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Abstract
Large Language Models (LLMs) demonstrate
remarkable proficiency in comprehending and
handling text-based tasks. Many efforts are be-
ing made to transfer these attributes to video
modality, which are termed Video-LLMs. How-
ever, existing Video-LLMs can only capture
the coarse-grained semantics and are unable
to effectively handle tasks related to compre-
hension or localization of specific video seg-
ments. In light of these challenges, we pro-
pose Momentor, a Video-LLM capable of ac-
complishing fine-grained temporal understanding
tasks. To support the training of Momentor, we
design an automatic data generation engine to
construct Moment-10M, a large-scale video in-
struction dataset with segment-level instruction
data. We train Momentor on Moment-10M,
enabling it to perform segment-level reasoning
and localization. Zero-shot evaluations on sev-
eral tasks demonstrate that Momentor excels
in fine-grained temporally grounded comprehen-
sion and localization. Our project is available at
https://github.com/DCDmllm/Momentor.

1. Introduction
Inspired by the success of ChatGPT (OpenAI, 2022), nu-
merous studies across various fields are attempting to inte-
grate Large Language Models (LLMs) with their domain-
specific tasks, seeking to bring innovation to these fields.
For example, Video Large Language Models (Video-LLMs)
such as VideoChat (Li et al., 2023d) and Video-ChatGPT
(Maaz et al., 2023) adapt LLM to video modality, striving to
merge the understanding, reasoning and interactive skills of
LLM with video perception. They typically sample multiple
frames from the video, use an image encoder to encode
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Please watch the segment of               . Could you please tell me

why the woman is crying and pinpoint the corresponding timestamps?

The woman is crying because she                                     

at the                                     .

23.0s to 46.2s

won a swimming event (0s ~ 23.0s)

Paralympic Games (120.1s ~ 124.2s)

Figure 1. Momentor can perform comprehensive reasoning
across multiple segments in a video.

these frames separately, and employ a projection layer (e.g.
a linear layer or Q-Former (Li et al., 2023a)) to adapt the
visual features to the feature space of an open-source LLM
((Touvron et al., 2023), (Chiang et al., 2023)). By train-
ing on video-level captioning and QA tasks, they establish
coarse-grained multimodal feature alignment and acquire
the capability of instruction following.

Despite being effective, existing Video-LLMs exhibit two
limitations: (1) Lack of effective temporal representation.
Existing models encode each sampled frame independently
and perform feature projection without retaining precise
temporal information in visual features. They lack an effec-
tive temporal representation for encoding time positions at
inputs and expressing temporal positions accurately at out-
puts. While directly expressing timestamps in text format
seems to be a feasible approach, such a method suffers inher-
ently from precision variability and tokenization complexity
of decimals in LLM. (2) Lack of segment-level modeling.
Existing models mainly focus on capturing of global visual
semantics, while neglecting the modeling of segment-level
semantics and relationships. They are typically trained on
trimmed videos (usually around a few seconds) for video-
level semantic alignment (video captioning) and instruction-
following (video QA). However, common untrimmed videos
generally last for several minutes and consist of multiple
segments with various contents. Consequently, existing
Video-LLMs are unable to provide appropriate responses
based on certain segments specified by the user, or locate
the segment containing specific content precisely.

To address these challenges, we propose Momentor, a
Video-LLM with fine-grained temporal awareness and
segment-level reasoning capability. To enhance temporal
modeling, we introduce innovations in both model architec-
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Dataset Total Dur. Avg Dur. #Videos #Instructions #Segments
#Instances

Tracks #Actions
No Human
Annotation

Segment-Level
Comprehension

Temporal
Localization

Instance
Reference

Task
Taxonomy

VideoChat (Li et al., 2023d) 41h 18s 8.2k 11.2k % % % ! % % % %

Valley (Luo et al., 2023) 608h 40s 54.7k 73.1k % % % ! % % % !

Video-ChatGPT (Maaz et al., 2023) 432h 117s 13.3k 100k % % % % % % % %

Moment-10M 7260h 403s 64.9k 10.4M 1.46M 451.5k 1.51M ! ! ! ! !

Table 1. Comparison between Moment-10M and existing video instruction datasets

ture and training methodology. For model architecture, we
present Temporal Perception Module, which is designed to
flexibly represent accurate temporal positions within videos
and inject temporal information into frame features. Tempo-
ral Perception Module extends the LLM’s vocabulary with a
series of temporal tokens designed for temporal positioning
and encoding, allowing LLM to precisely perceive fine-
grained temporal information and flexibly output accurate
timestamps. To avoid the quantization error in representing
time with discrete tokens, we incorporate a continuous in-
terpolation mechanism and construct a continuous temporal
feature space on top of these temporal tokens. Further, we
design a neighboring token propagation mechanism, which
propagates the parameter updates of each temporal token
to its neighboring tokens to enhance the quality and conti-
nuity of the temporal representations. For training, we pro-
pose a Grounded Event-Sequence Modeling stage, which
trains Momentor to consecutively ground each event in
the untrimmed video and caption the corresponding seg-
ment with aligned timestamps. Such a temporally grounded
event-sequence decoding training bridges the gap between
coarse-grained video-level understanding and fine-grained
segment-level grounding. It enables Momentor to learn
the temporal token space and understand untrimmed videos
with complex event sequences.

With fine-grained temporal modeling, we expect that
Momentor can learn to perform various segment-level
reasoning tasks via instruction tuning. However, existing
video instruction datasets do not include segment-level in-
struction data. Therefore, we propose Moment-10M, a
large-scale video instruction fine-tuning dataset with exten-
sive segment-level annotations (e.g., actions, tracks). To
construct Moment-10M, We design an innovative and au-
tomatic data generation engine. Specifically, given a video,
we first track all the instances in the video. Then, we design
an event boundary detection algorithm to temporally seg-
ment the video into coherent events based on video content
and instance behaviours. After that, we develop a struc-
tured information extraction framework to derive instance,
attribute, and event information from the video. We apply
a LLM (Chiang et al., 2023) to synthesize these informa-
tion and generate instruction data. To facilitate comprehen-
sive segment-level reasoning, we design not only single-
segment tasks that involve only a single segment, but also
cross-segment tasks, which require reasoning over multiple
segments to provide correct responses. Employing the data
generation engine, we generated 10 million instructions to
form Moment-10M. As shown in Table 1, Moment-10M

comprises 1.5 million segments and 451.5 thousand instance
tracks while featuring a larger number of videos as well as
significantly longer video durations.

