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ABSTRACT

Implicit neural representations such as neural radiance fields (NeRFs) have re-
cently emerged as a promising approach for 3D reconstruction and novel view
synthesis. However, NeRF-based methods encode shape, reflectance, and illu-
mination implicitly in their neural representations, and this makes it challenging
for users to manipulate these properties in the rendered images explicitly. Exist-
ing approaches only enable limited editing of the scene and deformation of the
geometry. Furthermore, no existing work enables accurate scene illumination af-
ter object deformation. In this work, we introduce SPIDR, a new hybrid neural
SDF representation. SPIDR combines point cloud and neural implicit representa-
tions to enable the reconstruction of higher quality meshes and surfaces for object
deformation and lighting estimation. To more accurately capture environment il-
lumination for scene relighting, we propose a novel neural implicit model to learn
environment light. To enable accurate illumination updates after deformation, we
use the shadow mapping technique to efficiently approximate the light visibility
updates caused by geometry editing. We demonstrate the effectiveness of SPIDR
in enabling high quality geometry editing and deformation with accurate updates
to the illumination of the scene. In comparison to prior work, we demonstrate
significantly better rendering quality after deformation and lighting estimation.

1 INTRODUCTION

Recent advancements in implicit neural representations of 3D scenes, such as signed distance fields
(SDF) (Park et al., 2019) and neural radiance fields (NeRF) (Mildenhall et al., 2020), have demon-
strated exciting new capabilities in scene reconstruction and novel view synthesis. Recent research
has investigated various aspects of implicit representations including training/inference accelera-
tion, generative synthesis, modeling dynamic scenes, and relighting (Dellaert & Yen-Chen, 2020).
An important and desirable aspect of 3D representations is their ability to be easily edited for ap-
plications such as augmented reality, virtual reality, 3D content production, games, and the movie
industry. However, the geometry and illumination of objects/scenes represented by NeRFs are fun-
damentally challenging to edit. There are two major challenges in enabling the editability of neural
representations. First, NeRF-based methods use a neural function with spatial coordinates as the
input to predict the corresponding geometry and radiance information. Since the implicitly repre-
sented scene or object relies on the decoded information from every sampled spatial coordinate in
the object’s modeling space, we cannot explicitly manipulate the geometry of the NeRF representa-
tion. Hybrid neural representations that also employ discrete representations (e.g., voxel grids, and
hash tables) can improve geometry editability, but it is still limited to coarse-grained geometry defor-
mation or composition. Second, high quality editing of scenes may require a corresponding change
in the illumination of the object/scene. For example, unshadowed regions become shadowed if light
occlusion happens after the deformation. Since illumination parameters are not explicitly modeled
or represented in most NeRF-based methods, achieving accurate illumination after deformation is
challenging.

Recent work that aim to improve the editability of NeRFs (Yuan et al., 2022; Bao et al., 2022) involve
extracting mesh representations from the NeRF representations. However, these approaches do not
tackle the scene illumination challenge posed by geometry deformation. Recent research has also
investigated various aspects of illumination in NeRFs, including relighting scenes, material editing,
and environmental light estimation. However, these approaches cannot be applied to illumination
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Figure 1: Given a set of scene images under an unknown illumination, SPIDR uses a hybrid neural im-
plicit point representation to learn the scene geometry, radiance, and BRDF parameters. SPIDR also employs
a coordinate-based MLP to learn and represent environment illumination. After obtaining a trained SPIDR
model, users can perform various geometry editing using our explicit point cloud representation. SPIDR then
updates its estimated rendering factors based on user’s geometry editing. SPIDR finally uses these estimated
rendering factors to synthesize the deformed object image using BRDF-based rendering.

changes due to object deformations. Guo et al. (2020) enables relighting when composing scenes
with multiple objects. This approach however does not enable shape editing nor the resulting change
in illumination.

Our goal in this work is twofold. First, we aim to enable the fine-grained geometry deformation in
NeRFs, including rigid body movement and non-rigid body deformation. Second, we aim to enable
accurate illumination and relighting during object deformation and scene editing.

To achieve this goal, we present SPIDR, an SDF-based hybrid NeRF model. SPIDR is designed
based on two major ideas: (1) SDF-based hybrid point cloud representation: enabling better
editability. We propose a hybrid model that is a combination of point cloud and neural implicit
representations and is designed to accurately estimate the signed distance field (SDF). This hy-
brid representation enables direct manipulation of the object geometry by editing the point cloud
or the mesh extracted from our representation for fine-grained rigid or non-rigid body transforma-
tion. Unlike prior work Xu et al. (2022), SPIDR estimates SDF which is critical to (i) extract higher
quality meshes and surfaces for deformation and (ii) obtain better light visibility and surface nor-
mals for scene illumination. (2) Accurate environment light and visibility estimation: enabling
better illumination with deformation. To estimate environment light more accurately, we employ
an implicit coordinate-based MLP which takes in an incident light direction and predicts the cor-
responding light intensity. To enable illumination updates after deformation, we use the shadow
mapping technique to efficiently estimate light visibility rather than a neural method as in prior
work (Srinivasan et al., 2021; Zhang et al., 2021b). Shadow mapping approximates light visibility
with estimated depth maps and is amenable towards deformation because it can accurately reflect
the visibility updates caused by the deformation.

To summarize, our contributions are as follows:

* We introduce SPIDR, the first NeRF-based editing approach that enables geometry deformation,
accurate illumination and shadow updates from deformation.

