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Abstract001

Controllable Dialogue Generation (CDG) en-002
ables chatbots to generate responses with de-003
sired attributes, and weighted decoding meth-004
ods have achieved significant success in the005
CDG task. However, using a fixed constant006
value to manage the bias of attribute proba-007
bilities makes it challenging to find an ideal008
control strength that satisfies both controllabil-009
ity and fluency. To address this issue, we pro-010
pose ECO decoding (Entropy-based COntrol),011
which dynamically adjusts the control strength012
at each generation step according to the model’s013
entropy in both the language model and at-014
tribute classifier probability distributions. Ex-015
perimental results on DailyDialog and Multi-016
WOZ datasets show that our method achieves017
improved control accuracy while maintaining018
fluency and grammar, outperforming previous019
decoding methods across various models and020
settings. Furthermore, ECO decoding allevi-021
ates probability interpolation issues in multi-022
attribute generation, demonstrating its robust023
performance in both single and multi-attribute024
scenarios.025

1 Introduction026

Recently, Controllable Dialogue Generation (CDG)027

(Zhang et al., 2023; Zeng et al., 2023) has been028

proposed to enhance the realism and accuracy of029

responses generated by conversational models, im-030

proving the user experience. CDG enables chatbots031

to generate responses tailored to desired attributes032

like emotion and dialog-act.033

In the field of controllable generation, training-034

based methods such as alignment tuning and035

weighted decoding approaches (Yang and Klein,036

2021; Arora et al., 2022) have achieved notable suc-037

cess. While alignment tuning requires re-training038

large models from scratch, weighted decoding can039

be applied at inference time by multiplying the at-040

tribute probabilities from a trained classifier with041

Figure 1: Controllable Dialog Generation method based
on dynamic weighting with Eco Decoding. By dynam-
ically determining the weights between the language
model probability distribution and the attribute con-
trol probability distribution, it is possible to perform
attribute control while maintaining fluency.

the language model distribution. This design en- 042

ables controlled response generation with mini- 043

mal additional data and training overhead, mak- 044

ing weighted decoding an appealing strategy for 045

CDG. Consequently, we focused on this weighted 046

decoding strategy to effectively generate control- 047

lable responses. 048

In weight decoding methods, generating re- 049

sponses controlled by desired attributes involves 050

the adjustment of the next token probability dis- 051

tribution modeled by the language model. This is 052

achieved by multiplying the attribute probability of 053

the generated response obtained from the attribute 054

classifier and the next token probability. In this pro- 055

cess, the control strength is used as the exponent 056

of the attribute probability to control attribute bias. 057

As the control strength increases, the generated to- 058

kens become more dependent on the token rank of 059

attribute probability. 060

Multiplying the attribute probability alters the 061

probability distribution of the language model, 062

which can affect language modeling performance. 063

When static control strength is used, the same con- 064

trol probability is continuously reflected in the gen- 065

erated sentence, even if the sentence has already 066
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received sufficient attribute control or if specific067

