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Abstract

Sampling from constrained statistical distributions is a fundamental task in various
fields including Bayesian statistics, computational chemistry, and statistical physics.
This article considers sampling from a constrained distribution that is described
by an unconstrained density, as well as additional equality and/or inequality con-
straints, which often make the constraint set nonconvex. Existing methods struggle
in the presence of such nonconvex constraints, as they rely on projections, which
are computationally expensive or intractable, are specialized to either inequality
or equality constraints, and often lack rigorous quantitative convergence guaran-
tees. In this paper, we introduce Overdamped Langevin with LAnding (OLLA), a
new framework that can design overdamped Langevin dynamics accommodating
both nonlinear equality and inequality constraints. The proposed dynamics also
deterministically corrects trajectories along the normal direction of the constraint
surface, thus obviating the need for explicit projections. We show that, under suit-
able regularity conditions on the target density and the feasible set Σ ⊂ Rd, OLLA
converges exponentially fast in 2-Wasserstein distance to the constrained target
density ρΣ(x) ∝ exp(−f(x))dσΣ. Lastly, through experiments, we demonstrate
the efficiency of OLLA compared to known constrained Langevin algorithms and
their slack variable variants, highlighting its favorable computational cost and fast
empirical mixing.1

1 Introduction

Sampling from complex, constrained statistical distributions is a fundamental problem in machine
learning, with applications ranging from Bayesian inference under structured priors to training
generative models with safety or fairness constraints. When there is no constraint, a prominent
class of sampling techniques is centered around (overdamped) Langevin dynamics, where the drift
is set to the gradient of the log-target density. These have gained significant traction due to their
strong theoretical guarantees: for example under log-concave target densities [1–8] or more general
densities that satisfy relaxed conditions such as isoperimetric inequalities [9, 10] one can obtain fast,
non-asymptotic convergence rates. Langevin dynamics can even be generalized, via a Riemannian
Langevin approach, to sample under convex constraints [e.g., 11, 12]. However, extending Langevin-
based approaches to sample from distributions supported on nonconvex sets Σ ⊂ Rd remains a
major challenge. Existing techniques typically rely on projection steps, which are computationally
expensive and require convexity to ensure convergence. Moreover, most methods offer limited
or no quantitative convergence guarantees in this case; in fact, even if the density is log-concave,
a nonconvex constraint can easily make the target distribution much harder to sample from, also
rendering the analysis more difficult. This is a critical bottleneck for many emerging machine learning

1All code is provided in the following repository: https://github.com/KraitGit/OLLA
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applications – such as imitation learning [13] or constrained generative modeling – where the feasible
set is implicitly defined by complex equality and inequality constraints.

In this article, we introduce OLLA (Overdamped Langevin with LAnding), a suite of projection-free
stochastic dynamics that could serve as the foundation for sampling from constrained distributions.
OLLA avoids projections by combining two key ideas: (1) relying on local approximations of the
feasible set to guide the sampling and (2) introducing a restitution mechanism called “landing" that
guarantees convergence to the feasible set. These techniques build on ideas previously developed in
the context of nonconvex optimization, where they have been shown to provide scalable and effective
algorithms [14–16], and share close connection to several powerful constrained sampling approaches
in the literature [17–21]. We adapt and extend the ideas to the sampling setting, which makes OLLA
both computationally efficient and theoretically grounded. Our main contributions are summarized as
follows:

• (Unified treatment of constraints) OLLA is described by a stochastic differential equation
(SDE) that, in contrast to related prior works, enforces both equality and inequality constraints.
This is achieved by constructing the tangent space to the constraint manifold and projecting the
overdamped Langevin drift and diffusion terms onto the tangent space resulting in a simple least-
squares problem. OLLA recovers the classical equality-only constrained Langevin dynamics
as a special case, yet seamlessly accommodates arbitrary smooth inequality constraints without
resorting to slack variables or projections.

• (Exponential convergence) We prove that the continuous version of OLLA converges to the
constrained target distribution ρΣ at an exponential rate under appropriate regularity assumptions.
Our convergence results are non-asymptotic and characterized by the 2-Wasserstein distance in all
scenarios (equality constraints only, inequality constraints only, and mixed).

• (Efficient SDE discretization with trace-estimation) We introduce OLLA-H, a computationally
efficient Euler-Maruyama (EM) discretization of the aforementioned SDE that features a Hutchin-
son trace estimator [22] for approximating the Itô-Stratonovich correction term arising from the
diffusion. As a result, OLLA-H has low computational cost per iteration, even in high dimensions,
and it achieves relatively accurate sampling and empirical mixing, an aspect that we demonstrate in
various numerical experiments.

2 Related Works
We first focus our literature review on recent works that consider Langevin sampling under nonlinear
constraints. One of the closest touching points is [17], which describes a gradient descent approach
on the KL divergence. The algorithm shares some similarities to ours in that projections are avoided,
but the work focused on equality constraints only, whereas OLLA covers both equality and inequality
constraints. The work [23] proposes the use of slack variables to incorporate inequality constraints
to change a mixed problem into an equality-only problem, which comes at the cost of additional
spurious dimensions. In a similar vein, [18] designs a particle-based variational inference method to
incorporate inequality constraints. The method is effective at sampling under inequality constraints
only, suffers, however, from high computational cost in high dimensions due to the estimation of
associated boundary integrals.

OLLA is inspired by recent methods in nonlinear optimization [15, 14, 16] that use a similar landing
mechanism and avoid projections onto the feasible set. There has also been important work by
[19–21] who introduced a constrained Langevin dynamics based on numerical schemes such as
SHAKE, RATTLE [24–26], and including Metropolis-Hastings corrections [21]. These works mainly
focus on equality-only constraints, although inequality constraints can be incorporated via including
slack variables or applying reflection at the boundary. We use these algorithms as baselines and refer
them to Constrained Langevin (CLangevin) [20], Constrained Hamiltonian Monte Carlo (CHMC)
[20], and Constrained generalized Hybrid Monte Carlo (CGHMC) [21].

In the present work, constraints are handled through a careful decomposition of the stochastic
dynamics on the boundary into normal and tangential parts, thereby avoiding projections and even
enabling infeasible initialization. There have also been alternative algorithm designs that, however,
do not share these features, for example, [27, 28] (based on projection), [29, 30] (barrier functions),
[31] (reflections), or [11, 32, 12] (mirror maps). Other works by [33, 34] introduce penalties for
constraint violations or relax the notion of constraint satisfaction [35]. In addition, we note that,
although closely related, constrained sampling is not the same as sampling on manifolds [36–39].
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3 Preliminaries & Notations

We consider sampling from a target density supported on the compact and connected Riemannian
submanifold of Rd defined by Σ :=

{
x ∈ Rd | h(x) = 0, g(x) ≤ 0

}
where h : Rd → Rm and

g : Rd → Rl are smooth functions. To guarantee that all constraint-related constructions are well-
posed, we impose the Linear Independence Constraint Qualification (LICQ) condition [40].

Definition 1. The functions h, g satisfy LICQ if {∇h1(x), ...∇hm(x)}∪{∇gi(x)}i∈Ix
are linearly

independent for every x ∈ Σ, where Ix denotes the set of active inequality constraints, i.e.,
Ix := {i ∈ [l] | gi(x) ≥ 0}.