* We propose an SDF-based hybrid implicit representation with new regularizations that enables the
reconstruction of high quality geometry for mesh extraction and illumination.

* We propose the use of a coordinate-based MLP to represent the environment light, which enables
the accurate estimation of lighting that is required for relighting and illumination updates.

* We employ the shadow mapping technique to efficiently approximate visibility for the more accu-
rate rendering of shadowing effects after the object deformation.

Our experiments demonstrate that SPIDR can obtain higher quality reconstructed object surfaces and
more accurate estimations of the environment light. These essential improvements enable SPIDR to
render scenes with deformed shapes while maintaining accurate illumination and shadowing effects.

2 RELATED WORK

Neural rendering and scene representation. Neural rendering is a class of reconstruction and
rendering approaches that use deep networks to learn complex mappings from captured images to
novel images (Tewari et al., 2020). Neural radiance field (NeRF) (Mildenhall et al., 2020) is one
representative work that shows how the current state-of-the-art neural rendering methods (Barron
etal., 2021; 2022; Verbin et al., 2021) combine volume rendering and neural network based implicit
representation for photo-realistic novel view synthesis. Follow-up works further improve the quality
of reconstructed geometry (Yariv et al., 2021; Wang et al., 2021) using SDFs. However, SDF-based
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approaches have not been used in hybrid architecture or for scene editing in prior works. In order to
make the training and rendering more efficient, hybrid neural representations that combine implicit
MLP and other discrete spatial representations such as voxel grids (Liu et al., 2020; Fridovich-Keil
et al., 2022), point clouds (Ost et al., 2022; Xu et al., 2022), and hash tables (Miiller et al., 2022)
have been proposed. These approaches however do not enable high quality scene editing and scene
illumination after deformation.

Geometry editing and deformation. A large body of prior research investigate geometry modeling
and editing for explicit 3D representations (e.g., meshes) (Kholgade et al., 2014; Jacobson et al.,
2012; Yifan et al., 2020). These approaches cannot be directly applied to neural implicit representa-
tions. For neural representations, scene composition has been investigated by several works (Yang
et al., 2021; Tang et al., 2022; Lazova et al., 2022), where objects can be added to or moved in
the scene, but the shape of objects cannot be changed. Recent works also explore ways to achieve
user-defined geometry deformation. Liu et al. (2021) allows shape editing with the user’s scribble
but is limited to simple objects belonging to certain categories. Closest to our approach are Yuan
etal. (2022); Bao et al. (2022), where they achieve more flexible object deformations by using mesh-
guided deformation. Different from their methods, we use point clouds as explicit representation,
which enables users also use point cloud for geometry editing. These works also do not address
the illumination challenges with deformation. Guo et al. (2020) enables relighting when composing
scenes with multiple objects. This approach however does not enable shape editing nor the resulting
change in illumination.

Lighting estimation. Lighting estimation, also known as inverse rendering (Marschner, 1998), is
a long-existing problem that aims to estimate surface reflectance properties and lighting conditions
from images. Prior works have shown how to obtain accurate BRDF properties under known light-
ing conditions (Matusik, 2003; Aittala et al., 2016; Deschaintre et al., 2018); and how to estimate
environment light from objects with known geometry (Richter-Trummer et al., 2016; LeGendre
et al., 2019; Park et al., 2020). Recent works also leverage NeRF method to learn scene lighting
and material reflectance. Bi et al. (2020); Srinivasan et al. (2021) attempt to learn the material re-
flectance propertics with NeRF, but both methods require known lighting conditions. Boss et al.
(2021a;b); Zhang et al. (2021a) jointly estimate environment light and reflectance with images un-
der unknown lighting conditions, but their lighting approximation methods (e.g., spherical Gaussian,
pre-integrated maps) do not consider self-occlusions, thus cannot render shadowing effects caused
by occlusion Srinivasan et al. (2021); Zhang et al. (2021b) have explicit light visibility estimation
in their model, allowing them to render relightable shadowing effects. However, the rendered re-
sults of these methods are over-smoothed and lack high-frequency details (demonstrated in Section
7.2). Additionally, these NeRF-based lighting estimation methods mainly focus on relighting static
scenes, and none of them can be applied to address the illumination changes caused by geometry
editing. In contrast, our model is able to render updated lighting and shadowing effects after editing
the geometry of a NeRF scene.

3 PRELIMINARIES

MYVS and Point-based NeRF. Several works leverage multi-view stereo (MVS) methods to provide
geometry and appearance priors for NeRF, enabling efficient training and inference (Chen et al.,
2021; Lin et al., 2021; Xu et al., 2022). Point-NeRF(Xu et al., 2022) is a hybrid NeRF representation
with the point cloud representing explicit geometry. The point cloud used by Point-NeRF is first
initialized by MVS methods (e.g., Schonberger et al. (2016); Yao et al. (2018)), then the image
features extracted by a 2D CNN model are projected to the points in the point cloud as the neural
point features. This neural point cloud is formulated as P = {(p;, f;) }, where p; and f; denote point
position and point feature, respectively. During the volume rendering, P generates neural features
for sampled query points. Given a query point x along the ray with direction' ¥, its volume density
o(x) is an inverse distance interpolation of density values of the neighboring neural points. The
density of each neural point conditioned on query point x is predicted using a PointNet-like MLP
(Qi et al., 2017) model F' followed by a spatial MLP T":

_Wp,
- 1,x ) fi,x = F(fzu X — Pn) (1)
Z Z wpz

!'The hat symbol ~in this paper only denotes unit directional vector.
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where wp, = ||x — pl-||71, denoting the inverse distance. The view-dependent radiance c is pre-
dicted by a radiance MLP R with interpolated point features and view direction v as the input:

c(x) = R(fe, V), fx _Z o J

2. W

Then the radiance of sampled points x; along the ray r is accumulated following NeRF’s volume
rendering equation:

©))

t—1

= Zwtc(xt), wy = exp(— o(x¢)0)(1 — exp(—o(x¢)d)) 3)

Jj=1

where d; denotes the distance between adjacent sampled positions along the ray.

