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ABSTRACT

Low-Rank Adaptation (LoRA), a cornerstone of parameter-efficient fine-tuning
(PEFT), relies on the core assumption that weight updates are inherently low-rank.
We challenge this premise, revealing that this low-rank approximation systemat-
ically neglects a significant and highly structured residual, which we term the
missing profile. To harness this insight, we introduce Profile-Decomposed Adap-
tation (ProDA), a novel method that captures this residual using highly efficient,
axis-aligned vectors. Critically, instead of treating this component as a static error
to be corrected, ProDA integrates it multiplicatively, allowing it to dynamically
re-scale and modulate the primary low-rank update. Our extensive experiments
validate the effectiveness of this approach. ProDA establishes a new state-of-the-
art on commonsense reasoning benchmarks and, remarkably, surpasses even full
fine-tuning on the GLUE benchmark, suggesting it can act as a powerful regular-
izer that fosters generalizability. Moreover, on complex generative tasks where
standard LoRA falters, ProDA dramatically narrows the performance gap to full
fine-tuning. These findings validate our central thesis: the structured residual in
PEFT is not mere noise, but a rich signal for synergistic exploitation.

1 INTRODUCTION

Parameter-Efficient Fine-Tuning (PEFT) has become indispensable for adapting Large Language
Models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Chang et al., 2024), which are pre-
dominantly based on the Transformer architecture (Vaswani et al., 2017) and whose immense scale
renders full fine-tuning computationally infeasible. In response, a spectrum of PEFT techniques has
emerged. These range from methods that add tunable soft prompts (Lester et al., 2021) or prefixes (Li
& Liang, 2021) to the input, to those that insert small adapter modules (Houlsby et al., 2019) or tune
only bias terms (Zaken et al., 2021). Among these, Low-Rank Adaptation (LoRA) (Hu et al., 2021)
has become a dominant paradigm due to its effectiveness and efficiency.

The success of LoRA has inspired a thriving ecosystem. This includes efficiency-focused methods
like QLoRA (Dettmers et al., 2024) and, critically, new architectural variants that question LoRA’s
core mechanism. For instance, recent works like DoRA (Liu et al., 2024) and PiSSA (Meng et al.,
2024) propose decomposing the pre-trained weights themselves to refine the adaptation process.
Despite these advances, the community’s central hypothesis has remained anchored to a single prin-
ciple, inspired by findings on intrinsic dimensionality (Aghajanyan et al., 2020): that the weight
update matrix (∆W ) can be effectively captured by a low-rank approximation. This foundational
assumption, however, has been largely accepted without rigorous empirical validation.

In this work, we argue that focusing solely on the low-rank component, as illustrated by the prin-
ciple in Figure 1, is a critical limitation. We posit that the low-rank hypothesis is systematically
incomplete. We find that the true weight update, ∆W , is not purely low-rank. Instead, it is a com-
posite of a dominant low-rank matrix and a substantial, highly structured residual that prior methods
inherently fail to capture. We term this component the delta profile, representing what has been
the conceptual ”missing profile” in prior adaptation frameworks. While Figure 1 visualizes the as-
sumption we challenge, the extensive experiments in the subsequent sections provide the definitive
empirical evidence for this structural gap and the power of modeling it.
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Figure 1: Singular value spectrum of the Low-Rank Adaptation (LoRA) principle, comparing a pre-
trained weight matrix (W0) with its update matrix (∆WLoRA). The spectrum of ∆WLoRA confirms
its explicitly low-rank nature by decaying sharply at the specified rank (r = 128), in stark contrast
to the high-rank profile of the original weights. This visualization exemplifies the foundational low-
rank hypothesis that our work re-examines and extends.

This discovery recasts the problem: the goal is not merely to refine the low-rank update, but to
model the complete decomposition of the weight delta itself. To this end, we introduce Profile-
Decomposed Adaptation (ProDA), a framework that captures and synergistically integrates both
components. ProDA first learns the missing profile using an extremely efficient parameterization.
More critically, it moves beyond a simple additive patch by introducing a multiplicative, input-
dependent mechanism. This allows the profile to act as a dynamic gate, modulating the low-rank
update on a per-token basis and enabling a genuine synergistic collaboration.

