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Abstract

Measuring perceptual similarity is a key tool in
computer vision. In recent years perceptual met-
rics based on features extracted from neural net-
works with large and diverse training sets, e.g.
CLIP, have become popular. At the same time,
the metrics extracted from features of neural net-
works are not adversarially robust. In this paper
we show that adversarially robust CLIP models
induce better and adversarially robust percep-
tual metrics that outperform existing metrics in
a zero-shot setting, and further match the perfor-
mance of state-of-the-art metrics while being ro-
bust after fine-tuning. Notably, these perceptual
metrics enable adversarially robust NSFW con-
tent detection. Finally, the perceptual metrics in-
duced by robust CLIP models have higher inter-
pretability: feature inversion can show which im-
ages are considered similar, while text inversion
can find what images are associated to a given
prompt. This also allows us to visualize the very
rich visual concepts learned by a CLIP model, in-
cluding memorized persons, paintings and com-
plex queries.

1. Introduction
A longstanding goal in computer vision is finding a metric
which is able to accurately mimic the human perception
of similarity of images. This would benefit multiple tasks
such as dataset filtering, image retrieval, copyright in-
fringement discovery, and image quality assessment. While
the first approaches to perceptual metrics relied on analyz-
ing statistical properties of the images (Wang et al., 2004),
the development of deep learning brought metrics based on
internal representations of trained models, among which
the most prominent example is the LPIPS distance (Zhang
et al., 2018). More recently, the proximity in the embed-
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ding space of large foundation models such as CLIP (Rad-
ford et al., 2021), DINO (Caron et al., 2021), Masked Au-
toencoders (MAE) (He et al., 2022) has been shown to
effectively capture the semantic similarity of images (Fu
et al., 2023). A line of work has further focused on studying
the adversarial robustness of perceptual similarity metrics,
showing that they are extremely brittle against even imper-
ceptible perturbations (Kettunen et al., 2019; Sjögren et al.,
2022; Ghildyal & Liu, 2022; 2023). This might become es-
pecially problematic in tasks where an adversary has inter-
est in bypassing automatic similarity checks, e.g. in image
attribution, content filtering (Andriushchenko et al., 2022),
or “Not Safe for Work” (NSFW) detection in large scale
datasets. Recently, Ghazanfari et al. (2023) proposed R-
LPIPS, an empirically robust version of LPIPS against ℓp
adversarial perturbations, and Ghazanfari et al. (2024) in-
troduced LipSim, a first perceptual metric with certified ro-
bustness against ℓ2-bounded perturbations. However, em-
pirical and even more so provable robustness are typically
at odds with accuracy.

In our work, we show that recent advancements in robust
CLIP models (Mao et al., 2023; Schlarmann et al., 2024)
can provide unforeseen benefits for perceptual metrics and
their robustness. Surprisingly, these robust models achieve
significantly better performance on Two Alternatives Force
Choice (2AFC) datasets, showing higher alignment with
human judgements, than their clean counterparts or other
models like DINO and MAE. Moreover, the induced per-
ceptual metric inherits the robustness of the vision embed-
ding, outperforming the SOTA robust perceptual metrics
of LipSim and R-LPIPS by large margins. While pre-
vious work on perceptual metrics has solely focused on
CLIP models with vision transformers (ViTs) as encoder,
we show that the stronger inductive bias of convolutions
in ConvNeXt might be particularly effective in this task.
Further, our robust CLIP models perform similarly to the
original non-robust ones on image-to-image retrieval tasks,
while being significantly more robust. This is particularly
relevant as it can be translated in making unsafe image de-
tection, via CLIP embedding, robust to malicious attackers,
which we experimentally test on a NSFW images dataset.
Finally, we illustrate the interpretability of our robust met-
rics via feature inversion (inverting a given image embed-
ding) and text inversion (generating images from captions).
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2. Background
Adversarially Robust CLIP Models. CLIP models (Rad-
ford et al., 2021) consist of an image encoder ϕ : I → RD

and a text encoder ψ : T → RD, which map different
types of data into the same D-dimensional latent space.
The embedding of image-text pairs with corresponding se-
mantic meaning are then aligned in the latent space via
contrastive learning using large datasets of image-caption
pairs. These models attain good results in zero-shot clas-
sification performance: the K class names are reformu-
lated as text prompts, e.g. tk =“A photo of <class
k>” for k = 1, . . . ,K, and embedded via the text encoder
as ψ(tk). The predicted class for an image x is the one
whose text embedding has the highest cosine similarity to
the image embedding. As for image classifiers obtained
by supervised learning, the zero-shot CLIP classifiers are
vulnerable to adversarial perturbations (Fort, 2021; Mao
et al., 2023), in particular in the ℓp-bounded threat mod-
els. Recent works have proposed to extend adversarial
training (Madry et al., 2018) to CLIP by fine-tuning the
image encoder an existing non-robust CLIP model against
ℓ∞-bounded perturbations: TeCoA (Mao et al., 2023) per-
forms supervised adversarial training on ImageNet, while
FARE (Schlarmann et al., 2024) formulates an unsuper-
vised learning problem where one aims at obtaining the
same embedding for both clean and adversarially perturbed
images (training is on ImageNet images).

CLIP Embedding Induces a Perceptual Metric. To mea-
sure the similarity of two images x1,x2 ∈ I it is common
to use the cosine similarity of their embedding, i.e. CLIP
induces the similarity score

sim(x1,x2) =

〈
ϕ(x1)

∥ϕ(x1)∥2
,
ϕ(x2)

∥ϕ(x2)∥2

〉
(1)

which is used as perceptual metric. This is well-aligned
with human perception on the NIGHTS dataset in a 2AFC
task (Fu et al., 2023) even in a zero-shot setting, i.e. without
fine-tuning on NIGHTS.

2AFC datasets. In Two Alternatives Forced Choice
(2AFC) tasks, given a reference image xref one has to de-
cide which out of two images x1,x2 is most similar to
the reference image (with ground truth label y ∈ {1, 2}).
Two popular 2AFC datasets for perceptual metrics are the
BAPPS dataset (Zhang et al., 2018), used to tune the LPIPS
distance based on features of AlexNet, and the NIGHTS
dataset (Fu et al., 2023), used to tune the DreamSim metric.
Given a perceptual metric or similarity score, one can for-
mulate this problem as a classification task: with the CLIP
embedding we get

clf(x1,x2,xref) = [sim(xref,x1),sim(xref,x2)] (2)

which predicts labels as argmaxk=1,2 clf(x1,x2,xref).
A classifier which performs well on such a 2AFC task is

well-aligned with human perception. Given 2AFC training
data one can fine-tune the image embedding on this task.

Attacks on perceptual metrics. One can adversarially at-
tack the classifier in Eq. (2) in several ways, applying per-
turbations either on one of (or both) the test images x1,x2

or the reference image xref. We consider the second option
more intuitive as it may influence both similarity compar-
isons, which mimics an attack scenario for image attribu-
tion or content filtering. This is also in line with previous
work in LipSim (Ghazanfari et al., 2024). The resulting
optimization problem for the attack can be formulated as

max
∥δ∥p≤ϵp

L(clf(x1,x2,xref + δ), y) s.th. xref + δ ∈ I,

which can be solved with PGD-like attacks (Madry et al.,
2018; Croce & Hein, 2020) on some classification loss L
e.g. cross-entropy.

3. Evaluation of Perceptual Metrics induced
by Robust CLIP Models

In the following we study the effectiveness and robust-
ness of the similarity metrics induced by adversarially ro-
bust CLIP models. We consider three CLIP models from
the OpenCLIP library (Cherti et al., 2023) with vision
encoder using different backbones (ViT-B/32, ViT-B/16,
ConvNeXt-B), all pre-trained on LAION-2B (Schuhmann
et al., 2022). To get adversarially robust versions, we fine-
tune them with FARE and TeCoA on ImageNet (ℓ∞-threat
model with radius ϵ∞ = 4/255): we indicate them as R-
CLIPF and R-CLIPT respectively. We test adversarial ro-
bustness to ℓ∞-bounded attacks of radius ϵ∞ = 4/255 and
ℓ2-bounded attacks of size ϵ2 = 3, as a proxy for unseen
threat models. For computing the attacks we use APGD
(Croce & Hein, 2020) on the cross-entropy loss for 100
iterations. Details about the experimental setup are in Ap-
pendix B, and additional experiments in Appendix C.