SDF-based NeRF. Recent works show that implicit surface representation can improve the quality
of NeRF’s reconstructed geometry (Oechsle et al., 2021; Yariv et al., 2021; Wang et al., 2021). Yariv
et al. (2021) illustrate a concrete mathematical conversion of volume density o (x) from predicted
SDF dq (x) of the space 2 C R? where the target object locates.

2exp( ) if s <0,

1——exp(—%) ifs>0 @

U(X):%\Ilg(—dg(x)), where W 5(s) = {

where 3 is a learnable parameter, and ¥z is the cumulative distribution function (CDF) of the
Laplace distribution. Following this parameterization, we can get a high-quality smooth surface
from the zero level-set of predicted SDF values, and surface normal can be computed as the gradient

. . . A vd_(} (X)
of the predicted SDF w.r.t. surface point x, i.e., Ny = INPICIE

The rendering equation. Mathematically, the outgoing radiance of a surface point x with normal
n from outgoing direction &, can be described by the physically-based rendering equation (Kajiya,
1986):

LO(X¢“:)O):/Li(xv‘bi)fr(xv‘biv‘bo)(ﬁ";’i)d‘:’i ©)
Q

where @; denotes incoming light direction, 2 denotes the hemisphere centered at i1, L;(x, @;) is the
incoming radiance of x from w;, f,(x,®;,w,) is the bidirectional reflectance distribution function
(BRDF) that describes the portion of reflected radiance at direction w,, from direction ;.

4 SDF-BASED POINT-NERF

This section describes how our hybrid NeRF model is parameterized for learning scene geometry
and decomposed radiance (diffuse and specular). Since our objectives rely on high-quality recon-
structed geometry for operations such as mesh extraction and shadow mapping, the original NeRF’s
reconstructed geometry is not good enough for these operations. Inspired by the success of using
SDF for volume rendering (Yariv et al., 2021; Wang et al., 2021), we adopt an SDF-based param-
eterization (Yariv et al., 2021) for our hybrid NeRF model. Since we use a discrete hybrid model
instead of a continuous MLP model, extra regularizations on SDF predictions are required.

4.1 PARAMETERIZATION

The structure of our model generally follows the design of Xu et al. (2022) described in 3. To
incorporate SDF-based NeRF rendering, we make the density MLP T to predict SDF value d instead
of volume density o. These implicit SDF values d can then be converted into density values using
equation 4. The geometry estimation MLP in our model now becomes

dlx) = Y 2d,  di = T(fix) ®)
N

i

To predict radiance, our model outputs both view-independent diffuse color and view-dependent
specular color. This decomposition makes it easier for the model to learn view-independent re-
flectance (Section 5). The diffuse color ¢, is obtained by feeding the interpolated point feature fy
(Eqn. 2) to the diffuse color MLP R,(fy). Similarly, the specular color ¢, is obtained using the an-
other MLP branch R (fx, v, Nix, V- k). We add i and V-1 as extra inputs to this view-dependent
MLP R;. The inner product v - i represents cosine value of the angle between normal and view
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direction (or reflectance direction). v,y and Vv - i, are necessary terms for calculating specular
radiance with BRDF. We expect the output of MLP R to be an approximation of the integral in
Eqn. 5 with the specular BRDF.

The final radiance c(x) of each sampled point x; along the ray that is used in Eqn. 3 then becomes
C(X) = Rd(fx) + RS (fxa ‘A’v ﬁX7 v ﬁx) (7)
4.2 NORMAL REPRESENTATION

Surface normals are frequently used in BRDF rendering, however, computing normals from an
MLP’s gradient is a costly operation. Thus, we explicitly attach a normal vector f1, to each neural
point p; in the point cloud. These normal vectors are supervised by the normals from the MLP ’s
gradients during training. Similar to other per-point attributes, the normal it/ of the sampled point x
is an interpolation of normal vectors of the neighboring points. A simple weighted L2 loss is applied
between the interpolated normal fi, and the computed normal iy for query point x:

Wy,
Lo =) wyllby — 0% 0l =Y =P—n (8)
n . X > X 9 X - pri Pi

where wy is the alpha-compositing weights of sampled point x along its ray r, as shown in Eqn. 3.
In addition to facilitating deformation, these explicitly predicted normals can effectively eliminate
noise in the directly computed normals (Verbin et al., 2021). The normal vectors used in the view-
dependent MLP R, will also be replaced with these predicted normals in the inference and later
training steps.