We conduct extensive experiments with our proposed
Momentor. The results indicate that our Momentor out-
performs previous Video-LLMs in multiple tasks involv-
ing precise temporal position, such as temporal grounding,
dense captioning, action segmentation, and highlight mo-
ment retrieval. Momentor demonstrates advanced profi-
ciency in temporal perception. It can provide appropriate re-
sponses based on user-indicated segments as well as quickly
locate target segments that meet user requirements.

2. Related Work
2.1. Vision and Language Understanding

With the rise of deep learning methods in the fields of com-
puter vision and natural language processing, many efforts
have been made to explore more complex multimodal un-
derstanding of vision and language. For example, tasks such
as image and video-based QA, captioning and retrieval have
been extensively discussed and explored by many existing
studies (Antol et al., 2015; Vinyals et al., 2015; Faghri et al.,
2017; Pan et al., 2023; Tapaswi et al., 2016; Venugopalan
et al., 2015; Dong et al., 2021). Inspired by the success of
the pre-training paradigm in natural language processing
and computer vision, many works (Radford et al., 2021;
Li et al., 2023a; 2022a; Sun et al., 2019) propose multi-
modal pre-trained models with excellent generalization by
pre-training on a large amount of image-text or video-text
pairs.

2.2. Temporally Grounded Video Understanding
Fine-grained video understanding tasks usually demand the
model to view a video as a series of interconnected events
and comprehend or locate them in a temporally grounded
manner. For instance, action segmentation (Singh et al.,
2016; Du et al., 2022; Behrmann et al., 2022) requires the
model to temporally split the video and output the action la-
bel for each segment; temporal grounding (Gao et al., 2017;
Zhang et al., 2020b;a; Li et al., 2022b; 2023c) demands
the model to identify the start and end timestamps of the
video segment corresponding to a given natural language
query; highlight moment retrieval (Lei et al., 2021; Lin et al.,
2023) requires the model to find out the central event in a
video from a natural language description and pinpoint all
related segments; dense video captioning (Alwassel et al.,
2021; Yang et al., 2023a) requires the model to list out all
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(a) Architecture of Momentor (b) Training of Momentor
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Figure 2. The (a) overall architecture and (b) training of Momentor.

events contained in a video along with their start and end
timestamps. Previous methods typically train a task-specific
model for each task, whereas we aim to design a unified
Video-LLM that can solve these tasks in a zero-shot manner.

2.3. Multimodal Large Language Models
Many efforts have been made to transfer the task-handling
capability of Large Language Models (LLMs) to the vision
modality, enabling them to complete various tasks based
on image content in accordance with user instructions (Liu
et al., 2024; Li et al., 2023b; Pan et al., 2024; Zhu et al.,
2023; Ge et al., 2024; Gao et al., 2024; Zhang et al., 2024).
Several models (Li et al., 2023d; Maaz et al., 2023; Zhang
et al., 2023; Luo et al., 2023; Huang et al., 2023; Ren et al.,
2023) also incorporate temporal information aggregation
module with LLM, in order that they can understand video
content. Despite being effective in captioning or QA on
short videos, the lack of fine-grained temporal modeling in
these models prevents them from understanding or locating
specific segments in long videos. In contrast, Momentor
employs a Temporal Perception Module that integrates a
continuous temporal token space for precise temporal posi-
tioning and modeling.

3. Momentor
In this section, we present Momentor, a Video-LLM de-
signed for fine-grained comprehension and localization in
videos, as shown in Figure 2. To empower Momentor with
fine-grained temporal awareness, we propose the Temporal
Perception Module (TPM) (Section 3.2), which facilitates
precise temporal positioning and fine-grained temporal in-
formation injection. To better train TPM, we introduce
Grounded Event-Sequence Modeling (Section 3.3) as an
additional pre-training stage, which enables Momentor to
comprehend videos in a temporally grounded manner and
prepares it for segment-level instruction following tasks.

3.1. Overall Pipeline
Momentor is composed of a frame encoder (Dosovitskiy
et al., 2020), a linear projection layer, a Temporal Percep-
tion Module (TPM), and a Large Language Model (LLM)
(Touvron et al., 2023). After receiving one input video,
Momentor will first uniformly sample multiple frames
from the video and encode each frame independently to get
frame features. These frame features will be projected into
the LLM’s feature space by the linear projection layer. The
projected features are then processed in the TPM for tempo-
ral information injection, which are then concatenated with
tokenized user instructions to be the input of LLM. During
training, the frame encoder and LLM are kept frozen, while
only the linear projection layer and TPM are updated.