words need to be generated for fluency. This can068

lead to a trade-off between controllability and flu-069

ency. Furthermore, the fact that the appropriate con-070

trol strength varies depending on the situation is an071

important issue. If this is not properly accounted072

for, it can lead to decreased efficiency. Figure 1073

shows an example of a failed response generation074

with these fixed static control strength.075

To address this, we propose ECO (Entropy-076

based COntrol strength) Decoding, which dynami-077

cally adjusts control strength at each decoding step.078

Specifically, we compute the entropy (Shannon,079

2001) of both the language model’s probability dis-080

tribution and the attribute classifier’s distribution081

at every step. If the language model assigns high082

probability (low entropy) to a particular token, we083

prioritize the model’s prediction to preserve flu-084

ency. In contrast, when the model exhibits low085

confidence (high entropy), we increase the rela-086

tive weight of the attribute probabilities to ensure087

stronger attribute control. Notably, our analysis088

result using part-of-speech (POS) in Appendix A.1089

demonstrates that function words with fixed gram-090

matical roles often yield lower entropy, whereas091

content words (e.g., nouns, verbs, adjectives) show092

higher entropy. This aligns with our intuition that093

words with higher uncertainty provide more lee-094

way for attribute manipulation without significantly095

compromising fluency.096

This dynamic control method effectively bal-097

ances the language model’s fluency with the at-098

tribute classifier’s controllability, thereby achiev-099

ing an optimal trade-off between naturalness and100

the desired attribute expression in the final gen-101

erated sentences. To validate our intuition, we102

experiment with three existing controllable gen-103

eration models using the DailyDialog (Li et al.,104

2017) dataset and MultiWOZ (Budzianowski and105

Casanueva, 2018) dataset. Experimental results106

demonstrate that ECO decoding achieves high con-107

trollability while maintaining text fluency across108

all models.109

Our main contributions are as follows:110

1. We raise the issue of static control strength111

in existing weighted decoding methods and112

propose a dynamic control strength approach113

to generate responses with high controllability114

as well as maintain fluency.115

2. We show that ECO Decoding can be general-116

ized to multi-attribute scenarios, alleviating117

probability interpolation issues that are com- 118

monly to single-attribute weighted decoding 119

methods. 120

3. Experimental results show that the ECO 121

decoding method outperforms the existing 122

weighted decoding methods for all existing 123

controllable generation models. 124

2 Related Work 125

2.1 Weighted Decoding 126

Controllable dialogue generation aims to gener- 127

ate a response, R = {r1, r2, ..., rN}, with desired 128

attributes, given dialogue history h and attribute 129

c, using a pre-trained auto-regressive model (e.g. 130

GPT2, (Radford et al., 2019), DialoGPT (Zhang 131

et al., 2020)). Emotion and dialog-act can be at- 132

tributes for controllable dialogue generation. 133

To condition on attribute c, the response genera- 134

tion given a dialogue can be formulated as follows: 135

P (R|h, c) =
N∏
i=1

P (ri|r<i, h, c) (1) 136

Using Bayesian factorization, P (ri|r<i, h, c) can 137

be converted into the following equation. 138

P (ri|r<i, h, c) ∝ P (ri|r<i, h)P (c|r≤i, h)
λ (2) 139

where the first term P (ri|r<i, h) represents the 140

next token probability modeled by a language 141

model, and the second term P (c|r≤i, h) represents 142

the attribute probability of the generated response 143

obtained from the attribute classifier. In addition, 144

control strength λ is added to the exponential term 145

of the attribute probabilities to control attribute 146

bias. 147

When dealing with multi-attribute control, Equa- 148

tion 3 can be extended by introducing the product 149

of multiple attribute classifiers, assuming that the 150

attributes are conditionally independent: 151

P (ri|r<i, h, C) ∝ P (ri|r<i, h)
∏
cj∈C

P (cj |r≤i, h)
λ

(3) 152

where C denotes the set of target attributes. The 153

product of probabilities is typically implemented 154

as the sum of logits. 155

2.2 Weighted Decoding Models 156

FUDGE Yang and Klein, 2021 trained a clas- 157

sification model for partial sequences through an 158

2



Figure 2: An illustration of controllable dialogue generation using the weighted decoding method, incorporating
ECO Decoding.