Our contributions are threefold:

• We are the first to systematically demonstrate that the true weight update is a composite
structure, revealing the incompleteness of the conventional low-rank hypothesis and iden-
tifying the delta profile as the key overlooked component.

• We propose ProDA, a novel PEFT method that directly models this decomposition of the
weight update, synergistically integrating the profile and the low-rank component via a
computationally efficient multiplicative mechanism.

• We conduct extensive experiments showing that ProDA establishes a new state-of-the-art
across diverse benchmarks, surpassing strong baselines, including LoRA (Hu et al., 2021),
DoRA (Liu et al., 2024), and PiSSA (Meng et al., 2024), thereby validating our thesis that
this previously overlooked component is not noise, but a rich, exploitable signal.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting foundation
models without the prohibitive costs of full fine-tuning. The field has progressed through three
key approaches. First, additive methods insert lightweight modules, such as Adapters (Houlsby
et al., 2019), between a model’s frozen transformer blocks. Second, prompt-based tuning freezes
the entire model and optimizes continuous ”soft prompts” prepended to the input sequence (Lester
et al., 2021; Li & Liang, 2021). The third and arguably most influential paradigm, reparameterizing
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weight updates, is pioneered by Low-Rank Adaptation (LoRA) (Hu et al., 2021)—the central focus
of our work. LoRA is predicated on the observation that the weight update (∆W ) has a low intrinsic
rank; by approximating it with a low-rank decomposition, LoRA achieves a compelling trade-off
between performance and efficiency that has established it as a foundational technique.

Our work is situated within a recent wave of research that, acknowledging the limitations of the
original low-rank hypothesis, seeks to enhance LoRA’s expressiveness. One significant line of re-
search focuses on improving the core low-rank decomposition itself, with methods like DoRA (Liu
et al., 2024) improving stability and SVD-inspired approaches like PiSSA (Meng et al., 2024) find-
ing a better low-rank basis. Other directions introduce more dynamism, such as AdaLoRA (Zhang
et al., 2023) which adaptively allocates ranks, or aim to better align the training dynamics with full
fine-tuning, as explored in LoRA-GA (Wang et al., 2024b) and LoRA-Pro (Wang et al., 2024c).
The third key direction, which our work advances, involves augmenting the LoRA update. While
antecedent methods like LoRA+ (Hayou et al., 2024a) propose simple scalar corrections, ProDA’s
contribution is fundamentally different. Rather than adding a simple scalar, we identify and model
the structured residual inherent in the LoRA approximation—the ”delta profile.” By parameterizing
this profile with efficient row and column vectors, inspired by early vector-based methods (Zaken
et al., 2021; Liu et al., 2022), and crucially, by engineering a synergistic, multiplicative interaction
between this profile and the low-rank update, ProDA provides a more holistic and principled model
of the true weight delta.

3 METHODOLOGY: A SYNERGISTIC VIEW OF PROFILE-DECOMPOSED
ADAPTATION

Our methodology is built upon a key insight: the weight update matrix ∆W in fine-tuning exhibits
a structure that is not fully captured by the low-rank hypothesis alone. We argue that ∆W can be
decomposed into a dominant low-rank component, which forms the basis of LoRA (Hu et al., 2022),
and a structured component we term the delta profile. This section first revisits LoRA to ground
our discussion, then progressively develops our method, ProDA, by first modeling this profile as
a simple additive correction and subsequently evolving this concept into a synergistic formulation
where the profile dynamically modulates the low-rank adaptation process itself.

3.1 PRELIMINARIES: REVISITING LOW-RANK ADAPTATION (LORA)

Parameter-Efficient Fine-Tuning (PEFT) methods adapt large pre-trained models by training only a
small fraction of their parameters. Among these, Low-Rank Adaptation (LoRA) (Hu et al., 2022)
is motivated by the observation that the weight update matrix, ∆W , for a pre-trained weight matrix
W0 ∈ Rdout×din , often has a low intrinsic rank (Aghajanyan et al., 2020). Consequently, LoRA
approximates ∆W with a low-rank decomposition, ∆W ≈ BA, where B ∈ Rdout×r, A ∈ Rr×din ,
and the rank r ≪ min(dout, din). During adaptation, W0 remains frozen while only A and B are
trained. The forward pass is modified as:

y = W0x+ s ·BAx (1)

where x ∈ Rdin , y ∈ Rdout , and s is a scaling hyperparameter. A key advantage of LoRA is its
inference efficiency; the learned matrices B and A can be merged into W0 (W ′ = W0 + s · BA),
introducing zero additional latency.