3.1. Fine-Tuning for ℓ∞-Robustness Makes CLIP
Models More Aligned with Human Perception

Zero-shot perceptual metrics. Table 1 reports the clean
and robust accuracy of CLIP models across different archi-
tectures on the test set of NIGHTS. The robust CLIP mod-
els achieve significantly higher clean accuracy than their
original clean CLIP counterparts, from which they have
been fine-tuned. The improvements are consistent across
encoder architectures and adversarial fine-tuning schemes
(FARE, TeCoA), in the range of 5-6%. This is remark-
able as adversarial robustness is typically associated with a
loss in performance: we hypothesize that the robustness to
imperceptible ℓ∞-perturbation leads to an emphasis of ro-
bust features, which are likely more correlated with higher
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Table 1. Comparison of CLIP and robust CLIP models on
NIGHTS. We report clean and robust accuracy of both zero shot
and NIGHTS fine-tuned (either with MLP or LoRA) CLIP mod-
els with different vision encoders.

Method Encoder clean ℓ∞ ℓ2

Zero-shot CLIP
Clean ViT-B/32 85.1 0.0 0.1
R-CLIPF ViT-B/32 91.1 71.8 70.6
R-CLIPT ViT-B/32 91.0 79.1 79.7

Clean ViT-B/16 85.1 0.0 0.0
R-CLIPF ViT-B/16 90.6 71.5 65.5
R-CLIPT ViT-B/16 91.9 79.4 77.1

Clean CnvNxt-B 87.2 0.0 0.0
R-CLIPF CnvNxt-B 90.6 74.3 66.1
R-CLIPT CnvNxt-B 92.3 81.9 78.5

MLP Fine-tuned CLIP
Clean CnvNxt-B 90.2 0.0 0.0
R-CLIPF CnvNxt-B 92.5 78.2 69.0
R-CLIPT CnvNxt-B 94.5 84.4 79.8
LoRA Fine-tuned CLIP
Clean CnvNxt-B 95.4 0.0 0.0
R-CLIPF CnvNxt-B 95.3 85.6 81.6
R-CLIPT CnvNxt-B 95.0 87.2 84.5

order semantic concepts. Moreover, the similarity metrics
induced by clean CLIP models are, as expected, not adver-
sarially robust. Conversely, using the robust embedding of
FARE and TeCoA yields robust perceptual metrics in both
ℓ∞ and ℓ2-threat models. We observe that the supervised
adversarial fine-tuning of TeCoA gives higher robustness in
all cases, and typically better clean accuracy, than FARE.
Overall, these experiments show that in this case the clean
vs robust accuracy trade-off which has been observed in
several tasks, see e.g. Tsipras et al. (2019), is even reversed,
and adversarial training is beneficial for both clean and ro-
bust performance. Finally, while Fu et al. (2023) have an-
alyzed models pre-trained on different tasks (CLIP, DINO
and MAE), they all share ViTs as backbone for the vision
encoders. However, Table 1 illustrates that in our setup
the ConvNeXt-B models achieve higher clean and robust
accuracy than the two vision transformers of similar size
(ViT-B/16, ViT-B/32).

Fine-tuning on the NIGHTS dataset. Fu et al. (2023) also
provide a training set in NIGHTS: following their setup
we fine-tune our robust ConvNeXt-B R-CLIPT on it and
report the results in Table 1. With MLP probing, the ro-
bust backbone as initialization provides significantly higher
clean performance than with a non-robust one. while using
LoRA all achieve similar performance (within standard de-
viation over seeds). Notably, using the adversarially trained
backbones allows the similarity metric to retain, and even
improve, robustness in the ℓp-threat models. While this

Table 2. Comparison to SOTA (robust) perceptual metrics on
NIGHTS. Although the DreamSim Ensemble achieves the best
clean performance, our R-CLIPT +LoRA model attains the best
robustness with high clean performance. FT: represents whether
the model is fine-tuned/distilled with NIGHTS. ∗ indicates models
not available and robustness could not be evaluated but expected
to be similar to DreamSim (Ensemble+LoRA).

Method Backbone FT clean ℓ∞ ℓ2

Perceptual model: LipSim (Ghazanfari et al., 2024)

Pretrained SLL ✓ 86.6 8.6 26.5
Margin0.2 SLL ✓ 88.5 23.1 46.6
Margin0.5 SLL ✓ 85.1 32.8 53.1

Perceptual model: Robust LPIPS (Ghazanfari et al., 2023)

R-LPIPS AlexNet ✗ 71.6 16.2 26.9

Perceptual model: DreamSim (Fu et al., 2023)

Ensemble∗ ViT-B/16 ✗ 90.8 - -
Ensemble + MLP∗ ViT-B/16 ✓ 93.4 - -
Ensemble + LoRA ViT-B/16 ✓ 96.2 0.5 0.9

Perceptual model: Robust CLIP (ours)

R-CLIPT CnvNxt-B ✗ 92.3 81.9 78.5
R-CLIPT + MLP CnvNxt-B ✓ 94.5 84.4 79.8
R-CLIPT + LoRA CnvNxt-B ✓ 95.0 87.2 84.5

might be unexpected, we speculate that the fine-tuning, es-
pecially with LoRA, allows the models to rely on a subset
of a few (the NIGHTS benchmark is of limited difficulty)
task-specific features for classification. This means, bene-
fiting from the robust pre-training the relevant features are
highly robust, while the further fine-tuning down-weights
the importance of non-robust ones, thus leading to the im-
provement in robustness.

3.2. Comparison to SOTA (Robust) Perceptual Metrics

In Table 2 we compare our R-CLIPT (with ConvNeXt-B) to
SOTA methods for clean and robust perceptual metrics. Fu
et al. (2023) propose the DreamSim-Ensemble which con-
catenates the features of three ViTs (CLIP, DINO, Open-
CLIP) to obtain the features for computing perceptual
similarity: this achieved SOTA results on NIGHTS both
zero-shot and with fine-tuning, although at increased infer-
ence cost. R-CLIPT outperforms the DreamSim-Ensemble
in both the zero-shot setup and when fine-tuning a task-
specific MLP head, while being worse only for LoRA fine-
tuning. In the context of robust perceptual metrics, Lip-
Sim (Ghazanfari et al., 2024) Pretrained model attains cer-
tified ℓ2-robustness by distilling DreamSim on ImageNet,
while the Margin0.2 and Margin0.5 models are further fine-
tuned on NIGHTS. The main goal of LipSim is certified
ℓ2-robustness, but Ghazanfari et al. (2024) also report good
performance in empirical robustness. Moreover, Ghazan-
fari et al. (2023) proposes a robust version of LPIPS trained
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Table 3. (Robust) Accuracy of perceptual metrics on BAPPS.
Our zero-shot R-CLIPT is close to or outperforms the baselines.
Clean performance is over the entire dataset, while robust ac-
curacy is computed with APGD for 1k images for each split
(∗ LipSim-Pretrained is distilled from DreamSim which in turn
is fine-tuned on NIGHTS).

Method Encoder FT-Data clean ℓ∞ ℓ2

Perceptual model: LipSim (Ghazanfari et al., 2024)

Pretrained SLL NIGHTS* 74.2 1.1 7.4
Margin0.2 SLL NIGHTS 74.0 5.8 15.1
Margin0.5 SLL NIGHTS 73.1 7.0 12.3

Perceptual model: Robust LPIPS (Ghazanfari et al., 2023)

R-LPIPS AlexNet BAPPS 72.8 7.0 12.3

Perceptual model: DreamSim (Fu et al., 2023)

Ensemble + LoRA ViT-B/16 NIGHTS 73.1 0.0 0.0

Perceptual model: Robust CLIP (ours)

R-CLIPT CnvNxt-B None 74.1 26.8 15.8
R-CLIPT + MLP CnvNxt-B NIGHTS 74.2 28.5 16.3
R-CLIPT + LoRA CnvNxt-B NIGHTS 74.7 29.2 20.0

on the BAPPS dataset. The robust CLIP embedding out-
performs the baselines: our zero-shot R-CLIPT achieves
49.1% and 25.4% higher robust accuracy in ℓ∞ and ℓ2 re-
spectively than the LipSim-Margin0.5 model, while having
even 7.2% better clean performance. Finally, DreamSim
does not provide any non-trivial robustness.

