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Figure 1. Overview: (Left) Major components (e.g., , , , etc.) of our PROMPT2SIGN dataset. Compressed Pose
is reprocessed pose data that is suitable for training, we use public sign language videos to produce compressed pose data in our predefined
format; (Right) Our proposed SIGNLLM aims to generate sign language poses for digital human or avatar generation [6, 12, 105, 110].

Abstract

In this paper, we propose SIGNLLM, a multilingual
Sign Language Production (SLP) large language model,
which includes two novel multilingual SLP modes MLSF
and Prompt2LangGloss that allow sign language ges-
tures generation from query texts input and question-style
prompts input respectively. Both modes can use a new RL
loss based on reinforcement learning and a new RL module
named Priority Learning Channel. These RL components
can accelerate the training by enhancing the model’s ca-
pability to sample high-quality data. To train SIGNLLM,
we introduce PROMPT2SIGN, a comprehensive multilin-
gual sign language dataset, which builds from public data,
including American Sign Language (ASL) and seven oth-
ers. This dataset standardizes information by extracting
pose information from sign language videos into a unified
compressed format. We extensively evaluate SIGNLLM,
demonstrating that our model achieves state-of-the-art per-
formance on SLP tasks across eight sign languages.

1. Introduction
Sign Language Production (SLP) aims to synthesize
human-like sign avatars from text inputs. Deep learning-

based SLP approaches [38, 71–74] typically involve se-
quential steps from text to gloss (i.e., a type of textual vo-
cabulary representing gestures or postures), gloss to pose
[10, 52], and finally rendering pose videos into more en-
gaging human-like avatar videos. These processes are com-
plex and challenging to simplify, making sign language data
acquisition and processing difficult. This challenge has sig-
nificantly dampened researchers’ enthusiasm and progress
over a considerable period, with the majority of studies in
the past decade relying on a German sign language (GSL)
dataset named PHOENIX14T [25, 46] for Sign Language
Production, Recognition, and Translation tasks (SLP, SLR
and SLT). Recent work [4, 86] based on the American sign
language (ASL) [20, 78] and other lesser-known languages
[19, 26, 32, 58, 68, 80] are relatively rare.

The existing mainstream datasets [14, 20] have signif-
icantly advanced the field. However, as time progresses,
their limitations become increasingly apparent: (1) These
existing datasets consist of different format files, including
images, Glosses, subtitles, etc. These images are not easy
to be directly trained. Due to redundant information in im-
ages that makes it difficult for models to learn essential pose
information, training video-level SLP becomes particularly
challenging. A way to reduce redundant information is to
distill the gesture/posture information into text/npy/json for
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training. But different datasets pose extraction methods
[10, 31, 51, 52, 63, 83] are different. This limitation ham-
pers a specific format model’s ability to use data from other
sign languages. (2) Manual annotation for gloss is labor-
intensive and time-consuming. (3) Because some videos
are obtained from professionals and reprocessed into dif-
ferent formats, scaling up the dataset becomes exceedingly
challenging. These limitations collectively impede the de-
velopment and training of more advanced models.

To solve these issues, we introduce PROMPT2SIGN, a
new multilingual dataset focusing on upper body move-
ments in large-scale signers. The dataset overview is shown
in Fig. 1 (Left), showcasing prompts, video subtitles, and
files containing digital keypoints information. To create
this dataset, we first process the videos using OpenPose
[8] to standardize pose information in each frame. Storing
keypoints information in our predefined compressed format
( , as shown in Fig. 1) can reduce redundancy
and facilitate training with seq2seq and text2text models.
Subsequently, we reduce reliance on manual annotations by
auto-creating prompt words to improve cost-effectiveness.
Finally, we improve the processing level of automation for
the tools, making the tools highly efficient and lightweight,
requiring no additional model loading to process data (i.e.,
solving the difficulty in manual preprocessing and data col-
lection above). Our new PROMPT2SIGN dataset is sourced
from publicly available sign language datasets and videos
on the Internet, covering eight sign languages, making it
a comprehensive multilingual sign language dataset. More
information is in Table 1 and supplementary materials.

Meanwhile, we recognize that existing models [11, 71,
73, 82, 94, 95] need improvement because training mod-
els with our new dataset brings new challenges: (1) Dif-
ferent sign language data cannot usually be trained simul-
taneously due to text-posture correspondence differences in
different sign languages. (2) Handling more languages and
a larger dataset results in slow and challenging training pro-
cesses, with downloading, storing, and data loading difficul-
ties. It is necessary to explore high-speed training methods.
(3) The existing model structure cannot grasp more lan-
guages and understand more complex natural human con-
versational inputs. So, we need to explore the aspects over-
looked by previous studies, such as multilingual SLP, effi-
cient training, and the ability to understand prompts.

