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ABSTRACT

Large foundation models, such as large language models, have performed excep-
tionally well in various application scenarios. Building or fully fine-tuning such
large models is usually prohibitive due to either hardware budget or lack of access
to backpropagation. The zeroth-order methods offer a promising direction for
tackling this challenge, where only forward passes are needed to update the model.
This paper introduces an efficient Stochastic Two-Point (S2P) approach within the
gradient-free regime. We present the theoretical convergence properties of S2P
under the general and relaxed smoothness assumptions. The theoretical properties
also shed light on a faster and more stable S2P variant, Accelerated S2P (AS2P),
through exploiting our new convergence properties that better represent the dy-
namics of deep models in training. Our comprehensive empirical results show that
AS2P is highly effective in optimizing objectives for large deep models, including
language models, and outperforms standard methods across various model types
and scales, with 2× speed-up in training over most conducted tasks.

1 INTRODUCTION

Utilizing pre-trained large models for various downstream tasks has emerged as a prominent trend,
particularly in the context of Large Language Models (LLMs), which demand substantial computa-
tional resources and data during their initial training phase (Devlin et al., 2018; Bommasani et al.,
2021). Different from smaller deep models, full fine-tuning these models is often prohibitive due to
the massive computing resources needed. Therefore, techniques such as parameter-efficient tuning,
including prompt tuning (Lester et al., 2021) and LoRA (Hu et al., 2021), as well as zeroth-order
methods (Malladi et al., 2023; Prasad et al., 2022), are developed and demonstrated satisfactory
performance. Among these approaches, zeroth-order methods have become especially attractive
recently since they only rely on function values, often referred to as zeroth-order information, to
optimize models, avoid memory-intensive back-propagation, and enable full or partial fine-tuning
with minimum computing resources. The line of research is broadly investigated and generally
analyzed within the framework of optimizing the non-convex optimization problem minx∈Rd f(x),
where the f : Rd → R is differentiable and the derivatives are not directly accessible. The complexity
of this problem is studied over function query complexity, namely the complexity in terms of the
number of function evaluations.

Existing analyses of zeroth-order approaches mainly focus on convergence to ϵ-first-order station-
ary points under the general smoothness assumption (Nesterov & Spokoiny, 2017; Bergou et al.,
2020). Zeroth-order optimization can be categorized into two types by whether or not it explicitly
approximates gradient: gradient estimator and direct search (Ghadimi & Lan, 2013; Chen et al.,
2020; Lewis et al., 2000; Conn et al., 2009). Gradient estimator methods compute an estimate of the
gradient through zeroth-order information to optimize f , i.e., random (gradient-free) oracles. Random
oracles are analyzed in the framework of Stochastic Approximation (SA), e.g., random-directions
SA (RDSA). Gaussian smoothing is a gradient estimator algorithm that initially uses RDSA as a
random oracle, and their work establishes the framework of analyzing the convergence properties
of f once explicitly obtaining mean squared error between the approximated gradient and true
gradient (Nesterov & Spokoiny, 2017). On the other hand, the direct search generally optimizes f by
updating the objective function along fixed or randomized directions with fixed or adaptive step size
(e.g., reduce step size when the selected directions get rejected) (Vicente, 2013). Stochastic Three
Points (STP) (Bergou et al., 2020) is a representative approach in this category. With the condition
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E|sT∇f(x)| ≥ C||∇f(x)|| where s is a random vector sampled from specific distributions and C
is a small positive constant, one of the STP directions ±s with an appropriate step size consistently
decreases the objective function in expectation.

In practice, it is often useful to sample a symmetric (two-sided) random perturbation per update for op-
timization problems. This approach finds practical utility in scenarios like LLM fine-tuning (Malladi
et al., 2023; Zelikman et al., 2023) and provides theoretical enhancement when exploiting multiple
random perturbations per update (Salimans et al., 2017; Mania et al., 2018). Examples include STP
from direct search and two-sided Gradient Approximation Gaussian smoothing (basic random search),
abbreviated as GA. When using symmetric perturbations, their respective updates are given by:

STP: xk+1 = argmin{f(xk + αsk), f(xk − αsk), f(xk)},

GA: xk+1 = xk − αgk where gk = f(xk+ρsk)−f(xk−ρsk)
2ρ sk, sk ∼ N (0, I),

where α denotes step size and ρ denotes smoothing parameter. Note that f(xk) in STP cannot
be reused from the previous iteration when using batch data settings. GA and STP have similar
convergence and behavior, and we show later in our paper that they can be linked or interconnected
under specific settings. The convergence of both approaches relies on the general smoothness
assumption, a widely employed concept in non-convex optimization.

In this paper, we advance the efficiency of the zeroth order optimization by proposing a new approach
called Stochastic Two-Point (S2P), which eliminates the non-updating component f(xk) of STP
and thus effectively saving one forward pass in a batch data forward pass. We show that the
proposed S2P reaches ϵ-first-order stationary point under both general smoothness assumption and
relaxed smoothness assumption (L0, L1-smoothness (Zhang et al., 2019)). As compared to general
smoothness, relaxed smoothness is a more realistic assumption for many real-world tasks, especially
for deep models (Zhang et al., 2019; 2020; Danilova et al., 2022). The paper has the following
contributions to zeroth-order methods for large deep models:

• We analyze the convergence properties of S2P under general and relaxed smoothness as-
sumptions. The basic form of S2P has query complexity O( d

ϵ2 ) under general smoothness
assumption, which is the same with Nesterov & Spokoiny (2017); Bergou et al. (2020).To
our knowledge, the analysis of query complexity under the relaxed smoothness assumption is
novel.

• Based on our theoretical analysis, we proposed a faster variant, Accelerated S2P (AS2P),
which exploits our new convergence properties and incorporates our theoretical findings.

• We conduct extensive experiments on large deep models, including language models, that
show AS2P significantly outperforms competing methods on gradient-free adaptation, with
2× speed-up in training over most conducted tasks.

2 RELATED WORK

Extensive existing literature studied the zeroth-order optimization under convex and non-convex
settings (Shamir, 2017; Jamieson et al., 2012; Agarwal et al., 2009; Raginsky & Rakhlin, 2011; Duchi
et al., 2015). Bounds to reach first-order stationary points under general smoothness assumption have
been derived, which generally depend on model parameter dimension d (Nesterov & Spokoiny, 2017;
Bergou et al., 2020). A line of work investigates the effectiveness of noise perturbation to various
tasks, e.g., generalizing Gaussian Smoothing to Bernoulli(±1) distribution (Gao & Sener, 2022),
orthonormalization of noise perturbation over Gram–Schmidt process (Choromanski et al., 2018;
Maheswaranathan et al., 2019). Moreover, practical and theoretical results showed the advantages
of the zeroth-order method meeting low-rank structures of the underlying problem (Cai et al., 2022;
Malladi et al., 2023; Wang et al., 2018; Sener & Koltun, 2020). Some approaches also guarantee
second-order convergence (Lucchi et al., 2021; Zhang & Gu, 2022; Ren et al., 2023). However, the
problem has rarely been studied under the popular relaxed smoothness assumption (Zhang et al.,
2019). Based on the theories, many work proposed practical methods to adapt to various deep
model scenarios such as hyper-parameter optimization (Bergstra & Bengio, 2012; Yang & Shami,
2020), black-box adversarial attack on deep models (Ilyas et al., 2018; Guo et al., 2019; Liu et al.,
2018). Moreover, several methods have been developed for and adapted to deep models gradient-free
adaptation (Malladi et al., 2023; Prasad et al., 2022; Deng et al., 2022).
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3 ACCELERATED STOCHASTIC TWO-POINT SEARCH

In this section, we first introduce a prototype of Stochastic Two-point Search (S2P) and analyze its
convergence using the general smoothness assumption. We then improve our analysis of S2P using
the relaxed smoothness assumption, which leads to the Accelerated Two-Point Search (AS2P).

Throughout this paper, we use bold lowercase letters x,y to denote vectors. For vectors, we use || · ||
to denote the ℓ2-norm. For a function f : Rd → R, we use ∇f to denote the gradient and f⋆ to denote
the global minimum of function f . We use O(·),Ω(·) to hide absolute constants that do not depend
on any problem parameter. We need the following standard definitions and assumptions (Nesterov &
Spokoiny, 2017; Bergou et al., 2020; Zhang et al., 2019).

Definition 3.1. For a differentiable function f , x is a ϵ-first-order stationary point if ||∇f(x)|| ≤ ϵ.

Definition 3.2. A differentiable function f is L-gradient Lipschitz if ||∇f(x1) − ∇f(x2)|| ≤
L||x1 − x2|| ∀x1,x2.