external attribute classifier. Specifically, for each159

training example {(x, c)}, where x is sentence and160

c is class label, the classifier is trained on all partial161

sequences {(x1:i, c)} at each step. During infer-162

ence, at a given time step i, the classifier predicts163

the probability that appending the top k candidate164

tokens to the generated text will satisfy the attribute165

c in future generations.166

Director Arora et al., 2022 addressed the ineffi-167

ciency issue of requiring a external model during168

inference. It integrates the language model and169

attribute classification functionality into a single170

model, overcoming the inefficiency of the external171

classifier evaluating the attribute for every candi-172

date token. To address this issue, an additional173

classification head is introduced, which takes the174

last hidden state as input and computes the prob-175

ability that each token in the vocabulary satisfies176

the specified attribute. This allows for the effective177

incorporation of attribute information without the178

need for a external classifier.179

DASC Zhang et al., 2023 addressed the computa-180

tional inefficiency issues arising from dual-head ar-181

chitectures. DASC introduces Attribute Token Em-182

bedding and Attribute Semantic Embedding con-183

cepts, employing a semantic space-based weighted184

decoding mechanism to reduce the number of pa-185

rameters while improving computational efficiency.186

Each token is associated with an embedding that187

captures its attribute semantics, and these embed-188

dings are projected into an attribute semantic space189

via attribute-specific linear layers. This design fa-190

cilitates smooth control over multiple attributes and191

enables effective interpolation among attribute em- 192

beddings, allowing more diverse range of attribute 193

combinations. 194

3 Methodology 195

3.1 Entropy-based Control Strength 196

The existing weighted decoding methods apply 197

a fixed control strength and they are not flexible 198

enough to handle situations where stronger or no 199

more control is needed. In such cases, they may 200

fail to control attribute, or even if they succeed, the 201

fluency and grammar may degraded. To solve this 202

problem, we propose the ECO decoding method 203

that utilizes the entropy of the probability distri- 204

bution to dynamically adjust the control strength. 205

Dynamic control strength allows to achieve higher 206

attribute control rates, while maintaining genera- 207

tion quality, including context and grammar. 208

Entropy is a measure of the uncertainty of a prob- 209

ability distribution, which is lower when the proba- 210

bility distribution is focused on a specific value and 211

higher when it is more evenly distributed. Given 212

this property, the higher the entropy of the next 213

token probability distribution is, the more likely it 214

is to contain a variety of plausible candidates. This 215

is an advantageous property for exploring plausible 216

options that satisfy desired attribute. Based on this 217

insight, a novel mechanism of dynamically control- 218

ling strength is developed by weighting probability 219

distributions from language models and it controls 220

each property inversely to their entropy score. That 221

is, distributions with lower uncertainty are more 222

strongly reflected. Figure 2 shows how ECO decod- 223
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ing is working by using dynamic control strength224

based on both of the language model entropy and225

the attribute entropy. ECO decoding can be ap-226

plied to the existing weighted decoding methods227

and requires no additional modules or training.228

Language Model Entropy Dynamic control229

strength αx,i is separately calculated for i-th gen-230

eration step, and it can have different values while231

a sentence is generated. To calculate control232

strength, we select the top-k candidate tokens.233

From the probability distribution Plm,i of the lan-234

guage model, we construct the set S, which con-235

sists of the k tokens with the highest probabilities.236

Let P ′
lm,i denote the partial probability distribution237

of top-k tokens in S.238

P ′
lm,i = {Plm(t|r<i, h)|t ∈ S} (4)239

To convert the partial probability distribution240

P ′
lm,i into a probability distribution, we recom-241

pute the probability distribution of the top-k tokens242

using a softmax function with temperature τlm.243

elm,i = Entropy(Softmax(P ′
lm,i/τlm)) (5)244

Attribute Entropy Weighted decoding method-245

ologies for CDG utilize attribute classifier Pc to246

reflect attributes. For each candidate token t in247

the top-k token set S, concatenates the current se-248

quence r<i with t and computes the probability249

Pc,i([r<i; t], h) which represents the probability of250

token t being part of the generated response while251

aligning with the target attribute to be controlled.252

The set P ′
c,i is the probabilities of the target at-253

tribute for all candidate tokens in top-k token set S.254

The attribute entropy ec,i is computed based on a255

probability distribution normalized by softmax the256

set of attribute probabilities P ′
c,i over τc, where τc257

is the attribute temperature for softmax.258

Entropy Based Control Strength To assign259

higher weights to probability distributions with260

higher entropy, we utilize a control strength for-261

mula with an inverse function structure, as shown262

in Equation 6. The control strength αx,i is applied263

to both the language model probability distribution264

Plm and the attribute probability distribution Pc.265

The language model probability distribution and266

the attribute probability distribution are reflected267

by a power of their respective weight αx,i. The at-268

tribute probability distribution additionally reflects269

the strength scale factor λ. The value of λ allows270

to adjust whether to focus more on attribute con- 271

trol or language modeling performance. The final 272

probability distribution for generating the next to- 273

ken P (ri|r<i, h, c) is computed by multiplying the 274

two weighted probability distributions as shown in 275

Equation 7. If each of the control strength alpha 276

values were fixed at 1, the same result would be 277

obtained as with the traditional weighted decoding 278

methodologies. 279

αx,i = 1 + (
1

1 + ex,i
) (6) 280

P (ri|r<i, h, c) ∝ Plm(ri|r<i, h)
αlm,i

× Pc(c|r≤i, h)
λ∗αc,i

(7) 281

3.2 Multiple Attribute Control Strength 282

Existing weighted decoding methodologies strug- 283

gle to control multiple attributes simultaneously 284

due to their fixed control strength. When using a 285

fixed control strength for each attribute, the search 286

space of attribute control strengths grows exponen- 287

tially. Furthermore, even when control strength is 288

applied, effectively incorporating more than two 289

attributes remains a main challenge. In contrast, 290

our proposed ECO-decoding method enables CDG 291

to control generation by reformulating the final 292

probability distribution based on multiple attributes. 293

Dynamic control strength αx,i adjusts the weight 294

of probability distributions at each generation step 295

based on the entropy of the language model and the 296

entropy of each attribute, allowing more flexible 297

and adaptive multi-attribute control. When C is the 298

set of controlling attributes, the multiple attribute 299

control formula for ECO-decoding is as follows: 300

P (ri|r<i, h, C) ∝ Plm(ri|r<i, h)
αlm,i

×
∏
cj∈C

Pcj (cj |r≤i, h)
λ∗αcj ,i (8) 301

P ′
c,i = {Pc([r<i; t], h)|t ∈ S} (9) 302

ec,i = Entropy(Softmax(P ′
c,i/τc)) (10) 303

4 Experiments 304

4.1 Datasets 305

DailyDialog (Li et al., 2017) is an English open- 306

domain dialogue dataset containing two main at- 307

tributes (emotion, dialog-act). We treat each ut- 308

terance as a response and its preceding utterances 309
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Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Emotion