3.2. Temporal Perception Module (TPM)
We propose the Temporal Perception Module to equip
Momentor with fine-grained temporal awareness and pro-
vide an interface to express precise temporal positions.
Specifically, Temporal Perception Module incorporates a
continuous temporal token space and employs neighboring
token propagation to facilitate the continuity in token space.
Continuous Temporal Token Space. We employ a con-
tinuous feature space for precise temporal positioning.
Specifically, we uniformly divide the video into N − 1 seg-
ments, and then define N learnable anchor point features to
represent the N−2 split points and 2 endpoints, encompass-
ing the relative temporal positions within the video. Then
we apply interpolation to define the feature of each tempo-
ral point in the timeline, thereby constructing a continuous
temporal feature space. With the temporal feature space,
we can precisely represent arbitrary temporal positions, en-
abling Momentor to input or output exact time positions.
To unify the training process, we incorporate these anchor
point features as specialized temporal tokens into the LLM’s
vocabulary, denoted as ⟨1⟩, ⟨2⟩, ..., ⟨N⟩, and the outlined fea-
ture space is referred as the continuous temporal token space.
Therefore, we can train Momentor in an auto-aggressive
manner using a unified cross-entropy loss. Studies like
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Vid2Seq (Yang et al., 2023a) also add specialized tokens to
the text decoder’s vocabulary to express temporal positions.
However, they directly use the discrete tokens for tempo-
ral positioning in continuous timelines, which introduces
quantization error and prevents them from precise temporal
localization. In contrast, our approach solves this problem
by constructing a continuous temporal token space on top of
these temporal tokens, thereby avoiding quantization error
and enabling precise temporal position representation.

Neighboring Token Propagation. Unlike language to-
kens, temporal tokens have a clear sequential relationship.
We expect continuity among these temporal tokens, mean-
ing that the embeddings of adjacent tokens should be more
similar to each other than those of tokens that are farther
apart. However, existing models that use discretized tokens
to represent temporal positions have not incorporated any
techniques to highlight such continuity. To tackle this issue,
we employ a neighboring token propagation mechanism,
which enhances continuity by propagating the parameter
updates of one temporal token to its adjacent tokens. For
any temporal token ⟨k⟩ involved in the training process, we
have:

t̃k = tk + tadj − StopGrad(tadj), (1)

tadj =

N∑
i=1

1

2|i−k| · ti, (2)

where t̃k is the embedding of temporal token ⟨k⟩ after neigh-
boring token propagation, ti is the original embedding for
temporal token ⟨i⟩, StopGrad is the operation to detach a
variable’s gradient, and tadj is a variable that gathers gradi-
ents from all adjacent temporal tokens through a weighted
sum. By adding tadj to tk and subsequently subtracting the
gradient-detached tadj , we incorporate adjacent temporal
tokens into the computation graph, allowing them to receive
parameter updates along with tk, while keeping the value
of tk unchanged for precise temporal representation. The
weight of each adjacent temporal token in tadj decreases ex-
ponentially as their distance to tk increases. Consequently,
temporal tokens closer to tk receive more similar parameter
updates compared to those farther away, and adjacent tem-
poral tokens tend to have more similar embeddings, thereby
strengthening the continuity among temporal tokens. We
use t̃k instead of tk in training.

Temporal Information Injection. Since each sampled
frame is encoded and projected separately, their features
do not contain the corresponding temporal position infor-
mation. After constructing a continuous temporal token
space and applying the neighboring token propagation, now
we can actually obtain temporal embeddings corresponding
to any timestamp, which contain precise temporal position
information and possess the valuable property of temporal
continuity. Therefore, we obtain the temporal embeddings at
the positions of the sampled frames and directly add them to

the projected frame features, as they share the same dimen-
sionality, serving as a form of temporal position encoding
to inject fine-grained temporal information.

3.3. Grounded Event-Sequence Modeling
Common untrimmed videos often span several minutes and
contain numerous events with diversified content. To facil-
itate multi-event comprehension, we introduce Grounded
Event-Sequence Modeling, an additional pre-training stage
focusing on event-sequence decoding, which enables the
Temporal Perception Module to align its temporal token
space with video timelines and comprehend events in a
temporally-grounded manner. We conduct Grounded Event-
Sequence Modeling after modality alignment, building tem-
poral awareness upon the aligned multimodal semantics.

Modality Alignment. To align the visual and textual
modalities, we train the linear projection layer with a
broadly collected dataset of image-text and video-text pairs:

Lalign = −1

l

l∑
i=0

log p(T i+1
C |Tv, T

1:i
C ), (3)

where T i
C is the i th token of the image or video caption TC ,

and Tv is the frame features.

Event-Sequence Decoding. After the stage of modality
alignment, the model only learns the coarse-grained corre-
spondence between visual and textual data. It still lacks
fine-grained temporal awareness, so fine-tuning it directly
on instruction data with precise timestamps can lead to
slow convergence and ineffective event-sequence model-
ing. Therefore, we apply event-sequence decoding as an
intermediary task that bridges the gap between low-level
semantic alignment and high-level conceptual interaction.
To be precise, given an untrimmed video as input, we re-
quire the model to output the event-sequence within it. We
represent the k th event as Ek = [tkstart, t

k
end, w

k
1 , ..., w

k
lk
],

where tkstart, t
k
end are the continuous temporal embeddings

at the start and end of the k th event, and [wk
1 , ..., w

k
lk
] is a

general caption composed of lk tokens for this event. The
timestamps and general captions of each event in the event-
sequence can be conveniently obtained during our instruc-
tion generation process without additional calculation (Sec-
tion 4.2). We concatenate all the events to formulate the
event-sequence TE = {Ei}NE

i=1, where NE is the number
of events in the untrimmed video. We apply a language
modeling loss for event-sequence decoding:

Ldecode = −1

l

l∑
i=0

log p(T i+1
E |Tv, T

1:i
E ), (4)

where T i
E is the i th token of the event-sequence TE , and

Tv is the frame features. With Grounded Event-Sequence
Modeling, we establish a preliminary association between
the temporal token space and the relative temporal positions
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Event Boundary Detection

Event 1 Event 2 ··· Event M

Instance 1

Instance 2

Instance 3

Instance N

Instance Detection
Track 1

Track 2

Track 3

Track N

Instance Tracking

···

···

Instance-Event Matrix

[Instance]

Blonde Woman

[Action]

Makeing speech

[Scene]

In a room

······

N/A

[Instance]

Blonde Woman

[Action]

Walking

[Scene]

In a corridor

······

N/A

N/A

[Instance]

Young Boy

[Action]

Standing

[Scene]

Outdoor

······

N/A N/A

N/A

[Instance]

Young Girl

[Action]

Standing

[Scene]

Outdoor

······

N/A N/A

N/A N/A N/A

[Instance]

Man in T-Shirt

[Action]

Playing Cards

[Scene]

In a bar

······
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in these two segments?