Definition 3.3. A differentiable function f is (L0, L1)-smoothness if ||∇2f(x)|| ≤ L0 +
L1||∇f(x)||.
Assumption 1. The function f is L-gradient Lipschitz.

Assumption 2. The function f satisfies (L0, L1)-smoothness

Unless otherwise specified, we assume function f is bounded below by f⋆.

3.1 STOCHASTIC TWO-POINT SEARCH (S2P)

We first propose a prototype algorithm, Stochastic Two-Point Search (S2P), which improves STP by
removing the non-updating component, f(xk). This seemingly minor change eliminates the need for
an additional forward pass at each iteration when compared to methods like GA. The change is also
non-trivial because the computation of f(xk) in STP cannot be reused from the previous iteration
under the batch data condition, and is critical to the convergence of STP. If a similar convergence is
maintained in S2P, such an elimination can greatly reduce the computation needed to optimize large
deep models, including language models. The S2P algorithm is summarized in Alg. 1.

Specifically, the choice of the distribution of random perturbations within three commonly used
probability distributions, normal, uniform, and Rademacher distribution (Bernoulli ±1 distribution),
does not alter our analysis results within our proof framework. However, we use the random
perturbations from the Rademacher distribution for our analysis since STP originally utilizes the
normal distribution and uniform distribution. We also note that S2P involves two different symmetric
perturbations in each iteration, which are utilized for dynamic step size adaptation. This approach
necessitates twice the computational cost in each update compared to GA in practical deployment.
Ultimately, our goal is to achieve one symmetric perturbation in each iteration in our proposed
accelerated variant of S2P, i.e., AS2P in Alg. 2.

Algorithm 1 Stochastic Two-Point search (S2P).
Inputs: Epochs K, objective function f parameterized with x ∈ Rd, stopping criterion ϵ.
Parameter: x

1: for k = 0, ...,K do
2: sk ∼ R {Rademacher distribution. The normal and uniform distribution also apply.}
3: Choosing one from Option 1-4: Update α
4: Option 1. αk = α0/

√
Kd {Theorem 3.1}

5: Option 2. αk = |γk|
Ld where |γk| = |f(x+ρsk)−f(x−ρsk)|

2ρ {Theorem 3.1}
6: Option 3. αk =

√
2/BL1

√
dK {Theorem 3.2}

7: Option 4. αk = |γk|
(AL0+

√
2BL1|γk|)d

where |γk| = |f(x+ρsk)−f(x−ρsk)|
2ρ {Theorem 3.2}

8: xk+1 = argmin{f(xk + αksk), f(xk − αksk)}
9: end for

10: return x
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3.2 S2P UNDER GENERAL SMOOTHNESS ASSUMPTION

We first analyze the convergence properties of f running the proposed S2P algorithm under the
general smoothness assumption. Similar to STP, we initiate our analysis from Lemma 3.1, which
shows the absolute value of the inner product between gradient g and random perturbation s is
larger than a positive value in expectation, which forms the foundation of descent. Building upon
this foundation, Lemma 3.2 introduces a progressive bound and identifies the optimal step size at
each iteration. This optimal step size inspires our algorithm development, particularly Option 2 in
Theorem 3.1. The central result in this subsection is Theorem 3.1, which establishes that Alg. 1 can
employ both stationary and dynamic step sizes (Option 1 and Option 2, respectively) to reach an
ϵ-first-order stationary point with a query complexity of O( d

ϵ2 ).

Especially, the strategy of dynamic step size aims to approximate the optimal step size at each
iteration, i.e., approximating αopt

k = |∇f(xk)
T sk|

Ld with αk = |γk|
Ld where |γk| = |f(x+ρsk)−f(x−ρsk)|

2ρ .
Simultaneously, the error |δk| := |αk − αopt

k | ≤ ρ
2 is controlled. Please refer to inequality (7) in

Appendix B.1 for more details. The above findings underline the fundamental correlation between
the step-wise step size αk and |γk|, specifically, αk ∝ |γk| with a sufficient small ρ. Another crucial
observation is the interplay between step size αk and smoothing parameter ρk (Note the transition
from ρ → ρk when adopting specific step-wise strategies). Results presented in Appendix B.1 (proof
of Lemma 3.2) and Appendix B.1 (proof of Theorem 3.1) show the requirement of both αk and ρk

fall within the range of (0,
√
2||∇f(xk)||

Ld ] to ensure step-wise progress. This observation hints at a
significant connection in magnitude between αk and ρk, which inspires the development of Alg. 2.

We want to emphasize that our results also reveal the inherent connection between S2P and GA:
S2P for Option 2 has almost the same updating formula with GA, when the sign trick described in
Section 3.4 is applied.
Lemma 3.1. For all g ∈ Rd, and random vector s ∼ R where R is the Rademacher distribution,
then Es∼R|⟨g, s⟩| ≥ 1√

2
||g||2.

The result can be directly derived by applying Khintchine inequality (Khintchine, 1923), and the
proof is presented in the appendix A. Please refer to Lemma 3.4 in Bergou et al. (2020) for similar
results with normal&unifrom distributions. Note that the random perturbation can be normalized as
done in STP, so we have Es∼R|⟨g, s

||s|| ⟩| =
1√
d
Es∼R|⟨g, s⟩| ≥ 1√

2d
||g||2. The formula trick can be

easily applied to the following analysis, and the conclusion remains the same.
Lemma 3.2 (Progressive bound). Suppose objective function f(·) satisfies Assumption 1 and
||∇f(xk)||2 ≥ ϵg. If we run algorithm 1 with step size α =

√
2ϵg

2Ld , we have following progressive

bound E[f(xk+1)− f(xk)|xk] ≤ −Ω(
ϵ2g
Ld ), where E[·|xk] denotes the conditional expectation w.r.t.

xk.

The proof is presented in the appendix B.
Theorem 3.1 (Query complexity). Suppose objective function f(·) satisfies Assumption 1. If we run
algorithm 1 with step size strategy options 1 or 2, the algorithm returns in expectation an ϵ-first-order
stationary point in O( d

ϵ2 ) function evaluations. Specifically,

For option 1 K ≥ 2d

ϵ2
(
(f(x0)− f⋆)

α0
+

Lα0

2
)2, For option 2 K ≥ 4Ld(f(x0)− f⋆)

ϵ2 − ρ2

2

,

where α0 > 0 for Option 1 stationary step size; For Option 2 dynamic step size, scalar ρk ∈
(0,

√
2||∇f(xk)||

Ld ] for ρk in each iteration. Generally, it can be set to a small value, e.g., ρ =
√
2ϵ

Ld .

The proof is presented in the appendix B.

3.3 S2P UNDER RELAXED SMOOTHNESS ASSUMPTION

We now analyze the convergence properties of the proposed S2P algorithm under the relaxed smooth-
ness assumption. The assumption posits that f may behave like a smooth function in certain local
regions of the loss landscape, but there can also exist some highly non-smooth regions where the
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top eigenvalue of Hessian may be large, necessitating special considerations (Zhang et al., 2019;
Kunstner et al., 2023).

Lemma 3.3 provides the progressive bound and the optimal step size at each iteration. We highlight
that ϵg is no longer linearly dependent on the step size α, which distinguishes this result from the
one in Lemma 3.2. Intuitively, a large ϵg indicates a large gradient, which may, in turn, imply a large
top eigenvalue of Hessian under Assumption 2. Consequently, a large step size is no longer the best
choice. This concept is pivotal in further improvements upon S2P.

The main result in this subsection is Theorem 3.2, which shows that Alg. 1 can employ both stationary
and dynamic step sizes (Option 3 and Option 4, respectively) to reach an ϵ-first-order stationary point
with a query complexity of O( d

ϵ2 ). Importantly, Theorem 3.2 shows the structured nature within the
learning process when taking dynamic step size. For instance, in regions where the function is smooth
and the gradient norm is large, we can anticipate a reduced query complexity. Conversely, under
the fourth condition outlined in Table 1, we encounter situations where it is impossible to decrease
||∇f(x)|| due to high levels of non-smoothness. Fortunately, our proposed step size strategy allows
us to safely traverse these highly non-smooth regions.

