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Abstract

Training retrieval models to fetch contexts for001
Question Answering (QA) over large corpora002
requires labeling relevant passages in those003
corpora. Since obtaining exhaustive manual004
annotations of all relevant passages is not fea-005
sible, prior work uses text overlap heuristics006
to find passages that are likely to contain the007
answer, but this is not feasible when the task008
requires deeper reasoning and answers are not009
extractable spans (e.g.: multi-hop, discrete rea-010
soning). We address this issue by identifying011
relevant passages based on whether they are012
useful for a trained QA model to arrive at the013
correct answers, and develop a search process014
guided by the QA model’s loss. Our experi-015
ments show that this approach enables identi-016
fying relevant context for unseen data greater017
than 90% of the time on the IIRC dataset and018
generalizes better to the end QA task than019
those trained on just the gold retrieval data on020
IIRC and QASC datasets.021

1 Introduction022

Answering questions over a large text corpus typ-023

ically requires retrieving information relevant to024

the question from the corpus, which is then used025

by a Question Answering (QA) model to arrive at026

the answer. Recent work (Guu et al., 2020; Lewis027

et al., 2020; Ni et al., 2020) relies on retrieval mod-028

els that learn dense representations of questions029

and retrieval candidates (Karpukhin et al., 2020;030

Khattab and Zaharia, 2020) trained separately or031

jointly with the QA model. These learned retrieval032

models are more effective than those that use sim-033

ple word overlap signals (Robertson and Zaragoza,034

2009; Chen et al., 2017), but they require the posi-035

tive retrieval targets for each question labeled. It is036

often difficult, if not impossible, to exhaustively la-037

bel all the facts relevant to answering a question in038

a large corpus of text. Consequently, even when the039

datasets provide retrieval labels, it is often the case040

that there exist alternative paths to the answer that041

Gold
The digestive system breaks 
food into nutrients.

Q: The digestive system breaks food down into what?
a) meals         b) fats         c) fuel d) strength    …

Nutrients are fuel for 
your body.

Alternate Fact 1
Carbohydrate breaks down 
into glucose in the digestive 
system.

Alternate Fact 2
All carbohydrate foods 
become glucose, fuel 
for the body.

After a meal the digestive 
system breaks some food 
down into glucose.

Glucose, a simple 
sugar, is the body’s 
main fuel.

Properly digested food is 
our body’s fuel.

Food supplies fuel in 
the form of nutrients.

Figure 1: Retrieval annotations (gold) are often incomplete,
only providing one of many relevant contexts. Alternative
contexts can provide different views of the same information,
providing more robust training data.

are not labeled (Jhamtani and Clark, 2020), an ex- 042

ample of which is shown in Figure 1. The common 043

heuristic of considering all contexts that contain 044

mentions of the answer span (Clark and Gardner, 045

2018; Lee et al., 2019a) does not work when the 046

QA task is not extractive (e.g.: when the answers 047

are binary or require some numerical computation). 048

We propose to address this issue by augmenting 049

the set of labeled retrieval targets with additional 050

candidates that are not labeled as positive, but still 051

provide sufficient information to answer the corre- 052

sponding questions. Given question-answer pairs, 053

and a QA model trained to maximize the likelihood 054

of the correct answers conditioned on the labeled 055

retrieval targets and the questions, we search for 056

alternative contexts that also make the correct an- 057

swers likely. Concretely, our search process finds 058

those contexts not labeled as gold, that minimize 059

the loss of the QA model. We consider these con- 060

texts as alternative retrieval targets, and train the 061

retrieval model with the combination of these al- 062

ternative contexts and the gold labeled contexts as 063
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positives. Our method is particularly effective for064