Cross Segment QA

Could you watch the segment of
4.2s to 18.3s and tell me what's
happening in this segment?

Identify a segment with the
following content: "Two men are
drinking outside at a table.".

I want to learn about how to
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me the clip I should watch.

Segment Captioning

Direct Segment Localization

Inferential Segment Localization

Please watch the segment of
30.4s to 33.9s, and find a clip
with the same items, but this
time in someone's hands.

Composed Segment Retrieval

Take a look at the segment of
18.3s to 23.1s. Please give me a
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doing across the video.
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Cross-Segment Tasks

Please watch the segment of 18.3
to 23.1s. What are the people
standing in front of?

Segment QA
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man playing with?

Instance QA

Semantic Matching

Instance Matching

Quick
Split

Sub-
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Figure 3. The pipeline of our automatic instruction data generation engine, which can automatically extract structured information from
videos and generate diversified instruction data.

within videos, laying the groundwork for segment-level
instruction following.

4. Moment-10M
Teaching a Video-LLM to locate specific segments in
untrimmed videos and perform complex reasoning on these
segments requires substantial training data with fine-grained
annotation. However, existing video instruction datasets
don’t contain instructions with precise timestamps, and their
task formats are often limited to captioning, summarizing
and basic QA, which overlook the logical associations be-
tween events and instances. In light of this, we propose
Moment-10M, a large-scale video instruction fine-tuning
dataset with segment-level reasoning tasks. To construct
Moment-10M, we design a data generation engine that can
automatically extract instance and event information along
with their relationships from the videos, and then gener-
ate corresponding instruction data based on these informa-
tion, as shown in Figure 3. We meticulously design vari-
ous types of instruction-following tasks, aiming to enhance
Momentor in comprehensive segment-level reasoning.

4.1. Structured Information Extraction
The relationships between instances and events in an
untrimmed video can be extremely complex. A particu-
lar instance might appear in different events that are far
apart, and an event might contain several instances that
seem unrelated. To fully explore the associations between
instances and events within a video, we propose an Event
Boundary Detection algorithm that can accurately detect the
event boundaries in the video based on the instance informa-
tion and video content. We then construct an Instance-Event
Matrix, to extract and organize the visual information in a
structured way, where the spatio-temporal correspondences
from a video can be effectively captured.
Event Boundary Detection. For an arbitrary video to
be processed, we first uniformly sample multiple frames
from the video. We employ Grounding DINO (Liu et al.,

2023) to extract instance information from these sampled
frames, and then compare and merge the instances across
the sampled frames to obtain the spatio-temporal trajectories
of instances in the video, termed as instance tracks. The
instance tracks show the dynamics of each instance over
time, which also reflect the event transitions in the video.
Based on video content and instance dynamics, we design a
comprehensive event boundary detection method. We first
use PySceneDetect (Castellano, 2018) to calculate frame-
by-frame differences in the video, resulting in an array of
frame difference scores. Then, we apply a Gaussian filter
to reduce noise and smooth these scores. We select local
maxima that are higher than a certain threshold as split
points, to divide the video into several sub-segments. Since
such segmentation only considers changes in RGB values
and doesn’t account for semantic transitions, we adopt a
semantic-based merging algorithm to merge adjacent sub-
segments that experience abrupt visual changes but still
belong to the same event. To be precise, for the two adjacent
sub-segments, we extract the last frame from the previous
sub-segment and the first frame from the next sub-segment
and calculate their consistency value as:

Consistency = cos(F
′
, F

′′
)

+
1

|UI |

|UI |∑
i=1

cos(F
′

Ii , F
′′

Ii) · (1−Dist(I
′

i , I
′′

i )),
(5)

where F
′

and F
′′

are visual features of the last frame in the
previous sub-segment and the first frame in the next sub-
segment, and UI is the union of instances shown in these
two frames. F

′

Ii
and F

′′

Ii
are ROI aligned (He et al., 2017)

features of the i th instance, and Dist(I
′

i , I
′′

i ) is the normal-
ized distance between the positions of the i th instance in
these two frames with a value in [0, 1]. We set this distance
to be 1 if the i th instance appears in only one of these two
frames. All visual features involved have been obtained
during object detection, thus not incurring additional com-
putational costs. We merge two adjacent sub-segments if
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Model
Action Segmentation Dense Video Captioning

Breakfast 50Salads ActivityNet-Captions
MoF F1@{10, 25, 50} MoF F1@{10, 25, 50} SODA c CIDEr METEOR

Video-ChatGPT (7B) (Maaz et al., 2023) 5.1 7.8 2.4 0.5 9.6 7.1 3.1 1.1 0.4 2.1 0.7
VideoChat (7B) (Li et al., 2023d) 7.9 8.8 5.3 2.8 13.3 10.6 3.5 1.1 0.7 3.3 1.2

Video-LLaMA (7B) (Zhang et al., 2023) 11.6 15.2 8.8 4.2 14.3 12.9 4.0 1.2 0.9 4.6 2.4
Valley (7B) (Luo et al., 2023) 4.1 7.4 4.5 2.4 13.2 11.3 3.5 1.8 0.3 1.8 0.8

Momentor (7B) 24.4 41.2 33.6 21.8 17.8 22.8 15.9 13.0 2.3 14.9 4.7

Table 2. Comparison with existing Video-LLMs on dense video captioning and action segmentation

Model
Temporal Grounding Highlight Moment Retrieval

ActivityNet-Captions Charades-STA QVHighlights
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU mAP R1@0.5

Video-ChatGPT (7B) (Maaz et al., 2023) 19.5 10.6 4.8 14.2 27.2 6.2 1.9 19.7 3.8 8.7
VideoChat (7B) (Li et al., 2023d) 23.5 12.6 6.0 17.4 32.8 8.6 0.0 25.9 4.1 7.0