Importantly, theorem 3.3 shows that the gradient norm ||∇f(x)|| is bounded by |γ| in expectation.
This implies that the statistical information of γ is highly likely to reveal characteristics of gradient
norm information, which is further correlated with second-order information under Assumption 2. To
illustrate, let us define τk := ησγ := ηStd Dev(γrecent), i.e., τk at k-th iteration represents η× standard
deviation of recent observations (e.g., the most recent 10% iterations) of γ. Then, with sufficient
small ρ, Theorem 3.3 suggests that ||∇f(xk)|| ≤ ηaStd Dev(γrecent) almost for sure with appropriate
choice of ηa, such as 3

√
2. Moreover, under Assumption 2, it can establish that ||∇2f(x)|| is bounded

by ηbStd Dev(γrecent) under certain confidence interval with careful selection of ηb.
Lemma 3.3 (Progressive bound). Suppose objective function f(·) satisfies Assumption 2 and
||∇f(xk)|| ≥ ϵg. Alg. 1 with step size α =

√
2ϵg

2(AL0+BL1ϵg)d
gives the following following progres-

sive bound E[f(xk+1)− f(xk)|xk] ≤ −Ω(
ϵ2g

(AL0+BL1ϵg)d
), where E[·|xk] denotes the conditional

expectation w.r.t. xk, and constants A = 1.01, B = 1.01.

The proof is presented in the appendix C.1.
Theorem 3.2 (Query complexity). Suppose objective function f(·) satisfies Assumption 2. With step
size strategy options 3 or 4, Alg. 1 returns in expectation an ϵ-first-order stationary point in O( d

ϵ2 )
function evaluations. Specifically,

For option 3 K ≥ (
√
d+

AL0

√
d+BL1(f(x0)− f⋆)

√
d

ϵ
)2

For option 4 The result is summarized in Table 1.

where constants A = 1.01, B = 1.01.

The proof is presented in the appendix C.2.

Conditions[b] requirement over ρ[a] Query complexity

L1 ≤ 1√
2B

, ||∇f(x)|| ≥ AL0

1−
√

2BL1
ρ ≤ 1

d
√

2ξ
√
d

8d(f(x0)−f⋆)
ϵ

L1 ≤ 1√
2B

, ||∇f(x)|| ≤ AL0

1−
√

2BL1
ρ ≤ 1

d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8AL0d(f(x0)−f⋆)

(1−
√
2BL1)ϵ2

L1 ≥ 1√
2B

, ||∇f(x)|| ≤ AL0√
2BL1−1

ρ ≤ 1
d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8AL0d(f(x0)−f⋆)(2
√
2BL1−1)

(
√
2BL1−1)ϵ2

L1 ≥ 1√
2B

, ||∇f(x)|| ≥ AL0√
2BL1−1

ρ ≤ 1
d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8(2
√
2BL1−1)(

√
2BL1−1)(f(x0)−f⋆−ϵ)d
AL0

[a] ξ is a constant associated with third-order property of f , detailed in appendix inequality (13).
[b] For forth condition, reaching local ϵ-optimal point instead of ϵ-first-order stationary point, detailed in appendix in-

equality (17).

Table 1: With dynamic step size strategy, the convergence property of f under relaxed smoothness.
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Theorem 3.3. Suppose objective function f(·) satisfies Assumption 2. Then the gradient norm
||∇f(x)|| can be bounded in expectation as

|γ| − ρd(AL0 +BL1||∇f(x)||) ≤ ||∇f(x)|| ≤
√
2|γ|+

√
2ρd(AL0 +BL1||∇f(x)||)

where |γ| = |f(x+ρs)−f(x+ρs)|
2ρ . Constants A = 1.01, B = 1.01 when ρ ≤ 1

2L1d
.

The proof is presented in Appendix C.3.

Algorithm 2 Accelerated Stochastic Two-Point search (AS2P).
Inputs: Epochs K, dataset D ,objective function f(·) parameterized with x ∼ Rd, scalar ρ0 and ρend
as smoothing parameters, and scalars ηa, ηb. Decay strategy, e.g., cosine decay.
Parameter: x

1: for k = 0, ...,K do
2: sk ∼ R {Rademacher distribution. Normal and uniform distribution also apply.}
3: ρk = full D: ρ0, batch B ⊂ D: Decay strategy(init = ρ0, end = ρend, k)

4: |γk| = | f(xk+ρksk)−f(xk−ρksk)
2ρk

|, βk = sign
(
f(xk + ρksk)− f(xk − ρksk)

)
5: σρ = Std Dev(γrecent)
6: γ′

k = 1/(1/|γk|+ 1/τ ′k) where τ ′k = Decay strategy(init = 2ηa, end = ηa, k) ∗ σρ

7: αk = full D: βkρk
γ′
k

τb
k

, batch B ⊂ D: βk∗Decay strategy(init = ρk, k)∗ γ′
k

ηbσρ

8: xk+1 = xk + αksk
9: end for

10: return x

3.4 ACCELERATED STOCHASTIC TWO-POINT SEARCH (AS2P)

Our convergence analysis of f running S2P under the general and relaxed smoothness assumptions
yields insights into a faster variant of S2P, Accelerated S2P (AS2P). AS2P augments stochastic
two-point search with dynamic step sizes and incorporates statistical information related to γk to
potentially capture both first-order and second-order dynamics of the objective function f . AS2P
algorithm is described in Alg. 2 and has two highlighted improvements.

Progressive γ-clipping. The immediate observation stemming from the convergence properties
of f running S2P under relaxed smoothness assumption is the non-linear dependence between the
approximated optimal step size αk and |γk|, i.e., αk = |γk|

(AL0+
√
2BL1|γk|)d

= 1
(AL0/|γk|+

√
2BL1)d

.
Specifically, the step size is almost linearly incremental when |γk| is small, but the increment
decreases fast when |γk| is relatively large. We thus propose a strategy to mimic similar behavior,
i.e., αk ∝ γ′

k where γ′
k = 1

1/|γk|+1/τa
k

. τak = ηaStd Dev(γrecent) practically act as the threshold to
estimate the inhibition strength to |γk|. Moreover, inspired by the structure of optimizing f showing
by Table 1 along with empirical investigations, we found that f behaves more like satisfying smooth
function during the initial stages of training and entering non-smooth regions as training progresses.
So, we propose a progressive adjustment of the threshold τak over iterations. The complete strategy is
elucidated in line-6 of Alg. 2.

Automatic Learning Rate. Having αk ∝ γ′
k, then we analyze the magnitude of step size. From

step-wise descent aspect discussed in section 3.2, both αk and ρk are required to be within range
(0,

√
2||∇f(xk)||

Ld ] to guarantee convergence under general smoothness assumption. Meanwhile, under
the relaxed smoothness assumption, Theorem 3.2 suggests that αk = O( 1d ), and Theorem 3.3 reveals
ρk = O( 1d ) for a good approximation of gradient norm. So, if we only tune one hyper-parameter, say
ρk and approximate it well in practice, then a safe criterion for step size is αk ≤ ρk. Besides that,
according to our analysis, the algorithm applying the dynamic step size strategy has the potential
to outperform the algorithm with stationary step size. However, the dynamic step size strategy
requires twice symmetric perturbations forward passes at each iteration k. In order to reduce the
number of forward passes, we propose to assign βk := sign(f(x+ ρksk)− f(x− ρksk)) as the sign
of f(x + αksk) − f(x − αksk), which we call sign trick. Then the calculation of argmin{f(x +
αksk), f(x−αksk)} is unnecessary since x+βkabs(αk)sk = argmin{f(x+αksk), f(x−αksk)}
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where abs(αk) is known in practical. However, for a safe sign assignment, principally, it is required
αk ≤ ρk at least supposing ρk is small enough to guarantee the consistency of sign of directional
gradient in local regions. Based on the above intuitions, we propose a strategy αk = βkρkγ

′
k/τ

b
k

where τ bk = ηbStd Dev(γrecent) since γ′
k/τ

b
k ≤ 1 almost for sure supposing ηb is large enough.

Meanwhile, the strategy gives αk ∝ 1/τ bk , which potentially fits the view of clipping gradient descent,
improving the training process by putting constraints on the step size according to the upper bound
on the Hessian (Zhang et al., 2019; Kunstner et al., 2023).

Finally, we have αk = βkρk

ηbσγ/|γk|+ηb/ηa
in short, which emphasizes (a) The non-linear dependence

between αk and |γk|; (b) The interaction between the absolute value and standard deviation of γk.