3.2 PRINCIPLE 1: THE DELTA PROFILE AS AN ADDITIVE CORRECTION

Our central hypothesis is that the low-rank approximation ∆W ≈ BA is incomplete, leaving a
structured residual we call the delta profile, P . Thus, the true update can be more accurately
represented as ∆W = BA + P . As our first principle, we model this profile in its most direct
form: a global structural offset. We hypothesize this offset can be efficiently parameterized by axis-
aligned components, namely a column vector bc ∈ Rdout and a row vector br ∈ Rdin . While other
methods also employ vector-based adaptations (Zaken et al., 2021; Liu et al., 2022), our formulation
is distinct as it is explicitly derived from modeling the residual of the low-rank hypothesis. The
resulting additive profile is:

Padd = bc1
T
din

+ 1doutb
T
r (2)
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We opt for this rank-2 outer product formulation for two primary reasons. First, parameter effi-
ciency: this structure captures global, axis-aligned biases using only din + dout parameters, which
is a highly efficient method for modeling row-wise and column-wise corrective signals. Second,
structural intuition: this form can be interpreted as learning a global ”vertical” and ”horizontal”
adjustment for the entire weight matrix W0, correcting for systematic shifts that the low-rank up-
date BA inherently neglects. It serves as a powerful yet simple first-order approximation of the
structured residual error.

Combining this with LoRA provides a baseline that applies a static correction for the global error
components missed by the low-rank update:

ystatic = W0x+ s ·BAx+ (bc1
T
din

+ 1doutb
T
r )x (3)

This additive model provides a first-order correction for LoRA’s approximation error. However, it
treats the low-rank update and the profile correction as two independent processes. This raises a
fundamental question: Should the profile’s role be confined to a static offset, or can it play a more
integral part in the adaptation process?

3.3 PRINCIPLE 2: THE PROFILE AS A SYNERGISTIC MODULATOR

We posit that a more expressive and powerful adaptation model must capture the interdependence
between the low-rank and profile components. Instead of only providing a static correction, the delta
profile P should also dynamically modulate the low-rank update BA. This principle of conditional
computation, where one component’s output shapes the behavior of another, has proven effective in
contexts such as feature modulation (Perez et al., 2018).

To achieve this, we formulate a synergistic update rule where the profile contributes both additively
and multiplicatively. This leads to our final Profile-Decomposed Adaptation (ProDA) formulation:

∆WProDA = BA︸︷︷︸
Low-Rank Update

+ P︸︷︷︸
Additive Profile

+ γ ⊙ (BA⊙ P )︸ ︷︷ ︸
Modulated Interaction

(4)

where P = bc1
T
din

+ 1doutb
T
r , ⊙ denotes the Hadamard product, and γ is a learnable gating mecha-

nism that controls the strength of the modulation. This gate combines a global scalar γglobal with an
input-dependent term: γ = γglobal + σ(Controller(x)). To minimize parameter overhead, the ‘Con-
troller(x)‘ is implemented as a lightweight network. Specifically, it consists of a two-layer MLP
with a down-projection to a small bottleneck dimension dbottle and an up-projection back to a scalar
output:

Controller(x) = Wup · ReLU(Wdownx) (5)
where Wdown ∈ Rdbottle×din and Wup ∈ R1×dbottle . The complete forward pass for ProDA is a unified
computation:

yProDA = (W0 +∆WProDA)x (6)
This formulation elevates the delta profile from a simple corrective term to an integral, dynamic
modulator of the fine-tuning process. It enables a richer and more expressive adaptation than what is
achievable with independent components. For inference, the static components of ProDA—namely,
the low-rank update BA and the additive profile P—can be merged into the original weights. The
modulated interaction term introduces a minimal, input-dependent computational path, a trade-off
we find favorable given the significant gains in expressiveness and performance.