As a result of LICQ, the tangent space of Σ at x ∈ Σ can be defined as

TxΣ :=
{
v ∈ Rd | ∇h(x)v = 0,∇gi(x)v = 0, ∀i ∈ Ix

}
and its orthogonal projector onto TxΣ is Π(x) = I − ∇J(x)TG(x)−1∇J(x), where J(x) :=[
h1(x), ..., hm(x), gi1(x) + ϵ, ..., gi|Ix|(x) + ϵ

]T
,
{
i1, ..., i|Ix|

}
= Ix denotes the stacking of con-

straint functions for some ϵ > 0 and G(x) := ∇J(x)∇J(x)T is its associated Gram matrix.

For any smooth f : Σ → R and a smooth vector field X : Σ → Rd, the intrinsic gradient and
divergence on Σ are given by ∇Σf(x) = Π(x)∇f(x), divΣX(x) = Tr (Π(x)∇X(x)), where ∇
denotes the usual Euclidean gradient or Jacobian in Rd. Our target density is set to be ρΣ(x) ∝
exp(−f(x))dσΣ on Σ with dσΣ being the induced Hausdorff measure on Σ. We write ρt, ρ̃t be the
law of OLLA and the projected process of OLLA onto Σ at time t. On Σ, the natural extension of KL
divergence and Fisher information take the form:

KLΣ(ρ||ρΣ) :=
∫
Σ

ρ ln

(
ρ

ρΣ

)
dσΣ and IΣ(ρ||ρΣ) :=

∫
Σ

ρ∥∇Σ ln

(
ρ

ρΣ

)
∥22dσΣ

We now streamline notations appearing in Section 4. A complete list of symbols and precise technical
definitions are included in Appendix A. In particular, let π(x) denote the nearest-point (Euclidean)
projection onto Σ, and let λLSI be the log-Sobolev constant of (Σ, ρΣ). We then assume the existence
of the following constants.

Mh := sup
x0∈supp(ρ0)

∥h(x0)∥2, Mg := sup
x0∈supp(ρ0)

∥g(x0)∥2,

over the support of the initial law ρ0. The constant κ (Lemma C.1, Lemma C.3) and δ captures
the regularity of Σ and Ûδ denotes the tubular neighborhood of width δ with a special “recovery”
property (see Theorem C.1, Theorem C.2 for the precise definitions of δ and Ûδ).

4 Main results
4.1 Construction of OLLA via Least Squares

We now derive the continuous-time dynamics of OLLA by choosing the drift vector q and the
symmetric diffusion matrix Q to be the closest—in a least-squares sense—to the unconstrained
usual Langevin coefficients, subject to enforcing both the equality constraints {hi(x)}mi=1 and
the active inequality constraints {gj(x)}j∈Ix

. This is achieved by applying Itô’s lemma to each
constraint function hi and gj and splitting the change in, for example, hi, into a martingale term
∇hi(Xt)

TQ(Xt)dWt and a drift term
[
∇hi(Xt)

T q(Xt) +
1
2Tr
(
∇2hi(Xt)Q(Xt)Q(Xt)

T
)]
dt. By

choosing Q so that Q(x)∇hi(x) = Q(x)∇gj(x) = 0, the martingale piece vanishes exactly in the
normal directions. Simultaneously, we pick the drift vector q to satisfy the linear equation

∇hTi q +
1

2
Tr
(
∇2hiQQ

T
)
+ αhi = 0, ∇gTj q +

1

2
Tr
(
∇2gjQQ

T
)
+ α(gj + ϵ) = 0 (1)

so that h(Xt) = hi(X0)e
−αt and gj(Xt) + ϵ = (gj(X0) + ϵ)e−αt, where hyperparameters α, ϵ > 0

denote the landing or boundary repulsion rate, respectively. This enforces gj(Xt) to hit 0 in finite
time t = 1

α ln((gj(X0) + ϵ)/ϵ), after which gj(Xt) ≤ 0 remains forever. As a result, this approach
removes any noise and drift direction in the normal of constraints and implants a pure drift normal to
constraints, guaranteeing exponential decay of both equality and active-inequality constraints at a
rate α. This yields the closed-form SDE in Proposition 1 and Lemma 1.
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Proposition 1 (Construction of OLLA and its closed form SDE). Consider the following SDE:

dXt = q(Xt)dt+Q(Xt)dWt (2)

where

Q := argmin
Q̄∈Rd×d

∥
√
2I − Q̄∥2F s.t

{
Q̄∇hi = 0, ∀i ∈ [m],

Q̄∇gj = 0, ∀j ∈ Ix,

q := argmin
q̄∈Rd

∥q̄ +∇f∥22 s.t
{
∇hTi q̄ + 1

2Tr
(
∇2hiQQ

T
)
+ αhi = 0, ∀i ∈ [m],

∇gTj q̄ + 1
2Tr
(
∇2gjQQ

T
)
+ α(gj + ϵ) = 0, ∀j ∈ Ix.

Then, there exists a closed form SDE (OLLA) of (2) given by:

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+H(Xt)dt+

√
2Π(Xt)dWt (3)

where

H := −∇JTG−1
[
Tr
(
∇2h1Π

)
, ...,Tr

(
∇2hmΠ

)
,Tr
(
∇2gi1Π

)
, ...,Tr

(
∇2gi|Ix|Π

)]T
(4)

is the associated mean curvature correction term of ΣIx :=
{
x ∈ Rd | h(x) = 0, gIx(x) = 0

}
.

Remark 1 (Mean curvature = Itô-Stratonovich correction). By technical stochastic-calculus identi-
ties on manifolds (see, e.g., Rousset et al. [19], Lemma 3.19), the Itô-Stratonovich correction arising
from the Stratonovich SDE

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+

√
2Π(Xt) ◦ dWt (5)

coincides exactly with the mean-curvature termH(x) of ΣIx :=
{
x ∈ Rd | h(x) = 0, gIx(x) = 0

}
.

Remark 2 (Relation to orthogonal direction samplers from variational KL). Zhang et al. [17]
introduced an overdamped-Langevin sampler for equality constraints by minimizing the constrained
KL divergence via an orthogonal-space variational formulation, and Zhang et al. [18] also used a
similar approach to handle single inequality constraint. In the absence of inequality constraints, our
OLLA dynamics coincide with the equality constrained sampler of [17] up to a modified potential
f̂(x) = f(x) + 1

2 ln det(G), since the mean curvature correction satisfies

H(x) = divΠ(x) + Π(x)∇ ln
(
(detG(x))

1
2

)
(6)

(see Rousset et al. [19], Lemma 3.21). Correspondingly, whereas their framework yields a stationary
measure proportional to e−f(x)δΣ(dx) under the coarea formula, OLLA converges to the Riemannian
volume-weighted density e−f(x)dσΣ(x) on Σ (see Rousset et al. [19], Lemma 3.2). In addition to
this, the work [18] enforces a single inequality constraint via a purely deterministic normal drift
−α∇g/∥∇g∥2, without any stochastic component in the tangential direction. OLLA instead projects
noise and drift vectors tangentially even during the landing phase, thereby preserving exploration on
the evolving manifold Σt :=

{
x ∈ Rd | h(x) = h(X0)e

−αt
}

and improving mixing.

Lemma 1 (Exponential decay of constraint functions). The dynamics induced by (3) satisfy the
following properties almost surely for ∀i ∈ [m],∀j ∈ IX0

:

hi(Xt) = hi(X0)e
−αt, t ≥ 0 (7)

and 
gj(Xt) = −ϵ+ (gj(X0) + ϵ)e−αt, t ≤ 1

α
ln

(
gj(X0) + ϵ

ϵ

)
gj(Xt) ≤ 0, t ≥ 1

α
ln

(
gj(X0) + ϵ

ϵ

)
with g(Xt) ≤ 0,∀t ≥ 0 for j /∈ IX0 , where Ix := {k ∈ [l] | gk(x) ≥ 0} is the index set of active
inequality constraints.