DialoGPT(176M) - 9.00 8.53 0.58 0.76 90.21
FUDGE 76.98 9.06 8.60 0.60 0.75 90.30
+ ECO decoding 81.03 (+4.05) 9.13 (+0.07) 8.64 (+0.04) 0.62 (+0.02) 0.75 (-) 90.34 (+0.04)

Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

DASC 74.65 8.25 7.87 0.58 0.70 90.30
+ ECO decoding 75.74 (+1.09) 8.22 (-0.03) 7.79 (-0.08) 0.58 (-) 0.71 (+0.01) 90.39 (+0.09)

Dialog-act
DialoGPT(176M) - 9.14 8.66 0.57 0.78 91.24
FUDGE 41.07 9.21 8.75 0.59 0.78 90.98
+ ECO decoding 46.42 (+5.35) 9.21 (-) 8.79 (+0.04) 0.62 (+0.03) 0.79 (+0.01) 91.00 (+0.02)

Director 70.96 10.43 9.94 0.62 0.78 91.18
+ ECO decoding 71.56 (+0.60) 10.46 (+0.03) 9.96 (+0.02) 0.63 (+0.01) 0.79 (+0.01) 91.15 (-0.03)

DASC 42.59 9.53 9.03 0.59 0.75 91.13
+ ECO decoding 47.17 (+4.58) 9.52 (-0.01) 9.05 (+0.02) 0.60 (+0.01) 0.76 (+0.01) 91.13 (-)

Table 1: Evaluation results for a single attribute of emotion or dialog-act on the DailyDialog test set. The scores in
brackets indicate the performance gap between static control and dynamic control settings.

Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - 6.72 6.19 0.53 0.44 86.42

Emotion
Director 73.99 6.42 5.90 0.57 0.44 86.36
+ ECO decoding 75.31 (+1.32) 6.54 (+0.12) 6.04 (+0.14) 0.55 (-0.02) 0.44 (-) 86.38 (+0.02)

Dialog-act
Director 67.30 5.84 5.41 0.62 0.57 86.47
+ ECO decoding 67.92 (+0.62) 5.88 (+0.04) 5.45 (+0.04) 0.63 (+0.01) 0.59 (+0.02) 86.43 (-0.04)

Table 2: Evaluation results for a single attribute of emotion or dialog-act on the MultiWOZ dataset.

as the dialogue history. The dataset provides four310

classes for dialog-act (inform, question, directive,311

commissive) and six classes for emotion (anger,312

disgust, fear, happiness, sadness, surprise), exclud-313

ing “no emotion.” It comprises 13,681, 882, and314

1,286 examples for training, validation, and test,315

respectively.316

MultiWOZ (Budzianowski and Casanueva,317

2018) is a large-scale multi-domain dialogue318

dataset constructed from real human-to-human319

conversations, encompassing multi-turn dialogues320

across seven domains (restaurants, trains, attrac-321

tions, hotels, taxis, hospitals, and police). Since the322

dataset itself does not provide labeled attributes,323

we employ an attribute classifier—used for evalua-324

tion—to label each utterance, and use these labels325

as the ground truth.326

4.2 Experimental Settings327

Language Model We employ DialoGPT (Zhang328

et al., 2020), pre-trained on a large-scale dialogue329

corpus, as our baseline. Most experiments use 330

DialoGPT-small (176M), and we also evaluate 331

DialoGPT-large (1.1B) for scalability. Addition- 332

ally, we use Llama2-7B (Touvron et al., 2023) to 333

test the general applicability of ECO decoding to 334

large language models. 335

Weighted Decoding Methods We evaluate and 336

compare the performances of ECO decoding with 337

those of various controllable generation mod- 338

els with weighted decoding methods, including 339

FUDGE (Yang and Klein, 2021), Director (Arora 340

et al., 2022), and DASC (Zhang et al., 2023). 341

Implementation Details For the three weighted 342

decoding method, the language model is frozen and 343

each attribute classifier is trained on the training 344

dataset. FUDGE is trained for 30 epochs with a 345

batch size of 8 and a learning rate of 2e-5 for each 346

attribute. For the Director, each attribute is fine- 347

tuned for 20 epochs with a batch size of 32 and 348
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Model Accuracy(Emo) Accuracy(Act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - - 9.00 8.53 0.58 0.76 90.21
FUDGE 66.17 44.17 8.21 7.82 0.57 0.74 90.20
+ ECO decoding 66.41 (+0.24) 45.57 (+1.40) 8.20 (-0.01) 7.81 (-0.01) 0.58 (+0.01) 0.74 (-) 90.21 (+0.01)

Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
+ ECO decoding 81.18 (+0.7) 61.20 (+0.65) 9.49 (+0.08) 8.97 (-0.02) 0.58 (-) 0.74 (+0.01) 90.23 (+0.01)

DASC 75.19 51.17 8.22 7.67 0.60 0.77 90.05
+ ECO decoding 77.22 (+2.03) 54.12 (+2.95) 7.60 (-0.62) 7.15 (-0.52) 0.61 (+0.01) 0.78 (+0.01) 90.19 (+0.14)

Table 3: Evaluation results for multiple attributes setting on the DailyDialog test set.

Model Accuracy(Emo) Accuracy(Act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - - 6.72 6.19 0.53 0.44 86.42
Director 63.62 49.29 7.22 6.72 0.44 0.48 86.38

+ ECO decoding 66.52 (+2.90) 52.59 (+3.30) 7.35 (+0.13) 6.72 (-) 0.45 (+0.01) 0.49 (+0.01) 86.41 (+0.03)

Table 4: Evaluation results for multiple attributes setting on the MultiWOZ dataset.

Model Accuracy Interest Sensible
Emotion

Director 2.82 2.96 2.75
+ ECO decoding 3.19 (+0.37) 3.16 (+0.20) 3.15 (+0.40)

Dialog-act
Director 3.04 2.93 2.78
+ ECO decoding 3.42 (+0.38) 3.41 (+0.48) 3.36 (+0.58)

Table 5: Human Evaluation on DailyDailog test set
(single attribute)

a learning rate of 1e-5. For DASC, each attribute349

is fine-tuned for 30 epochs with a batch size of350

4 and a learning rate of 1e-5. All methods use351

greedy search (Li et al., 2016b), and the maximum352

sequence length is set to 128. All experiments are353

run on a single NVIDIA GeForce RTX 3090.354

Our code is available at https://anonymous.355

4open.science/r/ECO-46EF/356

4.3 Evaluation Metrics357

Automatic Evaluation To assess controllability,358

we train two RoBERTa-based evaluators (Liu et al.,359

2019) on the DailyDialog training set: one for360

emotion and one for dialog-act. These evaluators361

achieve 89.66% and 80.60% accuracy on their test362

sets respectively and they are used to classify gen-363

erated responses. Note that these evaluators are364

independent from the attribute classifiers in each365

weighted decoding method. For quality, ROUGE-1366

and ROUGE-L (Lin, 2004) are measured by com-367

paring generated responses to reference answers368

and Dist-1 and Dist-2 (Li et al., 2016a) are com-369

puted to evaluate diversity in the generated text.370

For grammar, the probability of grammaticality is371

utilized by the RoBERTa-based CoLA grammati-372

cality model (Liu et al., 2019; Warstadt et al., 2019;373

Morris et al., 2020). 374

Human Evaluation Experiments on the Direc- 375

tor model, which showed the best performance in 376

emotion and dialog-act attributes, conducted hu- 377

man evaluation based on sampling 10 contexts for 378

each attribute value from the test set. We evalu- 379

ate our generated responses based on three aspects: 380

(1) Accuracy: Response is generated according 381

to the desired attribute. (2) Interest: Response is 382

specific and creative enough to capture the user’s 383

attention, and avoids repetitive or generic outputs 384

that may reduce engagement (e.g., repeatedly gen- 385

erating "That’s great!" for the happy attribute). (3) 386

Sensible: Response is grammatically correct and 387

contextually coherent. We asked three expert eval- 388

uators to rate each metric on a scale of 1 to 5, with 389

higher scores being better. 390

4.4 Experimental Results 391

Single Attribute Control Table 1 summarizes 392

how effectively ECO decoding enhances control- 393

lability while maintaining fluency. We first run 394

each model without attribute control to establish 395

a baseline grammar score and then tune the con- 396

trol strength λ in each method (FUDGE, Direc- 397

tor, DASC) until we match that baseline grammar 398

score. Eventually, we evaluate the resulting Accu- 399

racy, Dist, and ROUGE metrics. 400

The results show that ECO decoding consistently 401

improves the accuracy of both emotion and dialog- 402

act attributes, surpassing static control methods. 403

Notably, these improvements come with no drop 404

in grammar quality, in contrast to many existing 405

approaches. Furthermore, ECO decoding retains 406

the Dist and ROUGE scores or it even slightly im- 407
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Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - 9.00 8.53 0.58 0.76 90.21
Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