3.3. Evaluation on the BAPPS dataset

We further test the effectiveness of our models on BAPPS
(Zhang et al., 2018). First, consistently with NIGHTS,
robust CLIP encoders improve the clean performance on
BAPPS compared to their clean equivalents, as shown in
Table 8. Second, we compare R-CLIPT to the baselines in
Table 3, where we report average performance over the 6
dataset splits (breakdown over splits in Appendix C). Zero-
shot and LoRA R-CLIPT achieve the same or better perfor-
mance than the baselines, in particular DreamSim, while
having the highest robust accuracy for both threat models.
This shows that the (robust) perceptual metric induced by
our robust encoders is effective across both 2AFC datasets.

4. Robust Image-to-Image Retrieval
Nearest neighbors retrieval. Perceptual metrics can be
used to find the nearest neighbors of a query image x in
a pool of retrieval images. To test the adversarial robust-
ness of a metric in this task, we optimize a perturbation
δ (ϵ = 4/255) to maximize the distance between the em-
bedding of x and x + δ, (which does not require access
to the retrieval set. For the revisited Oxford and Paris
datasets (Radenović et al., 2018), Figure 1 (top plot) shows

Nearest neighbors retrieval

NSFW image detection

Figure 1. Robust image-to-image retrieval. Our R-CLIPF (Con-
vNeXt) retains clean performance (blue) similar to the baselines,
while being significantly more robust (red) on both tasks.

that our robust perceptual metrics (zero-shot evaluation)
achieve significantly higher robust mean Average Precision
(mAP) than the baseline (close to zero for both CLIP and
DreamSim), at the cost of a small degradation in clean per-
formance. Further results are provided in Appendix C.6.

Robust NSFW detection. Robust image-to-image re-
trieval might become particularly relevant when an adver-
sary has an incentive to bypass the automated scanning pro-
cess, such as filtering NSFW content. To test the different
perceptual metrics on this task, we sample 500 images each
from a public dataset1 for the classes ‘neutral’ (N ), ‘p*rn’
(P) and ‘s*xy’ (S) as retrieval pools. Then, we select test
sets of 500 images for the N and P classes, disjoint of the
retrieval sets. As classification rule, we compute the cosine
similarity for each query image to all 1500 retrieval images
(3 classes), and select the class of the image with maxi-
mal similarity. For adversarial evaluation, the attacks min-
imize the average similarity between the embedding of the
query image and images from the (opposite) target class,
using APGD at ϵ = 8/255 (a detailed description of the
setup in Appendix C.7). In Figure 1 we show clean and
robust accuracies of various perceptual metrics: for both
query classes R-CLIPF attains clean performance similar to
the original CLIP and DreamSim (R-CLIPT is in this case
slightly worse, possibly due to the supervised fine-tuning).
However, CLIP and DreamSim show little adversarial ro-
bustness, while R-CLIPF preserves 75.0% accuracy under
attacks which try to make unsafe images be classified as
neutral (i.e. query class P and target N ), which is the most
practically relevant scenarios. Detailed results can be found
in Tab. 6 in Appendix C.7.

1https://huggingface.co/datasets/deepghs/
nsfw_detect
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Figure 2. Feature inversion. We reconstruct images from their
R-CLIPT embedding by optimizing a randomly initialized image
to maximize similarity in the embedding space. Clear features of
the original images are reconstructed.

5. Visual Concepts of Robust CLIP Models
Feature inversion. To study which images are consid-
ered similar (or identical) by our perceptual metric, we
aim at finding images mapped to the same embedding vec-
tor. We can formulate such task as finding an image x̂
which maximizes the similarity to the embedding ϕ(x) of
a given reference image x, i.e. argmaxx̂∈I sim(x̂,x) =
argmaxx̂∈I cos(ϕ(x̂), ϕ(x)). As we assume access to the
encoded image ϕ(x) only, it can only be solved approxi-
mately. The search space I is the space of all images and
thus very large. For regularization, we constrain the op-
timization to an ℓ2-ball, and optimize it with APGD ini-
tialized at a gray image with small additive uniform noise,
see Appendix B for details. Since the formulation is anal-
ogous to that of adversarial attacks, if the encoder ϕ was
not robust it would not be possible to find meaningful so-
lutions (see also Figure 6). The reconstructed images for
R-CLIPT (Figure 2) recover quite accurate versions of the
original images, where subjects, colors and structure are
well approximated, including small details. This is remark-
able as the embedding space of ConvNeXt-B is only 640-
dimensional, and we use simple constrained optimization.

Text inversion. We can use also the CLIP text encoder
ψ to explore which images are associated to a given text
prompt by our robust perceptual metric. In practice,
we find such images, given a target text t, by solving
argmaxx∈I sim(x, t) = argmaxx∈I cos(ϕ(x), ψ(t)) as
done for the features inversion experiments. While for
non-robust models this would produce mainly noise, as
shown in Fig. 6 in Appendix, with our robust model R-
CLIPT clearly recognizable features of the target text ap-
pears, see Fig. 3, although the generated images are highly

Mona Lisa by
Leonardo da Vinci

Guernica by
Pablo Picasso

The Last Supper by
Leonardo da Vinci

The Scream by
Edvard Munch

Yoshua Bengio Boris Johnson Elon Musk An alien marketplace

An octopus
playing chess

A penguin at
the beach

A dragon playing
the piano

A squirrel riding
a skateboard

Figure 3. Text inversion. We show visual concepts encoded in
R-CLIPT by optimizing randomly initialized images to match the
given text prompts in the embedding space. We are able to extract
rich and meaningful visual concepts from R-CLIPT.

saturated and show distorted shapes. We show more exam-
ples and alternative optimization schemes in Appendix C.4.
As feature inversion produces more realistic images than
text inversion, we hypothesize that text inversion is more
difficult particularly due to the modality gap (Liang et al.,
2022). Surprisingly, this simple method can generate com-
plex scenes by closely following the given text prompt (e.g.
last row of Figure 3). Also, this shows how CLIP has mem-
orized during training a large number of popular subjects,
including paintings and (real or fictional) public figures:
then, adversarial fine-tuning emphasizes the reliance of ro-
bust features, and allows us to extract such memorized in-
formation via optimizing the similarity score.

6. Conclusion
We have shown that fine-tuning CLIP models with adver-
sarial training provides perceptual metrics which signifi-
cantly better align with human judgement than with clean
CLIP models, and achieve SOTA performance for single
encoders on 2AFC tasks. At the same time, such metrics
inherit the adversarial robustness of the CLIP vision em-
bedding, outperforming existing methods for robust per-
ceptual metrics. Moreover, we illustrate how robust per-
ceptual metrics might be helpful for robust image-to-image
retrieval and unsafe content detection. Thanks to these
properties, as well as their interpretability, adversarially ro-
bust perceptual metrics may find interesting applications in
many (safety-critical) tasks.
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A. Related Work
Perceptual metrics. Low-level pixel-based ℓp-metrics and structural similarity SSIM (Wang et al., 2004) do not capture
well higher-order semantic similarity. These are outperformed by metrics based on features extracted from neural networks
trained on ImageNet, such as LPIPS (Zhang et al., 2018) PIE-APP (Prashnani et al., 2018) and DISTS (Ding et al., 2020).
More recently, it has been shown that metrics induced by the features extracted by models trained on larger datasets and
via self-supervised training, like CLIP (Radford et al., 2021), DINO (Caron et al., 2021) or MAE (He et al., 2022), are well
aligned with human perception regarding semantic similarity (Fu et al., 2023). DreamSim (Fu et al., 2023) is a fine-tuned
ensemble of three of these models which shows the best alignment with human preferences on the NIGHTS dataset.