To overcome these challenges, we introduce SIGNLLM,
a large multilingual Sign Language Production (SLP) model
developed based on our PROMPT2SIGN dataset. It can pro-
duce the sign language representation of eight languages
from texts or prompts. Our SIGNLLM has two distinct
modes: (i) Multi-Language Switching Framework (MLSF),
which allows multiple sign languages production in par-
allel by dynamically adding encoder-decoder groups. (ii)
Prompt2LangGloss, allowing SIGNLLM to support static

single-set encoder-decoder generation. Fig. 1 (Right) shows
our model inputs and outputs, “thank you” is the input of
mode (i), and “how to sign ‘thank you’ in ASL?” is the input
of mode (ii). Two multilingual SLP modes deal with differ-
ent use cases: The Multi-Language Switching Framework
(MLSF) is an efficient mode without semantic confusion,
like a dictionary/drawer; The Prompt2LangGloss is a user-
friendly mode, like a LLM, it aims to understand complex
natural language input. To address the problem of extended
training time caused by more languages and a larger dataset,
we utilize the Reinforcement Learning (RL) Loss concepts
to quantify the quality of each training batch and prioritize
valuable batches through the Priority Learning Channel.

We conduct extensive experiments and detailed ablation
studies. The results validate the superior performance of
our SIGNLLM over baseline approaches [11, 21, 43, 71,
73, 82, 94, 95] on the subsets in eight sign languages. The
contributions of this paper can be summarized as follows.
• A comprehensive multilingual sign language dataset,

named PROMPT2SIGN, featuring an expanded vocabu-
lary and covering eight languages, is introduced. It is
designed for broader seq2seq compatibility.

• A large multilingual Sign Language Production (SLP)
model with two distinct modes—MLSF for handling
text query inputs and Prompt2LangGloss for process-
ing question-style prompts—is proposed. Our method,
SIGNLLM, achieves state-of-the-art performance across
eight sign languages in SLP tasks.

• We present a novel reinforcement learning-based loss
function, along with a functional module named Priority
Learning Channel (PLC), as a training strategy for sign
language models, designed to reduce training time and
computational costs.

2. Related Work
Sign Language Production. In recent years, the field of
sign language research has primarily focused on Sign Lan-
guage Recognition (SLR) [16, 17, 22, 29, 41, 45] and Sign
Language Translation (SLT) [4, 7, 15, 44] based on deep
learning. Due to a lack of suitable, high-quality datasets
for ASL, deep learning researchers conducted their research
[38, 71–74] based on a GSL weather theme dataset, released
in 2012 [25, 46]. As previously mentioned, the data pro-
cessing involved in sign language research is highly com-
plex. Even with the release of a large-scale ASL dataset in
2021 [20], work focused on ASL-related themes based on
it has not emerged quickly, as existing work is not easily
transferable. The situation is worse for minority languages.
Large Language Models. LLMs refer to giant transformer
models trained on extensive textual data, exhibit capabili-
ties in understanding natural language and addressing com-
plex tasks [5, 13, 77, 87, 89]. Sign language is a visual lan-
guage, theoretically different from language models. How-



ever, most current work uses text2text and seq2seq mod-
els [48, 61, 66, 99], converting key points/dense maps/grid
poses into sequences for training, as opposed to directly
training images. Hence, viewing the core process of SLP,
text2pose, as a language model is justifiable. Extensive re-
search indicates that an increase in parameters or data vol-
ume [35, 42] significantly enhances the abilities of LLMs
[5, 13, 65]. There are more than a hundred sign languages
in the world, most of which have datasets in video form.
Therefore, conducting advanced research to address the an-
ticipated surge in data volume in the future is of paramount
importance. In this work, we aim to enable the model
to generate sign languages across diverse linguistic back-
grounds, ensuring its adaptability to our new dataset.