Video-LLaMA (7B) (Zhang et al., 2023) 21.9 10.8 4.9 16.5 25.2 10.6 3.4 16.8 2.1 6.6
Valley (7B) (Luo et al., 2023) 30.6 13.7 8.1 21.9 28.4 1.8 0.3 21.4 5.3 8.7

Momentor (7B) 42.9 23.0 12.4 29.3 42.6 26.6 11.6 28.5 7.6 17.0

Table 3. Comparison with existing Video-LLMs on temporal grounding and highlight moment retrieval

36.6%

33.1%

16.9%

5.2%

4.9%
2.3%
1.1%

Segment Localization
Instance QA
Segment Captioning
Cross Segment QA
Instance Activity Summarizing
Composed Segment Retrieval
Segment QA

Figure 4. Distribution of different tasks in Moment-10M.

their consistency value is higher than a set threshold. Con-
sequently, we obtain a series of segments with semantic
consistency, each encompassing a coherent event.

Instance-Event Matrix. Based on the result of instance
tracking and event segmentation, we construct an Instance-
Event Matrix, where each row represents an instance track
(the video itself also counts as a track), and each column
represents an event. The instance-event matrix shares cer-
tain similarities with video scene graphs (Shang et al., 2017;
Yang et al., 2023b) as both involve instance behaviour track-
ing and structured semantic representation, but the instance-
event matrix places greater emphasis on modeling the com-
plex associations between events. We traverse the matrix
and utilize several multimodal pre-trained models to extract
visual clues such as scenes, instances, actions and attributes
from each track. With the structured information organized
in instance-event matrix, we can quickly generate instruc-
tion data that includes various spatio-temporal associations.

4.2. Instruction Generation
We feed the information in the instance-event matrix into
Vicuna (Chiang et al., 2023), an open-source text-based
LLM, to generate instruction data. We design various types
of instruction-following tasks to comprehensively train and
evaluate Video-LLMs. We incorporate 5 tasks focusing
on single segment understanding as well as 3 tasks that

involve reasoning across multiple segments, as shown in
Figure 3. We utilize various prompts to guide Vicuna in
generating instruction data for different tasks. Data from
all 8 task types are used for instruction fine-tuning, while
segment captioning data organized chronologically will
be utilized for Grounded Event Sequence Modeling (Sec-
tion 3.3). Detailed task descriptions and prompts can be
found in Appendix C and D. We select a substantial num-
ber of videos from YTTemporal-1B (Zellers et al., 2022)
to build Moment-10M. Figure 4 shows the distribution of
each type of instruction data in Moment-10M. As shown
in Table 1, Moment-10M comprises 10 million instruc-
tion data over 1.5 million segments and 451.5 thousand
instance tracks. On average, each video contains 22.7 seg-
ments, which reflects the complexity of the event-sequences
in the videos. We fine-tune Momentor on Moment-10M,
enabling it to perform segment-level reasoning and localiza-
tion.

5. Experiments
5.1. Experiment Setup
To comprehensively evaluate Momentor in fine-grained
understanding and precise localization, we assess it in a
zero-shot setting across four tasks, i.e., action segmenta-
tion, dense video captioning, temporal grounding, and high-
light moment retrieval, using datasets such as Breakfast
(Kuehne et al., 2014), 50 Salads (Stein & McKenna, 2013),
ActivityNet Captions (Krishna et al., 2017), Charades-STA
(Gao et al., 2017), and QVHighlights (Lei et al., 2021).
We also perform evaluation on Video QA datasets such
as ActivityNet-QA (Yu et al., 2019), MSRVTT-QA, and
MSVD-QA (Xu et al., 2017) to evaluate Momentor in
general question answering. Implementation details of
Momentor can be found in Appendix B.
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Model
Video QA

MSVD-QA MSRVTT-QA ActivityNet-QA
Acc. Score Acc. Score Acc. Score

Video-ChatGPT (7B) 64.9 3.3 49.3 2.8 35.2 2.7
VideoChat (7B) 56.3 2.8 45.0 2.5 26.5 2.2

Video-LLaMA (7B) 51.6 2.5 29.6 1.8 12.4 1.1
Valley (7B) 65.4 3.4 51.1 3.0 45.1 3.2

Momentor (7B) 68.9 3.6 55.6 3.0 40.8 3.2

Table 4. Existing Video-LLMs’ performance on Video QA

5.2. Action Segmentation
Given a video, action segmentation requires the model to
divide the video into multiple non-overlapping segments
and assign an action category label to each segment. Since
Momentor’s output is free-form text rather than action cat-
egory labels, we use a sentence transformer (Reimers &
Gurevych, 2019) to convert the output from Momentor
into features, which are then compared with the features of
action category labels to determine their corresponding ac-
tion categories. We evaluate Momentor on Breakfast and
50 Salads, of which the results can be referenced in Table 2.
From the results we can infer: (1) Overall, Momentor can
effectively segment and recognize actions in input videos.
In the setting of zero-shot action segmentation, Momentor
achieves the highest accuracy among existing Video-LLMs.
(2) Despite only being trained on generating free-form texts
rather than action labels, Momentor’s proficiency in visual
information capturing still allows it to effectively generate
texts that closely align with action label words, enabling it
to perform accurate action classification.

5.3. Dense Video Captioning
Given a video, dense video captioning requires the model
to output all events contained in the video along with
their start and end timestamps. We test Momentor on
ActivityNet Captions, and the results can be found in
Table 2, from which we can conclude: (1) Compared
to existing Video-LLMs, Momentor provides more de-
tailed event descriptions and more accurate event bound-
aries. (2) Thanks to Grounded Event-Sequence Modeling,
Momentor can capture the events in a video as completely
as possible, while also providing precise start and end times-
tamps and accurate descriptions of each event. The model’s
leading performance just validates our viewpoint.