Parameter Analysis. For a weight matrix W0 ∈ Rdout×din , LoRA introduces NLoRA = r(din+dout)
trainable parameters. Our ProDA method extends this by adding Nprofile = dout + din parameters for
the profile vectors and Ncontroller = dindbottle + dbottle + 1 parameters for the controller (defined in
Eq. 5). The total parameter count is thus NProDA = NLoRA + Nprofile + Ncontroller. Given that r and
dbottle are small, NProDA remains significantly smaller than the din×dout parameters of the full matrix,
preserving the core efficiency of PEFT methods.

4 EXPERIMENTS

This section presents a comprehensive evaluation of our proposed method, ProDA. Our experiments
are designed to validate three central claims: 1) ProDA demonstrates superior performance com-
pared to state-of-the-art PEFT methods across a diverse set of challenging language tasks. 2) Our
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core scientific premise—the ”low-rank + profile” structure of the weight delta—is empirically sound
and is the primary source of ProDA’s effectiveness. 3) Each component within the ProDA frame-
work contributes meaningfully to the final performance, as demonstrated through rigorous ablation
studies.

4.1 EXPERIMENTAL SETUP

Models and Datasets To validate ProDA’s versatility, we conduct experiments across both
decoder-only and encoder-only architectures. For decoder models, we use LLaMA-2-
7B (AI@Meta, 2023) and its successor LLaMA-3-8B (AI@Meta, 2024), which are prominent open-
source autoregressive models. To assess generalization to natural language understanding (NLU),
we employ the widely-used encoder model, RoBERTa-base (Liu et al., 2019).

Our evaluation spans three distinct benchmark suites designed to test a wide range of capabilities:
(1) Commonsense Reasoning: We use a broad collection of eight datasets to measure general rea-
soning, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018). (2) Natural Language Understanding: We use the stan-
dard GLUE benchmark (Wang et al., 2018) for a comprehensive NLU evaluation. (3) Complex
Generative Tasks: To test performance on more demanding generative reasoning, we use MT-
Bench (Zheng et al., 2024) for evaluating conversational abilities, GSM8K (Cobbe et al., 2021) for
multi-step mathematical reasoning, and HumanEval (Chen et al., 2021) for code generation.

Compared Methods We benchmark ProDA against a comprehensive set of baselines. Our prac-
tical upper bound is Full Fine-Tuning (Full FT), which updates all model parameters. The founda-
tional baseline is LoRA (Hu et al., 2021), upon which our work is built. We also compare against
a diverse set of state-of-the-art LoRA variants. These include DoRA (Liu et al., 2024), which de-
composes weights into magnitude and direction; PiSSA (Meng et al., 2024), which uses principal
singular vectors for initialization; AdaLoRA (Zhang et al., 2023), which adaptively allocates pa-
rameter budgets; Delta-LoRA (Zi et al., 2023), which re-parameterizes the update; and other strong
competitors such as DyLoRA (Valipour et al., 2022), MELoRA (Ren et al., 2024), rsLoRA (Kala-
jdzievski, 2023), LoRA+ (Hayou et al., 2024b), and LoRA-GA (Wang et al., 2024a).

Implementation Details We implemented our experiments in PyTorch using the Hugging Face
Transformers library. All models were fine-tuned on NVIDIA L40 GPUs. Across all experiments,
we used the AdamW optimizer (Loshchilov & Hutter, 2019) with a linear learning rate scheduler fea-
turing a 10% warmup phase. Following standard practice, we applied ProDA’s adaptation modules
to all linear layers within the transformer blocks (i.e., the query, key, value, and output projections).
For ProDA, the default LoRA rank was set to r = 8 with a scaling factor α = 16 and a dropout of
0.05. The additive profile vectors and the global modulation scalar were zero-initialized, while the
controller’s weights were Kaiming-initialized.

We tailored hyperparameters for different model families to ensure optimal performance. For
RoBERTa-base (Liu et al., 2019) on GLUE, we used a learning rate of 2 × 10−4 and trained
for 3 epochs with a batch size of 32 and a maximum sequence length of 512. For LLaMA mod-
els (AI@Meta, 2023; 2024) on generative tasks, we used a lower learning rate of 3 × 10−5 for
greater stability. To accommodate the larger model size, we employed a per-device batch size of 4
with 8 gradient accumulation steps, achieving an effective batch size of 32. Training was conducted
for 3 epochs with a sequence length of 2048.

To ensure a fair comparison, all baseline methods were trained under identical settings for each task
family. All reported results are the mean and standard deviation (± std. dev.) from three runs with
different random seeds to guarantee statistical robustness.