3. Our Benchmark: Prompt2Sign
Existing Datasets Weaknesses. The main shortcoming of
previous work is the lack of unified data storage formats,
when there is a mismatch between these models in Sign
Language Production (SLP) [11, 71, 73, 82, 94, 95] and
Sign Language Translation (SLT) [4, 7, 15, 44], it can lead
to complex challenges: (1) The results of the SLT model are
difficult to use as training data for the SLP model directly
due to format incompatibility (e.g., [6, 86] & [70, 75]) (2)
The results of the SLP model are difficult to use as input
for the SLT model (evaluation experiment needs, e.g., [6]
& [4]). (3) The output of the SLP model is not suitable as
input for most style transfer models (e.g., [11, 97, 107], the
researchers have to train a pose2video model themselves).
Therefore, we create a standardized dataset to address data
collection, utilization, and storage challenges.
Data Collection. Our data collection process, in contrast to
previous methods, includes the following steps: (1) down-
loading sign language videos in specific languages from the
Internet and public datasets [19, 26, 32, 58, 68, 80]; (2) edit-
ing and aligning these videos; (3) extracting 2D keypoints
from each video frame using OpenPose [8] and saving them
as JSON files; (4) calculating the 3D poses, which are stored
in a predefined compressed data format. See further details
below and in the supplementary materials.
Dataset Range. We choose How2Sign [19], PHOENIX-
14T [26], KSL [100], Signsuisse [58] (contains 3 lan-
guages), LSA64 [68], AuTSL [80], and some of the more
popular works were not considered due to their limited ac-
cessibility and potential usage restrictions. Additionally,
some available multilingual datasets [30, 34, 55, 101] may
not possess the same level of comprehensiveness as ours.
For example, [30] and [101] translate two types of sign lan-
guage videos into spoken language (SLT), while our work
is from spoken language to videos (SLP). We aim to estab-
lish a robust multilingual SLP method with a dataset that
supports a broader range of application scenarios. For ex-
ample, [30] is limited to Bible translation, and [101] focuses

Subset ASL GSL DSGS LSF-CH LIS-CH LSA KSL TSL
Train 31,047 7,096 8,043 5,672 2,254 2,400 700 28,142
Dev 1,739 519 500 500 250 400 300 4,418
Test 2,343 642 500 250 250 400 200 3,742

Table 1. Dataset Statistics [19, 26, 57, 58, 68, 80, 100] : The
number of video clips in their train, dev, test set, respectively. Lan-
guages included: American (ASL), German (GSL, Alias DGS),
Swiss German (DSGS), French Sign Language of Switzerland
(LSF-CH), Italian Sign Language of Switzerland (LIS-CH), Ar-
gentine (Lengua de Señas Argentina, LSA), Korean (KSL), and
Turkish (TSL). “Sign Language” is omitted in some full names.

solely on cross-lingual SLT. In contrast, our work covers a
broader range of scenarios and comprehensively addresses
the SLP task. Additionally, some datasets, such as [55] and
[34], are restricted to multilingual dictionary forms.
Unified Compression of Pose Data. Building on pre-
vious work [71, 75, 104], we develop a three-step tool for
standardizing data processing. The tool is highly efficient
and lightweight, requiring no additional model loading and
supporting large-scale data processing. Furthermore, we
optimize it specifically for sign language data processing
(e.g., removing unnecessary leg movement computations
and integrating these optimizations into PROMPT2SIGN’s
pipeline). The main steps of Data Collection can be visual-
ized as: to to . Among all
the steps, the most crucial part is the transition from 2D to
3D compressed pose data:
• Step I: First, we obtain the length of the skeleton

through the 2D keypoint coordinates (x and y), a and
b represent indices that identify the two keypoints (or
joints) forming a bone L =

√
(ax− bx)2 + (ay − by)2.

• Step II: We compute the 3D rotation angles from
2D keypoints data: Ax, Ay, Az =

anglex,angley,anglez√
angle2x+angle2y+angle2z

,

where A represents the normalized angles.
• Step III: We define Px, Py, Pz as the starting joint

coordinates computed from 2D keypoints, and define
Qx, Qy, Qz as the target coordinates in 3D space: Qx =
Px + L×Ax, Qy = Py + L×Ay , Qz = Pz + L×Az .

These mathematical formulas initialize the skeletal model
by calculating skeletal length L, root node position, rota-
tion angle, and 3D coordinates (x, y, z), serving as input for
simulating 3D human skeletal motion. Compared to pre-
vious methods [104], this approach is much more efficient,
focusing solely on extracting the posture and gesture infor-
mation relevant to sign language from the video data. This
preprocessing step discards redundant information, reduces
data size by 80% relative to the raw video, and standardizes
the format, enabling easier integration with text-to-text and
sequence-to-sequence models and applications without the
need for sign language-specific data loaders.
Dataset Statistics. After the data processing, train, dev,
and test sets of different language parts are shown in Ta-
ble 1. We constructed 120 English templates and 210
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attribute marker at the gloss channel (i.e., Text2Gloss2Pose → Prompt2LangGloss2Pose). (Right) The output of SIGNLLM can be con-
verted into a skeletal pose video, which can then be rendered into a realistic human appearance by vid2vid models [11, 69, 97, 105, 107].

prompt word templates for other languages (with 30 tem-
plates for each language), which are randomly associated
with the oral text data to form the prompt part. The tem-
plates are carefully selected from hundreds of sentences
generated by LLM that cover most everyday expressions.