non-extractive QA tasks since it does not rely on065

answer-span overlaps.066

We evaluate our approach on two multi-hop067

QA tasks, IIRC (Ferguson et al., 2020) and068

QASC (Khot et al., 2019), and show that our search069

for relevant contexts guided by the performance of070

the QA model correctly identifies a relevant context071

91% of the time on IIRC and 84% of the time on072

QASC (Table 2a). Augmenting the retrieval train-073

ing data with the results from our search process074

increases recall on unseen questions, leading to an075

improvement in the downstream QA performance076

by 0.5 F1 points on IIRC and 2.1 accuracy points077

on QASC (Section 3.2).078

2 Method079

Overview and Problem Our approach uses the080

standard two-step pipeline for open-domain QA081

seen in prior work. We first run a retrieval model082

that takes as input a question, q, and a large corpus083

of passages, C, and outputs a small subset of those084

passages, c ⊂ C, that contains sufficient informa-085

tion to answer the question. This subset is then086

passed to the second step: the QA model. This087

model takes as input the same question, q, and sub-088

set of passages, c, from the first step, and outputs an089

answer, a. Depending on the data, this answer can090

take many forms, such as a span from the context,091

a number, yes/no, or none of these if the question092

is unanswerable.093

For each question, there may be many valid sets094

of context passages, where each set1 contains all095

the information necessary to answer the question.096

We refer to individual sets as c∗i , and the superset097

of all such sets as c∗ = {c∗1 . . . c∗n}. As seen in098

Figure 1, these different context sets may express099

different reasoning paths reaching the answer, or100

they may contain different ways of expressing the101

same reasoning path. However, most datasets just102

contain annotations of one such set per question,103

c∗i . Our goal is to use these annotations to identify104

alternate, unannotated, relevant context, c̄ ∈ c∗ \105

{c∗i }, for each question. These additional contexts106

is used to augment the retrieval training data.107

Approach The goal of the retrieval model is108

to identify context that maximizes the probabil-109

ity of the correct answer when given to the QA110

model. When supervised data, c∗i , is available,111

1We apply our approach to datasets containing questions
that require multiple facts to answer, so we label sets of facts.

this is achieved by training the retrieval model 112

to predict the input that the QA model is trained 113

on i.e., θr = arg maxθ P (c∗i |q, θ), and θq = 114

arg maxθ P (a|q, c∗i , θ), where the retriever and the 115

QA models are parameterized by θr and θq. We 116

refer to this initial QA model as the base QA model. 117

When supervised data is not available, we can iden- 118

tify the retrieved contexts ĉ, by searching over the 119

corpus for the contexts that maximize the probabil- 120

ity of the correct answer under the base QA model: 121

122

ĉ = arg max
c⊂C

P (a|q, c, θq) (1) 123

Based on this, for each question, we search over 124

the corpus for the top k contexts, ĉ1 . . . ĉk, and add 125

them as additional data augmentation when training 126

a new retrieval model: 127

θ̂r = arg max
θ

P (c∗i |q, θ) +
k∑
j=1

P (ĉj |q, θ) (2) 128

Lastly, we train a final QA model using the gold 129

context, including the results of this new retrieval 130

model to incorporate the updated training and make 131

it more robust to noise: 132

cr = arg max
c∈C

P (c|q, θ̂r)

θ̂q = arg max
θ

P (a|q, {c∗i , cr}, θ)
(3) 133

Labeling sets of facts Because we apply our ap- 134

proach to datasets containing questions that require 135

multiple facts to answer, we need to label sets of 136

facts, not individual ones. For this reason, we train 137

our base QA models conditioned on sets of facts, 138

and while both labeling new contexts with the base 139

QA model, and retrieving contexts, we use beam 140

search to output sets of facts. In order to prevent the 141

base QA model from memorizing the gold contexts, 142

we use a 10-fold cross-labeling approach.2 143

3 Experiments 144

We show the effect of our approach on two multi- 145

hop QA datasets: IIRC (Ferguson et al., 2020) and 146

QASC (Khot et al., 2019). 147

3.1 Datasets and Setup 148

IIRC is a multi-hop QA open QA dataset, consist- 149

ing of a mix of yes/no questions, span selection 150

questions, unanswerable questions, and questions 151

2We train ten models, each on 90% of the data, and use
them to label the remaining 10%.
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requiring discrete reasoning such as arithmetic or152