4 EXPERIMENTS

In this section, we conduct an evaluation of the proposed AS2P with commonly used deep models
such as ResNet18, ResNet50, ResNet101, ResNet152 (He et al., 2016) and datasets such as CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009). In addition to these evaluations, we also follow the
experimental settings described in Malladi et al. (2023) to full fine-tune LLM model OPT-13B (Zhang
et al., 2022) on classification tasks {SST-2, RTE} (Socher et al., 2013; Dagan et al., 2005), multiple
choice tasks {Copa, ReCoRD} (Roemmele et al., 2011; Zhang et al., 2018), and generation tasks
{SQuAD, DROP} (Rajpurkar et al., 2016; Dua et al., 2019). Specifically, we compare the performance
of AS2P against several standard methods, including GA (Nesterov & Spokoiny, 2017; Malladi et al.,
2023), GA sign (Gao & Sener, 2022), STP (Bergou et al., 2020), and utilize normal distribution as
the default source of random perturbations. For clarity, GA represents the two-side random direction
stochastic approximation as the random oracle with tunable hyper-parameters learning rate and
smoothing parameter. Notably, GA is principally equivalent to MeZO as presented in Malladi et al.
(2023), which reduces memory consumption with implementation trick by doing the twice forward
passes sequentially instead of in parallel. It is worth mentioning that this trick is also applied in our
implementations and hardware budget refers to Table 4 in Malladi et al. (2023). Furthermore, we
introduce AS2P sign and GA sign as variants of AS2P and GA, respectively. These variants utilize
the random perturbations sampled from the Rademacher distribution. This choice is influenced by
some studies that suggest sign variants often exhibit advantages (Gao & Sener, 2022; Kunstner et al.,
2023). The details of the setup are summarized in Appendix D.1.

4.1 PERFORMANCE COMPARISON WITH STANDARD METHODS

Performance over common deep models and datasets. Each row of Figure 1(b) demon-
strates the convergence rate under pre-trained ResNet18&CIFAR10, ResNet50&CIFAR10,
ResNet101&CIFAR100, and ResNet152&CIFAR100 respectively. Accordingly, each row of Fig-
ure 1(a), which is derived from Figure 1(b), demonstrates the training cost ratio (calculating through
number of function queries) of reaching specific loss values (epochs) where the ratio {1, 0.8, 0.6,
0.4, 0.2} are costs of GA reaching {500, 400, 300, 200, 100} epochs. Note that STP requires
three function queries at each iteration whereas other methods need two, so Figure 1(a) simply
counts the ratio of STP as 1.5× original values when deriving from Figure 1(b). We conclude
from Figure 1 that the proposed AS2P outperforms all the baselines, which generally requires 0.5×
training cost of other methods to reach some specific loss values under most settings. See Figure 5
in Appendix D.2 for additional results under similar settings. We also notice that the performances
have no obvious difference between applying random perturbations sampled from normal distribution
and random perturbations sampled from Rademacher distribution. However, both outperform the
methods applying uniform noise, referring to Figure 4 in Appendix D.2. However, the performance
gap between applying different random distributions is not the main focus of this work, so in the
following experiment, we only consider random perturbations sampled from normal distribution.

Performance over fully fine-tuning LLM. Figure 2(b) and Figure 2(c) show the convergence rate of
fully fine-tuning OPT-13B over six language tasks. Figure 2(a) shows the corresponding training cost
ratio of reaching specific loss values (epochs) where the ratio {1, 0.75, 0.5, 0.25} are costs of GA
with cosine decay LR reaching {20000, 15000, 10000, 5000} mini-batch iterations. Besides, extra
baseline GA with a constant learning rate (LR) is added in this experiment, suggested in Malladi et al.
(2023). Overall, Figure 2 shows a large performance improvement of the proposed method AS2P
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Figure 1: Performance comparison with various baselines under common deep models&datasets.

against other methods. Generally, for most tasks, AS2P requires less than 0.5× training costs of other
methods to reach some specific loss values. Specifically, the loss cures between AS2P and STP on
task SQuAD largely overlap, however, the actual training cost ratio between AS2P and STP on task
SQuAD is around 1:1.5 demonstrated by Figure 2(a).
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Figure 2: Convergence rate of full fine-tuning OPT-13B model with methods {GA with constant LR},
{GA, STP, and AS2P with cosine decay LR} on classification tasks {SST-2, RTE}, multiple choice
tasks {Copa, ReCoRD}, and generation tasks {SQuAD, DROP}.

4.2 EFFECTIVENESS OF COMPONENTS IN AS2P

Automatic learning rate and progressive γ-clipping. Further, we verify the effectiveness of two
strategies under pre-trained ResNet18 and CIFAR10. Figure 7(a) shows the convergence rate of AS2P
without (W.O.) automatic learning rate and AS2P without progressive γ-clipping. Compared with
the GA method, the progressive γ-clipping strategy, i.e. AS2P W.O. Auto LR, appears to decrease
the convergence rate during the initial stages of training but bring a smoother cure. In contrast, the
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automatic learning rate strategy, i.e., AS2P W.O. γ-clipping, increases the convergence rate at the
beginning of training. However, it does not show clear advantages in the later stages of training.
The proposed AS2P combined the two strategies manages to strike a balance and converges fast
throughout the entire training phase, referring to Figure 3(b) for the dynamics of learning rate and γ.
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Figure 3: Verification of effectiveness of components in AS2P

Hyper-parameters. Further, AS2P introduces extra hyper-parameters, i.e., ρend, Std Dev(γrecent),
ηa and ηb. We empirically verified that ρend = ρ0/10, ηa = 5, and utilizing the most recent 10% γ
for Std Dev(γrecent) tend to work well across various network architectures and datasets including
common deep models and LLMs, as detailed in Table 3 and Table 4 in Appendix D.1. Moreover,
the research delves into investigating the impact of the hyper-parameter ηb on the convergence rate.
Figure 3(c) shows the convergence rate of AS2P applying varying ηb under pre-trained ResNet18
and CIFAR10. We note that ηb has a relatively significant influence on the convergence rate, which
implies the importance of the interaction between the absolute value and standard deviation of γk.

5 CONCLUSION AND DISCUSSIONS

In this work, we study the complexity of the proposed S2P method under both general and relaxed
smoothness assumptions for gradient-free optimization. Our theoretical analysis induces a variant of
S2P, Accelerated S2P, which exploits our new convergence properties and incorporates our theoretical
findings, that the standard deviation of γ may include second-order information about the objective
function f . Empirical experiments showed that the proposed AS2P outperforms all baseline methods
by a large margin. We note the following important points of discussion.

Justification for ηStd Dev(γrecent). According to studies of clipped gradient descent (Zhang et al.,
2019; Kunstner et al., 2023), when crossing the non-smooth regions of loss landscape where the
top eigenvalue of Hessian might be large, it is necessary to constrain the step size according to
the upper bound of the top eigenvalue of Hessian, the gradient norm. In this context, Theorem 3.3
suggests that ηStd Dev(γrecent) can serve as a well-estimated upper bound on the top eigenvalue of
Hessian. Consequently, it can be used to limit the step size during our symmetric two-point descent,
i.e., αk ∝ 1

ηStd Dev(γrecent)
. What makes this finding intriguing is the phenomenon that it introduces a

practical training acceleration. Existing studies suggest using the upper bound on the top eigenvalue
of Hessian (the gradient norm) to limit step size to safely traverse non-smooth regions, while naive
gradient descent may be too aggressive under the relaxed smoothness assumption. Our work advances
this perspective by showing that αk ∝ 1

ηStd Dev(γrecent)
can not only impose constraints on the step size

along with αk ∝ 1
1/γk+C but also accelerate training process in specific regions. Intuitively, a larger

step size is safely expected when the largest Hessian is small.

Further, this work emphasizes the integration between αk, |γk| and Std Dev(γrecent). It is non-
trivial to consider capturing the interactions through the learning process to avoid tuning hyper-
parameters, especially ηb, for various f or building a more complex relationship instead of such as
αk ∝ 1

ηStd Dev(γrecent)
only. This investigation will lead us to our future work.
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A TECHNICAL LEMMAS

Lemma A.1. ((Zhang et al., 2020) Descent Inequality) Suppose objective function f(·) satisfies
Assumption 2, and c > 0 be a constant. For any xk and xk+1, as long as ||xk − xk+1|| ≤ c

L1
, we

have

f(xk+1) ≤ f(xk) + (xk+1 − xk)
T∇f(xk) +

AL0 +BL1||∇f(xk)||
2

||xk+1 − xk||2 (1)

where A = 1 + ec − ec−1
c , B = ec−1

c . Note that A and B are monotonically increasing functions
w.r.t. c > 0.

Lemma A.2. (Lemma 3.1) For all g ∈ Rd, and random vector s ∼ R where R is the Rademacher
distribution, i.e., each element s ∼ {+1,−1} with equal chances and Es∼R||s||22 = d, then
Es∼R|⟨g, s⟩| ≥ 1√

2
||g||2.

Proof.

|⟨g, s⟩| = |
d∑

i=1

gisi| (2)

According to Khintchine inequality (Khintchine, 1923), i.e.,

Ap(

d∑
i=1

|gi|2)
1
2 ≤ (E|

d∑
i=1

gisi|p)
1
p ≤ Bp(

d∑
i=1

|gi|2)
1
2

where

Ap =

 2
1
2−

1
p 0 < p < p0

2
1
2 (Γ((p+ 1)/2)/

√
π)

1
p p0 < p < 2
1 2 ≤ p < ∞.