4. Our Model: SignLLM
4.1. Preliminary of Text2Pose Method

The general SLP pipeline (i.e., text to sign language video)
[38, 71–74] has following steps: text-to-gloss conversion,
gloss-to-pose mapping, and finally pose-to-video rendering.
In our work, we mainly focus on the first two steps.
Text2Gloss & Gloss2Pose. Essentially, the transforma-
tion from text-to-gloss and gloss-to-pose can be distilled to
a sequence-to-sequence [71, 72] problem in the realm of
textual data, and their structures to bear significant resem-
blances. We define xu as the input text x tokens at position
u (total number is U , position from 1 to U), pw as the out-
put pose p at position w (total number is W , frame position
from 1 to W ), and then we use an encoder-decoder trans-
former framework to convert input into output:

fu = Encinput2output(xu|x1:U ) (1)

pw+1 = Decinput2output(pw|p1:w−1, f1:U ) (2)

Here, fu denotes the encoded source of xu. The output text
tokens generated from this process form the input for the
next stage of our translation model. In short, text2pose is
the core method of SLP, and some researchers use gloss as
an intermediate to make it text2gloss2pose.

4.2. Design Overview

Architecture. SIGNLLM has two modes Multi-Language
Switching Framework (MLSF) and Prompt2LangGloss, as
shown in Fig. 2 (Left), both make the model capable of

multilingual sign language production by using the multi-
lingual PROMPT2SIGN dataset. Both modes can be trained
by new RL Loss and Priority Learning Channel module.
Motivation. Unlike existing SLP models, LLM directly
fine-tuning for text-to-pose translation would hamper its di-
alogue capabilities, while using it without fine-tuning would
treat translation requests as questions rather than perform-
ing actual text-to-pose translations. Therefore, we propose
two specialized modes: MLSF for direct text-to-pose trans-
lation and Prompt2LangGloss for LLM-based interaction
(e.g., “how to sign ‘thank you’ in ASL?” as input). These
modes, analogous to evolutionary branches of the same
species, serve complementary purposes in multilingual SLP.

4.3. Two Multilingual SLP Modes

MLSF is a mode that most existing models can refer to,
like a dictionary/translator, and Prompt2LangGloss mode is
designed specifically for sign language LLM. They are like
two evolutionary branches diverged from the same species.
Multi-Language Switching Framework. It can be under-
stood as having multiple parallel Text2Pose channels/Enc-
Dec groups, each language has an Enc-Dec group, allowing
each channel/Enc-Dec to be independently trained and in-
ferred. Text2Pose visual representation is shown on the left
of Fig. 2, the red rectangle represents the eight Enc-Dec in
our model, and the middle partition represents the parame-
ters stored separately in different Enc-Dec groups. The as-
signment operation could be formalized as EncL = EL and
DecL = DL. Here, L denotes the language of input, while
EL and DL are the mapping from language L to an encoder
and decoder in the sets E and D. Similar to selecting tools
from a drawer, MLSF allows you to choose the appropri-
ate EASL-DASL pair from the E-D groups for training and
inference. This modular design functions like a language
drawer system, where each language Enc-Dec component
can be accessed and utilized on demand from eight pairs.



Prompt2LangGloss. While MLSF tackles multilingual
support through architectural design, Prompt2LangGloss
approaches the challenge from a linguistic perspective. This
mode introduces a novel intermediate representation that
bridges the gap between natural language understanding
and sign language generation. Enriching the traditional
gloss notation with language-specific attributes creates a
more nuanced and contextually aware translation process.

Gloss, essentially a shorter textual representation of sign
language gestures, operates as an intermediate entity when
using a text2pose model. As shown in Fig. 2 (Left), our
proposed enhancement of this model involves appending
an additional language attribute to each text word dur-
ing the reading and tokenizing stages. For instance, a
traditional gloss token “<xxx>” can be transformed into
“<ASL xxx>”, thus introducing a LangGloss layer of con-
ditional input fu = Enct2lg(xu|x1:U ) into SLP based on
Eq. (1): lgw+1 = Dect2lg(lgw|lg1:w−1, f1:U ). So, our
LangGloss is a pseudo-Gloss used to distinguish language
information in the parameter space by identifying language
attributes. This way, we solve several challenges: (1) Lang-
Gloss allows the existing models to train multilingual data.
By adding language attributes to gloss, we reduce the se-
mantic ambiguity that occurs when words share the same
form across different languages. (2) LangGloss, as a me-
diator, can solve the limitations of the existing model in
understanding complex, natural human inputs. It reduces
the negative impact of directly processing intricate prompt
words, improving the model’s response accuracy.

In short, these two modes create a robust multilingual
SLP system: This dual-mode design enables SIGNLLM to
achieve processing efficiency and semantic accuracy in ex-
isting models and sign language LLMs, respectively.