5.4. Temporal Grounding
Given a video and a natural language query, temporal
grounding requires the model to identify the start and end
timestamps of the segment corresponding to the query in the
video. We evaluate Momentor on ActivityNet Captions
and Charades-STA, with the results available in Table 3.
Based on the experiment results, we can draw the follow-
ing conclusions: (1) Momentor achieves the highest mean
IoU (Intersection over Union) among existing Video-LLMs.
(2) With the neighboring token propagation mechanism in

Setting ActivityNet Breakfast QVHighlights
mIoU CIDEr MoF mAP

Momentor (7B) 29.3 14.6 24.4 7.6
w/o CI 27.6 13.1 22.5 7.1

w/o NTP 25.4 10.3 19.3 6.1
w/o GESM 27.8 9.8 19.5 6.8

w/o Cross-Segment Tasks 29.0 12.1 21.6 6.4

Table 5. Performance of ablation models. CI: Continuous Interpo-
lation, NTP: Neighboring Token Propagation, GESM: Grounded
Event-Sequence Modeling

the Temporal Perception Module, Momentor constructs
a continuous and precise temporal token space, laying the
foundation for accurate event localization. Ablation studies
and visualization in Section 5.7 also validate this point.

5.5. Highlight Moment Retrieval
Given a video and a description of the highlight activi-
ties within the video, highlight moment retrieval requires
the model to locate all the highlighted segments corre-
sponding to the description. We evaluate Momentor on
QVHighlights, and the results can be referenced in Ta-
ble 3. From these results we can know: (1) Among all
existing Video-LLMs, Momentor achieves state-of-the-art
performance on highlight moment retrieval. (2) Thanks to
the multi-event reasoning ability developed on the cross-
segment tasks, Momentor can perceive the overall video
semantics from a global perspective and effectively compre-
hend the relationships between different events, which is a
key factor in highlight moment retrieval.

5.6. Video QA

We test Momentor on ActivityNet-QA, MSRVTT-QA, and
MSVD-QA. As shown in Table 4, Momentor achieves
state-of-the-art or comparative performance among Video-
LLMs across all tested datasets, demonstrating its capability
in coarse-grained video understanding.

5.7. In-Depth Analysis

Ablation Studies. We conduct ablation experiments to
assess the effectiveness of each component. The experi-
ments are conducted under the following settings: (1) w/o
continuous interpolation: We still use temporal tokens to
express temporal positions, but without integrating the con-
tinuous interpolation mechanism. (2) w/o neighboring token
propagation: We use the continuous temporal token space
for temporal positioning, but without applying the neighbor-
ing token propagation mechanism when training. (3) w/o
grounded event-sequence modeling: After modality align-
ment, we proceed directly to instruction fine-tuning without
grounded event-sequence modeling. (4) w/o cross-segment
tasks: We remove all instructions from cross-segment tasks
and use only single-segment tasks for fine-tuning. We
train Momentor with these settings and evaluate perfor-
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Figure 5. Dataset validation.
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Figure 6. Impact of data scale.
Generally, the performance
improves as data scale in-
creases.

mances on ActivityNet Captions (temporal grounding and
dense video captioning), Breakfast (action segmentation)
and QVHighlights (highlight moment retrieval). The results
of the ablation experiments can be referenced in Table 5.

Overall, removing any one of these components results in a
decrease in the model’s overall performance. From Table 5,
we can analyze the impact of removing different compo-
nents on model performance separately. After removing
the continuous interpolation mechanism, due to the quan-
tization error, Momentor experiences a minor decline in
localization-related metrics across all tasks, while the cap-
tion quality-related metrics are not significantly affected. Re-
moving the neighboring token propagation mechanism leads
to a performance drop in all metrics. Without neighboring to-
ken propagation, the temporal tokens are updated as multiple
unrelated tokens rather than as an ordered sequence, which
undermines the temporal representation and modeling. Vi-
sualizations of the temporal tokens (Section 8) also confirm
this observation. Removing grounded event-sequence mod-
eling leads to a significant performance decline in dense
prediction tasks like dense video captioning and action seg-
mentation, which indicates that grounded event-sequence
modeling plays an important role in sequential semantics
comprehension. The removal of cross-segment tasks has
minimal impact on the performance of temporal ground-
ing, as it does not involve cross-segment understanding.
Performance on other tasks generally decreases, as both
dense video captioning and action segmentation involve
comprehension of multiple segments, and highlight moment
retrieval also requires the model to distinguish between
highlight segments and background segments.

Validation of Moment-10M. We train Video-ChatGPT
(Maaz et al., 2023) on our Moment-10M to validate its
efficacy in improving fine-grained temporal reasoning. De-
spite being inefficient in temporal representation, we still
use textual timestamps to represent temporal positions since
Video-ChatGPT doesn’t provide alternative temporal repre-
sentation methods. As shown in Figure 5, Video-ChatGPT
trained on Moment-10M shows a great improvement on

Please watch the segment of                , and find a clip with the

same items, but this time in someone's hands.

The video clip of                seems to have the content you are

looking for.

23.0s to 46.2s

38.2s to 41.3s

Please watch the segment of                . Tell me about the color

of clothes the woman on the left is wearing.

The woman is wearing a white dress with red pots, and it seems she is

involved in a TV program.

71.4s to 74.2s

I want to learn about how to organize a contract in a formal format.

Which segment should I watch?

The video segment of                may contain the information you

want to learn about.

48.7s to 58.3s

(a)

(b)

(c)

Figure 7. Analysis on special cases.
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Figure 8. Visualization of temporal tokens in Momentor and time
tokens in Vid2Seq. NTP: neighboring token propagation.

fine-grained temporal reasoning tasks.

Impact of Data Scale. We train Momentor with differ-
ent amounts of instruction data, while the proportions of
different tasks are kept the same. The results can be ref-
erenced in Figure 6. Generally, the model’s performance
improves as the amount of training data increases, but slows
down once the training data reaches a million-level scale.