Bp =

{
1 0 < p ≤ 2

2
1
2 (Γ((p+ 1)/2)/

√
π)

1
p 2 < p < ∞.

where p0 ≈ 1.847 and Γ is the Gamma function, we have

1√
2
||g||2 ≤ E|

d∑
i=1

gisi| ≤ ||g||2,

Combined with equation 2, we have

1√
2
||g||2 ≤ Es∼R|⟨g, s⟩| ≤ ||g||2.

This completes the proof.

B CONVERGENCE ANALYSIS UNDER THE GENERAL SMOOTHNESS
ASSUMPTION

B.1 PROGRESSIVE BOUND OF S2P

Lemma B.1. (Lemma 3.2) (Progressive bound) Suppose objective function f(·) satisfies Assumption 1
and ||∇f(xk)||2 ≥ ϵg . If we run algorithm 1 with step size α =

√
2ϵg

2Ld , we have following progressive

bound E[f(xk+1)− f(xk)|xk] ≤ −Ω(
ϵ2g
Ld ), where E[·|xk] denotes the conditional expectation w.r.t.

xk.
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Proof. Using L-gradient Lipschitz, we have (descent lemma)

E[f(xk+1)− f(xk)|xk]

≤ E[∇f(xk)
T (xk+1 − xk)|xk] +

L

2
E[||xk+1 − xk||2]

= −αE|∇f(xk)
T sk|+

Lα2

2
E||sk||22 Take updating step

= −αE|∇f(xk)
T sk|+

Lα2d

2

Lemma 2 shows that Esk∼R|∇f(xk)
T sk| ≥ 1√

2
||∇f(xk)||2, then

E[f(xk+1)− f(xk)|xk] ≤ − α√
2
||∇f(xk)||2 +

Lα2d

2

≤ − α√
2
ϵg +

Lα2d

2

To guarantee convergence, α ∼ [0,
√
2ϵg
Ld ], then suppose α =

√
2ϵg

2Ld , we have E[f(xk+1) −
f(xk)|xk] ≤ − ϵ2g

4Ld which completes the proof.

B.2 QUERY COMPLEXITY OF S2P

Theorem B.1. (Theorem 3.1) (Query complexity) Suppose objective function f(·) satisfies Assump-
tion 1. If we run algorithm 1 with step size strategy options 1 or 2, the algorithm returns in expectation
an ϵ-first-order stationary point in O( d

ϵ2 ) function evaluations.

Proof. Using L-gradient Lipschitz, we have (descent lemma)

E[f(xk+1)|xk] ≤ f(xk) + E[∇f(xk)
T (xk+1 − xk)|xk] +

L

2
E[||xk+1 − xk||2]

= f(xk)− αE|∇f(xk)
T sk|+

Lα2

2
E||sk||22 Take updating step

= f(xk)− αE|∇f(xk)
T sk|+

Lα2d

2
(3)

Option 1. Stationary step size

Lemma 2 shows that Esk∼R|∇f(xk)
T sk| ≥ 1√

2
||∇f(xk)||2, then inequality (3) can be reformulated

as

E[f(xk+1)|xk] ≤ f(xk)−
α√
2
||∇f(xk)||2 +

Lα2d

2

Taking expectations in the above inequality w.r.t. sk conditional on xk, and denoting θk =
E[f(xk+1)] and gk = E[||∇f(xk)||2], we have

θk+1 ≤ θk − αgk√
2
+

Lα2d

2

gk ≤
√
2(

θk − θk+1

α
+

Lαd

2
)

K∑
k=0

gk ≤
√
2(

θ0 − θk+1

α
+

KLαd

4
)
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We can conclude that there exists an iteration j ∼ [0,K] such that

gj ≤
√
2(

θ0 − θk+1

αK
+

Lαd

2
)

gj ≤
√
2(

(f(x0)− f⋆)
√
Kd

α0K
+

Lα0

√
d

2
√
K

) By taking α =
α0√
Kd

gj ≤
√
2d√
K

(
(f(x0)− f⋆)

α0
+

Lα0

2
)

Then let
√
2d√
K
( (f(x0)−f⋆)

α0
+ Lα0

2 ) ≤ ϵ, we have

K ≥ 2d

ϵ2
(
(f(x0)− f⋆)

α0
+

Lα0

2
)2,

, which completes the proof for option 1.

Option 2. Dynamic step size

Taking expectations in the above inequality (3) w.r.t. sk conditional on xk, and denoting θk =
E[f(xk+1)], we have

θk+1 ≤ θk − α|∇f(xk)
T sk|+

Lα2d

2
(4)

We know that the best αopt
k = |∇f(xk)

T sk|
Ld , and we can approximate the best step size with αk =

|f(x+ρsk)−f(x−ρsk)|
2ρLd (or αk = α0

|f(x+ρsk)−f(x−ρsk)|
2ρ where α0 = 1

Ld ) where ρ is a scalar.

Before continuing working on the inequality (4), we estimate the error between the best step size and
the approximated step size, |δk| := |αk − αopt

k |, firstly.

|δk| =
1

2ρLd

∣∣|f(x+ ρsk)− f(x− ρsk)| − 2ρ|∇f(xk)
T sk|

∣∣
≤ 1

2ρLd
|f(x+ ρsk)− f(x− ρsk)− 2ρ∇f(xk)

T sk| (5)

=
1

2ρLd
|(f(x+ ρsk)− f(x)− ρ∇f(xk)

T sk)− (f(x− ρsk)− f(x) + ρ∇f(xk)
T sk)|

≤ 1

2ρLd
(
L

2
ρ2||sk||2 +

L

2
ρ2||sk||2) (6)

≤ ρ

2
(7)

Note that inequality (5) applied reverse triangle inequality and inequality (6) applied the equivalent
definitions of L-smooth function |f(x+ ρsk)− f(x)− ρ∇f(xk)

T sk| ≤ L
2 ||ρsk||

2.

Suppose we do take αk = |f(x+ρsk)−f(x−ρsk)|
2ρLd and substitute αk = αopt

k + δk, inequality (4) can be
reformulated as

θk+1 ≤ θk − (αopt
k + δk)|∇f(xk)

T sk|+
L(αopt

k + δk)
2d

2

= θk − |∇f(xk)
T sk|2

Ld
− δk|∇f(xk)

T sk|+
|∇f(xk)

T sk|2

2Ld
+ δk|∇f(xk)

T sk|+
Ldδ2k
2

= θk − |∇f(xk)
T sk|2

2Ld
+

Ldδ2k
2

≤ θk − |∇f(xk)
T sk|2

2Ld
+

Ldρ2

8
Apply inequality (7)

≤ θk − ||∇f(xk)||2

4Ld
+

Ldρ2

8
Apply Lemma 2 (8)

Note that it actually put requirement on ρ to guarantee convergence, i.e., for ρk in each iterations, we
need 0 < ρ ≤

√
2||∇f(xk)||

Ld .
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Continually, inequality (8) further can be re-formulated as

||∇f(xk)||2 ≤ 4Ld(θk − θk+1) +
ρ2

2
K∑

k=0

||f(xk)||2 ≤ 4Ld(θ0 − θk+1) +
Kρ2

2

We can conclude that there exists an iteration j ∼ [0,K] such that

||f(xj)||2 ≤ 4Ld(θ0 − θk+1)

K
+

ρ2

2
≤ 4Ld(f(x0)− f⋆)

K
+

ρ2

2

which further concludes that we need

K ≥ 4Ld(f(x0)− f⋆)

ϵ2 − ρ2

2

, (9)

iterations to reach ϵ-first-order stationary point (||f(xj)|| ≤ ϵ).

Meanwhile, we require that 0 < ρk ≤
√
2||∇f(xk)||

Ld for ρk in each iterations, and it can be set to a
small value universally. E.g., 0 < ρ ≤

√
2ϵ

Ld , then we have K ≥ 4Ld(f(x0)−f⋆)

ϵ2(1− 1
L2d2

)
.

Then, we can safely conclude that the algorithm returns in expectation an ϵ-first-order stationary
point in O( d

ϵ2 ) function evaluations, which completes the proof for option 2.

C CONVERGENCE ANALYSIS UNDER THE RELAXED SMOOTHNESS
ASSUMPTION

C.1 PROGRESSIVE BOUND OF S2P

Lemma C.1. (Lemma 3.3) (Progressive bound) Suppose objective function f(·) satisfies Assump-
tion 2 and ||∇f(xk)||2 ≥ ϵg. If we run algorithm 1 with step size α =

√
2ϵg

2(AL0+BL1ϵg)d
, we have

following progressive bound E[f(xk+1)− f(xk)|xk] ≤ −Ω(
ϵ2g

(AL0+BL1ϵg)d
), where E[·|xk] denotes

the conditional expectation w.r.t. xk, and constants A = 1.01, B = 1.01.