4.4. Reinforcement Learning Training Strategy

To reduce training time, we utilize the RL reward concept
to quantify each training batch’s quality and prioritize valu-
able batches through the Priority Learning Channel module.
Both Multilingual SLP modes can use RL Loss and PLC.
Reinforcement Learning Loss. Reinforcement Learning
(RL) has an important advantage in identifying high-value
actions or samples, allowing for prioritized learning of valu-
able data. This approach could help address the challenge of
slow training when using more sign languages. But before
learning high-value data batch, we should transform the or-
dinary generative model first into an RL-like model, so we
design RL Loss for model transformation.

Concretely, we set the input sequence as the state st, and
the output sequence is the action at, and the reward rt. t
stands for time, i stands sample, ŷi represents the model’s
predicted output, and N denotes the total number of sam-
ples. The closer the prediction is to reality (mean squared
error), the greater the reward: r = − 1

N

∑N
i=1(yi − ŷi)

2.
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Figure 3. RL elements: User, Agent, Environment, Cyclic Sam-
pling, PLC to sketch the sequence prediction learning process.

With this interpretation, we can reformulate the traditional
supervised learning problem of minimizing MSE loss to
maximize the expected cumulative reward, where L denotes
the MSE loss function, M is the model, and xt, yt are the
model inputs and corresponding targets respectively:

θ∗ = argmax
θ

Eθ

[
T∑

t=0

rt

]
= argmin

θ
Eθ

[
T∑

t=0

L(yt,M(xt))

]
(3)

where θ represents the trainable parameters of the model,
Eθ denotes the expected value with respect to the model
parameters θ, and T is the total number of time steps in
the sequence. Here, argmax/argmin returns the value of
θ that maximizes/minimizes the expected cumulative re-
ward. These optimized parameters θ are founded by using
gradient descent, updating parameters proportionally to the
gradient of expected cumulative reward concerning model
parameters. In summary, we quantify the effectiveness of
MSE optimization at each time step as reward r. Then the
r will serve as the input for our Priority Learning Channel.
Priority Learning Channel. The RL Loss itself does not
possess subjective acceleration capabilities, it is designed
for PLC to prioritize the learning of more valuable data. We
have defined rewards r, sample i, and data for each batch
j. They then are converted into sampling probabilities for
each data sample according to P (i) = r(i)η∑

j∈S r(j)η , where
η regulates the intensity of prioritization, and S represents
the dataset. By employing these sampling probabilities, the
choice of data samples for each batch is no longer uniform
but regulated by their respective rewards (e.g., if the re-
ward is less than 50%, skip the batch). The per-step RL
loss, L(i), is computed for the chosen data, which is then
used to optimize the model parameters following the pol-
icy gradient theorem. This procedure is formally expressed
as Minimize Ei∼P (i)[L(i)] (where E is the expectation),
the whole RL Loss and PLC system is shown in Fig. 3.
By continually updating the model based on the most re-
warding samples, the PLC brings the advantages of RL to
sequence prediction tasks. The adaptive nature of the PLC
ensures that the model’s focus shifts by the model’s evolv-
ing knowledge, thereby accelerating the learning process.



DEV SET TEST SET
Type: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

NSLP-G [39] - - - - - 5.75 8.21 11.62 17.55 31.98
Fast-SLP Transformers [? ] 17.19 23.11 29.49 36.96 55.85 12.85 17.35 23.38 39.46 46.89

Neural Sign Actors [2] - - - - - 13.12 18.25 25.44 41.31 47.55

SignLLM-1x40M-Base-M (ASL) 18.77 25.42 32.44 40.66 61.44 14.13 19.08 25.72 43.40 51.57
SignLLM-1x120M-Large-M (ASL) 19.40 26.11 33.38 41.89 63.21 14.52 19.65 26.44 44.72 53.14

SignLLM-1x1B-Super-M (ASL) 20.09 +2.90 27.04 +3.93 34.45 +4.96 43.16 +6.20 65.19 +9.36 15.03 +2.18 20.28 +2.93 27.35 +3.97 46.17 +6.71 54.86 +7.97

SignLLM-1x40M-Base-P (ASL) 17.34 23.57 29.87 37.81 56.93 13.06 17.66 23.77 40.15 47.76
SignLLM-1x120M-Large-P (ASL) 18.05 24.28 31.04 38.97 58.78 13.48 18.27 24.57 41.57 49.42

SignLLM-1x1B-Super-P (ASL) 18.68 +1.49 25.11 +2.00 31.99 +2.50 40.14 +7.18 60.47 +4.62 13.93 +0.92 18.86 +1.51 25.40 +2.02 42.87 +3.41 50.91 +4.02

Table 2. American Sign Language Production (ASLP): Comparison of SIGNLLM variants with baseline on Text to Pose task by using
our PROMPT2SIGN ASL part. “-” : The NSA [2] and NSLP-G [39] have not been tested on the dev set, and there is no source code. The
improvement (+num) is relative to the latest work [? ].