Adversarial robustness of perceptual metrics. Virtually all vision tasks tackled via neural networks are vulnerable to
adversarial examples (Szegedy et al., 2014), and attacks in several threat models exist (Carlini & Wagner, 2017; Croce &
Hein, 2020; Laidlaw & Feizi, 2019). The main empirical defense which works across different vision tasks is adversar-
ial training (Madry et al., 2018). However, the price of having a robust model is typically a drop in performance. Not
surprisingly, perceptual metrics, including LPIPS and DreamSim, are also not robust to adversarial perturbations (Ghaz-
anfari et al., 2023; 2024; Ghildyal & Liu, 2023). In order to get a robust version R-LPIPS of the popular LPIPS metric,
Ghazanfari et al. (2023) perform adversarial training on the 2AFC fine-tuning task of the Berkeley-Adobe Perceptual Patch
Similarity dataset (BAPPS) (Zhang et al., 2018). LipSim (Ghazanfari et al., 2024) distills from DreamSim (Fu et al.,
2023) a 1-Lipschitz network, and then fine-tunes it on the NIGHTS (Fu et al., 2023) dataset to achieve certified adversarial
robustness.

Generative properties of adversarially robust models. Feature inversion, i.e. finding an image which matches given
features at the output layer, can be used to understand the inner workings of a network. However, it often yields highly
distorted images without much semantic content (Mahendran & Vedaldi, 2015). At the same time, adversarially robust
models suffer significantly less from this problem, and can be used to generate semantically meaningful images when
maximizing the probability of a specific class (Santurkar et al., 2019). This can be even exploited to generate visual
counterfactuals (instance-specific explanations) for modern image classifiers (Augustin et al., 2020; Boreiko et al., 2022).

B. Experimental Details
We here provide details about the models and setup used in the experiments.

B.1. Models and Evaluation

CLIP models. We use the vision encoders from the OpenCLIP library, and in particular those of CLIP models pre-trained
on LAION-2B. The specific model identifiers are listed in Tab. 4. We fine-tune with FARE and TeCoA for 2 epochs for the
ℓ∞-threat model with radius ϵ∞ = 4/255, following the scheme in Schlarmann et al. (2024). For fine-tuning on NIGHTS
we follow the scheme of Fu et al. (2023) (for the ConvNeXt-B encoder we apply LoRA on the fully connected layers of
the MLPs).

Table 4. Model keys from OpenCLIP of different pre-trained encoders.
Encoder Identifier key

ViT-B/32 CLIP-ViT-B-32-laion2B-s34B-b79K
ViT-B/16 CLIP-ViT-B-16-laion2B-s34B-b88K

ConvNeXt-Base CLIP-convnext base w-laion2B-s13B-b82K-augreg

Baselines. We use the original DreamSim models, including three single encoders (OpenCLIP, CLIP, DINO) and the
corresponding ensemble, all fine-tuned on NIGHTS, as publicly available.2 The LipSim metric uses a Semi-Definite
program based Lipschitz Layers (SLL) convolutional network from Araujo et al. (2023) as the backbone. In the evaluation
we use the original LipSim models.3 Finally, for R-LPIPS we use the model4 trained for ℓ∞-robustness on the reference
image (on the BAPPS dataset).

2https://github.com/ssundaram21/dreamsim
3https://github.com/SaraGhazanfari/lipsim
4https://github.com/SaraGhazanfari/R-LPIPS
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Evaluation. For all models we use image resolution of 224x224, including the clean CLIP with ConvNeXt-B encoder
which was pre-trained at 256x256. While the NIGHTS dataset already contains high resolution images, which are then
resized and cropped (the exact pre-processing depends on the model), the BAPPS dataset is typically used at 64x64 res-
olution, then we upsample the images to 224x224. The adversarial perturbations are similarly applied on the 224x224
images.

B.2. Visual Concepts

The images to be optimized are always initialized grey (all pixels 0.5) with small additive uniform noise in [−8/255, 8/255].

Feature inversions. For feature inversions (Fig. 2) we set the ℓ2 radius to 100 and run APGD (Croce & Hein, 2020) for
500 iterations with initial step-size 200.

Text inversions. For text inversions (Figs. 7, 8) we set the ℓ2 radius to 200 and run APGD for 100 iterations with initial
step-sizes 10 (small) and 400 (large).

C. Additional Experiments
In the following we provide additional evaluations of our robust CLIP models and the induced perceptual metrics.

C.1. Zero-shot performance on the NIGHTS dataset

Table 7 reports the clean and robust accuracy of clean and robust CLIP models across different architectures on the test set
of the NIGHTS dataset on both its ImageNet and non-ImageNet splits,5 and the average over the entire set. The advantage
of the robust encoders can be observed on both test splits. In line with Fu et al. (2023), we also observe that the larger
robust ViT-L/14 models of Schlarmann & Hein (2023) perform worse than our smaller ViT-B networks.

C.2. Detailed Results on 2AFC Datasets

Fine-tuning different encoders on NIGHTS. To complement the results of Table 1, in Table 7 we show the performance
of the perceptual metrics obtained by fine-tuning the CLIP models with different backbones (ViT-B/32, ViT-B/16 and
ConvNeXt-B) and pre-training (clean, FARE, TeCoA) on the NIGHTS dataset. When fine-tuning an MLP on top of the
frozen encoder, the robust backbones preserve, across architectures, the advantage in both clean and robust accuracy they
show in the zero-shot setup compared to the clean CLIP. With LoRA, all backbones achieve similar clean performance,
but the metrics based on robust CLIP encoders are the only ones with non-trivial robustness.

Comparison to single DreamSim models. Additionally, we report in Table 7 the results of the variants of DreamSim
which use a single ViT as encoder (Fu et al., 2023) and are fine-tuned on NIGHTS with LoRA. We observe that our
R-CLIPT with ConvNeXt-B backbone plus MLP matches or improves the performance of 2 out of 3 DreamSim models,
although it keeps the encoder unchanged (zero-shot setting). Moreover, several of ours model fine-tuned with LoRA
perform on par with the best DreamSim model (that is OpenCLIP ViT-B/32 pre-trained on LAION-400M, while our CLIP
models have been pre-trained on LAION-2B). Finally, the single DreamSim models come with robust accuracy close to
zero in both threat models, unlike our metrics.

Varying perturbation radius. We test our R-CLIPT (zero-shot and with LoRA fine-tuning, ConvNeXt-B backbone) and
the most robust LipSim model when varying the perturbation radius for both ℓ∞ and ℓ2-threat models. Figure 4 shows the
clean and robust accuracy of each model on the NIGHTS test set. We observe that our models attain higher robust accuracy
than LipSim across radii, while reaching zero at sufficiently large values.

Detailed comparison on BAPPS. Table 8 shows the breakdown of the clean performance of the various perceptual metrics
over the 6 splits of BAPPS (the entire validation set is used for this). Consistently with NIGHTS, the adversarially trained
CLIP encoders provide a significant improvement compared to their clean counterparts. Also, our models used in the zero-
shot setup outperform the DreamSim ones, and are on par with the LipSim metrics (both fine-tuned on NIGHTS). Fine-
tuning R-CLIPF and R-CLIPT on NIGHTS yields some small but consistent increase in clean accuracy. Finally, Table 9
reports the robust accuracy for all metrics in both ℓp-threat models: similar to NIGHTS, R-CLIPT attains outperforms
the existing methods. Interestingly, in this case the R-CLIPT with ViT-B/32 backbone show better results than the other

5the ImageNet split contains images generated from classes included in ImageNet, see Fu et al. (2023) for details
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Figure 4. Robustness at different perturbation radii for NIGHTS. We show the robust accuracy for our R-CLIPT (ConvNeXt-B
backbone, zero-shot and fine-tuned with LoRA) and LipSim when varying the perturbation radii, for both ℓ∞ (left) and ℓ2 (right)
bounded attacks. R-CLIPT models outperform LipSim across perturbation sizes.