4.2 Non-asymptotic Convergence Analysis of OLLA

In this subsection, we establish non-asymptotic convergence guarantees for OLLA in three scenarios
– equality only case, inequality only case, mixed case – by recognizing that OLLA has a rapid landing
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property driven by landing rate α and natural mixing on the landed manifold induced by the LSI
constant. For the detailed notations and proofs, we refer to the Appendix A and related Appendices.

Equality-Only Scenario. When the constraints consist of only smooth equalities h(x) = 0, the
continuous-time OLLA dynamics (3) can be written as

dXt = −
[
Π(Xt)∇f(Xt) + α∇h(Xt)

TG−1(Xt)h(Xt)
]
dt+

√
2Π(Xt) ◦ dWt (8)

The drift term naturally decomposes into a tangential term, which moves along the constraint surface,
and a normal landing term, which forces each coordinate hi(Xt) to decay exponentially fast, as
summarized in Lemma 1.

Once Xt ∼ ρt lies within a tubular neighborhood of Σ, the nearest projection map π onto Σ becomes
available, and the projected process Yt = π(Xt) ∼ ρ̃t can be defined (Theorem C.1). Then, the
regularity of Σ naturally implies that ∥Xt − Yt∥2 ≲ ∥h(Xt)∥2 = O(e−αt) holds (Lemma C.1),
leading to the contraction of W2(ρt, ρ̃t) = O(e−αt) (Lemma E.1), where ρt, ρ̃t are the laws of
Xt, Yt, respectively. Furthermore, the combination of Lipschitzness of π and ∥Xt−Yt∥2 = O(e−αt)
enable us to write the projected process Yt as overdamped Langevin dynamics on Σ with noisy drift
vector and diffusion matrix whose norm is bounded byO(e−αt) (Corollary E.1). Therefore, the effect
of noisy terms can be dominated by the effect of the LSI constant, which leads to the exponentially
fast convergence of KLΣ(ρ̃t||ρΣ) (Lemma E.3). A rigorous combination of these insights gives the
following theorem.

Theorem 1 (Convergence result for equality-constrained OLLA). Suppose assumptions (C1) to
(C4) hold. Let Xt be the stochastic process following the equality-constrained OLLA and let ρt, ρ̃t
be the law of Xt and its projection Yt = π(Xt) on Σ for t ≥ tcut, tcut := max

{
1
α ln δ, 1

α lnC5

}
,

respectively. Then, for α > 2λLSI for all t ≥ tcut, it holds that

W2(ρt, ρΣ) ≤
Mh

κ
e−αt +

√
2

λLSI
KLΣ(ρ̃t||ρΣ)

where

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C7]

for some constants C5 = O
(
1 +

CLA
Mh

κ +
(

CLA
Mh

κ

)2)
, C7 := C6e

−αtcut

α−2λLSI
> 0 with CLA

being

the Lipschitz constant of∇π(x)Π(x) on Ûδ(Σ).

Inequality-Only Scenario. With smooth inequalities g(x) ≤ 0, we introduced a small boundary
repulsion parameter ϵ > 0 so that each initially violated constraint gj > 0 is driven to the boundary
within a finite landing time tcut =

1
α ln((gj(X0) + ϵ)/ϵ).

From the Fokker-Planck perspective, the normal probability flux at the boundary satisfies ⟨n, Jt⟩ =
−αϵρt where Jt is the probability current density of ρt and n is the outward unit normal vector of Σ.
The boundary repulsion enforces the outward probability flow to become zero after the landing time
tcut, and the normal probability flux vanishes to zero after time tcut (Lemma F.1). This enables us to
ignore the boundary integral appearing on the time derivative of KL(ρt||ρΣ) guaranteeing exponential
decay driven by the effect of the LSI constant. Therefore, the following theorem comes by directly
analyzing the time derivative of KL(ρt||ρΣ) after time tcut.

Theorem 2 (Convergence result for inequality-constrained OLLA). Suppose assumptions (C1) to
(C4) hold. Let Xt be the stochastic process following the inequality-constrained OLLA and let ρt
be the law of Xt. Then, for t ≥ tcut, tcut :=

1
α ln

(
Mg+ϵ

ϵ

)
,

W2(ρt, ρΣ) ≤
√

2

λLSI
KLΣ(ρt||ρΣ)

where
KLΣ(ρt||ρΣ) ≤ e−2λLSI(t−tcut)KLΣ(ρtcut ||ρΣ).

5



ℎ 𝑥 = 0

𝑔 𝑥 ≤ 0

𝑋𝑡

Figure 1: OLLA trajectory in mixed case

Mixed Scenario. In the mixed setting, OLLA’s dy-
namics are sensitive to the boundary repulsion from g.
It is noteworthy that Σ remains unchanged for different
inequality functions g, as long as the boundary of the
feasible set, where g(x) = 0 intersects h(x) = 0, is
identical. Nevertheless, the choice of function g af-
fects the landing dynamics, which in turn can alter the
convergence rate of OLLA.

To quantify this, we define the projected manifold
Σp := π(

{
x ∈ Rd | h(x) = p, g(x) ≤ 0

}
) and as-

sume the norm of boundary velocity vbp of ∂Σp is reg-
ulated by V ∥p∥β2 for some V, β > 0 (Assumption (M2)). Additionally, we assume Σp lies inside
int(Σ) for 0 < ∥p∥2 < δ to avoid stopping behavior of Yt on ∂Σ (Assumption (M1)). Under these
assumptions, the trajectory of Xt can be illustrated as in Figure 1 and the proof ideas of equality-only
and inequality-only can be seamlessly combined. The following theorem arises from a rigorous inte-
gration of previous high-level ideas. We also provide a theorem with a relaxed version of Assumption
(M1) in the appendix; see Remark 3 (when X0 ∼ δ(x0)), Remark 4, and Corollary A.1 for the details.

Theorem 3 (Convergence result for mixed-constrained OLLA). Suppose assumptions (C1) to (C4)
and (M1) to (M3) hold. Define Xt to be the stochastic process following OLLA dynamics (3) and
ρ̃t be the law of Yt := π(Xt) after t ≥ tcut, tcut := max

{
1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)
, 1
α ln(C̃5)

}
.

Then, for α > 2λLSI and β ≥ 1, the following non-asymptotic convergence rate of W2(ρt, ρΣ) can
be obtained as follows

W2(ρt, ρΣ) ≤
Mh

κ
e−αt +

√
2

λLSI
KLΣ(ρ̃t||ρΣ)

where

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C̃7 + C̃8]

for some constants G4, G5, G6, C̃6 > 0, C̃7 := (C̃6 + αG4G5Mh)
e−αtcut

α−2λLSI
,

C̃5 = O

1 +
C̃LA

Mh

κ
+

(
C̃LA

Mh

κ

)2
 , C̃8 := (G6VM

β
h )

e−αβtcut

αβ − 2λLSI
,

and with C̃LA
being the Lipschitz constant of∇π(x)Π(x) on Ûδ(Σ).