DEV SET TEST SET
Type: Language: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

SignLLM-6x40M-Base-M DSGS 9.73 15.82 19.85 24.84 37.57 7.34 9.89 16.85 26.04 31.51
SignLLM-6x120M-Large-M DSGS 11.45 17.28 19.84 29.07 41.69 9.69 14.06 16.35 29.80 31.51

SignLLM-6x40M-Base-M LSF-CH 9.79 18.48 23.13 28.86 34.98 8.92 13.12 16.11 26.48 37.92
SignLLM-6x120M-Large-M LSF-CH 13.72 20.79 23.40 25.15 38.39 9.60 12.58 16.98 22.71 41.96

SignLLM-6x40M-Base-M LIS-CH 10.81 14.46 19.93 24.55 35.83 7.34 10.56 15.24 22.73 36.42
SignLLM-6x120M-Large-M LIS-CH 12.10 18.04 23.01 25.95 36.98 9.30 11.20 15.68 23.38 38.37

SignLLM-6x40M-Base-M LSA 10.72 15.55 21.76 25.91 38.78 7.33 14.86 16.68 22.55 34.42
SignLLM-6x120M-Large-M LSA 11.69 14.79 26.25 28.08 39.01 8.21 11.04 17.05 26.68 37.46

SignLLM-6x40M-Base-M KSL 9.42 14.67 17.24 26.41 31.96 8.31 11.84 17.93 24.15 33.78
SignLLM-6x120M-Large-M KSL 12.91 19.45 15.17 24.07 37.83 10.09 13.06 18.37 25.75 33.69

Hybrid Translation System [43] TSL - - - - - 12.64 18.28 31.48 53.17 -
SignLLM-6x40M-Base-M TSL 14.53 19.86 29.93 36.86 58.01 13.23 17.80 25.39 39.30 57.03

SignLLM-6x120M-Large-M TSL 15.17 21.70 31.73 38.86 71.10 14.36 18.74 26.96 43.21 57.12

Table 3. Multilingual Sign Language Production (MSLP): Comparison of different SIGNLLM M-mode variants with a baseline on Text
to Pose task. We propose the first Multilingual SLP benchmark, with the exception of the existing TSL-Baseline.

5. Experiments and Discussions

Setup. We provide the naming rules as follows: SignLLM-
{number of languages}x{single language parameters}-
{submode size}-{the mode of training}-{the language of
input}. Such as “SIGNLLM-2x40M-Base-M (ASL)”, the
nomenclature “2x40” denotes that the model comprises 2
language knowledge, with each language component esti-
mated to be around 40 million parameters in size, and a total
is 80 million parameters (“1B” represents a total of 1 billion
parameters). There are Base, Large, and Super versions,
depending on a single language parameter size provided by
the model. The encoder and decoder of our model versions
(i.e., Base, Large, Super) both have two layers. When the
model is expanded to Large and Super versions, the lay-
ers are unchanged, the parameters are expanded by about
two and four times, respectively. M and P stand for models
trained using MLSF and Prompt2LangGloss. At the end is
the language of the input model, ASL, GSL, LSA etc.

Metrics. (i) BLEU-n score measures the similarity be-
tween machine-generated translations and reference trans-
lations based on n-grams, the closer the predicted result is
to the input (reference), the higher the value. BLEU-n [60]

DEV SET TEST SET
Approach: BLEU-4 ROUGE BLEU-4 ROUGE

Progressive Transformers [71] 11.82 33.18 10.51 32.46
Adversarial Training [70] 12.65 33.68 10.81 32.74

Mixture Density Networks [72] 11.54 33.40 11.68 33.19
Mixture of Motion Primitives [73] 14.03 37.76 13.30 36.77

Photo-realistic SLP [75] 16.92 35.74 21.10 42.57
Fast-SLP Transformers [? ] 18.26 39.62 22.15 46.82

SignLLM-1x40M-Base-M (GSL) 18.61 40.69 22.76 48.05
SignLLM-1x120M-Large-M (GSL) 19.31 +1.05 41.42 23.25 +1.10 49.08

SignLLM-1x1B-Super-M (GSL) 19.07 41.83 +2.21 23.21 49.52 +2.70

SignLLM-1x40M-Base-P (GSL) 17.12 37.43 20.93 44.21
SignLLM-1x120M-Large-P (GSL) 17.55 38.10 21.39 45.16