Proof. Give the decent lemma inequality (1), we have

E[f(xk+1)] ≤ f(xk)− αE[gT
k ∇f(xk)] +

AL0 +BL1||∇f(xk)||
2

E[α2||gk||2]

= f(xk)− αE[|sTk∇f(xk)|] +
AL0 +BL1||∇f(xk)||

2
E[α2||sk||2] Take updating step

≤ f(xk)−
α√
2
||∇f(xk)||+ α2AL0 +BL1||∇f(xk)||

2
d Lemma 2 (10)

Suppose ||∇f(xk)|| ≥ ϵg, and to guarantee convergence α ∈ [0,
√
2ϵg

(AL0+BL1ϵg)d
]. Let α =

√
2ϵg

2(AL0+BL1ϵg)d
, we have

E[f(xk+1)] ≤ f(xk)−
ϵ2g

4(AL0 +BL1ϵg)d
.

which completes the proof.

Note that for the specific value of A and B, we have A = 1+ec− ec−1
c , B = ec−1

c and ||xk+1−xk|| =
||αsk|| =

√
2ϵg

2(AL0+BL1ϵg)
√
d
≤ c

L1
→ c ≥

√
2L1ϵg

2(AL0+BL1ϵg)
√
d
→ c ≥ 1√

2dB
→ ec ≥ 1 + 1√

2d
. It is

easy to see that such c exists, we can safely consider A = 1.01, B = 1.01 for simplicity (under large
d) since A and B are expected to be small values.
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C.2 QUERY COMPLEXITY OF S2P

Theorem C.1. (Theorem 3.2) (Query complexity) Suppose objective function f(·) satisfies Assump-
tion 2. If we run algorithm 1 with step size strategy options 3 or 4, the algorithm returns in expectation
an ϵ-first-order stationary point in O( d

ϵ2 ) function evaluations.

Proof. Give the decent lemma inequality (1), we have

E[f(xk+1)] ≤ f(xk)− αE[gT
k ∇f(xk)] +

AL0 +BL1||∇f(xk)||
2

E[α2||gk||2]

= f(xk)− αE[|sTk∇f(xk)|] + α2AL0 +BL1||∇f(xk)||
2

E[||sk||2] Take updating step

(11)

Option 1. Stationary step size

Lemma 2 shows that Esk∼R|∇f(xk)
T sk| ≥ 1√

2
||∇f(xk)||2, then inequality (11) can be reformu-

lated as

E[f(xk+1)] ≤ f(xk)−
α√
2
||∇f(xk)||+ α2AL0 +BL1||∇f(xk)||

2
d

Taking expectations in the above inequality w.r.t. sk conditional on xk, and denoting θk =
E[f(xk+1)] and gk = E[||∇f(xk)||], we have

θk+1 ≤ θk − α√
2
gk + α2AL0 +BL1gk

2
d

gk(

√
2α−Bα2L1d

2
) ≤ θk − θk+1 +

Aα2L0d

2

gk ≤ 2(θk − θk+1)√
2α−Bα2L1d

+
Aα2L0d√

2α−Bα2L1d
K∑

k=0

gk ≤ 2(θ0 − θk+1)√
2α−Bα2L1d

+
KAα2L0d√
2α−Bα2L1d

We can conclude that there exists an iteration j ∼ [0,K] such that

gj ≤
2(θ0 − θK+1)

(
√
2α−Bα2L1d)K

+
Aα2L0d√

2α−Bα2L1d

≤ 2(f(x0)− f⋆)

(
√
2α−Bα2L1d)K

+
Aα2L0d√

2α−Bα2L1d
(12)

Suppose α =
√
2

BL1

√
dK

, inequality (12) can be reformulated as

gj ≤
B(f(x0)− f⋆)L1

√
d√

K −
√
d

+
AL0

√
d

BL1(
√
K −

√
d)

.

Under this setting, we can see that the gj can be continually decreased with at least K > d, which
further shows that it need

K ≥ (
√
d+

AL0

√
d+BL1(f(x0)− f⋆)

√
d

ϵ
)2

iterations to reach ϵ-first-order stationary point. Then, we can safely conclude that the algorithm
returns in expectation an ϵ-first-order stationary point in O( d

ϵ2 ) function evaluations, which completes
the proof for option 1.

Note that for the specific value of A and B, we have A = 1+ec− ec−1
c , B = ec−1

c and ||xk+1−xk|| =
||αsk|| =

√
2

BL1

√
K

≤ c
L1

→ c ≥
√
2

B
√
K

→ ec ≥ 1 +
√

2
K . It is easy to see that such c exists, we can
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safely consider A = 1.01, B = 1.01 for simplicity (under large d) since A and B are expected to be
small values.

Option 2. Dynamic step size

Taking expectations in the above inequality (11) w.r.t. sk conditional on xk, and denoting θk =
E[f(xk+1)], we have

θk+1 ≤ θk − α|sTk∇f(xk)|+ α2AL0 +BL1||∇f(xk)||
2

d

≤ θk − α|sTk∇f(xk)|+ α2AL0 +
√
2BL1|sTk∇f(xk)|

2
d. (13)

It is easy to know that αopt
k = |sT∇f(xk)|

(AL0+
√
2BL1|sT∇f(xk)|)d

. Let |γk| = |f(xk+ρsk)−f(xk−ρsk)|
2ρ , and we

approximate the best step size with αk = |γk|
(AL0+

√
2BL1|γk|)d

and denote the approximation error as

|δk| := |αk − αopt
k |.

Before we continue working on the inequality (13), we derive the upper bound of |δk| for our following
analysis. Firstly, we denote |ϵρ| :=

∣∣|sT∇f(xk)|−|γk|
∣∣ = ∣∣|sT∇f(xk)|− |f(xk+ρsk)−f(xk−ρsk)|

2ρ

∣∣ =
O(ρ2d3/2) (Taylor expansion). So that, we can define |ϵρ| ≤ ξρ2d3/2 where ξ is a constant associated
with third-order property of f . Note d3/2 is the compensation of normalizing s.

Specifically, we try to prove |δk| ≤ |ϵρ|. We define a new function g(x) = x
AL0+

√
2BL1x

, then to

prove |δk| ≤ |ϵρ| is equivalent to prove |g(|sT∇f(xk)|)− g(|γk|)| ≤ d
∣∣|sT∇f(xk)| − |γk|

∣∣, further
it is equivalent to prove g′(x) = AL0

(AL0+
√
2BL1x)

≤ d when x ≥ 0, which is obviously true. Overall,

we have approximation error |δk| ≤ ξρ2d3/2.

Then, we continue our analysis. Suppose we do take step size αk = |γk|
(AL0+

√
2BL1|γk|)d

and substitute

αk = αopt
k + δk, then inequality (13) can be re-formulate as

θk+1 ≤ θk − (αopt
k + δk)|sTk∇f(xk)|+ (αopt

k + δk)
2AL0 +

√
2BL1|sTk∇f(xk)|

2
d

= θk − ||sT∇f(xk)||2

(AL0 +
√
2BL1|sT∇f(xk)|)d

− |sT∇f(xk)|δk +
||sT∇f(xk)||2

2(AL0 +
√
2BL1|sT∇f(xk)|)d

+
AL0 +

√
2BL1|sTk∇f(xk)|

2
dδ2k + |sT∇f(xk)|δk

≤ θk − ||sT∇f(xk)||2

2(AL0 +
√
2BL1|sT∇f(xk)|)d

+
(AL0 +

√
2BL1|sTk∇f(xk)|)d

2
δ2k

≤ θk − ||∇f(xk)||2

4(AL0 +
√
2BL1||∇f(xk)||)d

+
(AL0 +

√
2BL1||∇f(xk)||)d

2
δ2k Apply Lemma 2

(14)

Condition 1

Suppose 1 −
√
2BL1 ≥ 0 and ||∇f(xk)|| ≥ AL0 +

√
2BL1||∇f(xk)||, inequality (14) can be

reformulated as

θk+1 ≤ θk − ||∇f(xk)||
4d

+
||∇f(xk)||d

2
δ2k

Meanwhile, suppose |δk| ≤ ξρ2d3/2 ≤ 1
2d , we have

||∇f(xk)|| ≤ 8d(θk − θk+1)

K∑
k=0

||∇f(xk)|| ≤ 8d(θ0 − θk+1)

18
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We can conclude that there exists an iteration j ∼ [0,K] such that

||∇f(xj)|| ≤
8d(θ0 − θk+1)

K

||∇f(xj)|| ≤
8d(f(x0)− f⋆)

K

which concludes that we need

K ≥ 8d(f(x0)− f⋆)

ϵ
(15)

iterations to reach ϵ-first-order stationary point.