4.3 Euler-Maruyama Discretization & Hutchinson Trace Estimation

To implement OLLA in practice, we discretize the continuous-time SDE by the Euler-Maruyama (EM)
update. At each iteration, we compute three components for the drift vector: the projected gradient
drift, the landing drift, and the mean curvature correctionH. In particular,H (4) requires forming the
full Hessian of each constraint and computing traces of the form Tr

(
Π∇2hi

)
and Tr

(
Π∇2gj

)
, an

O(d · grad-cost) operation that quickly becomes infeasible in high dimensions. We therefore employ
the Hutchinson trace estimator [22], which gives the following approximation:

Tr
(
Π∇2hi

)
≈ 1

N

N∑
k=1

(Πvk)
T (∇2hivk), Tr

(
Π∇2gj

)
≈ 1

N

N∑
k=1

(Πvk)
T (∇2gjvk) (9)

for each i ∈ [m], j ∈ Ix where vk ∼ N (0, Id) are independent standard normal samples. Each
Hessian-Vector Product (HVP)∇2hivk (or∇2gjvk) can be computed at a cost similar to one gradient
evaluation, so N probes incur only O(N · grad-cost) computational cost rather than O(d · grad-cost),
saving significant computational cost in high-dimension circumstances. In our experiments, N = 5
suffices to achieve low variance estimates that match the performance of the full Hessian computation.

By combining these numerical schemes, we arrive at the full algorithm of OLLA in Algorithm 1.
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Figure 2: Scatter plots of 200 samples from OLLA (top row) and CGHMC (bottom row) on four 2D
synthetic examples. Solid lines show equality constraints, dashed lines show inequality boundaries,
and green shaded areas mark feasible region by inequality constraints. OLLA closely matches the
CGHMC samples in each scenario.

5 Experiments
To demonstrate the sampling accuracy and efficiency, we compare OLLA and its Hutchinson-
accelerated variant (OLLA-H) against three standard constrained samplers: CLangevin [20], CHMC
[20], and CGHMC [21]. While the three baselines were originally designed for equality constraints,
we introduce one slack variable per inequality constraint via gj(x) + 1

2δ
2
j = 0 for each j ∈ [l] so that

gj(x) ≤ 0 is enforced. CGHMC, meanwhile, does not rely on slack variables, but instead uses a
Metropolis-Hasting correction step not only to reject samples based on the energy of the proposed
samples, but also based on the inequality constraint violation. Therefore, CGHMC allows more
accurate and unbiased sampling from the constrained distribution than CHMC and CLangevin in the
long run, and we use it as a ground truth for measuring the accuracy of our methods.

5.1 Synthetic 2D Examples
We first evaluate sampling on two-dimensional manifolds: (1) star-shaped equality manifold, (2) two-
lobe inequality manifold both with uniform density, (3) manifold defined by quadratic-polynomial
equality and inequality constraints with a standard Gaussian target, (4) Gaussian mixture with nine
components restricted to a seven lobes manifold by a nonlinear inequality (both for mixed scenario).

For each problem, we ran 200 independent chains in parallel with 5,000 steps, and collected the
last 200 samples. We then computed the W2 distance and energy distance between the empirical
distribution of the samples and the target distribution, as well as the constraint violation defined
by E[|h(x)|],E[max g(x)+], respectively. The results are shown in Figure 2 and Figure 3. Further
details of example setups and additional results are included in Appendix H.1.

Table 1: Effect of α on W 2
2 ,E[|h|]

α W 2
2 E[|h(x)|]

1 0.363±0.064 0.682±0.017

10 0.200±0.035 0.130±0.001

100 0.159±0.032 0.017±0.001

200 0.121±0.019 0.008±0.001

Table 2: Effect of ϵ onW 2
2 ,E[max g+]

ϵ W 2
2 E[max g+(x)]

0.1 0.151±0.026 0.082±0.017

1 0.108±0.011 0.067±0.027

5 0.123±0.018 0.040±0.015

10 0.112±0.034 0.019±0.006

Sampling Accuracy & Constraint Violation of OLLA.
As shown in Figure 3, OLLA and OLLA-H match the per-
formance of CHMC and CLangevin in both Wasserstein
and energy-distance metrics, demonstrating that our landing-
based approach attains sampling accuracy on par with estab-
lished methods. Also, constraint violations for OLLA and
OLLA-H remained at low levels without computationally
expensive projection steps.

Effect of Hyperparameters α and ϵ. We further examine
the influence of the landing rate α and boundary repulsion ϵ
on sampling accuracy and constraint satisfaction. As shown
in Tables 1 and 2, increasing α accelerates convergence,
yielding smaller W 2

2 values and reduced equality constraint
violations, consistent with our theoretical prediction that
larger α enhances the landing and contraction rates toward Σ.
However, excessively large α leads to numerical instability,
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Figure 3: Convergence diagnostics on the Gaussian mixture of 9 components on the 7 lobes manifold
with α = 100, ϵ = 1. From left to right: (1) energy distance to CGHMC samples, (2) squared W 2

2
distance to CGHMC samples, and (3) mean constraint violation E[|h|]. Solid lines and shaded bands
show the mean ±1 SD over five independent runs. Both OLLA and OLLA-H rapidly decrease E[|h|]
down to small values and maintain it there, which achieving the lowest energy and W 2

2 errors.
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Figure 4: Sampling performance and accuracy as the dimension d increases (with m = l = 5). From
left to right: (1) CPU time per ESS versus d, (2) Estimated probability P (x1 > 0) versus d, (3)
Estimated value of K(x) versus d. Shaded bands shows ± 1SD over five runs.

causing W 2
2 to rise and the sampler to collapse (Table 7). A similar trend is observed for ϵ. Stronger

repulsion lowers inequality violations, but beyond a certain range, W 2
2 remains nearly unchanged,

aligning with the continuous-time theory that ϵ primarily affects the finite landing time rather than
the asymptotic convergence rate. Overly large ϵ values can again destabilize the dynamics and lead to
numerical breakdown (Table 8).

5.2 Scaling of OLLA under High-Dimensionality and Large Number of Constraints

We assess the robustness and scalability of OLLA and OLLA-H using a synthetic stress-test problem
that enables explicit control over the ambient dimension d and the numbers of equality and inequality
constraints (m, l). Samples are drawn from a uniform distribution on a constrained manifold Σ
defined by linear and quadratic constraints. Each algorithm runs for 1,000 iterations with burn-in and
thinning, and we vary one of d, m, or l while fixing the others to disentangle their individual effects.

We evaluate two key metrics: (1) CPU time per effective sample (CPU/ESS), and (2) the accuracy
of representative test function estimates such as P (x1 > 0) and K(x) = sin(x1)e

x2 + log(|x3| +
1) tanh(x4) +

∏9
i=5 cos(xi). Detailed experimental setups are provided in Appendix H.2.

Scaling under Dimension. Figure 4 illustrates the sampling performance of algorithms as
d increases from 10 to 700 (with m = l = 5). On the left, CPU time/ESS of OLLA-H remains
essentially flat around 0.05s/sample while OLLA grows linearly (reaching≈ 1.1s/sample at d = 700),
and CHMC and CLangevin stay at 0.2 − 0.3s/sample and 0.1s/sample respectively. In the center,
both OLLA-H, CHMC, and CGHMC maintain P (x1 > 0) ≈ 0.5, whereas CLangevin collapses to
≈ 0.2 in high dimensions, indicating severe bias. On the right, the estimate of nonlinear test function
K(x) shows that OLLA, OLLA-H, CHMC, and CGHMC all produce virtually identical estimates
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Figure 5: Sampling performance and accuracy as the number of inequality constraints l increases
(with d = 100,m = 5). From left to right: (1) CPU time per ESS versus l, (2) Estimated probability
P (x1 > 0) versus l, (3) Estimated value of K(x) versus l. Shaded bands shows ± 1SD over five
runs. Note that OLLA and CGHMC results on CPU time/ESS overlap almost perfectly, suggesting
their comparable performance on this metric.
even as d grows, while CLangevin lags behind. Overall, the results indicate that OLLA-H scales,
maintaining reliable performance as the dimension d increases.