DialoGPT(1.1B) - 11.54 10.89 0.75 0.73 87.28
Director 75.66 11.76 11.15 0.74 0.73 87.18
+ ECO decoding 76.05 (+0.39) 11.82 (+0.06) 11.23 (+0.08) 0.74 (-) 0.73 (-) 87.25 (+0.07)

Llama2(7B) - 15.23 12.99 0.35 0.08 90.60
Director 75.43 15.95 13.74 0.35 0.80 90.51
+ ECO decoding 75.66 (+0.23) 15.88 (-0.07) 13.63 (-0.03) 0.35(-) 0.80 (-) 90.55 (+0.04)

Table 6: Evaluation results for attributes of emotion on the DailyDialog test set with various size of model.

proves in some cases; we think that it confirms408

ECO decoding’s ability to dynamically incorporate409

desired attributes without compromising fluency or410

overall response quality.411

To assess generalizability, we further apply ECO412

decoding to the MultiWOZ dataset. As shown in413

Table 2, our method achieves similarly high con-414

trollability in this dataset while preserving gram-415

mar quality comparable to one of the DailyDialog416

dataset. These findings demonstrate the robust-417

ness of ECO decoding across different dialogue418

domains.419

Multi Attribute Control Multi attribute control420

typically involves combining attribute probabilities421

via multiplication. Consequently, when interpo-422

lating across multiple distributions, differences in423

scale and calibration can make it difficult to main-424

tain a proper balance, often leading to a decline in425

overall controllability compared to single-attribute426

control.427

In Table 3, multi attribute control for the Emo-428

tion attribute achieves grammar performance on429

par with single-attribute control, yet exhibits a de-430

crease in overall controllability. Conversely, multi-431

attribute control for the Dialo-act attribute appears432

to yield higher controllability relative to single at-433

tribute control. However, this does not necessarily434

indicate an actual improvement in controllability;435

rather, it likely reflects the selection of a relatively436

lower grammar score baseline due to differences437

in the experimental data. A same pattern is also438

observed in the MultiWOZ dataset experiments439

presented in Table 4.440

By applying ECO decoding, we mitigate these441

interpolation issues and significantly enhance the442

controllability of both emotion and dialog-act at-443

tributes. Moreover, as in the single-attribute setting,444

dynamic weighting consistently maintains and even445

strengthens grammatical fluency and response qual- 446

ity in multi-attribute generation. 447

Language Model Scaling Table 6 compares the 448

performance of the Director method and ECO de- 449

coding across models of varying sizes. From the 450

smallest 176M parameter model to the 7B model, 451

ECO decoding consistently achieves higher gram- 452

mar scores while maintaining strong attribute con- 453

trollability. This indicates that ECO decoding can 454

be applied effectively to traditional weighted de- 455

coding methods regardless of model scale. 456

Human Evaluation Table 5 presents the human 457

evaluation results. Consistent with the automatic 458

metrics, ECO decoding substantially outperforms 459

the baseline in generating coherent and attribute- 460

aligned responses. Across both emotion and dialog- 461

act attributes, Accuracy improves by about +0.38, 462

Interest by +0.34, and Sensible by +0.49. These 463

results suggest that ECO decoding not only bet- 464

ter aligns generated responses with the desired at- 465

tributes but also makes them more engaging and 466

contextually coherent from a human perspective. 467

Robustness Test The control strength coefficient 468

λ determines the proportion of weights in the prob- 469

ability distribution of the attribute classifier. There- 470

fore, a larger lambda will tend to generate tokens 471

that are more attribute-specific, resulting in a trade- 472

off between increased attribute accuracy and de- 473

creased grammar score. 474

Figure 3 shows the results of applying tradi- 475

tional weighted decoding methodology and ECO- 476

decoding for varying the control strength coeffi- 477

cient λ in a single attribute control setting. The 478

experiments were conducted based on the Direc- 479

tor and DASC method for two attributes, emotion 480

and dialog-act, and the red line is for the Direc- 481

tor and DASC. The green line is for the applica- 482
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Figure 3: The single attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled DialoGPT’s grammar score.