Original Reconstructed Reconstructed Original Reconstructed Reconstructed

Figure 5. Feature inversion variants. Varying the random seeds for the initialization recovers, when using R-CLIPT, multiple images
for the same target feature. These are sometimes horizontally flipped but preserve the original semantic content.

architectures.

C.3. Feature Inversion

We show in Figure 5 the effect of varying initialization on the optimization results when doing feature inversion: interest-
ingly, the reconstructed images differ mainly in non-semantic aspects, such as small translations or horizontal flip. These
examples show that the perceptual metric given by the robust CLIP seems to capture well the semantic content of the
images and ignore other aspects, as human would do, which are not prioritized when judging similarity.

C.4. Text Inversion

Small step size. We test the effect of using a smaller initial step size in APGD than the one which gives the images shown
in Figure 3 (see Appendix B.2 for details). A comparison of the resulting images with both large and small step size are
shown in Figure 7 and Figure 8. The small step size produces more fine-grained visualizations, but in some cases no
features are generated. Using the large step size yields features more reliably, although the generated images are highly
saturated and show distorted shapes.

Optimization with multiple augmentations. It has been observed that integrating augmentations into the text inversion
process improves the quality of generated images (Ganz & Elad, 2024; Kazemi et al., 2024). We test whether it also helps
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CLIP R-CLIPT CLIP R-CLIPT

Figure 6. Robust CLIP makes feature inversion possible. Starting from a grey image we maximize the cosine similarity to the text
embedding of a text query once for CLIP and once for R-CLIPT (Left: “Yoshua Bengio”, Right: “A penguin at the beach”). Our robust
CLIP model generates images which show that both concepts are captured/memorized, whereas the clean CLIP model produces only
adversarial noise.

in our setting. To this end, we run the optimization following the setup of Ganz & Elad (2024), i.e. using the Adam
optimizer (Kingma & Ba, 2015) for 1000 iterations with initial step-size 0.1 and independently augmenting 32 views of
the image via diffaugment (Zhao et al., 2020) with color, translation and cutout augmentations. The results are shown
in Figure 9. We observe that this procedure leads to significantly less high-frequency artifacts. However, we are more
interested in the interpretability of the perceptual metric than in text-to-image generation. As we achieve lower loss values
with the unaugmented process, we show that in the main paper.

Using a clean CLIP model. In Figure 6 we show the effect of performing text inversion with the original CLIP encoder.
For both text prompts, the optimization (with APGD) finds only noise-like images, showing that using a robust model is
crucial for the interpretability of the induced perceptual metric.

C.5. Evaluation of Models on Different Tasks

Robustness on ImageNet and zero-shot classification. It is interesting to see if the performance on the perceptual metric
task is correlated with other properties of CLIP models like zero-shot classification. Therefore, we test the original CLIP
and R-CLIPT with ConvNeXt-B architecture on ImageNet (note that the adversarial fine-tuning is done on this dataset)
and zero-shot image classification for 13 datasets, similar to (Schlarmann et al., 2024). In Table 10, we report the clean
and robust accuracy for ℓ∞ threat model at perturbation strengths of 2/255 and 4/255. Robustness is computed with the first
two attacks of AutoAttack (Croce & Hein, 2020), i.e. APGD on the cross-entropy and targeted DLR loss. As expected,
the two epoch adversarial fine-tuning results in a decay in clean performance with a significant robustness gain across
architectures. Thus, while we see for zero-shot classification the usual robustness-accuracy trade-off, this does not hold for
the 2AFC-task of the induced perceptual metric. Exploring this difference is an interesting future research direction.

Performance on THINGS dataset. In Table 11, we show how different perceptual models perform on THINGS (Hebart
et al., 2023) dataset which contains image triplets with categorical variations and classifies the odd-one-out. Our R-CLIPF
performs the best followed by the clean CLIP, whereas all fine-tuned models are notably worse. This finding is in line
with Fu et al. (2023), who drew the similar conclusion that fine-tuning on NIGHTS degrades the performance on this task.

C.6. Image-to-image retrieval

Next we look at the task of nearest neighbor retrieval, following the setup of Caron et al. (2021): given a query image
x ∈ I , perceptual metrics can be used to find its nearest neighbors in a pool of retrieval images, i.e. those with highest
similarity. To generate adversarial attacks on this task, we add ℓ∞-bounded perturbations to the query image to distort its
embedding according to the image encoder ϕ. Formally, we maximize the normalized embedding distance between the
output of image encoder of the two images using squared ℓ2-distance. The resulting optimization problem for the attack
can be formulated as

max
∥δ∥p≤ϵp

∥∥∥∥ ϕ(x+ δ)

∥ϕ(x+ δ)∥2
− ϕ(x)

∥ϕ(x)∥2

∥∥∥∥2
2

s. th. x+ δ ∈ I, (3)
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which is equivalent to minimizing the cosine similarity sim(x+ δ,x), see Eq. (1). Note this can be seen an an untargeted
attacks, and does not require access to the retrieval set.

Quantitative results for image retrieval. We consider the Medium (M) and Hard (H) splits of the revisited Oxford
(ROxford) and Paris (RParis) image retrieval datasets (Philbin et al., 2008; Radenović et al., 2018), whose specific task is
to find the images portraying the same landmark as the query image, and report the Mean Average Precision (mAP). For
both ROxford and RParis the number of query images is 70 whereas the data pool for retrieval contains 5k and 6.3k images
respectively, and we always evaluate with image size 224× 224 with single-scale, unlike Caron et al. (2021) who evaluate
RParis at a higher resolution with multi-scale view. For adversarial evaluation, we use ℓ∞ radius to 4/255, and APGD (100
iterations) as optimizer. Table 5 shows that the clean CLIP models (ViT-B/16 and ConvNeXt backbones) yield the best
clean performance, and the DreamSim is ensemble slightly worse, but are completely non-robust under attack. Conversely,
the LipSim models are marginally robust, but have low clean performance. Our R-CLIPT and R-CLIPF models attain clean
mAP very close to the DreamSim models, but, unlike the baselines, do not suffer significant degradation against adversarial
attacks. R-CLIPF (unsupervised) models attain much better clean performance, in some case close to that of the original
CLIP, in comparison to the R-CLIPT (supervised) models.

Qualitative results for image retrieval. We further evaluate the perceptual metrics for image retrieval on MS-COCO (Lin
et al., 2014) dataset. In Figs. 10 and 11, for each query image we first show its nearest neighbour, among a random subset
of 15k images from the training data, as identified by the similarity score induced by different models. Then, we apply on
the query image an adversarial perturbation, generated at ℓ∞-radius of 2/255 using 50 iterations of APGD, which aims at
maximizing the squared ℓ2-distance between the clean and the adversarial embedding (see Eq. (3)). In the ‘Adv.’ row, we
show the nearest neighbour assigned to the perturbed query. From this random set of images we can confer that R-CLIPT
performs on this task similarly DreamSim for clean inputs. Moreover, we find R-CLIPT less susceptible to the adversarial
perturbations than DreamSim and LipSim, as it retrieves on average the most relevant image to the query image.

C.7. Robust NSFW classification

Image-to-image retrieval can be used for content filtering. For example, detecting “Not Safe for Work” (NSFW) images is
a pressing problem as modern training datasets are often scrapped from the web (Radford et al., 2021; Schuhmann et al.,
2022), and unsafe content needs to be discarded from such datasets. Naturally, safe-guarding filtering models against
malicious users becomes an important concern.