Scaling under the Number of Constraints. With d = 100, we separately increased the number
of equalities m (with l = 5) and the number of inequalities l (with m = 5). In the presence of a large
number of equalities, OLLA and OLLA-H may lose their edge over equality constrained specialized
baselines. In these situations, the maximum α that is stable in the discrete algorithm becomes limited
to prevent significant discretization error. However, we observe that even, at near limit value of α,
E[|h|] may remain relatively high unless the step size ∆t is further reduced. We add an additional
study for this on Appendix H.2. By contrast, when adding more inequalities, OLLA-H stays relatively
accurate and shows very low CPU time/ESS (Figure 5).

5.3 Molecular System with Realistic Potential
We further evaluate samplers on a molecular system with realistic potentials and geometric constraints.
The system incorporates equality constraints h (fixed bond lengths and angles) and inequality
constraints g (steric hindrance), alongside torsion and Weeks-Chandler-Anderson potential terms.
Experiments were conducted for increasing dimensions d = 3Natom by varying the number of atoms.
Detailed experimental details are provided in Appendix H.3 and Table 3 summarizes the results.

Table 3: Estimates of radius of gyration squared (R2
g) and total CPU time for sampling (in brackets)

on the molecular system with realistic potential (complex Σ, small |Ix|, large Nnewton). The average
constraint violation for OLLA-H was below 0.007 (equality), while projection-based samplers
maintained violations below 0.0001. Inequality violations were observed to be 0 for all algorithms.
The (d,m, l) configurations are: (15, 7, 6), (30, 17, 36), (45, 27, 91), (60, 37, 171), (90, 57, 406).

method / dim (d) 15 30 45 60 90

OLLA-H (N = 0)
1.392 ± 0.026

(78s)
5.414 ± 0.047

(151s)
12.240 ± 0.102

(254s)
21.820 ± 0.098

(334s)
49.080 ± 0.223

(704s)

OLLA-H (N = 5)
1.370 ± 0.032

(182s)
5.424 ± 0.045

(400s)
12.200 ± 0.155

(656s)
21.780 ± 0.098

(916s)
48.940 ± 0.273

(1732s)

CLangevin 1.396 ± 0.012

(421s)
5.526 ± 0.015

(3620s)
12.400 ± 0.000

(10940s)
22.140 ± 0.049

(22600s)
49.960 ± 0.049

(52220s)

CHMC 1.410 ± 0.000

(147s)
5.580 ± 0.000

(468s)
12.500 ± 0.000

(1012s)
22.200 ± 0.000

(1712s)
49.960 ± 0.049

(3660s)

CGHMC 1.410 ± 0.000

(135s)
5.580 ± 0.000

(282s)
12.500 ± 0.000

(467s)
22.200 ± 0.000

(652s)
49.940 ± 0.049

(1116s)

As dimension d grows, the feasible set Σ becomes increasingly complex, while the number of active
inequality constraints |Ix| remains small. However, the numerous equality constraints make each
projection step demanding for projection-based methods (CHMC, CLangevin, CGHMC), resulting in
substantial Newton iteration Nnewton and increased computational costs. Particularly, CLangevin is
significantly affected from this, whereas CGHMC is faster but still slower than OLLA-H (N = 0).
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In contrast, increasing the Hutchinson probe N from N = 0 to N = 5 improves the mean equality
constraint violation across all dimensions d, reducing it from a range of≈ 0.0055 down to≈ 0.00035.
Despite this, both OLLA-H configurations (N = 0, N = 5) yield comparable test function estimation
accuracy. This suggests that the constraint violation at N = 0 was already sufficiently low, rendering
the improvement’s impact on the final sampling accuracy negligible. Consequently, the N = 0
variant—where HVP evaluations are completely skipped—achieves significantly lower computational
cost. This behavior aligns with findings in Zhang et al. [17], suggesting that omitting the Itô-
Stratonovich (mean curvature) correction term has negligible practical impact on sampling accuracy,
while markedly improving efficiency.

5.4 Bayesian Logistic Regression with Fairness and Monotonicity Constraints
We evaluate the samplers on a high-dimensional Bayesian logistic regression task using a two-layer
neural network trained on the German Credit dataset [41]. The setup enforces fairness through
equality constraints h ensuring parity in true positive rate and false positive rate between demographic
groups, along with monotonicity constraints g on selected input data. Further details of experimental
setup are provided in Appendix H.3.

This problem poses significant challenges for projection-based samplers. Step sizes effective in
unconstrained scenarios led to projection failures for CLangevin and CHMC, and to acceptance rates
below 5% for CGHMC. To maintain stability, their step sizes were substantially reduced. In contrast,
the projection-free OLLA-H remained stable across all settings and, for fairness, was also evaluated
with the same reduced step size as CLangevin.

As summarized in Table 4, OLLA-H (N = 0) consistently attains the lowest test negative log-
likelihood (NLL) while being orders of magnitude faster than projection-based baselines. Although
the projection-based methods achieve tighter feasibility, OLLA-H maintains small violations without
noticeable degradation in accuracy. These results highlight OLLA-H’s robustness and computational
advantage in high-dimensional constrained Bayesian logistic regression task.

Table 4: Test NLL and total CPU time for sampling (in brackets) on the Bayesian logistic regression
with fairness and monotonicity constraints (high-dimensional Σ). The average constraint violations
for OLLA-H were below 0.005 (equality) and 0.15 (inequality), while projection-based samplers
(CLangevin, CHMC, CGHMC) maintained feasibility below 0.0008 (equality) and no inequality
violation.

method / dim (d) 1986 4994 9986 49986 100002

OLLA-H (N = 0) 0.514 ± 0.013

(63s)
0.521 ± 0.008

(70s)
0.524 ± 0.014

(70s)
0.523 ± 0.011

(81s)
0.520 ± 0.015

(82s)
OLLA-H (N = 5) 0.520 ± 0.013

(159s)
0.524 ± 0.008

(180s)
0.505 ± 0.004

(205s)
0.517 ± 0.011

(189s)
0.516 ± 0.004

(197s)
CLangevin 0.573 ± 0.004

(1162s)
0.568 ± 0.013

(1176s)
0.564 ± 0.022

(1194s)
0.580 ± 0.005

(1428s)
0.570 ± 0.011

(1370s)
CHMC 0.599 ± 0.015

(526s)
0.595 ± 0.020

(532s)
0.599 ± 0.017

(561s)
0.606 ± 0.004

(586s)
0.605 ± 0.004

(611s)
CGHMC 0.600 ± 0.007

(76s)
0.600 ± 0.009

(77s)
0.606 ± 0.003

(82s)
0.598 ± 0.020

(83s)
0.601 ± 0.007

(88s)

6 Conclusion & Future works
We have presented Overdamped Langevin with Landing (OLLA), a projection-free SDE sampler
that enforces nonlinear equality and inequality constraints by deterministically “landing” trajectories
onto the feasible set while retaining full tangential noise, and proved that its continuous dynamics
converge exponentially fast in 2-Wasserstein distance under appropriate regularity. Building on this,
we proposed OLLA-H, an EM discretization that uses a Hutchinson trace estimator for approximating
the Itô–Stratonovich correction at only O(N · grad-cost) per step, and showed in both 2D and high-
dimensional tests that it matches the accuracy of established constrained samplers while drastically
reducing runtime. Future work will include non-asymptotic convergence guarantees for the discrete
algorithm—closing the gap between SDE theory and implementation—and developing OLLA variants
that remain stable even with many equality constraints in very high dimensions, further extending its
scope to large-scale constrained probabilistic inference.
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[7] Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis of Langevin Monte Carlo
via convex optimization. Journal of Machine Learning Research, 20(73):1–46, 2019.