Case Studies. We provide qualitative examples to demon-
strate the fine-grained reasoning capability of Momentor.
As shown in Figure 7(a), Momentor can integrate visual
and textual input for comprehensive localization of target
segment. Moreover, even when only a vague scene or re-
quirement description is provided, Momentor can still un-
derstand the user’s intent and pinpoint the segment con-
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taining relevant information, as exemplified in Figure 7(b).
Additionally, although we don’t incorporate spatial mod-
eling, Momentor can still understand which instance the
user is referring to and provide appropriate responses, as
illustrated in Figure 7(c).
Visualization of Temporal Tokens. Since temporal to-
kens are used to represent uniformly distributed temporal
positions, we expect them to exhibit continuity in their em-
beddings. We use PCA (Abdi & Williams, 2010) and t-SNE
(Van der Maaten & Hinton, 2008) to reduce the dimension-
ality of temporal tokens of Momentor and time tokens of
Vid2Seq (Yang et al., 2023a) into 1D and 2D for visual-
ization. To validate the effectiveness of neighboring token
propagation, we also visualize the temporal tokens trained
without neighboring token propagation. For a fair compari-
son, we set the random state of t-SNE fixed to be 0. For the
1D reductions, we use the token indices as the x-axis and
the reduced values as the y-axis; for the 2D reductions, we
directly use the reduced values as coordinates. We employ
a gradient color scheme, where the color of the data points
will change progressively with the token index, as shown in
Figure 8. It is evident that with neighboring token propaga-
tion, the embeddings of temporal tokens in Momentor are
significantly more continuous. In contrast, embeddings of
temporal tokens without neighboring token propagation and
time tokens of Vid2Seq exhibit much less continuity, as their
correlation can only be learned indirectly and inefficiently.

6. Conclusion
We propose Momentor, a Video-LLM with segment-
level comprehension and localization capabilities, and
Moment-10M, a video instruction dataset comprising 10
million diversified instructions with segment-level anno-
tation. We design a Temporal Perception Module to
provide fine-grained temporal representation, and apply
Grounded Event-Sequence Modeling to promote multi-
event modeling in untrimmed videos. We train Momentor
on Moment-10M, enabling it to perform comprehensive
segment-level reasoning. Extensive experiments on various
tasks demonstrate Momentor’s proficiency in fine-grained
video understanding.
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to responsible and beneficial technological advancement.
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A. Overview
In this appendix we present:

• Implementation details of Momentor (Section B).

• Descriptions of the tasks in Moment-10M (Section C).

• Prompts used for instruction generation (Section D).

B. Implementation
We utilize the CLIP (Radford et al., 2021) ViT-L/14 as the frame encoder and LLaMA (Touvron et al., 2023) (7B) as
the LLM. We initialize the linear projection layer with parameters from Video-ChatGPT’s (Maaz et al., 2023) equivalent
component. We incorporate N = 300 temporal tokens for temporal positioning. For each video, we uniformly sample
M = 300 frames for fine-grained reasoning. We freeze the frame encoder and LLM during training, while only the linear
projection layer and TPM are updated. We train Momentor on 8 A100 GPUs for around 60 hours. Our project is available
at https://github.com/DCDmllm/Momentor.

C. Task Formats
Single-Segment Tasks:

• Segment Captioning: Given a segment, the Video-LLM is required to output a caption to conclude its content.

• Segment QA: Given a segment, the Video-LLM is required to answer questions about that segment.

• Instance QA: Given an instance at a certain moment, the Video-LLM is required to answer questions about that
instance’s behavior at that moment.

• Direct Segment Localization: Given a query text, the Video-LLM is required to locate the described segment in the
video and output its timestamp.

• Inferential Segment Localization: Given a hypothetical scenario, the Video-LLM is required to find the scene in the
video that likely correspond to that scenario and output its timestamp.

Cross-Segment Tasks:

• Composed Segment Retrieval: Given a source segment and the differences between the target and source segments, the
Video-LLM is required to identify the target segment based on the source segment and these differences, and output its
timestamp.

• Instance Activity Summarizing: Given an instance, the Video-LLM is required to summarize the activities of this
instance throughout the entire video.

• Cross-Segment QA: Given multiple segments, the Video-LLM is required to combine information from all these
segments to answer questions.
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D. Prompts
Below are the prompts used for generation of different kinds of instruction data. Due to page length constraints, we have
omitted some in-context examples in certain tasks.

Segment Captioning

Hello, I want you to act as a comprehensive video captioner. You will receive a list of frame-by-frame
descriptions extracted from one video. Since some of these descriptions might be noisy, you should comprehend
the major content of the video, assess the correctness of different pieces of information, and filter out erroneous,
repetitive, noisy, or irrelevant details. After receiving and analyzing all the descriptions, please generate
a comprehensive caption that effectively summarizes the events taking place in the video. Below are the
information extracted from the video:

{descriptions}

There are some requirements that you should follow:
1. Your comprehensive video caption should be comprehensive, concise, informative, and LESS than 20 words.
2. You should output ONLY THE COMPREHENSIVE VIDEO CAPTION, and NO OTHER CONTENTS
should be printed.
3. Your comprehensive video caption MUST NOT mention the concept of ”frame” or ”video”.
Now please print out your comprehensive video caption.

The comprehensive video caption:

Segment QA

Generate a concise dialogue with factual questions and their answers based on the following video segment
caption:

{segment caption}

The answers should be directly inferred from the provided segment caption. Keep the questions and
answers brief, with no more than 20 words each. Using ”User” and ”Assistant” as roles for questions and
answers, respectively. Answer as if the ”Assistant” can directly watch the video. Speak as a friendly and helpful
assistant.