In this section, we expand on the experimental setup for the robust NSFW detection task presented in Section 4. We sample
500 images each from a public dataset6 for the classes ‘neutral’ (N ), ‘p*rn’ (P) and ‘s*xy’ (S). All images include mostly
humans, the images associated in class N are neutral (safe), while class P includes extreme NSFW cases, and S is in
the middle (unclear). These 500 images each form the retrieval pool for each class. We keep the intermediate S class to
represent cases on which the detection model is uncertain. For computing the adversarial perturbations, we sample a set
Y of 16 images belonging the target class (but not included in the retrieval set) and minimize the average distance of their
normalized embeddings to that of query image x. This yields the optimization problem

min
∥δ∥p≤ϵp

∑
y∈Y

∥∥∥∥ ϕ(x+ δ)

∥ϕ(x+ δ)∥2
− ϕ(y)

∥ϕ(y)∥2

∥∥∥∥2
2

s. th. x+ δ ∈ I, (4)

which is optimized with 200 iterations of APGD at ℓ∞-radius of ϵ = 8/255. We notice that Eq. (4) can be seen as the
targeted version of Eq. (3).

In Table 6 we provide the detailed results of detection accuracy of different perceptual models, which is summarized
in Figure 1. The original CLIP model performs best in clean performance on neutral images (class N ), whereas the
DreamSim ensemble on unsafe queries (class P). LipSim models have instead relatively low clean accuracy. On this
task, R-CLIPT gets significantly worse accuracy than CLIP, possibly to the supervised fine-tuning which degrades the
performance on image distributions far from that ImageNet. R-CLIPF, which relies on unsupervised fine-tuning, performs
in fact on par with CLIP, while having achieving robust accuracy of 50.6% and 75.0% on query from class N and P
respectively. Conversely, the performance of both CLIP and the DreamSim ensemble degrades below 6%, and only the
DreamSim DINO model has non-trivial robustness.

6https://huggingface.co/datasets/deepghs/nsfw_detect
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Table 5. Quantitative robust image-to-image retrieval. We show the clean and robust mAP (mean Average Precision) on both Medium
(M) and Hard (H) sets of datasets proposed by Philbin et al. (2008) for the image retrieval task as formulated in Radenović et al. (2018).
The best performing model in each column is highlighted.

ROxford RParis
clean ℓ∞(4/255) clean ℓ∞(4/255)

Method Encoder M H M H M H M H

Perceptual model: LipSim

Pretrained SLL 14.7 2.1 6.4 1.6 30.6 9.0 19.2 6.2
Margin0.5 SLL 13.9 2.1 7.7 1.6 21.2 7.3 15.6 5.3

Perceptual model: DreamSim

OpenClip ViT-B/32 39.5 12.2 0.9 0.4 64.2 37.6 3.0 1.6
DINO ViT-B/16 31.1 8.0 1.2 0.6 59.0 30.2 5.4 2.2
Ensemble - 44.5 15.1 0.8 0.4 69.4 43.3 3.2 1.4

Perceptual model: CLIP

CLIP ViT-B/16 47.2 16.0 1.0 0.5 74.3 51.8 2.8 1.9
R-CLIPT ViT-B/16 31.6 8.0 27.9 7.7 53.1 26.1 49.8 23.4
R-CLIPF ViT-B/16 37.0 10.0 29.2 9.2 59.7 33.2 55.9 28.2

CLIP ConvNeXt-B 44.7 14.4 0.9 0.5 74.6 52.0 2.4 1.7
R-CLIPT ConvNeXt-B 34.1 10.3 32.1 9.3 58.8 32.2 57.4 30.2
R-CLIPF ConvNeXt-B 42.2 13.0 33.4 10.1 64.1 37.2 58.6 32.2

Table 6. Robust NSFW detection. We consider both scenarios: (i) when query images are from N and target is P and, (ii) when query
images are from P and target is from N . We report for both cases, the fraction of points allocated to each of the 3 classes with and
without (clean) adversarial attack.

Query: N Target: P Query: P Target: N
clean ℓ∞(8/255) clean ℓ∞(8/255)

Method Encoder N S P N S P N S P N S P
Perceptual model: LipSim

Pretrained SLL 66.4 20.8 12.8 9.6 32.0 58.4 5.6 32.8 61.6 61.6 12.6 25.8
Margin0.5 SLL 69.2 16.0 14.8 35.0 15.2 49.8 21.6 12.6 65.8 50.2 23.6 26.2

Perceptual model: DreamSim

DINO ViT-B/16 72.2 14.0 13.8 5.0 11.4 83.6 0.6 6.6 92.8 63.8 16.6 19.6
Ensemble - 88.6 7.8 3.6 0.8 3.2 96.0 0.2 4.8 95.6 84.0 10.6 5.4

Perceptual model: CLIP

CLIP ConvNeXt-B 89.4 6.6 4.0 1.0 9.8 89.2 0.2 8.2 91.6 89.0 6.8 4.2
R-CLIPT ConvNeXt-B 74.2 9.0 16.8 46.6 21.0 32.4 9.8 11.2 79.0 8.2 21.4 70.4
R-CLIPF ConvNeXt-B 88.6 4.2 7.2 50.6 15.2 34.2 1.2 6.6 92.2 18.6 6.4 75.0
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Table 7. Comparison of perceptual metrics on NIGHTS dataset. For each model we show clean and robust accuracy computed with
APGDCE with 100 iterations.

ImageNet non-ImageNet Average
Model Backbone clean ℓ∞ ℓ2 clean ℓ∞ ℓ2 clean ℓ∞ ℓ2

Perceptual model: CLIP (Radford et al., 2021; Cherti et al., 2023) / Robust CLIP (ours)

Clean ViT-B/32 85.7 0.0 0.1 84.3 0.0 0.0 85.1 0.0 0.1
R-CLIPF ViT-B/32 92.3 74.7 72.2 89.4 67.8 68.5 91.1 71.8 70.6
R-CLIPT ViT-B/32 91.9 81.1 80.8 89.8 76.5 78.3 91.0 79.1 79.7

Clean ViT-B/16 86.3 0.0 0.0 83.5 0.0 0.0 85.1 0.0 0.0
R-CLIPF ViT-B/16 91.1 74.7 67.1 90.0 67.2 63.3 90.6 71.5 65.5
R-CLIPT ViT-B/16 93.1 82.5 78.6 90.3 75.2 75.1 91.9 79.4 77.1

Clean ConvNeXt-B 88.0 0.0 0.0 86.1 0.0 0.0 87.2 0.0 0.0
R-CLIPF ConvNeXt-B 91.5 78.3 68.0 89.3 69.1 63.6 90.6 74.3 66.1
R-CLIPT ConvNeXt-B 92.9 83.6 79.2 91.4 79.7 77.5 92.3 81.9 78.5

Clean ViT-L/14 83.2 0.0 0.0 79.8 0.0 0.0 81.7 0.0 0.0
R-CLIPF ViT-L/14 88.0 69.0 52.4 86.1 60.7 51.9 87.2 65.4 52.2
R-CLIPT ViT-L/14 90.4 79.3 74.6 87.5 69.2 68.8 89.1 74.9 72.1

Perceptual model: LipSim (Ghazanfari et al., 2024)

Pretrained SLL 87.0 8.0 26.5 86.1 9.5 26.6 86.6 8.6 26.5
Margin0.2 SLL 90.2 22.9 46.9 86.2 23.5 46.2 88.5 23.1 46.6
Margin0.5 SLL 86.1 33.4 55.1 83.9 31.9 50.3 85.1 32.8 53.1

Perceptual model: R-LPIPS (Ghazanfari et al., 2023)

R-LPIPS AlexNet 72.4 15.7 27.8 70.5 17.0 25.8 71.6 16.2 26.9

Perceptual model: DreamSim (Fu et al., 2023)

OpenCLIP ViT-B/32 96.4 1.6 2.9 94.1 2.0 3.8 95.4 1.8 3.3
CLIP ViT-B/32 94.1 0.1 0.3 93.6 0.1 0.4 93.9 0.1 0.3
DINO ViT-B/16 94.6 3.1 5.8 94.4 4.2 6.8 94.5 3.6 6.2
Ensemble - 96.6 0.4 0.7 95.5 0.6 1.3 96.2 0.5 0.9

Perceptual model: MLP Fine-tuned CLIP (ours)