4.3 SDF REGULARIZATIONS

Unlike Oechsle et al. (2021); Yariv et al. (2021); Wang et al. (2021) that use a large continuous MLP
to implicitly represent SDF values for the whole scene, our model has local neural features attached
to the discrete point cloud representation. The discretization of implicit neural representation can
cause the loss of continuity of the represented signals (Reiser et al., 2021; Fridovich-Keil et al.,
2022). Specifically, these discrete neural representations can degrade the reconstructed geometry
in two ways: (1) neural points that are inside and far away from the object surface may not get
sufficient updates to predict the correct density values; (2) the normal directions of points aligned
with the same surface may be disturbed by the texture color or shadows. To address these issues, we
add two regularization terms to the predicted SDF values based on SDF’s geometric properties.

The first regularization is to stabilize the SDF prediction for points inside the surface. We want our
model to be able to make stable negative SDF value predictions for the regions inside the surface.
To achieve this goal, we propose a negative sparsity loss for all the sampled query points similar to
Cauchy loss used in Hedman et al. (2021).

1 (1 - Bo(x))?

L= -1 14— 9
where c is a hyperparameter that controls the loss scale, and 5 is the parameter used in Eqn. 4. By
constraining the SDF value of the internal points, this regularization term can also prevent the model
from incorrectly learning internal emitters (Verbin et al., 2021) instead of a solid surface when there
are specular highlights.

The second regularization is to improve the continuity and consis-
tency of predicted SDF values. Since the signed distance field de-
fines the local spatial distance information of 3D positions, we can
utilize this property to regularize the predicted SDF values along
the sampled rays. Given two adjacent sampled points x;, x;41 With

sufficiently small distance along the same ray r;, the difference of - SDF contours
predicted SDF values Ad; = dx,,, — dx, can be approximated by
the projection of the relative distance 0; = ||x;+1 — X¢|| in the normal direction fy,, which is

Ad, ~ (V- ny,)d:. We can therefore use the real distance value d; to constrain the changes of
predicted SDF dy with another L2 loss term

Lq=>"|IAd, — Ady| (10)
t

This regularization term can help our discrete NeRF model better learn the geometry of the target
object without being affected by the discrete representation.
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4.4 TRAINING
The training process is essentially the same as other NeRF methods, but with the above regulariza-
tion terms. The full loss function is defined as

L= Ecolor + )\nﬁn + )\sﬁs + )\dﬁd (11)

where L.oor is an L1 loss between the ground truth and the rendered images, \,,, As, A\g are loss
weight hyperparameters. In order to feed stable normal vectors to the specular MLP branch and to
keep the specular MLP from being impacted by diffuse color, we exclusively train the diffuse MLP
branch for a small portion of the total training steps at the beginning, then jointly train both diffuse
and specular branches.

5 DECOMPOSING LIGHTING AND REFLECTANCE

In this section, we describe how we decompose the reflectance and environment light from the fully
trained SDF-based PointNeRF model described in Sec. 4. There are three key components in our
lighting estimation method. First, we use an HDR light probe image learned by a coordinate-based
MLP to represent the environment light. Second, we employ the shadow mapping technique to ap-
proximate the surface light visibility. Third, we add extra MLP branches to estimate the surface
BRDF properties. Our light estimation approach is designed assuming distant environment illumi-
nation and also does not consider indirect reflection.

5.1 NEURAL IMPLICIT ENVIRONMENT LIGHT

Surface visibility is a key factor in determining the rendering of hard cast shadows. However, envi-
ronment illumination approximation methods such as spherical Gaussians (SG) (Zhang et al., 2021a;
Boss et al., 2021a) cannot be integrated with surface visibility. Thus, in SPIDR, we first represent the
environment light as an HDR light probe image (Debevec, 1998) (similar to Zhang et al. (2021b)).
Every pixel on the light probe image can be treated as a distant light source on a sphere, thus the
integral in the rendering equation (Eqn. 5) can be discretized as the summation over a hemisphere
of the light sources (pixels) on the light probe image. To reduce computational complexity, envi-
ronment light is estimated at a 16 x 32 resolution in the latitude-longitude format, which can be
approximately treated as 512 point light source locations on a sphere centered around the object.

Unlike Zhang et al. (2021b) which directly optimizes 512 pixels p; as learnable parameters, we
instead use a coordinate-based MLP FE to implicitly represent the light probe image. Given the ith
light source’s direction w; (normalized coordinate on a unit sphere), MLP FE takes w; as input (with
positional encoding (Mildenhall et al., 2020)) to predict the corresponding light intensity E(w;).
This parameterization enables SPIDR to learn high frequency lighting details while maintaining
spatial continuity (Tancik et al., 2020). Since our environment light model represents an HDR
image, we adopt an exponential activation function (Mildenhall et al., 2022) to convert the MLP
output to the final light intensity.

5.2 COMPUTING VISIBILITY FROM DEPTH

Existing NeRF methods compute the surface light visibility via direct ray marching (Bi et al., 2020;
Zhang et al., 2021b) or a visibility estimation MLP (Srinivasan et al., 2021; Zhang et al., 2021b).
Although these methods can make accurate visibility predictions, they are either compute-intensive
or are not applicable for geometry deformation. Therefore, we instead apply the shadow mapping
technique (Williams, 1978) to approximate the light visibility. The shadow mapping method deter-
mines the light visibility by checking the depth difference between the depth map from the current
viewpoint and the depth maps from the light sources under the same coordinate system. We thus
utilize the estimated depth maps from our NeRF representation to indirectly calculate the light vis-
ibility of a point on the surface. Thus no additional computation is required during training. The
visibilities of all light sources for point x on the surface then form a visibility map V' (x,w;) with
the same shape as the light probe image. As a tradeoff for efficient training, the pre-computed depth
maps do not allow for updates to the learned geometry.