counting. Each question is associated with a para-153

graph, and requires both information from that para-154

graph, as well as information from one or more155

pages linked to from within that paragraph.156

QASC is a multiple-choice, multi-hop QA dataset157

constructed from a corpus of 17M facts. Each ques-158

tion is written by composing two facts from the159

corpus, and includes eight answer choices.160

eQASC (Jhamtani and Clark, 2020) includes a161

more exhaustive annotation of relevant contexts162

for QASC questions and enables a more accurate163

evaluation of retrieval performance on QASC.164

Evaluation We report recall@10 and the final165

QA performance results that provide a more reli-166

able evaluation of the retrieval performance. For167

eQASC, we use mean-average precision (MAP) of168

the positive examples.169

Implementation Details Following prior work170

on IIRC (Ni et al., 2020), we adopt a pipeline ap-171

proach consisting of three steps: link selection us-172

ing RoBERTa-base, retrieval, and answer selection173

using NumNet++ (Ran et al., 2019). For QASC, we174

initially filter the corpus using the two-step BM25175

described in (Khot et al., 2019), selecting the top176

1000 pairs of facts per answer choice. Similar177

to IIRC, we then select the top 10 pairs using a178

RoBERTa-base bi-encoder. Final QA model sep-179

arately scores each answer choice using another180

RoBERTa-base model, and computes a softmax to181

get the final distribution over the choices.182

3.2 Comparisons and Results183

We compare our approach of identifying additional184

relevant context using QA loss with other retrieval185

baselines and alternate augmentation methods.186

BM25: We use the top results from BM25 in lieu187

of training a supervised model with the annotated188

data. This is a commonly used heuristic when no189

retrieval annotations are available.190

SupA Models are trained using just the annotated191

training data with no additional data provided.192

SupA+BM25 We augment the annotated training193

data with the top results from querying the corpus194

using BM25 with the question and answer.195

SupA+R We augment the annotated training data196

with the top retrieval results conditioned on the197

question and correct answer. As in the QA-loss198

labeling approach, we use a 10-fold labeling proce-199

dure to prevent memorizing the annotated context.200

Approach QASC IIRC eQASC
R@10 Acc R@10 F1 MAP

BM25 45.1 71.9 18.0 42.0 36.0
SupA 46.1 71.8 39.5 51.1 41.9
SupA + BM25 41.7 69.3 38.0 49.2 40.3
SupA + R 46.2 71.5 39.3 51.0 35.4
SupA + QA 47.8 73.9 40.3 51.6 43.7

Prior Work - 71.9 - 50.6 -

Table 1: Comparison of different retrieval models. R@10 and
MAP are direct evaluations of retrieval performance, Acc is
the performance of the final QA model trained given retrieval
results. For IIRC, prior work is the state-of-the-art model (Ni
et al., 2020) that uses the same QA model as our work. For
QASC, prior work is RoBERTa-base model that uses the same
model size as ours and is trained and evaluated on the same
data used by (Khashabi et al., 2020).

Main Results Table 1 compares our approach, 201

SupA+QA, with the baselines and prior work.3 Our 202

approach results in improved performance on both 203

datasets with a larger improvement on QASC over 204

the baseline compared to IIRC. This is likely due 205

to the fact that QASC has a much larger number of 206

alternate contexts per question compared to IIRC 207

(discussed below in oracle analysis). We generally 208

see a correlation between retrieval recall of the gold 209

annotations, performance on eQASC, and down- 210

stream accuracy, indicating that providing more 211

accurate context to the downstream model does 212

help with QA performance. 213

We manually labeled the accuracy of the top re- 214

sult for 100 questions for each approach (results 215

in table 2a). We can see that using the QA model 216

to label data significantly outperforms the other 217

two approaches. In table 2b we also further break 218

down the accuracy based on the different types 219

of questions in IIRC. Our approach works well 220

on Binary and Numeric questions, where the span 221

heuristic cannot be applied. Our approach also out- 222

performs the it on Span Selection questions, where 223

the answer is a span from the context. Although 224

the heuristic can be applied on these questions, it 225

often returns false positives. Our approach strug- 226

gles with Span Compare questions, as discussed in 227

more detail in Error Analysis below. 228

Oracle Analysis Figure 2c shows an oracle study 229

of the same 100 questions from the previous section 230

to determine how many alternate contexts were 231

available in each dataset. For IIRC, we considered 232

3The state-of-the-art model (Khashabi et al., 2020) for
QASC uses roughly 100x more parameters than us (with the
results 89.6), but the same model with a comparable size
as ours is significantly worse, 50.8. Therefore, we use the
best-performing model that has the same size as ours.
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Approach IIRC QASC

BM25 38 41
Retrieval 39 45
QA Loss 91 84

(a)

Question type QA Span

Binary 100 -
Numeric 78 -
Span Selection 97 77
Span Compare 50 -

(b) (c)

Table 2: (a) Manual analysis Accuracy of different approaches based on manual analysis on 100 examples for different context
labeling approaches, (b) comparing span-selection retrieval baseline with our approach for different question types, and (c)
Comparison of the number of relevant contexts in each dataset.