Figure 4: The multi attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled DialoGPT’s grammar score.

tion of ECO decoding with each method and the483

blue bashed line is the grammar score of vanila Di-484

aloGPT without attribute control according to each485

dataset. In all experiments, we observed a trade-486

off between grammar and accuracy, and showed487

that for the same grammar score, ECO decoding488

achieves higher attribute accuracy by dynamically489

applying weights. In other words, for the same con-490

trol degree, ECO decoding produces higher quality491

responses. This demonstrates that our approach492

has a strong capability in controllable generation to493

maintain fluency while enhancing controllability,494

regardless of the λ values.495

Figure 4 shows the performance by lambda in 496

the multi attribute control setting. The results are 497

the same for multi attribute as for single, with ECO 498

decoding for each methodology resulting in higher 499

controllability and grammar scores. The interest- 500

ing thing is that the Director model is not a struc- 501

tured model for multi attribute control, and because 502

of this, there is some performance variation by 503

lambda. 504

In almost all cases using the DialoGPT-small 505

model, we observed a trend of grammar score in- 506

crease and then decrease as the lambda value in- 507

creases. Due to the increase in grammaticality at 508

low λ ranges, some experimental results showed 509

higher grammar score with attribute control than 510

DialoGPT without attribute control. This was not 511

observed when using larger models such as Llama2, 512

which could be thought of as a slight inconsistency 513

in the performance of small language models. For 514

fairness, all experimental results measured gram- 515

mar score and attribute accuracy after the lambda 516

value where the trade-off occurs. 517

5 Conclusions 518

We present ECO decoding as an entropy-based ap- 519

proach for dynamically adjusting control strength 520

in weighted decoding. Unlike prior methods rely- 521

ing on static coefficients, ECO decoding utilizes 522

the uncertainty of each attribute classifier during 523

inference to improve controllability without sacri- 524

ficing fluency. 525

ECO decoding is easily applicable to existing 526

controllable generation frameworks because it does 527

not need to train a generator directly. It effectively 528

generalizes across single- and multi-attribute set- 529

tings, and properly addresses interpolation issues 530

in multi-attribute control by leveraging attribute- 531

specific entropy. 532

Both automatic and human evaluations demon- 533

strate that ECO decoding consistently outperforms 534

static baselines across a range of models and con- 535

trol strengths, including strong performance on 536

large-scale models like Llama2-7B. These findings 537

highlight that ECO decoding is a effective solution 538

for more precise and robust controllable dialogue 539

generation. 540

Limitations 541

Our method improves control performance while 542

maintaining sentence fluency by leveraging 543

entropy-based control strength, and it enables flu- 544
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ent sentence generation in both single- and multi-545

attribute settings. However, this approach has sev-546

eral limitations. First, the dataset used in this study547

is limited in both quantity and diversity, and vali-548

dation was performed only on dialogues with two549

attributes. Therefore, construction of new corpus550

with additional attributes is necessary to evaluate551

the generalizability of the proposed method. Sec-552

ond, in multi-attribute settings, a refined normaliza-553

tion process must be developed to account for the554

number of classes for each attribute as the number555

of attribute classifiers increases. To address these556

limitations, future work should construct more di-557

verse datasets and explore effective probability con-558

trol strategies under multi-attribute conditions.559

Ethics Statement560

The proposed method aims to enhance the interest561

and accuracy of responses generated by chatbots562

to improve user experience. However, this method563

could be potentially used for malicious purposes.564

In our experiments, we focus on attributes like565

emotion and dialog-act, but if malicious desired566

attributes such as bias are used, the model could be567

induced to generate inappropriate responses. There-568

fore, generating controlled responses using mali-569

cious attributes should be restricted.570
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A Analysis644