5.3 NEURAL BRDF ESTIMATION

Similar to other prior works (Srinivasan et al., 2021; Boss et al., 2021b), we also use the microfacet
BRDF (Walter et al., 2007), a commonly used analytic BRDF model, to describe the surface re-
flectance property. We use three additional MLP branches, with interpolation point feature fy (Eqn.
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2) as input’, to predict BRDF parameters (diffuse a € R3, specular s € R?, and roughness o € R).
Recall that our NeRF model also decomposes radiance into diffuse color and specular color (Eqn.
7), which is in accordance with the BRDF decomposition. Our trained diffuse and specular MLP
(Rgq & Ry) can be served as priors for learning the corresponding BRDF parameters. We show how
these priors are utilized as follows.

Diffuse Reflectance. Lambertian (diffuse) reflectance is mainly determined by the BRDF diffuse
parameters a(x), also known as albedo. Since diffuse color can be perceptually treated as the shaded
albedo, we directly initialize our albedo MLP branch B, (fy) with the weights from the diffuse MLP
R4(fx). This provides a reasonable starting point for learning the real albedo.

Specular Reflectance. We use another two MLP branches, B;(fx) and B, (fx), to model the spec-
ular BRDF parameters specular s (also known as Fresnel FO) and roughness «. Unlike the albedo
branch B, (fy) that can be initialized with Ry, we cannot initialize these specular BRDF branches
with our specular radiance MLP R;, as R is conditioned on view directions and normals. Thus
we need to optimize B and B, from scratch. However, we still use the results from the specular
radiance MLP R as one loss term to supervise the learning of specular BRDF.

5.4 TRAINING

During the training of lighting estimation, we jointly optimize environment light and BRDF param-
eters. In addition to using ground truth color C* for supervision, we also use diffuse color C,; and
specular color C; obtained from radiance MLP branches, R; and Ry, to further constrain the BRDF
integrated diffuse color C/; and specular color C/, respectively. Because we use pre-computed depth
for visibility map during this training step, we freeze the first part of our model that outputs predicted
SDF values d(x) and radiance features fy, and only optimize these BRDF MLP branches (B, B;
and B,) and our environment light model E. The loss function is formulated as

Elight = ECOZOT‘(C*a :i + CIS) + )\lﬁcolor(cdu Cld) + )\gﬁcolor(csa CIS) (12)

where \; and A\, are loss weight hyperparameters. Since we already have strong geometry and
radiance priors from the trained NeRF model, 10k iterations of training in this step are sufficient to
get a reasonably accurate lighting estimation.

6 RENDERING DEFORMATION FROM STATIC SCENES

As described in Section 4, our hybrid NeRF model employs the point cloud as the explicit repre-
sentation. Neural points in our final optimized neural point cloud are well aligned with the object
surface. This enables users to easily select desired parts and perform common geometry transfor-
mations, including translation, rotation, and scaling. The local topology and neural point features
are invariant to such transformations, thus we can render the deformed scene without retraining or
updating any neural parameter.

Since our SDF-based scene representation captures higher quality surfaces, we can utilize predicted
SDF values or the point cloud itself to extract the object mesh. To achieve mesh-guided deformation,
we register each neural point to its closest triangle face on the mesh. We compute the signed distance
and the projected barycentric coordinate from the point projected onto the corresponding triangle
face. After applying a deformation to the mesh (e.g., ARAP method (Sorkine & Alexa, 2007)), we
apply a barycentric interpolation to find the new projected point locations and normals, and unproject
the points along the normal by the signed distance.

7 EXPERIMENTS

We evaluate our method on various challenging 3D scenes. We make comparisons against prior
works based on the quality of view synthesis, lighting estimation, and geometry deformation.

Datasets. We mainly use 2 two challenging datasets for evaluation: all the scenes in NeRF’s Blender
synthetic dataset (Mildenhall et al., 2020) and real-captured scenes in BlendedMVS (Yao et al.,
2020) that are used and processed by NSVF (Liu et al., 2020).

Baselines. We compare against different prior works for each evaluated task. For the novel view
synthesis task, we choose NSVF (Liu et al., 2020), VolSDF (Yariv et al., 2021), and the original

The final prediction of BRDF parameters is the weighted sum of predictions of sampled ray points.
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Point-NeRF (Xu et al., 2022) as state-of-art baselines. For the lighting estimation task, we compare
against NeRFactor (Zhang et al., 2021b) and Neural-PIL (Boss et al., 2021b). For the geometry
editing task, we compare against the closest prior work, NeuMesh (Bao et al., 2022).