Q: Which play was published first?     A: A Midsummer Night’s Dream

Main context
… started his career in 1988 replacing 
Audi Vice Champion Frank Biela …

Q: How many championships had Biela won?     A: 10
Gold
His greatest achievements include 
winning: 1991 … 1993 … 

QA-loss
Biela comfortably won the title … being 
classified in the top ten …

BM25
After winning the ALMS 
series…

Main context
… performed in productions 
of Hamlet and A Midsummer 
Night’s Dream …

BM25
Shakespeare in the Arb has published…

To die, to sleep, is that all?

Main context
… and was expanded during 
the Seven Years’ War …

Q: What year did the war begin?     A: 1756
Gold
The Seven Years’ War … fought 
between 1756 and 1763

QA-loss
It is called the Seven Years’ War 
(1756 – 1763).

BM25
Pitt was the head of the government 
from 1756 to 1761, and…

Gold
written between 1599/1602.

written in 1595/1596.

QA-loss
Set in Denmark, the play depicts Prince Hamlet…

Usually dated 1595 or early 1596.

Figure 2: Example errors of our approach in IIRC. Relevant context is highlighted in green, and irrelevant context is in red.

all sentences from the gold articles, and for QASC233

we considered the top twenty sentences according234

to BM25. QASC has a much higher ceiling for this235

form of data augmentation, as can be seen by the236

fact that 70% of questions have multiple relevant237

contexts, compared to IIRC where many questions238

have only a single context. Additionally, many of239

the questions in IIRC with exactly 2 contexts share240

a similar structure, seen in the third example in241

Figure 2. Although our approach is often able to242

identify this alternate context, using it to augment243

the data does not add much new information.244

Error Analysis Figure 2 shows examples of245

problems our approach encounters in IIRC. The246

first question requires the model to count occur-247

rences of an event, but the QA model instead se-248

lects context containing a textual expression of the249

answer. The second question is a span compare250

example. The model has to identify context con-251

taining attributes of two entities mentioned in the252

original paragraph, but takes a shortcut and and253

only selects context for the correct answer.254

4 Related Work255

Most similar to our work are recent approaches256

using weak supervision for learning to retrieve for257

QA, using only questions and answers. Lee et al.258

(2019b) pretrain a retrieval model using an inverse259

cloze task. Zhao et al. (2021) more recently pro-260

posed to iteratively improve a retrieval model using 261

hard-EM. Both approaches filter the data using the 262

answer span heuristic. This heuristic breaks down 263

on multi-hop questions, as well as questions that 264

are not answerable by spans, such as true/false or 265

discrete reasoning questions. Izacard and Grave 266

(2021) and Yang and Seo (2021) propose using 267

knowledge distillation to incorporate QA informa- 268

tion into a supervised retriever, and while assum- 269

ing access to retrieval annotations, Ni et al. (2020) 270

jointly learn retrieval and QA by marginalizing over 271

potential contexts. All three of these approaches re- 272

quire encoding all potential contexts together with 273

the question, whereas ours does not have that re- 274

quirement, making ours more memory-efficient. 275

5 Conclusion 276

This work shows that using the loss of a QA model 277

trained on a partial set of labeled contexts to search 278

for alternative contexts for retrieval is an effective 279

method for augmenting the retriever’s training data. 280

Our results present a more label-efficient training 281

scheme for building supervised retrievers for QA. 282

They also suggest that creators of datasets for open 283

QA tasks that require supervised retrievers can bet- 284

ter allocate their annotation budgets by obtaining 285

retrieval labels for a small set of questions while 286

maximizing the number of question-answer anno- 287

tations. 288
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