[8] Ruilin Li, Hongyuan Zha, and Molei Tao. Sqrt (d) dimension dependence of Langevin Monte
Carlo. In International Conference on Learning Representations, 2022. 1

[9] Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted Langevin algo-
rithm: Isoperimetry suffices. In Advances in Neural Information Processing Systems, volume 32,
2019. 1

[10] Sinho Chewi. Log-concave sampling. Technical report, 2024. URL https://chewisinho.
github.io/main.pdf. 1

[11] Kelvin Shuangjian Zhang, Gabriel Peyré, Jalal Fadili, and Marcelo Pereyra. Wasserstein control
of mirror Langevin Monte Carlo. In Conference on Learning Theory, pages 3814–3841. PMLR,
2020. 1, 2

[12] Ruilin Li, Molei Tao, Santosh S Vempala, and Andre Wibisono. The mirror Langevin algorithm
converges with vanishing bias. In International Conference on Algorithmic Learning Theory,
pages 718–742. PMLR, 2022. 1, 2

[13] Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024. 2

[14] Michael Muehlebach and Michael I. Jordan. On constraints in first-order optimization: A view
from non-smooth dynamical systems. Journal of Machine Learning Research, 23(256):1–47,
2022. 2

[15] Michael Muehlebach and Michael I Jordan. Accelerated first-order optimization under nonlinear
constraints. Mathematical Programming, pages 1–46, 2025. 2

11

https://chewisinho.github.io/main.pdf
https://chewisinho.github.io/main.pdf


[16] Sholom Schechtman, Daniil Tiapkin, Michael Muehlebach, and Eric Moulines. Orthogonal
directions constrained gradient method: from non-linear equality constraints to Stiefel manifold.
In Conference on Learning Theory, pages 1228–1258. PMLR, 2023. 2

[17] Ruqi Zhang, Qiang Liu, and Xin Tong. Sampling in constrained domains with orthogonal-space
variational gradient descent. In Advances in Neural Information Processing Systems, volume 35,
pages 37108–37120, 2022. 2, 4, 10

[18] Shiyue Zhang, Longlin Yu, Ziheng Cheng, and Cheng Zhang. Functional gradient flows for
constrained sampling. In Advances in Neural Information Processing Systems, volume 37,
pages 112356–112385, 2024. 2, 4, 54

[19] Mathias Rousset, Gabriel Stoltz, and Tony Lelievre. Free energy computations: a mathematical
perspective. World Scientific, 2010. 2, 4, 30, 31, 32, 38, 46

[20] Tony Lelievre, Mathias Rousset, and Gabriel Stoltz. Langevin dynamics with constraints and
computation of free energy differences. Mathematics of Computation, 81(280):2071–2125,
2012. 2, 7, 30, 31

[21] Tony Lelièvre, Mathias Rousset, and Gabriel Stoltz. Hybrid Monte Carlo methods for sampling
probability measures on submanifolds. Numerische Mathematik, 143(2):379–421, 2019. 2, 7,
32

[22] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989. 2, 6

[23] Thomas Power and Dmitry Berenson. Constrained stein variational trajectory optimization.
IEEE Transactions on Robotics, 40:3602–3619, 2024. 2

[24] Giovanni Ciccotti and Jean-Paul Ryckaert. Molecular dynamics simulation of rigid molecules.
Computer Physics Reports, 4(6):346–392, 1986. 2

[25] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.
Journal of Computational Physics, 23(3):327–341, 1977.

[26] Hans C Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics
calculations. Journal of computational Physics, 52(1):24–34, 1983. 2

[27] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution
with projected Langevin Monte Carlo. Discrete & Computational Geometry, 59:757–783, 2018.
2

[28] Sebastien Bubeck, Ronen Eldan, and Joseph Lehec. Finite-time analysis of projected Langevin
Monte Carlo. In Advances in Neural Information Processing Systems, volume 29, pages
1243–1251, 2015. 2

[29] Yunbum Kook, Yin Tat Lee, Ruoqi Shen, and Santosh S Vempala. Sampling with Riemannian
Hamiltonian Monte Carlo in a constrained space. In Advances in Neural Information Processing
Systems, volume 36, pages 31684–31696, 2022. 2

[30] Yunbum Kook and Santosh S Vempala. Gaussian cooling and Dikin walks: The interior-point
method for logconcave sampling. In Conference on Learning Theory. PMLR, 2024. 2

[31] Kanji Sato, Akiko Takeda, Reiichiro Kawai, and Taiji Suzuki. Convergence error analysis of
reflected gradient Langevin dynamics for non-convex constrained optimization. Japan Journal
of Industrial and Applied Mathematics, 42(1):127–151, 2025. 2

[32] Kwangjun Ahn and Sinho Chewi. Efficient constrained sampling via the mirror-Langevin
algorithm. In Advances in Neural Information Processing Systems, volume 34, pages 28405–
28418, 2021. 2

12



[33] Avetik Karagulyan and Arnak Dalalyan. Penalized Langevin dynamics with vanishing penalty
for smooth and log-concave targets. In Advances in Neural Information Processing Systems,
volume 33, pages 17594–17604, 2020. 2

[34] Mert Gurbuzbalaban, Yuanhan Hu, and Lingjiong Zhu. Penalized overdamped and underdamped
Langevin Monte Carlo algorithms for constrained sampling. Journal of Machine Learning
Research, 25(263):1–67, 2024. 2

[35] Luiz F Chamon, Mohammad R Karimi, and Anna Korba. Constrained sampling with primal-
dual Langevin Monte Carlo. In Advances in Neural Information Processing Systems, volume 37,
pages 29285–29323, 2024. 2

[36] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73
(2):123–214, 2011. 2

[37] Xiang Cheng, Jingzhao Zhang, and Suvrit Sra. Efficient sampling on Riemannian manifolds via
Langevin MCMC. In Advances in Neural Information Processing Systems, volume 35, pages
5995–6006, 2022.

[38] Khashayar Gatmiry and Santosh S Vempala. Convergence of the Riemannian Langevin algo-
rithm. arXiv preprint arXiv:2204.10818, 2022.

[39] Lingkai Kong and Molei Tao. Convergence of kinetic Langevin Monte Carlo on Lie groups. In
Conference on Learning Theory. PMLR, 2024. 2

[40] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009. 3

[41] Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77. 10, 61

[42] Leonard Gross. Logarithmic sobolev inequalities and contractivity properties of semigroups.
In Dirichlet Forms: Lectures given at the 1st Session of the Centro Internazionale Matematico
Estivo (CIME) held in Varenna, Italy, June 8–19, 1992, pages 54–88. Springer, 2006. 24

[43] Felix Otto and Cédric Villani. Generalization of an inequality by Talagrand and links with the
logarithmic Sobolev inequality. Journal of Functional Analysis, 173(2):361–400, 2000. 46

[44] OS Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities.
Journal of Functional Analysis, 42(1):102–109, 1981.

[45] OS Rothaus. Hypercontractivity and the bakry-emery criterion for compact Lie groups. Journal
of Functional Analysis, 65(3):358–367, 1986.

[46] Feng-Yu Wang. On estimation of the logarithmic Sobolev constant and gradient estimates of
heat semigroups. Probability Theory and Related Fields, 108:87–101, 1997.