7.1 VIEW SYNTHESIS AND SURFACE RECONSTRUCTION WITHOUT EDITING

We.use PSNR, SSII\'/IZ and LPIPS to evaluate the ren- Synthetic BMVS
dering quality. Additionally, we use MAE (mean an- _ NSVF 3175 76.90
gular error) to evaluate the estimated surface normals. &  VoISDF 27.96 24.77
Table 1 and Figure 2 show the quantitative and qualita- % PointNeRF 33.31 26.71
tive comparisons respectively. Note that Point-NeRF’s ™ Ours 3230 2656
results are the per-scene optimized final results. Our Ours-BRDF 2778 25.34
SDF-based model without illumination decomposition ~ ,  NSVF 0953 0.898
(labeled “Ours™) generates rendering results compara- E ESS&IZRF 83;% ggﬁ
. . = . ]
ble to the original Point-NeRF and better than NSVF £ Ours 0976  0.948

and VoISDFE. Thus,. we conglude thaF our hybrid SDF- Ours-BRDF 0951 0932
based model provides a high quality representation. NSVE 0.047 0113

For the original scenes without any editing, our model § VoISDF 0.096  0.148
\yith light (}ecomposi.tion (“Ou¥s—BRDF”.), while pro- = PointNeRF 0.027 0.078
viding significantly higher quality rendering under de- = Qurs 0.029  0.068

formation, has slightly lower rendering quality com- Ours-BRDF 0.061 0.085

pared to state-of-the-art static representations. This is  _,  VolSDF 19.87 25.95
because we currently only consider simplified directil- & PointNeRF 43.09  SL.17
lumination in our BRDF-based rendering and any sur- E Ours-Grad 3028 47.50

Ours-Pred 27.08 34.55

face points with incorrectly predicted normals or visi-
bility maps can result in rendering artifacts (see the Fi-  Table 1: Quantitative comparison with base-
cus scene comparison, the first row in Fig. 2). SPIDR line methods. BMVS represents NSVF’s
still however performs comparably to VolSDF. BlendedMVS dataset.

Comparisons of estimated normals in Table 1 and Fig. 2 demonstrate the effectiveness of SDF-
based presentations for learning scene geometry. Our SDF computed normals (“Ours-Grad”) and
interpolated point normals (“Ours-Pred”) both have much better normal estimations than the original
Point-NeRF. The interpolated normals filter out high frequency noise in the normals computed from
SDF. VolSDF provides lower MAE, but the normals are typically over-smoothed. SPIDR is however
able to capture more high frequency detail that lead to more realistic view synthesis.

Rendering Results Normal Estimation

fadbde

GT VoISDF  Point-NeRF  Ours Ours-BRDF GT VoISDF Point-NeRF Ours-Grad  Ours-Pred

Figure 2: Qualitative comparison: rendering results on NeRF synthetic and BlendedMVS datasets.

7.2 LIGHTING ESTIMATION

We compare lighting estimation using re-rendered NeRF synthetic scenes provided by NeRFactor.
Figure 3 shows the results for two selected scenes (Hotdog & Lego). Our model achieves signif-
icantly better rendering quality and geometry detail (see PSNR and MAE scores). Our estimated
environment light for the Hotdog scene is significantly better than the two baseline methods. Unlike
SPIDR, no existing work can accurately recover all light sources from the Hotdog scene. The envi-
ronment light for the Lego scene is more challenging to infer as it does not have strong light sources.
However, our SPIDR is still able to roughly estimate the light and dark regions. Unlike Zhang et al.
(2021b); Boss et al. (2021b) that use additional material priors, our model directly estimates ma-
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terial properties from scene images without any material prior. Thus, SPIDR does not provide the
highest quality BRDF estimation, but still successfully distinguishes different types of materials in

the scene.
Image Normal BRDF Diffuse Environment Image Normal BRDF Diffuse Environment
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Figure 3: Lighting and BRDF estimation. In the BRDF column, NeRFactor visualizes the learned BRDF
latent code, while Neural-PIL and our method show the grayscale material roughness values. In the Diffuse
column, Neural-PIL shows rendered diffuse color, the other rows show the albedo colors.

7.3 GEOMETRY EDITING

Ours, before editing NeuMesh Ours, w/o. lighting ~ Ours, w/. lighting
Figure 4: Qualitative comparison on geometry editing.

We qualitatively evaluate the geometry editing results by comparing against NeuMesh. We perform
mesh-guided deformations on Blender synthetic scenes to achieve deformation effects similar to
NeuMesh. Figure 4 shows the deformation results for two scenes (more results are in the Appendix).
Our rendering results without lighting estimation have significantly better rendering quality with
more texture detail compared to NeuMesh. Furthermore, our results with lighting estimation can
successfully update the shadowing effects on the rendered image (see the shadow orientations on
the side face of the deformed bulldozer blade). Our rendering results indicate that SPIDR can (1)
successfully learn the environment illumination; (2) accurately update the light visibility for each
point on the surface; and (3) effectively learn BRDF parameters that identify and remove existing
surface shadows.

8 CONCLUSION

This paper introduces SPIDR, a new hybrid SDF-based NeRF architecture to enable more accurate
and high quality scene editing and illumination. Our proposed neural representation with new SDF
regularizations enables significantly better reconstruction of scene surfaces, while ensuring high
quality view synthesis. Our new representation of environment light as a coordinate-based MLP
estimates environment illumination more accurately compared to prior work. These contributions
make SPIDR the first approach that can render scenes with fine-grained geometry deformations
with the accurate resulting illumination. A current limitation of SPIDR is in its simplified BRDF-
based rendering that only considers direct illumination; thus SPIDR is not able to capture shading
effects caused by indirect illumination. Additionally, SPIDR’s SDF-based geometry representation
may not work well for objects such as clouds or smoke. SPIDR however has great potential to be
applied in various category-specific 3D generation and controlling tasks, such as controllable 3D
human body/face and continuous scene synthesis for autonomous driving. We believe our proposed
mechanisms can enable significant improvements in geometry editing and illumination for these
tasks.
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A APPENDIX

A DETAILS OF LIGHT VISIBILITY AND BRDF-BASED RENDERING

A.1 LIGHT VISIBILITY

In section 5.2, we briefly demonstrate how we compute visibility maps from depth via the shadow
mapping technique. We give more details in this section. Shadow mapping, a common method in
computer graphics (Williams, 1978; Eisemann et al., 2013), aims to recover the per-point visibility
maps from shadow maps of all light sources. The shadow maps are computed by comparing the
depth difference between the depth map (z-buffer) from the view direction and the depth maps from
the light sources after projecting to the same coordinate system.