4.2 EXPERIMENTS AND ANALYSIS

We conduct a comprehensive set of experiments to validate ProDA and answer three central ques-
tions. First, what is the empirical evidence for the ”delta profile” that motivates our work? Second,
how does ProDA perform against state-of-the-art PEFT methods across diverse tasks and model ar-
chitectures? Finally, what is the individual contribution of each component in our proposed synergis-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tic design? We address these questions in the subsequent sections, providing a thorough validation
of our approach.

Table 1: Main results on eight commonsense reasoning benchmarks for the LLaMA family. We
compare ProDA against strong PEFT baselines. The best-performing method is in bold and the
second-best is underlined. LoRA and DoRA results are from Liu et al. (2024).

Model Method BoolQ PIQA SIQA Hella
Swag

Wino
Grande ARC-e ARC-c OBQA Avg.

ChatGPT 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA2-7B

LoRA 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
PiSSA 75.0 87.0 81.6 95.0 86.5 88.5 75.9 86.4 84.5
ProDA 75.7 86.9 83.2 95.8 87.8 89.2 76.9 88.1 85.5

LLaMA3-8B

LoRA 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
PiSSA 77.2 90.0 82.9 96.6 88.4 93.6 82.4 87.4 87.3
ProDA 77.1 90.5 83.3 97.2 89.6 93.4 83.9 89.2 88.0

4.2.1 MAIN RESULTS ON COMMONSENSE REASONING

We first evaluate ProDA on a diverse suite of eight challenging commonsense reasoning bench-
marks. The results, presented in Table 1, demonstrate that ProDA sets a new state-of-the-art for
parameter-efficient fine-tuning. On the LLaMA-2-7B model, ProDA achieves an average score of
85.5, decisively outperforming the strong PiSSA (Meng et al., 2024) baseline by 1.0 point and the
foundational LoRA (Hu et al., 2021) method by a significant 7.9 points. This substantial margin
provides a resounding validation of our central thesis: explicitly modeling the structured delta pro-
file is not an incremental tweak, but a critical and previously overlooked component for effective
adaptation.

Crucially, this performance advantage is not an isolated finding but is consistently reinforced on
the more advanced LLaMA-3-8B architecture, underscoring the robustness and scalability of our
approach. Here, ProDA secures the top average score of 88.0, maintaining a clear advantage over
both the highly competitive PiSSA (Meng et al., 2024) (+0.7) and DoRA (Liu et al., 2024) (+2.8)
baselines. This consistent superiority across model generations strongly suggests that ProDA’s archi-
tectural principle—modeling the synergistic interplay between the low-rank update and its structural
residual—is a more fundamental and generalizable approach than existing methods. By capturing
and leveraging this intricate relationship, ProDA consistently unlocks a higher performance ceiling,
establishing a new and compelling standard for the field.

Table 2: Performance comparison on the GLUE benchmark using RoBERTa-base. ProDA is evalu-
ated against Full Fine-Tuning and other PEFT methods. For each task, the best result is in bold and
the second-best is underlined. All baseline results are sourced from Ren et al. (2024).

Method MRPC RTE CoLA STS-B SST-2 QQP QNLI MNLI Avg.
Full FT 88.2 84.1 64.6 90.6 94.3 92.0 92.7 87.5 86.8
LoRA 89.9 85.9 62.4 91.4 94.4 90.8 92.6 86.9 86.8
DyLoRA 89.5 84.5 61.1 91.1 94.3 90.2 92.2 86.3 86.2
AdaLoRA 90.2 85.2 61.6 91.2 94.5 90.1 93.1 87.3 86.7
Delta-LoRA 90.2 87.0 63.8 91.6 95.1 90.9 93.1 87.5 87.5
MELoRA 90.9 86.6 64.1 91.9 95.4 90.8 93.2 87.2 87.5
ProDA 91.7 88.1 65.6 92.4 95.7 91.5 93.9 87.6 88.3
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4.2.2 GENERALIZATION TO ENCODER ARCHITECTURES AND NLU TASKS

To test the generality of our approach beyond decoder-only models, we evaluated ProDA on the
GLUE benchmark using a RoBERTa-base (Liu et al., 2019) encoder architecture. The results, pre-
sented in Table 2, are striking. ProDA achieves an average score of 88.3, not only outperforming all
other parameter-efficient baselines, including the strong MELoRA and Delta-LoRA (Zi et al., 2023)
methods (+0.8 points), but more remarkably, surpassing full fine-tuning by a significant 1.5-point
margin. This counter-intuitive result suggests ProDA acts not merely as a parameter-efficient proxy
for full adaptation, but as a potent regularizer, potentially preventing the overfitting that can occur
during full fine-tuning.