[47] Xiao Wang, Qi Lei, and Ioannis Panageas. Fast convergence of Langevin dynamics on manifold:
Geodesics meet log-Sobolev. In Advances in Neural Information Processing Systems, volume 33,
pages 18894–18904, 2020. 24, 29

[48] Laurent Saloff-Coste. Uniformly elliptic operators on Riemannian manifolds. Journal of
Differential Geometry, 36(2):417–450, 1992. 24

[49] Michel Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Seminaire
de probabilites XXXIII, pages 120–216. Springer, 2006. 29

[50] John M Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018. 33

[51] Gregory S Chirikjian. Stochastic Models, Information Theory, and Lie Groups, Volume 1:
Classical Results and Geometric Methods. Springer Science & Business Media, 2009. 41

13



[52] Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville.
Riemannian diffusion models. In Advances in Neural Information Processing Systems, vol-
ume 35, pages 2750–2761, 2022. 41

[53] Sergej G Bobkov and Friedrich Götze. Exponential integrability and transportation cost related
to logarithmic Sobolev inequalities. Journal of Functional Analysis, 163(1):1–28, 1999. 46

[54] A Paszke. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems, volume 32, 2019. 54

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Summarized contributions in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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2. Limitations
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is provided. Running .ipynb files can reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 anb Appendix H illustrates the experimental setting and details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the plots and tables have ± 1 SD and mean values and trial numbers are
specified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix H illustrates the computing resources for experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper covers theoretical analysis and introduces an algorithm, which does
not relate to societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets from another parties.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was not involved during the development of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Table of Key Notations, Assumptions, and Remarks

Table 5: Table of Key Notations

Symbol Definition Descriptions

h h(x) = [h1(x), . . . , hm(x)]T Equality constraints
g g(x) = [g1(x), . . . , gn(x)]

T Inequality constraints
Σ {x ∈ Rd | h(x) = 0, g(x) ≤ 0} Constraint manifold
Ix {i ∈ [l] | gi(x) ≥ 0} =

{
i1, .., i|Ix|

}
Active index set of inequalities

gIx gIx(x) = [gi1(x), ...gi|Ix|(x)]
T Active inequality constraints

J(x)
{
h(x)T , gi1(x) + ϵ, ..., gi|Ix|(x) + ϵ

}T
Constraint-correction vector

Π(x) I −∇J(x)TG(x)−1∇J(x) Orthogonal projector onto TxΣ
TxΣ {v ∈ Rd | ∇h(x)v = 0,∇gIx(x)v = 0} Tangent space of Σ at x
∇Σf Π(x)∇f(x) Intrinsic gradient on Σ (C)

divΣX Tr (Π(x)∇X(x)) Intrinsic divergence on Σ (C)
dσΣ Induced surface (Hausdorff) measure of Σ Surface measure on Σ

G(x) ∇J(x)∇J(x)T Gram matrix, full rank assumed
Uϵ(Σ) Tubular neighborhood of Σ with reach ϵ Usual tubular neighborhood
Ûδ(Σ) Recoverable tubular neighborhood with width δ See details in (C.1, C.2)
Mh supx0∈supp(ρ0)∥h(x0)∥2 Initial bound of h(x)
Mg supx0∈supp(ρ0)∥g(x0)∥2 Initial bound of g(x)
π(x) argminy∈Σ∥x− y∥2 Nearest point projection onto Σ

ϵ Boundary repulsion rate Controls effect of repulsion.
α Landing rate Controls constraint decay
λLSI Log–Sobolev constant of ρΣ on Σ Enable KLΣ ≤ 1

2λLSI
IΣ

ρt Density of the process Xt at time t Law of Xt (following OLLA)
ρ̃t Density of the projected process Yt at time t Law of Yt := π(Xt)

ρΣ Target (stationary) density on Σ Proportional to exp(−f)dσΣ
KLΣ(ρ∥π)

∫
Σ
ρ ln ρ

πdσΣ KL-divergence on Σ

IΣ(ρ∥π)
∫
Σ
ρ∥∇Σ ln ρ

π∥
2
2dσΣ Fisher information on Σ

κ Regularity constant of Σ See details in (C.1, C.3)
Σp Σp := π(

{
x ∈ Rd | h(x) = p, g(x) ≤ 0

}
) Projected manifold for ∥p∥2 ≤ δ

vbp Boundary velocity of ∂Σp See details in Theorem 3
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Assumption 1 (Assumptions for exponential convergence of OLLA). The followings are assump-
tions used for proving the convergence results of OLLA:

(C1) LICQ. The linear independence constraint qualification holds on Σ if, for every x ∈ Σ,

{∇hi(x)}mi=1 ∪ {∇gj(x)}j∈Ix

is a set of linearly independent vectors.

(C2) Manifold regularity. The Riemannian manifold Σ is compact and connected. Also, the
equality constraint function h(x) is coercive, i.e., ∥h(x)∥2 →∞ as ∥x∥2 →∞. Assume
∇h(x) ̸= 0, ∀x ∈ Σ and dim(Σ) = d when there are only inequality constraints.

(C3) Initial constraints bounds. The initial distribution ρ0 satisfies

Mh := sup
x0∈supp(ρ0)

∥h(x0)∥2 <∞, Mg := sup
x0∈supp(ρ0)

∥g(x0)∥2 <∞.

(C4) Log-Sobolev constant. The stationary distribution ρΣ(x) ∝ exp(−f(x))dσΣ satisfies
a Log-Sobolev Inequality (LSI) with constant λLSI so that

KLΣ(ρ||ρΣ) ≤
1

2λLSI
IΣ(ρ||ρΣ).

Note: Compactness of Σ with non-negativity of Ricci curvature guarantees the LSI
condition. See [42–47] or Remark 6 for detailed description.

(M1) Regularity of Σp. The projected manifold Σp := π(
{
x ∈ Rd | h(x) = p, g(x) ≤ 0

}
)

lies inside the interior of Σ for 0 < ∥p∥2 < δ, where δ is the width of recoverable tubular
neighborhood Ûδ(Σ).

(M2) Regularity of ∂Σp. The boundary velocity vbp of ∂Σp appearing on Leibniz integral
rule satisfies supx∈∂Σp

∥vbp∥2 ≤ V ∥p∥β2 for some V > 0, β > 0. Also, assume MΣ :=

sup∥p∥2<δ σ∂Σp(∂Σp) <∞.

(M3) Bound on ρt, ρΣ. There exists the constants G1, G2, G3 > 0 such that G1 :=
supt≥0,x∈Σ ρ̃t <∞ and 0 < G2 ≤ ρΣ ≤ G3 for every x ∈ Σ.

Remark 3 (Comments on the assumptions (M1) and (M3)).

• Although the assumption (M1) is stated for all small perturbation p ∈ Rm, 0 < ∥p∥2 < δ, in our
anaylsis on Theorem 3, we only require:

Σt := π(
{
x ∈ Rd | h(x) = h(X0)e

−αt, g(x) ≤ 0
}
) ⊂ int(Σ)

for t ≥ tcut, tcut := max
{

1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)
, 1
α ln(C̃5)

}
. Hence, when X0 ∼ δ(x0) for

some x0 ∈ Rd, we can replace the global requirement “for all p with 0 < ∥p∥2 < δ” by a weaker,
one-dimensional condition:

(M1′) If X0 ∼ δ(x0) for some x0 ∈ Rd, let u = h(x0)
∥h(x0)∥2

and assume

Σsu := π(
{
x ∈ Rd | h(x) = su, g(x) ≤ 0

}
) ⊂ int(Σ), for all s ∈ (0, δ).