Similar to other NeRF models, we use the expected termination of each camera ray from NeRF’s
ray marching to approximate the depth map D. Given the depth map D, of the image captured by
a camera with pose T, and the depth maps D,,, of light sources with pose T.,,,, a pixel (u,v) that
represents a surface point x from the camera T, has the shadow S(u, v, @;) for the ith light source:

S(u,v,@;) = 1 {interp(D, ,u,v) — De(u,v) + b} (13)

where 1{-} is a zero-one indicator function, D, = T.T. 1Dw , representing the depth maps
after projecting to T.’s coordinate system, b is the shadow blas term, interp(-) represents a bi-linear
interpolation function. The visibility map V' is a collection of values from shadow maps of all light
sources V' (x,w;) = S(u,v,w;). Since we treat our environment light as 512 light sources, 512
depth maps of the scene from each light source need to be pre-computed. To minimize this compute
overhead, we render half-resolution light depth maps, which can be finished within 10 minutes for
our tested scenes, but still provides reasonably accurate visibility maps from our observation.

A.2 NUMERICAL APPROXIMATION OF THE RENDERING EQUATION

Given light probe image F and visibility map V', we can approximate the income radiance L; in
Eqn. 5 with the product of light probe and its visibility, that is L;(x, &;) = E(&;)V (x,@;).

(x, @) ZL X, ;) B(x, @;, @,) (1 - ;) A,
= Z E(w;))V(x,w;)B(x,w;,w,) (- w;)Aw; (14)

where Aw; denotes the solid angle for the corresponding incoming light direction @; from the light
probe image’s hemisphere.

B IMPLEMENTATION DETAILS

Architecture and hyper-parameters.

We describe how our point-based neural implicit model is designed in this section. Figure 5 shows
the overview of our model design. The faature and spatial MLP have 4 layers and 1 layer respec-
tively. The conditioned neural feature f; x has the feature size of 256. The radiance and BRDF MLP
branches are all 3 layer MLPs with 256 hidden units. Our environment light MLP is a simple 3 layer
MLP with 128 hidden units. The relative position vector p; — x, view direction ¥, and incoming
light direction w; are all enconded by positional encoding (Mildenhall et al., 2020), before feeding
into MLPs.

C MESH-GUIDED POINT CLOUD MANIPULATION

Common 3D modeling workflow often relies on high quality surface meshes. We propose a proce-
dure to extract a high-quality guidance mesh, and use the extracted mesh to enable a wide range of
mesh-based editing functionalities.
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Figure 5: A visualization of SPIDR’s architecture. For simplicity, we omit the computation flow for
both SDF computed normal 1 and interpolated point normal i (Eqn. 8).

We proposed two methods to reconstruct the mesh. First method is similar to implicit neural repre-
sentations that inferences the SDF values on a sparse voxel grid and uses marching cubes (Lorensen
& Cline, 1987) to extract the mesh. The other method uses screened Poisson method (Kazhdan
& Hoppe, 2013) to reconstruct the mesh from the point cloud with estimated point normal. Our
SDF-based hybrid point cloud representation ensures that the point cloud is well-aligned with the
reconstructed surface. In our experiments, we found that marching cube method produce higher
quality meshes. Screened Poisson reconstruction requires a complete point cloud, but most of the
input scenes only has the upper hemisphere viewports.

Our method transfers any deformation from the guidance mesh to the point cloud. Specifically, we
project each point onto the mesh faces along the face normal, and precomputes the correspondence,
projected barycentric coordinate, and signed distance from the point to its closest face. After the
deformation, we use the correspondence and barycentric coordinate to recover each projected point
location, and unproject the point by translating each point along the new face normal by the pre-
computed signed distance. From our experiments, we found that the distance between the point
and corresponding face is extremely small. Therefore, the mesh to point transfer will not result
in artifacts. Compared to existing procedures (Yuan et al., 2022) that uses tetrahedrons to guide
the deformation, our alignment mesh exhibits much simpler computations and enables more editing
functionalities.

D ADDITIONAL RESULTS

D.1 PER-SCENE BREAKDOWN

Table 6 and Table 7 show the per-scene breakdown comparison of the quantitative results shown in
Table 1. Our SPIDR model has rendering scores comparable to the original Point-NeRF and has
significantly better results on the estimated surface normals, especially for shinny scenes or scenes
with the strong specular highlight (e.g., materials and ficus).