SignLLM-1x1B-Super-P (GSL) 17.54 38.48 21.35 45.57

Table 4. German Sign Language Production (SLP): Compar-
ison of different models with existing work on Text to Pose task.
The improvement (+num) is relative to the latest work [? ].

means that n words are used as the basic computing unit,
and the higher the n, the higher the fluency requirement.
(ii) ROUGE score [49] is similar to BLEU, but it is more
concerned with consistency and coverage. It indicates better
agreement between the generated and reference texts, indi-
cating a more accurate and comprehensive summary. (iii)
DTW score underpinned by dynamic programming princi-
ples [3], is employed to ascertain the smallest manipulation
distance between clips and sentences; the lower, the better.



DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Base + Normal MSE Loss 10.96 14.68 22.49 40.29 44.13 9.27 10.72 18.64 39.88 40.39
Base + RL Loss 18.33 24.28 32.18 48.83 52.61 13.26 17.33 24.51 40.76 40.95

Base + RL Loss & PLC 18.77 25.42 32.44 52.66 61.44 14.13 19.08 25.72 43.40 51.57
Base + MSE + Prompt2LangGloss 15.78 22.66 30.27 48.30 50.88 16.32 20.27 28.70 47.89 48.18

Base + MSE + MLSF 16.44 23.79 32.32 50.97 53.44 17.17 21.25 30.12 50.25 50.47

Table 5. Comparison of Different Modules: Base: SIGNLLM-40M-Base results for Text to Pose task on the ASL part of PROMPT2SIGN.
PLC: Priority Learning Channel. Top performances are highlighted in bold, while second top performances are underlined.

5.1. Quantitative Evaluation

Back Translation. Back translation means translating gen-
erated sign language videos back into spoken language sen-
tences. These sentences are compared with the original
input sentences to evaluate the translation quality. The
task is widely adopted to evaluate Sign Language Produc-
tion (SLP) as it can indicate the accuracy of the produced
sign language videos [71], our translation models [15] are
trained on the corresponding language Prompt2Sign pose
data, the performance is between bleu-4 22.3 and 27.6, it is
comparable to the translation model used in previous work.

In Table 2, we conduct American Sign Language Pro-
duction back-translation tests using SIGNLLM on the ASL
part of our new dataset, and Table 4 further compares our
method with other recent approaches for German SLP on
the GSL part of PROMPT2SIGN dataset [23, 70–73]. These
two languages stand for high-resource languages (i.e., lan-
guages with rich data resources), and our comprehensive
tests at different levels on the dataset demonstrate impres-
sive performance compared with the latest works in the
field. The results affirm the competitiveness and potential
of our proposed method, regardless of the specific sign lan-
guage in use. More evaluation results and analyses for these
two languages can be found in the supplementary materials.

In Table 3, we present the results of our model for six dif-
ferent sign languages. These six languages represent low-
resource languages, and they are considered limited lan-
guages. For languages with low resources, their vocabu-
lary, video time, and diverse corpus sources are relatively
low, making training more difficult. From the table data, it
can be observed that our performance remains strong in lan-
guages where training data is lacking. As long as the input
text/prompt can be encoded as a computationally recogniz-
able word and video exists, our method can translate it into
the corresponding language pose video after training.

5.2. Ablation Evaluation

Performance. Ablation results in Table 5 indicates our four
innovative strategies (Prompt2LangGloss, MLSF modes,
RL Loss and PLC module) significantly improve the
model’s performance, and four strategies contribute to sub-
stantial improvements. When replacing the standard MSE
Loss with RL Loss, we observe a significant improve-
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Figure 4. RL Training Efficiency Analysis: Comparison of dif-
ferent Settings on DTW values (the lower the better) at different
peroid (every 30 epochs a peroid). Left Y-axis: Value of DTW.
Right Y-axis: Value of Loss. Prompt: Prompt2LangGloss mode.

ment in the model’s performance. These results show
that PLC has successfully enhanced the adaptability of
the original RL Loss to unknown environments. Incor-
porating the PLC module further enhances these gains.
We also note that the base model with MSE, when up-
graded with Prompt2LangGloss, achieves higher scores
with the new mode, slightly underperforming compared to
the MLSF mode but far surpassing the baseline model in
the first row. This indicates that, with sufficient data, the
Prompt2LangGloss mode demonstrates good usability, and
we explore this further in the supplementary materials.