Clean ViT-B/32 91.1 0.0 0.0 87.5 0.0 0.0 89.5 0.0 0.0
R-CLIPF ViT-B/32 94.1 77.5 74.4 92.7 69.6 70.1 93.5 74.1 72.6
R-CLIPT ViT-B/32 93.6 84.5 83.2 90.5 79.9 80.8 92.3 82.6 82.2

Clean ViT-B/16 90.2 0.0 0.0 87.1 0.0 0.0 88.9 0.0 0.0
R-CLIPF ViT-B/16 93.2 79.6 70.4 92.1 70.9 65.8 92.7 75.9 68.4
R-CLIPT ViT-B/16 95.5 84.9 82.0 91.3 78.4 75.9 93.7 82.1 79.4

Clean ConvNeXt-B 91.2 0.0 0.0 89.0 0.0 0.0 90.2 0.0 0.0
R-CLIPF ConvNeXt-B 93.0 80.7 70.8 92.0 74.8 66.7 92.5 78.2 69.0
R-CLIPT ConvNeXt-B 95.1 87.0 81.0 93.6 80.8 78.3 94.5 84.4 79.8

Perceptual model: LoRA Fine-tuned CLIP (ours)

Clean ViT-B/32 95.6 0.3 1.0 93.7 0.4 0.9 94.8 0.5 0.9
R-CLIPF ViT-B/32 96.1 83.2 82.1 94.4 77.5 79.8 95.3 80.8 81.1
R-CLIPT ViT-B/32 94.9 82.8 83.2 93.5 78.2 80.8 94.3 80.8 82.2

Clean ViT-B/16 95.2 0.0 0.0 93.6 0.0 0.0 94.5 0.0 0.0
R-CLIPF ViT-B/16 95.8 83.0 78.8 95.5 78.0 78.3 95.7 80.9 78.6
R-CLIPT ViT-B/16 95.0 84.1 82.6 94.0 78.0 79.4 94.6 81.5 81.2

Clean ConvNeXt-B 95.5 0.0 0.0 95.3 0.0 0.0 95.4 0.0 0.0
R-CLIPF ConvNeXt-B 96.0 87.9 82.2 94.5 82.5 80.7 95.3 85.6 81.6
R-CLIPT ConvNeXt-B 95.6 89.3 85.2 94.3 84.3 83.7 95.0 87.2 84.5

14



Table 8. Detailed comparison of perceptual metrics on different splits of the BAPPS dataset. We report the clean accuracy of each
model on the 6 splits of the BAPPS dataset, together with their mean. Robust CLIP encoders provide consistent improvements across
splits.

model Backbone cnn color deblur frameint.superr. trad. mean

Perceptual model: CLIP (Radford et al., 2021; Cherti et al., 2023) / Robust CLIP (ours)

Clean ViT-B/32 83.1 61.1 58.6 63.0 70.3 78.2 69.1
R-CLIPF ViT-B/32 86.7 70.8 65.0 67.3 76.1 78.7 74.1
R-CLIPT ViT-B/32 86.5 71.5 65.0 67.4 76.6 77.7 74.1

Clean ViT-B/16 81.9 60.3 55.5 65.2 68.9 77.9 68.3
R-CLIPF ViT-B/16 87.3 70.1 64.9 68.2 75.9 78.3 74.1
R-CLIPT ViT-B/16 86.4 71.2 64.9 67.2 76.4 77.7 74.0

Clean ConvNeXt-B 82.3 60.0 55.3 65.9 67.3 78.5 68.2
R-CLIPF ConvNeXt-B 86.5 70.5 64.8 67.7 75.0 79.3 74.0
R-CLIPT ConvNeXt-B 86.6 71.4 64.9 67.5 75.8 78.6 74.1

Perceptual model: LipSim (Ghazanfari et al., 2024)

Pretrained SLL 86.4 69.9 65.6 66.7 76.8 79.5 74.2
Margin0.2 SLL 85.2 71.9 64.7 66.8 77.2 77.9 74.0
Margin0.5 SLL 83.6 71.1 64.1 66.0 76.8 77.0 73.1

Perceptual model: R-LPIPS (Ghazanfari et al., 2023)

R-LPIPS AlexNet 87.5 67.4 63.7 66.5 76.1 75.7 72.8

Perceptual model: DreamSim (Fu et al., 2023)

OpenCLIP ViT-B/32 86.4 67.0 63.0 65.6 74.7 81.7 73.1
CLIP ViT-B/32 83.9 63.3 58.2 63.3 70.0 79.1 69.6
DINO ViT-B/16 85.7 67.5 62.7 67.3 73.3 80.1 72.8
Ensemble - 86.7 67.6 62.4 66.3 74.3 81.3 73.1

Perceptual model: MLP Fine-tuned CLIP (ours)

Clean ViT-B/32 84.4 63.1 58.6 63.9 70.1 78.8 69.8
R-CLIPF ViT-B/32 86.8 71.4 65.1 67.0 76.4 78.2 74.2
R-CLIPT ViT-B/32 86.3 72.1 64.7 67.2 76.6 77.2 74.0

Clean ViT-B/16 83.2 62.5 55.8 65.5 69.4 78.4 69.1
R-CLIPF ViT-B/16 87.3 71.4 65.2 68.2 76.1 78.3 74.4
R-CLIPT ViT-B/16 86.5 71.2 64.9 67.1 76.5 77.7 74.0

Clean ConvNeXt-B 82.4 62.2 55.7 65.6 67.2 78.9 68.7
R-CLIPF ConvNeXt-B 86.8 70.4 64.9 67.2 75.6 78.6 73.9
R-CLIPT ConvNeXt-B 86.8 72.0 65.1 67.4 75.6 78.3 74.2

Perceptual model: LoRA Fine-tuned CLIP (ours)

Clean ViT-B/32 86.0 67.9 60.9 64.5 72.7 81.3 72.2
R-CLIPF ViT-B/32 86.8 73.2 65.2 68.2 77.2 79.8 75.1
R-CLIPT ViT-B/32 86.2 72.6 65.3 66.9 76.9 77.4 74.2

Clean ViT-B/16 85.5 66.9 57.4 64.0 72.8 81.0 71.3
R-CLIPF ViT-B/16 86.6 72.1 65.4 66.4 76.9 79.7 74.5
R-CLIPT ViT-B/16 86.3 72.3 65.0 67.7 76.7 78.5 74.4

Clean ConvNeXt-B 85.6 65.8 58.1 65.3 72.2 80.4 71.2
R-CLIPF ConvNeXt-B 87.5 72.6 65.0 67.2 76.3 80.6 74.9
R-CLIPT ConvNeXt-B 87.3 72.4 65.3 67.3 76.0 79.9 74.7

15



Table 9. Comparison of perceptual models on the BAPPS dataset with APGDCE 100x1. We report both ℓ∞ and ℓ2 robust accuracy
evaluated at radii 4/255 and 3 respectively for 1k samples on every split of the BAPPS dataset, and their mean.

cnn color deblur frameinterp. superres trad. mean
model Backbone ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2

Perceptual model: CLIP (Radford et al., 2021; Cherti et al., 2023) / Robust CLIP (ours)

Clean ViT-B/32 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ViT-B/32 36.1 31.7 17.3 14.5 7.9 4.3 7.0 4.8 17.5 14.5 35.9 29.4 20.3 16.5
R-CLIPT ViT-B/32 46.3 44.0 27.9 28.0 17.4 14.7 11.6 10.6 30.3 25.9 41.7 38.7 29.2 27.0

Clean ViT-B/16 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.3 0.0 0.0 0.1 0.1
R-CLIPF ViT-B/16 34.1 16.7 15.2 6.8 6.8 1.9 5.0 2.0 16.4 6.0 38.4 18.6 19.3 8.7
R-CLIPT ViT-B/16 45.4 33.7 24.2 19.5 16.0 8.2 10.2 7.0 27.0 16.8 44.1 32.3 27.8 19.6