Instance QA

Generate a concise dialogue about the {instance class} with factual questions and their answers based on the
following video segment caption:

{segment caption}

The answers should be directly inferred from the provided segment caption. Keep the questions and
answers brief, with no more than 20 words each. Using ”User” and ”Assistant” as roles for questions and
answers, respectively. Answer as if the ”Assistant” can directly watch the video. Speak as a friendly and helpful
assistant.
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Inferential Segment Localization

Hello, and I’d like you to act as a question generator. You will receive a sentence describing a clip in
one video, and your task is to generate two questions with hypothetical scenario contexts to test if a deep
learning model can retrieve the given clip based on the provided scenario information by asking about
”what scene would you see” and ”which clip should I watch” under that circumstance. Below are a few examples:

<Example 1>

[Clip Content]

A elderly man is giving a speech in front of a blackboard.

[Question]

1. Suppose you are a college student and you are in class one morning. Which clip might demon-
strate the scene in front of you at this time?
2. If I want to know how older generations teach classes, which clip should I watch?

<Example 2>

[Clip Content]

A young woman is seen standing in a room and dancing around.

[Question]

1. You are a dance instructor. You are coaching your students in preparation for the next dance com-
petition. What might you see at this moment? Please find the clip which might show this scene.
2. I want to learn to dance. Could you please tell me which clip of this video I should watch?

<Example 3>

[Clip Content]

A dog in socks walks slowly out onto the floor as a lady films him.

[Question]

1. A female animal behavior researcher is studying the walking patterns of dogs when their feet tend
to slip in your laboratory. Which clip in the video might you see at this point?
2. I’m feeling anxious and need to watch some funny animal videos to relax. Could you please help me find
such a clip in the video?

Now given the following clip content sentence, please generate two questions with hypothetical scenario
contexts to test if a deep learning model can retrieve the given clip based on the provided scenario in-
formation by asking about ”what scene would you see” and ”which clip should I watch” under that circumstance.

[Clip Content]

{content}
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Cross Segment QA

You are a visual assistant. Given several video clip descriptions, you are tasked to generate a concise
factual question and its answer by combining information from all the video clip descriptions. Note that the
{instance class} of all video clip descriptions in an input are the same, namely the video clip descriptions could
describe the {instance class} at different time points. The answer should be directly inferred from the provided
sentence. Keep the question and answer brief. Using ”User” and ”Assistant” as roles for questions and answers,
respectively. Speak as a friendly and helpful assistant. Below are some examples:

<Example 1>

[Input]

15.50s-30.75s : A group of children play in a park, running around and laughing.
45.20s-58.90s : A dog chases a frisbee, jumps to catch it, and returns it to its owner.

[Output]

User: What activities do the children and the dog engage in during the given video clips?

Assistant: The children play in a park, running and laughing, while the dog chases a frisbee, jumps
to catch it, and returns it to its owner.

<Example 2>

[Input]

10.50s-30.88s : A chef in a white apron chops vegetables on a wooden cutting board.
50.20s-63.40s : A close-up of a sizzling steak on a hot grill.
80.16s-92.74s : A chef takes freshly baked bread out of the oven and places it on a cooling rack.

[Output]

User: What cooking activities can be observed in the video?

Assistant: The video shows a chef chopping vegetables, frying steak on a hot grill, and taking freshly baked
bread out of the oven.

Now given the following video clip descriptions, please generate a question-answer pair as it is in
the examples. Note that the {instance class} of all video clip descriptions in an input are the same, namely
the video clip descriptions may show the events or actions surrounding the {instance class} at different time
points. The answer should be directly inferred from the provided sentence. Keep the question and answer brief.
Using ”User” and ”Assistant” as roles for questions and answers, respectively. Speak as a friendly and helpful
assistant.

[Input]

{segment caption}
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Instance Activity Summarizing

Hello, I want you to act as a comprehensive video captioner. You will receive a list of clip-by-clip descriptions
extracted from one video. Since some of these descriptions might be noisy, you should comprehend the major
content of the video, assess the correctness of different pieces of information, and filter out erroneous, repetitive,
noisy, or irrelevant details. After receiving and analyzing all these descriptions, please generate a comprehensive
caption that effectively summarizes the events taking place in the video about the {instance class}. Below are
the clip descriptions extracted from the video:

{descriptions}

There are some requirements that you should follow:
1. Your comprehensive video caption should be comprehensive, concise, informative, and LESS than 20 words.
2. You should output ONLY THE COMPREHENSIVE VIDEO CAPTION, and NO OTHER CONTENTS
should be printed.
3. Your comprehensive video caption MUST NOT mention the concept of ”frame” or ”video”.
Now please print out your comprehensive video caption.

The comprehensive video caption:
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Composed Retrieval

Hello, and I’d like you to act as a question generator. You will receive two descriptions about one source clip
and one target clip. Your task is to generate one question with differences of the two clips to test if a deep
learning model can retrieve the target clip based on the content of the source clip by asking about ”could you
please find a clip with following differences”. Below are some examples:
<Example 1>

[Source Clip Content]

An old professor is giving a lecture in front of a blackboard.

[Target Clip Content]

An elderly man is giving a speech in front of a blackboard, holding a ruler.

[Major Differences]

The man in the target clip content is holding a ruler.

[Instruction]

Please watch the {{SOURCE CLIP}}. Could you please find a similar clip, but this time the speaker
is holding something at hand?

<Example 2>

[Source Clip Content]

A beautiful scene of primeval forest.

[Target Clip Content]

A beautiful view of coral reef taken in shallow sea.

[Major Differences]

The scene in the target clip is a seascape rather than a forest landscape.

[Instruction]

Please watch the {{SOURCE CLIP}}. Is there any similar clip with a different kind of scenery?

Now given the following descriptions about one source clip and one target clip, please generate one
question with differences of the two clips to test if a deep learning model can retrieve the target clip based on
the content of the source clip by asking about ”could you please find a clip with following differences”.

[Source Clip Content]

{source clip content}

[Target Clip Content]

{target clip content}
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