In Fig. 4, we compare the Base model’s performance
with different module schemes. The ablation comparison
is primarily based on observing the variability of DTW
scores across epochs to assess the effectiveness of each ap-
proach. We observe that: (i) The standalone use of the
Prompt2LangGloss model exhibits the lowest efficiency, as
it introduces noise by incorporating prompts and tokenizers,
which is also evident in Table 5. (ii) The combination of
the two RL methods shows modest performance improve-
ment compared to using each method individually, although
it is not statistically significant. Future work could explore
adaptive weighting mechanisms or hierarchical integration
of these methods to leverage their complementary strengths
fully. (iii) In terms of training efficiency, they significantly
reduce training time. Compared to the base setting, our RL
Loss with PLC approach reduces training time by 27.1%,
which is crucial for training large-scale sign language mod-
els. Our ablation studies reveal that RL-based sample prior-
itization not only enhances training efficiency but also pro-
vides a scalable, unified, multilingual SLP framework.



Input: "Another technique in your life is you can braid the hair on first and then start wrapping."

Input: "So we are currently heating up the oil and at this point."

Figure 5. We use an adjusted vid2vid model [24] to convert the predicted skeletal pose video into a more realistic final video.

5.3. Qualitative Evaluation

Qualitative Presentation. We use our predicted pose re-
sults as input, which are then used to generate rendered
videos in Fig. 5. We can observe that our video out-
comes are of high quality, with highly accurate finger move-
ments and high image fidelity. Our results surpass all previ-
ous works, benefiting not only from technological advance-
ments but also from the superior output quality of our SIGN-
LLM compared to previous smaller models: the postures
we predict are rarely missing, unlike previous works that
often suffered from issues such as flickering, incomplete or
missing fingers, and low input quality due to densely packed
fingers, so it works well with the latest model [24]. How-
ever, the final sign language video finger problem still exists
anyway, and in the future, we can consider the special opti-
mization of these style transfer vid2vid models.

DEV SET TEST SET
Approach: BLEU-4 ROUGE BLEU-4 ROUGE

Progressive Transformers [71] 10.79 36.15 9.59 35.42
Fast-SLP Transformers [? ] 16.68 43.2 24.24 51.05

SignLLM-1x40M-Base-M (GSL) 16.96 44.41 24.74 52.45
SignLLM-1x120M-Large-M (GSL) 17.73 +1.05 45.11 25.39 +1.15 53.45

SignLLM-1x40M-Base-P (GSL) 16.27 43.76 24.12 54.35 +3.30
SignLLM-1x120M-Large-P (GSL) 16.71 45.40 +2.20 25.04 52.80

Table 6. Presentation Effect Study: Results of Text to Sign task in
GSL. The improvement (+num) is relative to the latest work [? ].

In Table 6, we conducted a series of final video back-
translation evaluations (as shown in Fig. 5) based on the
German SLP task to investigate two main research ques-
tions: (i) Whether rendering the predicted results into real
sign language videos would lead to a decrease in accuracy.
(ii) How does our work compare to previous studies on the
task of text-to-sign-language real video generation? Based
on our observations, there was generally not a significant ac-
curacy loss, but there were some fluctuations compared to
the baseline. Our approach outperformed previous works,
which could be attributed to the higher quality of our data,
making it more suitable as input for style transfer models.

5.4. Discussion

Societal Impact. Our model has the potential to assist peo-
ple with disabilities in three key areas: sign language teach-
ing, generative sign language translation, and real-time in-
terpretation for broadcasting. (1) Traditional sign language
teaching relies heavily on human instructors and static pic-
torial representations, limiting learning accessibility. (2)
Current sign language translation software remains inade-
quate for effective communication between deaf people and
their family members who lack sign language knowledge.
(3) Additionally, real-time sign language interpretation is
only available for limited content like major news broad-
casts, creating barriers for the deaf community in daily life.
However, its current level of accuracy is not high enough to
be fully trusted, and users must be cautious to use it.
Limitation. Our tool enhances sign language data pro-
cessing automation but isn’t fully end-to-end. Manual pre-
processing is still required for OpenPose processing, video
editing, and transcript alignment, etc. For pose video to fi-
nal video conversion, when we use a style transfer model
to make the final video, it requires more complex process-
ing of the pose video. So there is still a way to go before
large-scale use, which requires us to make industrial-level
adaptation improvements to the output style of SIGNLLM.

6. Conclusion
We present SIGNLLM, a large multilingual SLP model. For
training this model, we propose PROMPT2SIGN, a stan-
dardized dataset that contains eight sign languages. Our
model with two modes, MLSF and Prompt2LangGloss,
progressively incorporates more sign languages while pre-
serving translation efficiency and introducing LLM capabil-
ities. Our new RL loss and new PLC module solve the chal-
lenge of longer training time due to more data. Finally, we
show baseline comparisons, ablation studies, experiments
under various parameters, and qualitative evaluations for
discussion, which proves the efficacy of our methodology.
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