Clean ConvNeXt-B 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ConvNeXt-B 34.1 11.4 14.9 5.2 7.0 0.7 5.5 1.7 15.9 3.5 36.4 13.6 19.0 6.0
R-CLIPT ConvNeXt-B 45.2 28.1 21.3 13.0 13.6 4.30 11.3 5.5 26.7 15.0 42.8 29.1 26.8 15.8

Perceptual model: LipSim (Ghazanfari et al., 2024)

Pretrained SLL 2.8 15.5 0.3 3.2 0.1 1.0 0.0 0.2 0.9 4.9 2.4 19.3 1.1 7.4
Margin0.2 SLL 9.7 25.6 3.8 11.3 0.1 2.2 0.0 1.1 1.7 7.3 9.8 28.8 4.2 12.7
Margin0.5 SLL 14.0 28.8 8.3 20.5 0.2 2.2 0.0 1.0 1.7 6.0 10.7 31.9 5.8 15.1

Perceptual model: R-LPIPS (Ghazanfari et al., 2023)

R-LPIPS AlexNet 20.8 31.3 8.8 13.9 0.2 0.8 1.2 2.3 3.0 5.6 8.3 20.0 7.0 12.3

Perceptual model: DreamSim (Fu et al., 2023)

OpenCLIP ViT-B/32 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
CLIP ViT-B/32 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
DINO ViT-B/16 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.1 0.0 0.0 0.1
Ensemble - 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0

Perceptual model: MLP Fine-tuned CLIP (ours)

Clean ViT-B/32 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ViT-B/32 38.7 32.6 21.2 17.5 9.1 4.7 7.1 5.5 18.5 13.8 38.5 28.9 22.2 17.2
R-CLIPT ViT-B/32 47.2 43.5 32.3 31.3 17.4 13.7 11.8 10.4 30.3 24.5 41.9 37.8 30.1 26.9

Clean ViT-B/16 0.0 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.6 0.0 0.0 0.1 0.2
R-CLIPF ViT-B/16 37.7 18.2 20.5 10.6 8.1 1.6 6.2 2.3 18.0 6.0 38.7 16.8 21.5 9.3
R-CLIPT ViT-B/16 46.3 33.4 29.0 21.4 16.7 7.2 10.6 6.8 28.3 16.3 43.7 31.8 29.1 19.5

Clean ConvNeXt-B 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ConvNeXt-B 38.6 14.1 20.7 7.7 8.6 0.6 6.7 2.5 17.4 3.7 38.2 14.2 21.7 7.1
R-CLIPT ConvNeXt-B 47.4 28.7 28.0 18.4 14.2 4.1 11.5 6.0 26.6 12.6 43.2 28.0 28.5 16.3

Perceptual model: LoRA Fine-tuned CLIP (ours)

Clean ViT-B/32 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ViT-B/32 38.1 35.4 24.7 23.7 7.1 5.1 7.6 7.0 18.6 17.4 36.9 30.6 22.2 19.9
R-CLIPT ViT-B/32 39.3 42.1 27.0 28.0 6.8 7.7 5.6 6.7 15.6 18.5 35.3 35.6 21.6 23.1

Clean ViT-B/16 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ViT-B/16 43.3 31.9 28.9 22.8 8.5 3.6 8.3 4.6 21.5 9.5 40.7 27.9 25.2 16.7
R-CLIPT ViT-B/16 45.7 41.7 34.8 31.2 11.4 7.7 10.2 8.5 24.2 19.5 43.9 36.0 28.4 24.1

Clean ConvNeXt-B 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
R-CLIPF ConvNeXt-B 48.2 35.8 32.8 24.3 12.5 3.7 10.7 5.4 27.4 16.2 49.5 34.9 30.2 20.1
R-CLIPT ConvNeXt-B 48.1 35.1 28.7 23.1 13.4 6.1 10.3 5.6 26.7 14.5 47.7 35.8 29.2 20.0
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Table 10. ImageNet and zero-shot downstream datasets evaluation. We show the clean and robust accuracy for the original CLIP
models and the robust fine-tuned ones with TeCoA on ImageNet. Moreover, we show the same statistics averaged over 13 zero-shot
datasets.

ImageNet Avg. other datasets
Method Encoder clean ℓ∞(2/255) ℓ∞(4/255) clean ℓ∞(2/255) ℓ∞(4/255)

CLIP ViT-B/32 66.1 0.0 0.0 70.4 0.0 0.0
R-CLIPT ViT-B/32 58.3 41.5 25.8 46.8 34.5 23.3

CLIP ViT-B/16 70.1 0.0 0.0 71.7 0.0 0.0
R-CLIPT ViT-B/16 64.0 47.9 31.9 51.5 38.4 26.4

CLIP ConvNeXt-B 71.8 0.0 0.0 71.6 0.0 0.0
R-CLIPT ConvNeXt-B 67.1 51.7 35.3 56.2 44.1 31.8

Table 11. Comparison of perceptual metrics on THINGS dataset. We report clean accuracy on the odd-one-out task of THINGS. In
this case fine-tuning on NIGHTS is typically detrimental for clean performance (∗ LipSim-Pretrained is distilled from DreamSim which
in turn is fine-tuned on NIGHTS).

Method Backbone Source Fine-tuning
dataset clean acc.

Perceptual model: CLIP
CLIP ConvNeXt-B (Cherti et al., 2023) None 50.7

Perceptual model: Robust CLIP
R-CLIPF ConvNeXt-B ours None 51.2
R-CLIPT ConvNeXt-B ours None 48.1

Perceptual model: LipSim
Pretrained SLL (Ghazanfari et al., 2024) NIGHTS∗ 43.6
Margin0.2 SLL (Ghazanfari et al., 2024) NIGHTS 41.3
Margin0.5 SLL (Ghazanfari et al., 2024) NIGHTS 38.5

Perceptual model: Robust LPIPS
R-LPIPS AlexNet (Ghazanfari et al., 2023) BAPPS 38.3

Perceptual model: Fine-tuned DreamSim
OpenCLIP ViT-B/32 (Fu et al., 2023) NIGHTS 47.9
CLIP ViT-B/32 (Fu et al., 2023) NIGHTS 49.6
DINO ViT-B/16 (Fu et al., 2023) NIGHTS 44.3
Ensemble - (Fu et al., 2023) NIGHTS 47.5

Perceptual model: Fine-tuned Robust CLIP
R-CLIPT + MLP ConvNeXt-B ours NIGHTS 47.6
R-CLIPT + LoRA ConvNeXt-B ours NIGHTS 49.9
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Mona Lisa by Leonardo da Vinci Guernica by
Pablo Picasso

The Last Supper by Leonardo da
Vinci

The Scream by Edvard Munch Isaac Newton

Yoshua Bengio Boris Johnson Elon Musk The Terminator An alien marketplace

An octopus
playing chess

A penguin at
the beach

A dragon playing
the piano

A squirrel riding
a skateboard

A werewolf howling
at a full moon

Figure 7. Text inversion. We show visual concepts encoded in R-CLIPT by optimizing randomly initialized images to match the given
text prompts in the embedding space. Small initial step-size and large initial step-size are considered in the first and second rows
respectively. We are able to extract rich and meaningful visual concepts from R-CLIPT.
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Louvre Museum Great Wall of China White House Marie Curie Rosa Parks

Margaret Thatcher Angela Merkel Cleopatra Joan of Arc An astronaut riding
a horse

A dragon
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A scientist discovering
a new planet

Figure 8. Text inversion. We show additional text inversion examples for R-CLIPT. Small initial step-size and large initial step-size are
considered in the first and second rows respectively.
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Figure 9. Text inversion variant. The text inversions in this figure are created using an augmentation procedure in the optimization
process as described in Sec. C.4.
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Figure 10. Clean and adversarial image retrieval on MS-COCO dataset. Each column shows the nearest neighbour (from 15k
random MS-COCO train-set points) to the ‘Query’ images in the first column. Adversarial images (‘Adv.’ rows) are generated for ℓ∞
threat model at ϵ = 2/255 by maximizing the embedding loss of the respective vision encoders.
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Figure 11. Clean and adversarial image retrieval on MS-COCO dataset. The overall setup is same as in Fig. 10.
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