A deeper look at the per-task breakdown reveals the source of this dominant performance. ProDA’s
superiority does not stem from a high variance across tasks, but from broad-based excellence. It
achieves the top score on seven of the eight GLUE tasks, spanning diverse capabilities from seman-
tic similarity (MRPC) to natural language inference (RTE) and grammatical acceptability (CoLA).
The only exception is QQP, where full fine-tuning’s access to the complete parameter space confers
a slight advantage. This pattern of consistent, top-tier performance strongly supports our central
hypothesis. The synergistic interplay between the low-rank update and the structural delta profile
provides a more robust and universally applicable adaptation trajectory, enhancing a wide range of
NLU capabilities simultaneously. By constraining the adaptation to a decomposed, low-dimensional
manifold, ProDA effectively filters out noise and task-specific artifacts, forcing the model to learn
more generalizable features. This demonstrates that the principles of profile-decomposed adaptation
are foundational, leading to a more fundamentally capable model.

Table 3: Evaluating ProDA’s capabilities in generative reasoning and coding. This table compares
PEFT methods against the full fine-tuning of LLaMA-2-7B on three key benchmarks: dialogue
simulation (MT-Bench), mathematical problem-solving (GSM8K), and code synthesis (HumanEval
Pass@1). We also investigate ProDA’s performance scalability by increasing its rank capacity.
Scores are the mean (± std. dev.) of three runs, with the top two results highlighted in bold and with
an underline.

Method MT-Bench GSM8K HumanEval Avg.
Full FT 5.30±0.11 59.36±0.85 35.31±2.13 33.32
LoRA (r = 8) 5.61±0.10 42.08±0.04 14.76±0.17 20.82
DoRA (r = 8) 5.97±0.02 53.07±0.75 19.75±0.41 26.26
AdaLoRA (r = 8) 5.57±0.05 50.72±1.39 17.80±0.44 24.70
PiSSA (r = 8) 5.30±0.02 44.54±0.27 16.02±0.78 21.95
rsLoRA (r = 8) 5.25±0.03 45.62±0.10 16.01±0.79 22.29
LoRA+ (r = 8) 5.71±0.08 52.11±0.62 18.17±0.52 25.33

LoRA-GA (r = 8) 5.95±0.16 53.60±0.30 19.81±1.46 26.45
LoRA-GA (r = 32) 5.79±0.09 55.12±0.30 20.18±0.19 27.03
LoRA-GA (r = 128) 6.13±0.07 55.07±0.18 23.05±0.37 28.08

ProDA (r = 8) 6.12±0.28 54.35±0.52 21.14±0.33 27.20
ProDA (r = 32) 6.32±0.24 55.58±0.47 21.23±0.64 27.71
ProDA (r = 128) 6.42±0.37 56.43±0.76 23.28±0.40 28.71

4.2.3 PERFORMANCE ON COMPLEX GENERATIVE REASONING TASKS

We now assess ProDA on a suite of complex generative reasoning tasks, with results detailed in
Table 3. The findings confirm ProDA’s decisive superiority in this demanding arena. Even at a con-
strained rank of 8, ProDA achieves an average score of 27.20, the highest among all rank-8 PEFT
methods. This is driven by strong performance across all tasks, including the challenging conversa-
tional and instruction-following capabilities measured by MT-Bench. The remarkable +6.38 point
average lead over the standard LoRA (Hu et al., 2021) is a powerful testament to our core thesis:
for intricate generative tasks, merely capturing a low-rank update is insufficient. ProDA’s explicit
modeling of the global delta profile provides the critical expressive power that these tasks demand.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

More compellingly, ProDA exhibits exceptional performance scaling, beginning to challenge the
dominance of full fine-tuning. As the rank capacity is increased to 128, ProDA’s average score
climbs to 28.71. This dramatically narrows the performance gap to Full Fine-Tuning to just 4.61
points—a stark contrast to the 12.5-point chasm for the standard LoRA (Hu et al., 2021). This
impressive scaling, particularly on the difficult GSM8K and HumanEval benchmarks, showcases
that ProDA is not simply an efficient proxy but a potent adaptation framework in its own right. It
provides a highly effective and scalable path toward achieving near full fine-tuning performance on
complex generative tasks, without incurring the prohibitive costs of full model training.