Condition 2

Suppose 1 −
√
2BL1 ≥ 0 and ||∇f(xk)|| ≤ AL0 +

√
2BL1||∇f(xk)||, we have ||∇f(xk)|| ≤

AL0

1−
√
2BL1

. Meanwhile, suppose |δk| ≤ ξρ2d3/2 ≤ ||∇f(xk)||
2(AL0+

√
2BL1||∇f(xk)||)d

, then inequality (14)
can be reformulated as

θk+1 ≤ θk − ||∇f(xk)||2

8(AL0 +
√
2BL1

AL0

1−
√
2BL1

)d

||∇f(xk)||2 ≤ (θk − θk+1)
8AL0d

1−
√
2BL1

K∑
k=0

||∇f(xk)||2 ≤ (θ0 − θk+1)
8AL0d

1−
√
2BL1

We can conclude that there exists an iteration j ∼ [0,K] such that

||∇f(xj)||2 ≤ 8AL0d(θ0 − θk+1)

(1−
√
2BL1)K

||∇f(xj)|| ≤

√
8AL0d(f(x0)− f⋆)

(1−
√
2BL1)K

,

which concludes that we need

K ≥ 8AL0d(f(x0)− f⋆)

(1−
√
2BL1)ϵ2

iterations to reach ϵ-first-order stationary point.

Condition 3

Suppose 1−
√
2BL1 ≤ 0 and ||∇f(xk)||2 ≤ ( AL0

1−
√
2BL1

)2. Meanwhile, suppose |δk| ≤ ξρ2d3/2 ≤
||∇f(xk)||

2(AL0+
√
2BL1||∇f(xk)||)d

, then inequality (14) can be reformulated as

θk+1 ≤ θk − ||∇f(xk)||2

8(AL0 +
√
2BL1| AL0

1−
√
2BL1

|)d

||∇f(xk)||2 ≤ (θk − θk+1)
8AL0d(2

√
2BL1 − 1)√

2BL1 − 1
K∑

k=0

||∇f(xk)||2 ≤ (θ0 − θk+1)
8AL0d(2

√
2BL1 − 1)√

2BL1 − 1

We can conclude that there exists an iteration j ∼ [0,K] such that

||∇f(xj)||2 ≤ 8AL0d(θ0 − θk+1)(2
√
2BL1 − 1)

(
√
2BL1 − 1)K

||∇f(xj)|| ≤

√
8AL0d(f(x0)− f⋆)(2

√
2BL1 − 1)

(
√
2BL1 − 1)K

,
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which concludes that we need

K ≥ 8AL0d(f(x0)− f⋆)(2
√
2BL1 − 1)

(
√
2BL1 − 1)ϵ2

(16)

iterations to reach ϵ-first-order stationary point.

Condition 4

Suppose 1−
√
2BL1 ≤ 0 and ||∇f(xk)||2 ≥ ( AL0

1−
√
2BL1

)2. Meanwhile, suppose δk ≤ ξρ2d3/2 ≤
||∇f(xk)||

2(AL0+
√
2BL1||∇f(xk)||)d

, then inequality (14) can be reformulated as

θk+1 ≤ θk −
( AL0

1−
√
2BL1

)2

8(AL0 +
√
2BL1||∇f(xk)||)d

(17)

Since
(

AL0
1−

√
2BL1

)2

8(AL0+
√
2BL1||∇f(xk)||)d

is a monotone decreasing function w.r.t. ||∇f(xk)||, then we can
conclude that the loss function cannot be indicator of reaching ϵ-first-order stationary points. However,
with an appropriate selection of parameters, the loss function can be minimized. I.e.,

θk+1 ≤ θk −
( AL0√

2BL1−1
)2

8(AL0 +
√
2BL1

AL0√
2BL1−1

)d

θk+1 ≤ θk − AL0

8(2
√
2BL1 − 1)(

√
2BL1 − 1)d

θk+1 ≤ θ0 − (K + 1)
AL0

8(2
√
2BL1 − 1)(

√
2BL1 − 1)d

f(xk)− f⋆ ≤ f(x0)− f⋆ −K
AL0

8(2
√
2BL1 − 1)(

√
2BL1 − 1)d

,

which concludes that we need

K ≥ 8(2
√
2BL1 − 1)(

√
2BL1 − 1)(f(x0)− f⋆ − ϵ)d

AL0

iterations to reach local ϵ-optimal point.

We summarize the results over all conditions in Table 2.

Conditions[b] requirement over ρ[a] Query complexity

L1 ≤ 1√
2B

, ||∇f(x)|| ≥ AL0

1−
√

2BL1
ρ ≤ 1

d
√

2ξ
√
d

8d(f(x0)−f⋆)
ϵ

L1 ≤ 1√
2B

, ||∇f(x)|| ≤ AL0

1−
√

2BL1
ρ ≤ 1

d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8AL0d(f(x0)−f⋆)

(1−
√
2BL1)ϵ2

L1 ≥ 1√
2B

, ||∇f(x)|| ≤ AL0√
2BL1−1

ρ ≤ 1
d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8AL0d(f(x0)−f⋆)(2
√
2BL1−1)

(
√
2BL1−1)ϵ2

L1 ≥ 1√
2B

, ||∇f(x)|| ≥ AL0√
2BL1−1

ρ ≤ 1
d

√
ϵ

2ξ(AL0+
√
2BL1ϵ)

√
d

8(2
√
2BL1−1)(

√
2BL1−1)(f(x0)−f⋆−ϵ)d
AL0

[a] ξ is a constant associated with third-order property of f , detailed in appendix inequality (13).
[b] For forth condition, reaching local ϵ-optimal point instead of ϵ-first-order stationary point, detailed in appendix in-

equality (17).

Table 2: With dynamic step size strategy, the convergence property of f under relaxed smoothness.

Note that for the specific value of A and B, we have A = 1+ec− ec−1
c , B = ec−1

c and ||xk+1−xk|| =
||αsk|| = γk

(AL0+
√
2BL1γk)

√
d
≤ c

L1
→ c ≥ 1

B
√
2d

→ ec ≥ 1 + 1√
2d

. It is easy to see that such c

exists, we can safely consider A = 1.01, B = 1.01 for simplicity (under large d) since A and B are
expected to be small values.
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C.3 BOUND OF GRADIENT NORM OF S2P

Theorem C.2. (Theorem 3.3) Suppose objective function f(·) satisfies Assumption 2. Then the
gradient norm ||∇f(xk)|| can be bounded in expectation as

|γ| − ρd(AL0 +BL1||∇f(x)||) ≤ ||∇f(x)|| ≤
√
2|γ|+

√
2ρd(AL0 +BL1||∇f(x)||)

where |γ| = |f(x+ρs)−f(x+ρs)|
2ρ . Constants A = 1.01, B = 1.01 when ρ ≤ 0.001

2L1

√
d

Proof.

||∇f(x)|| ≤ E[
√
2|sT∇f(x)|] = E[

1√
2ρ

|2ρsT∇f(x)|] (18)

= E[
1√
2ρ

|
(
f(x+ ρs)− f(x− ρs)

)
−
(
f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)

)
|]

≤ E[
√
2
|f(x+ ρs)− f(x− ρs)|

2ρ
+

1√
2ρ

|f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)
)
|]

=
√
2|γ|+ 1√

2ρ
E[|f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)

)
|]

≤
√
2|γ|+ 1√

2ρ

AL0 +BL1||∇f(x)||
2

E[||2ρs||2] (19)

=
√
2|γ|+

√
2ρd(AL0 +BL1||∇f(x)||).

Note inequality (18) applies Lemma A.2, inequality (19) applies Lemma A.1. And the same with the
following proof.

||∇f(x)|| ≥ E[|sT∇f(x)|] = E[
1

2ρ
|2ρsT∇f(x)|]

= E[
1

2ρ
|
(
f(x+ ρs)− f(x− ρs)

)
−

(
f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)

)
|]

≥ E[
|f(x+ ρs)− f(x− ρs)|

2ρ
− 1

2ρ
|f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)

)
|]

= |γ| − 1

2ρ
E[|f(x+ ρs)− f(x− ρs)− 2ρsT∇f(x)

)
|]

≥ |γ| − 1

2ρ

AL0 +BL1||∇f(x)||
2

E[||2ρs||2]

≥ |γ| − ρd(AL0 +BL1||∇f(x)||).