A.1 POS-Based Entropy Analysis645

To investigate the theoretical foundation of entropy-646

aware control strength, we conducted a token-level647

entropy analysis based on part-of-speech (POS)648

tags. Entropy scores are measured using the to-649

ken probability distributions from the DialoGPT650

models.651

In Table 7, we can observe some patterns in the652

relationship between a part-of-speech tag and its en-653

tropy. Functional words such as ADP (adpositions),654

DET (determiners), and PUNCT (punctuation) tend655

to have relatively low entropy because they are typ-656

ically governed by strict grammatical constraints657

that limit lexical variability during generation. In658

contrast, content words including NOUN (nouns),659

VERB (verbs), ADJ (adjectives), and ADV (ad-660

verbs) exhibit higher entropy because these words661

often occur in more flexible contexts and are re-662

sponsible for conveying core semantic information,663

which results in a broader distribution over candi-664

date tokens.665

These findings provide a theoretical support for666

our entropy-based control strategy. Specifically,667

positions with high entropy exhibit greater lexical668

variability, which allows for more flexible attribute669

manipulation without compromising the fluency of670

the generated text. In contrast, low-entropy tokens671

are typically constrained by grammatical structure672

and should therefore be subjected to weaker con-673

trol in order to maintain grammatical correctness.674

This POS-tag-based analysis confirms that entropy675

can serve as an effective indicator for determin-676

ing the appropriate timing and location of control677

application during the generation process.678

A.2 Control Strength Analysis679

In this study, to mathematically model control680

strength as inversely proportional to the entropy681

of the token distribution, we define control strength682

as a function of entropy and employ three repre-683

sentative decreasing functions. These functions are684

designed to dynamically adjust control strength de-685

pending on the level of entropy, thereby enabling686

more assertive control in confident contexts (i.e.,687

low entropy) and weaker control when the model688

is uncertain (i.e., high entropy).689

The three control weighting functions are as fol-690

lows:691

exponetial = 1 + exp(−attr_entropy) (11)692

POS Tag DialoGPT-S DialoGPT-L
ADP 3.04 3.19
CCONJ 3.68 4.04
PUNCT 3.69 3.75
PART 3.78 3.51
SCONJ 4.20 4.37
DET 4.27 4.26
PRON 4.35 4.40
ADV 4.41 4.55
NUM 4.51 4.71
X 4.55 4.94
VERB 4.58 4.74
NOUN 4.81 5.39
SYM 4.85 5.31
PROPN 4.85 5.29
ADJ 5.00 5.35
AUX 5.10 4.93
INTJ 5.47 5.71

Table 7: Entropy measurement score in each part-of-
speech (POS) tag. Results are reported for the DialoGPT
models: S (small) and L (large). Items in Table 7 are
sorted in ascending order based on the entropy scores
of DialoGPT-S.

negative = 1 + (log(V )− attr_entropy) (12) 693

reciprocal = 1 + (
1

attr_entropy
) (13) 694

When comparing the three functions, the linear 695

function maintains a direct linear relationship be- 696

tween entropy and weight. In contrast, both the 697

exponential function and the inverse function yield 698

similar weights in high-entropy regions, but diverge 699

significantly in low-entropy regions with assigning 700

notably larger weights. 701

Table 8 shows that the linear function tends to de- 702

grade performance in multi-attribute control tasks. 703

This is due to the fact that its weights decrease 704

linearly without convergence as entropy increases, 705

resulting in unstable control. On the other hand, 706

both the exponential and reciprocal functions ex- 707

hibit convergence as entropy increases, and outper- 708

form the baseline model. These two functions pro- 709

duce larger differences in weights in low-entropy 710

regions, and our experiments confirm that the recip- 711

rocal function particularly achieves strong perfor- 712

mance. This is more likely because, in cases where 713
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Model Accuracy(emo) Accuracy(act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT - - 9.00 8.53 0.58 0.76 90.21
Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
- lm_entropy 79.24 58.63 9.49 9.04 0.58 0.73 90.31
- exponential 80.48 61.12 9.42 9.01 0.58 0.73 90.21
- negative 80.17 60.96 9.41 9.00 0.58 0.73 90.21
- reciprocal 81.18 61.20 9.49 8.97 0.58 0.73 90.23

Table 8: Experiments on control strength application methods. We compare the performance of the lm_entropy
method, which utilizes the probability distribution of the language model, with three alternative methods that use
the probability distribution of the attribute classifier.

the probability distribution is highly concentrated714

(i.e., one token is assigned a very high probabil-715

ity), the reciprocal function is better suited to apply716

strong control.717

Furthermore, the reciprocal function provides718

more advantages than the exponential function by719

offering a broader range of control strength in low-720

entropy settings. Consequently, we conclude that721

the reciprocal weighting function is well-suited for722

assigning control strength appropriately under both723

low-entropy and high-entropy conditions.724

B Cases of ECO decoding725

Figure 5: In case where the response fails to satisfy the
desired attribute with the existing method but satisfies
the desired attribute using ECO decoding.

C Licenses726

The DailyDialog dataset is licensed under CC727

BY-NC-SA 4.0 License. The DialoGPT model728

is licensed under Contributor License Agreement729

(CLA) and Llama2 model is licensed under Meta730

Llama 2 Community License Agreement. The731

Figure 6: In case where it fails to generate a context-
consistent response with the existing method but gener-
ates a context-consistent response using ECO decoding.

RoBERTa-based CoLA grammaticality model is 732

licenced under MIT License. 733

11


	Introduction
	Related Work
	Weighted Decoding
	Weighted Decoding Models

	Methodology
	Entropy-based Control Strength
	Multiple Attribute Control Strength

	Experiments
	Datasets
	Experimental Settings
	Evaluation Metrics
	Experimental Results

	Conclusions
	Analysis
	POS-Based Entropy Analysis
	Control Strength Analysis

	Cases of ECO decoding
	Licenses