4.2.4 ABLATION STUDY OF PRODA COMPONENTS

To isolate the contributions of ProDA’s core components, we conducted a rigorous ablation study,
with results presented in Table 4. This analysis validates our two-principle design by progressively
building from a LoRA (Hu et al., 2021) baseline to the full ProDA model.

Table 4: Detailed ablation analysis of ProDA’s components on LLaMA-2-7B (rank 8). The study
starts with a LoRA baseline and sequentially introduces the additive profile, followed by the syner-
gistic interaction, to quantify the performance contribution of each. Both components are shown to
be critical for achieving the final performance.

Method Configuration Commonsense Avg. GSM8K
(1) LoRA (Baseline) 77.6 42.1

(2) + Additive Profile 84.2 51.9
(3) + Synergistic Interaction (Full ProDA) 85.5 54.4

The results unequivocally demonstrate the impact of each proposed component. First, incorporating
only the additive profile (Row 2) yields a substantial performance leap over the LoRA baseline (Row
1), boosting the Commonsense Reasoning average by 6.6 points and the GSM8K score by a notable
9.8 points. This large gain confirms that modeling the structural residual is critical. Second, the
subsequent introduction of the synergistic interaction term (Row 3) delivers further crucial gains,
adding another 1.3 points to the Commonsense average and 2.5 points to GSM8K, thereby cement-
ing the full ProDA model’s superior performance. This two-step improvement provides compelling
evidence for our central thesis: while the additive profile corrects for a major deficiency in LoRA, it
is the dynamic, synergistic modulation that unlocks the model’s full potential.

5 CONCLUSION

In this work, we challenge the prevailing low-rank hypothesis in parameter-efficient fine-tuning,
positing that it provides an incomplete picture of the weight update process. We identify and em-
pirically validate the existence of a systematic structural error in the widely-used LoRA approxi-
mation—a component we term the ”delta profile.” Our central contribution, ProDA, is a new PEFT
framework that moves beyond merely augmenting LoRA to offer a more principled and complete
model of the true weight delta. ProDA achieves this by first learning this profile directly, and crit-
ically, by modeling the synergistic, multiplicative interaction between this profile and the low-rank
update.

Our extensive experiments empirically validate ProDA’s superiority, establishing a new state-of-
the-art for PEFT across diverse architectures and a wide spectrum of tasks, from commonsense
reasoning to demanding generative reasoning. Strikingly, ProDA’s performance can even surpass
that of full fine-tuning, suggesting it acts as a powerful regularizer. The core message of this work
is that the future of parameter-efficient adaptation lies not in refining the low-rank component in
isolation, but in holistically modeling the complete structure of the fine-tuning delta. The ”missing
profile” is not a peripheral error to be minimized, but a rich, structured signal to be synergistically
exploited.
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6 APPENDIX

6.1 REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we will release all source code, fine-tuned ProDA adapters, and ex-
periment scripts under an Apache 2.0 license on GitHub upon publication. Our implementation is
built upon PyTorch, Hugging Face Transformers, and PEFT, and was run on NVIDIA L40 GPUs.
All experiments were conducted on publicly available models from the Hugging Face Hub (e.g.,
LLaMA-2/3, RoBERTa-base) and standard benchmarks (e.g., GLUE, GSM8K), using their of-
ficial data splits. Key hyperparameters are detailed in Section 4.1. All reported metrics are the mean
and standard deviation from three independent runs with different random seeds to ensure statistical
robustness.

LLM USAGE STATEMENT

In refining the prose of this manuscript, we employed a large language model (LLM) for assistance.
Its application was restricted to proofreading and improving the clarity of our writing. We affirm
that all intellectual contributions—from the formulation of the central hypothesis and the design
of ProDA, to the analysis of the results—are entirely our own. We take full accountability for the
content and findings of this research.
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