceedings of the General Purpose GPUs (GPGPU ’10). 1–11.

Session: Security II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

468

http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://resources.infosecinstitute.com/system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-systems/
http://resources.infosecinstitute.com/system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-systems/
http://resources.infosecinstitute.com/system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-systems/
https://www.linux-kvm.org/images/c/c7/KvmForum2008%24kdf2008_11.pdf
https://www.linux-kvm.org/images/c/c7/KvmForum2008%24kdf2008_11.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Software Guard Extensions (SGX)
	2.2 PCI Express Architecture
	2.3 Controlling GPU in Software

	3 Threat Model
	3.1 Attacker Model and Assumptions
	3.2 Out of Scope

	4 HIX Architecture
	4.1 Architecture Overview
	4.2 GPU Enclave
	4.3 Securing I/O Path: MMIO and DMA
	4.4 Application-to-GPU Communication
	4.5 Support for Multiple User Contexts

	5 Evaluation
	5.1 Trusted Computing Base (TCB)
	5.2 Prototype Implementation
	5.3 Performance Overhead
	5.4 Multi-User Execution
	5.5 Security Analysis
	5.6 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