Note that for the specific value of A and B, we have A = 1+ec− ec−1
c , B = ec−1

c and ||xk+1−xk|| =
||(x + ρs) − (x − ρs)|| = ||2ρs|| = 2ρ

√
d ≤ c

L1
→ c ≥ 2ρL1

√
d. It is easy to see that such c

exists, we can safely consider ρ ≤ 1
2L1d

, then we have c ≥ 1√
d

. It is easy to see such c exists, we set
A = 1.01, B = 1.01 for simplicity.
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D EXPERIMENTS

D.1 SETUP

For experiment over common deep models and datasets, we do grid search for initial learning rate α0

over list {2e-4, 1e-4, 8e-5, 5e-5, 2e-5, 1e-5} and for smoothing parameter ρ0 over list {1e-3, 5e-4,
1e-4, 5e-5, 1e-5} with all methods. We average the results across 5 random seeds.

Note the selected hyper-parameters directly apply to sign variants. The tunable hyper-parameters are
summarized in Table 3.

Hyper-parameter Arc.&Dataset Method
GA AS2P STP

α0

ResNet18&CIFAR10 2.0e-5 - 2.0e-4
ResNet50&CIFAR10 1.0e-5 - 2.0e-4

ResNet101&CIFAR100 2.0e-5 - 1.0e-4
ResNet152&CIFAR100 2.0e-5 - 1.0e-4

LR scheduler All Cosine decay

ρ0

ResNet18&CIFAR10 1e-3 1e-3 -
ResNet50&CIFAR10 1e-3 5e-4 -

ResNet101&CIFAR100 5e-4 5e-4 -
ResNet152&CIFAR100 5e-4 5e-4 -

ρend All - ρ0/10 -

ηa All - 5 -

ηb

ResNet18&CIFAR10 - 5 -
ResNet50&CIFAR10 - 5 -

ResNet101&CIFAR100 - 3 -
ResNet152&CIFAR100 - 5 -

Std Dev(γrecent) All - 10% -

Table 3: Summary of hyper-parameters used in experiments over common deep models and datasets.
It shows that AS2P has extra hyper-parameters ρend, ηa, ηb, and Std Dev(γrecent). Basically, those
hyper-parameters are unnecessary to tune within above deep models and datasets.

For the experiment over LLM, the six text tasks follow the original settings exactly (Malladi et al.,
2023), which randomly samples 1,000 examples and 500 examples for training and validation
respectively for each task. We get the results with a fixed random seed. Specifically, for the learning
rate and smoothing parameter, we apply the best values mentioned in Malladi et al. (2023) for GA.
Then, AS2P directly applies the value of smoothing parameter ρ0 from GA and only needs to tune
one hyper-parameter ηb. For STP method, we search the best α0 from list {5e-5, 2e-5, 1e-5, 5e-6
,1e-6, 1e-7}. The details of hyper-parameters are summarized in Table 4, which shows that only ηb is
necessary to update among all four extra hyper-parameters ρend, ηa, ηb, and Std Dev(γrecent) of AS2P
compared with experiments about common deep models&datasets.

Hyper-parameter Task Method
GA GA constant AS2P STP

α0

SST-2

1e-7 1e-7 - 2e-5

RTE
Copa

ReCoRD
SQuAD
DROP

LR scheduler All Cosine decay Constant value Cosine decay Cosine decay

ρ0 All 1e-3 1e-3 1e-3 -
ρend All - - ρ0/10 -
ηa All - - 5 -
ηb All - - 50 -

Std Dev(γrecent) All - - 10% -

Table 4: Summary of hyper-parameters used in experiments over LLM. Basically, AS2P needs to
tune ηb, and the selected values are robust across varying tasks.
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D.2 ADDITIONAL EXPERIMENTS

Table version of Figure 1(a) and Figure 2(a). The base of training cost ratio, e.g., {1, 0.8, 0.6, 0.4,
0.2}, normalizes the number of function queries when base method GA reaches {500, 400, 300, 200,
100} epochs with some specific loss values. Then, the training cost ratio aligns with the ratio between
the number of function queries of the base method and other methods reaching the same loss values.

Task Method Training cost ratio

ResNet18&CIFAR10
GA 1 0.80 0.60 0.40 0.20
STP 1 1 0.80 0.43 0.17

AS2P 0.56 0.52 0.39 0.24 0.10

ResNet50&CIFAR10
GA 1 0.80 0.60 0.40 0.20
STP 0.98 0.87 0.54 0.14 0.05

AS2P 0.40 0.36 0.27 0.14 0.05

ResNet101&CIFAR100
GA 1 0.80 0.60 0.40 0.20
STP 0.93 0.85 0.61 0.37 0.14

AS2P 0.39 0.36 0.28 0.17 0.07

ResNet152&CIFAR100
GA 1 0.80 0.60 0.40 0.20
STP 0.63 0.59 0.45 0.25 0.10

AS2P 0.32 0.31 0.24 0.14 0.06

Table 5: Training cost ratio of reaching specific loss values under common deep models&datasets.

Task Method Training cost ratio

SST-2

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.47 0.50 0.38 0.23

STP cosine decay LR 0.38 0.38 0.30 0.19
AS2P cosine decay LR 0.17 0.17 0.15 0.10

RTE

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.35 0.35 0.30 0.12

STP cosine decay LR 0.03 0.03 0.03 0.03
AS2P cosine decay LR 0.03 0.03 0.03 0.03

Copa

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.47 0.47 0.40 0.23

STP cosine decay LR 0.26 0.26 0.23 0.11
AS2P cosine decay LR 0.10 0.10 0.07 0.05

ReCoRD

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.42 0.42 0.42 0.23

STP cosine decay LR 0.23 0.23 0.19 0.07
AS2P cosine decay LR 0.05 0.05 0.05 0.03

SQuAD

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.65 0.65 0.53 0.30

STP cosine decay LR 0.23 0.23 0.23 0.15
AS2P cosine decay LR 0.15 0.15 0.12 0.07

DROP

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.42 0.47 0.40 0.23

STP cosine decay LR 0.34 0.34 0.30 0.19
AS2P cosine decay LR 0.15 0.17 0.15 0.10

Table 6: Training cost ratio of reaching specific loss values when fully fine-tuning OPT-13B model
under various tasks.

Figure 4: Performance comparison between applying different noise distributions such as Normal
distribution, Rademacher distribution, and Uniform distribution.
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Figure 5: Convergence rate of pre-trained ResNet18&CIFAR100 and pre-trained
ResNet50&CIFAR100.
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Figure 6: Verification of effectiveness of proposed method under pre-trained ResNet101&CIFAR100.
Left-side figure demonstrated the convergence rate of AS2P without (W.O.) automatic learning rate
and without progressive γ-clipping. Right-side two figures demonstrate the dynamics of learning rate
and γ;
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Figure 7: Under ResNet18 and CIFAR10, the performance of GA with the different number of
symmetric perturbations for each update. The left-side figure shows performance under the varying
number of symmetric random perturbation per update where the number of function query for each
setting are the same. The right-side figure demonstrates that under varying training settings, the
convergence of GA with 10 symmetric random perturbations for gradient approximation per update.
Basically, we can conclude that one symmetric symmetric random perturbation per update converges
to smaller loss values under the same number of function queries.

0 100 200 300 400 500
Number of epochs

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Lo
ss

 v
al

ue
s

GA
GA_2
GA_4
GA_10

(a) Same initial LR and LR scheduler

0 10 20 30 40 50
Number of epochs

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Lo
ss

 v
al

ue
s

GA_10
GA_10_LR_5e-5_eps_1e-3
GA_10_LR_2e-5_eps_2e-3
GA_10_LR_5e-5_eps_2e-3
GA_10_LR_1e-5_eps_1e-3
GA_10_LR_2e-5_eps_5e-4
GA_10_LR_1e-5_eps_5e-4

(b) Varying α and ρ under GA 10.

Figure 8: Performance comparison under VGG11 and CIFAR10. The left-side figure demonstrates
the dynamics of training loss; The right-side figure demonstrates the training cost ratio of reaching the
same specific loss values. The proposed method AS2P converges faster than other baseline methods
and nearly requires 0.5× number of queries to reach the same specific loss values. Note that the
hyper-parameters directly follow the setting of ReSNet18&CIFAR10 in Table 3.
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Figure 9: Performance comparison with various baselines under common deep models&datasets
where the x-axis is the number of function queries. This figure is adopted from Figure 1.
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Figure 10: Performance comparison with full fine-tuning OPT-13B model where the x-axis is the
number of function queries. This figure is adopted from Figure 2.
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Figure 11: Corresponding validation performance of Figure 1(b) under setting ResNet18&CIFAR10
and ResNet101&CIFAR100. Using one seed only.
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