D.2 QUALITATIVE RESULTS OF THE RECONSTRUCTED SCENES

In Figure 6 and Figure 7, we present more visual results of tested scenes from both synethetic and
real-captured dataset. In these figures, we additionally visualize our estimated normal, visibility,
and environment light. These are three key factors that enable SPIDR’s accurate illumination for the
scene’s geometry deformation. Qualitative results show that SPIDR can accurately estimate surface
normals for most of the scenes. The comparison between the ground truth environment light and
our estimated environment light in synthetic scenes also demonstrates the effectiveness of our novel
presentation of the environment light.

D.3 ADDITIONAL GEOMETRY EDITING RESULTS

In addition to the editing results shown in the main paper, we showcase more geometry editing
results in this part. We choose two BlendedMVS scenes evaluated before (Character and Statues)
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Table 2: Per-scene Quantitative Results on NeRF Synthetic

NeRF Synthetic
chair drums lego mic  materials  ship  hotdog ficus
PSNR 1
NSVF 33.00 25.18 3254 3427 32.68 2793  37.14 31.23
VoISDF 30.57 2043 2946 30.53 29.13 2551 3511 2291
PointNeRF | 3540 26.06 35.04 35.95 29.61 3097 3730 36.13
Ours 3484 2570 3477 3447 27.42 30.74  36.82  33.66
Ours-BRDF | 30.33 2321 29.67 27.88 23.74 26.52 3272 28.21
SSIM
NSVF 0968 0931 0.960 0.987 0.973 0.854 0980 0.973
VoISDF 0949 0.893 0.951 0.969 0.954 0.842 0972 0.929
PointNeRF | 0.991 0.954 0.988 0.994 0.971 0942 0991  0.993
Ours 0991 0957 0.989 0.993 0.952 0945 0991  0.990
Ours-BRDF | 0.974 0929 0969 0.976 0.909 0.897 0.979 0.970
LPIPS |
NSVF 0.043  0.069 0.029 0.010 0.021 0.162  0.025 0.017
VoIlSDF 0.056 0.119 0.054 0.191 0.048 0.191  0.043  0.068
PointNeRF | 0.010 0.055 0.011 0.007 0.041 0.070  0.016  0.009
Ours 0.010 0.049 0.010 0.008 0.046 0.079  0.014  0.015
Ours-BRDF | 0.037 0.085 0.029 0.037 0.089 0.127  0.043  0.040
MAE° |
VoISDF 14.09 2146 26.62 19.58 8.28 16.97  12.17  39.80
PointNeRF | 3724 54.13 4097 4751 60.41 50.82 3261 61.01
Ours-Grad | 26.58 4793 2546 26.15 27.90 27.72  20.56  39.92
Ours-Pred | 22.19 39.86 24.05 22.06 22.26 23.03 1823  41.95

Table 3: Per-scene Quantitative Results on BlendedMVS

Blended MVS
jade  fountain character statues
PSNR 1
NSVF 26.96 27.73 27.95 2497
VoISDF 25.20 24.05 25.59 24.26
PointNeRF | 26.14 25.68 29.06 25.97
Ours 25.70 27.25 27.80 25.50
Ours-BRDF | 25.70 26.29 2542 23.95
SSIM 1
NSVF 0.901 0913 0.921 0.858
VoISDF 0.919 0.908 0.939 0.895
PointNeRF | 0.931 0.935 0.970 0.930
Ours 0.933 0.957 0.968 0.933
Ours-BRDF | 0.919 0.950 0.950 0.910
LPIPS |
NSVF 0.094 0.113 0.074 0.171
VoISDF 0.128 0.177 0.091 0.196
PointNeRF | 0.091 0.104 0.033 0.082
Ours 0.083 0.061 0.039 0.087
Ours-BRDF | 0.101 0.068 0.055 0.115
MAE° |
VoISDF 32.17 24.87 28.74 18.03
PointNeRF | 48.62 43.15 58.30 54.61
Ours-Grad | 50.60 50.07 50.43 38.89
Ours-Pred | 42.39 34.42 33.96 27.42
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to perform mesh-guide deformation. To further showcase SPIDR’s capability in rendering accurate
illumination in the geometry deformed scenes, we tested two more synthetic scenes (Mannequin and
Trex) with intentional deformations that can cause light occlusion on the object surface. As shown in
Figure 8, SPIDR’s BRDF-based rendering results (the last column) can accurately update the surface
illumination caused by occlusions (see the rendering results on Trex’s tail as well as the results on
the Mannequin’s body that is behind the right arm). Besides, we use SPIDR to additionally run on
two unmasked, more challenging scenes from BlendedMVS (Eva and Gundam). In order to model
the unbounded background, we employ a simplified NeRF++ Zhang et al. (2020) model (fewer
layers, and no view-dependent MLP) to separately represent the background. We perform direct
point clouds on these two scenes. Our SPIDR still shows high rendering quality.
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Figure 6: Qualitative results of individual scenes for synthetic scenes. Each column from left to
right represents Ground Truth, Ours, Ours-BRDF, Ground Truth Normal, Ours-Grad, Ours-Pred,
Visibility, and Environment Map, respectively. For the Environment Map column, the up row is the
ground truth environment map, and the down row is our predicted environment map.
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Figure 7: Qualitative results of individual scenes for the BMVS dataset. The layout is similar to
Figure 6, except for the last column. The last column only contains the predicted environment map
since the BMVS dataset is a real world dataset and doesn’t provide the ground truth environment
map.
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Figure 8: Qualitative results on geometry editing. Each column from left to right represents Ground
Truth, Editing, Ours edited and Ours-BRDF edited, respectively.
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