• For the uniform boundedness supt≥0,x∈Σ ρ̃t < ∞ in the assumption (M3), we recall from the
proof of Lemma G.2 that ρ̃t satisfies the following Fokker-Planck equation:

∂tρ̃t = −divΣ(ρ̃t(∇Σ ln ρΣ + bN )) +

d∑
k=1

divΣ(divΣ(ρ̃t(fk + δk))(fk + δk)).

Since ∥δk∥2 = O(e−αt), the second-order differential operator of the Fokker-Planck equation
becomes uniformly elliptic for sufficiently large t. In the absense of boundary conditions (equality-
only case), the result from Saloff-Coste [48] would then guarantee supt≥0,x∈Σ ρ̃t <∞. However,

24



the non-standard boundary conditions imposed on Σ in our setting preclude a direct application of
those results. We therefore retain the uniform boundedness of ρ̃t as an explicit assumption.

Remark 4 (Relaxed assumption of (M1)). We remark that the assumption (M1) can be strong in
practice. To mitigate this issue, we propose the following assumption (M1′′) which is a milder
assumption than (M1). It assumes

(M1′′) Let t1 := max
{

1
α ln

(
Mg+ϵ

ϵ

)
), 1

α ln
(
Mh

δ

)}
and define pt := P(π(Xt) ∈ ∂Σ) for t ≥ t1.

Suppose there exist γp, Cp > 0, tp ≥ t1 such that pt, ∂tpt ≤ Cpe
−γpt ≤ 1/2 for t ≥ tp.

We note that this assumption is a necessary condition of the previous assumption (M1), and the
landing property guarantees limt→∞ pt = 0. Also, this assumption ensures that both pt, ∂tpt decays
exponentially fast, which can be satisfied depending on how fast the sticking behavior of π(Xt) at
the bounadry is attenuated as t increases.

Corollary A.1 (Convergence result for mixed-constrained OLLA with milder assumption). Sup-
pose assumptions (C1) to (C4) and (M1′′) to (M3) hold. Define Xt to be the stochastic pro-
cess following OLLA dynamics (3) and ρ̃t to be the law of Yt := π(Xt) after t ≥ tcut, tcut :=

max
{

1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)
, 1
α ln(C̃5), tp

}
. Then, the following non-asymptotic convergence

rate of W2(ρt, ρΣ) holds for α > 2λLSI, β ≥ 1, and t > tcut:

W2(ρt, ρΣ) ≤
Mh

κ
e−αt +

√
2

λLSI
KLΣ(ρ̃Σ

◦
t ||ρΣ) + Cpe−γpt · diamΣ(Σ)2)

where

KLΣ(ρ̃Σ
◦

t ||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)−Cp

γp

(
e−γpt − e−γptcut

))
×

[KLΣ(ρ̃Σ
◦

tcut
||ρΣ) + C̃Σ◦

7 + C̃Σ◦

8 ]

for some constants GΣ◦

4 , G5, G
Σ◦

6 , C̃6 > 0, C̃Σ◦

7 := (C̃6 + αGΣ◦

4 G5Mh)
e−αtcut

α−2λLSI
,

C̃5 = O

1 +
C̃LA

Mh

κ
+

(
C̃LA

Mh

κ

)2
 , C̃Σ◦

8 := (GΣ◦

6 VMβ
h )

e−αβtcut

αβ − 2λLSI
,

and with C̃LA
being the Lipschitz constant of∇π(x)Π(x) on Ûδ(Σ), ρ̃tΣ

◦
being the conditional

laws of Yt given Yt ∈ int(Σ).

Proof. We slightly adjust the argument in the proof of Theorem 3 to show this statement, and the
definitions of constants are shared with Theorem 3. We first observe that the probability measure ρ̃t
can be decomposed as follows:

ρ̃t = (1− pt)ρ̃Σ
◦

t + ptρ̃
∂Σ
t , t ≥ tcut

where pt := ρ̃t(∂Σ) and

ρ̃Σ
◦

t :=
ρ̃t|Σ◦

1− pt
, ρ̃∂Σ

t :=
ρ̃t|∂Σ

pt
,

are the conditional laws of ρ̃t restricted on Σ and ∂Σ, respectively.

Because ρ̃t is the convex combination of ρ̃Σ
◦

t and ρ̃∂Σt , the convexity of the 2-Wasserstein distance
implies

WΣ
2 (ρ̃t, ρΣ)

2 ≤ (1− pt)WΣ
2 (ρ̃Σ

◦

t , ρΣ)
2 + ptW

Σ
2 (ρ̃∂Σt , ρΣ)

2.

Here, we note that

WΣ
2 (ρ̃Σ

◦

t , ρΣ) ≤
√

2

λLSI
KLΣ(ρ̃Σ

◦
t ||ρΣ)
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by Lemma E.6 and the fact that ρ̃Σ
◦

t has its support on int(Σ). Also, we note that

∂tρ̃
Σ◦

t =
1

1− pt

(
∂tρ̃t + (∂tpt)ρ̃

Σ◦

t

)
because ρ̃t = (1− pt)ρ̃Σ

◦

t holds for x ∈ int(Σ). Then, the same approach used in Lemma G.2 gives

∂tKLΣ(ρ̃Σ
◦

t ||ρΣ) = ∂t

∫
Σt

ρ̃Σ
◦

t ln

(
ρ̃Σ

◦

t

ρΣ

)
dσΣ

=
1

1− pt

∫
Σt

∂tρ̃t ln

(
ρ̃Σ

◦

t

ρΣ

)
dσΣ︸ ︷︷ ︸

Term (1)

+

∫
∂Σt

ρ̃Σ
◦

t

[
ln

(
ρ̃Σ

◦

t

ρΣ

)
− 1

]
⟨vbt , nt⟩dσ∂Σt︸ ︷︷ ︸

Term (2)

+
∂tpt
1− pt

KLΣ
(
ρ̃Σ

◦

t ||ρΣ
)

︸ ︷︷ ︸
Term (3)

+ ∂t

∫
Σt

ρ̃Σ
◦

t dσΣ︸ ︷︷ ︸
=0

where the last equality holds from the Leibniz integral rule with vbt being the velocity vector of the
boundary of Σt := π(

{
x ∈ Rd | h(x) = h(X0)e

−αt, g(x) ≤ 0
}
). Therefore, the expression of ∂tρ̃t

implies that Term (1) becomes

Term (1) =
∫
Σt

[
ρ̃Σ

◦

t (∇Σ ln ρΣ + bN )−
d∑

k=1

divΣ(ρ̃Σ
◦

t (fk + δk))(fk + δk)

]
∇Σ ln

(
ρ̃Σ

◦

t

ρΣ

)
dσΣ︸ ︷︷ ︸

Term (1-1)

−
∫
∂Σt

⟨

[
ρ̃Σ

◦

t (∇Σ ln ρΣ + bN )−
d∑

k=1

divΣ(ρ̃Σ
◦

t (fk + δk))(fk + δk)

]
ln

(
ρ̃Σ

◦

t

ρΣ

)
, nt⟩dσ∂Σt︸ ︷︷ ︸

Term (1-2)

using ρ̃t = (1− pt)ρ̃Σ
◦

t . Therefore, Lemma G.2 implies Term (1) can be bounded by

|Term (1)| ≤ −(1− C̃5e
−αt)IΣ(ρ̃Σ

◦

t ||ρΣ) + C̃6e
−αt + αGΣ◦

4 G5Mhe
−αt

with GΣ◦

4 := G3MΣ max

{
1
e ,

∣∣∣∣GΣ◦
1

G2
ln

(
GΣ◦

1

G2

)∣∣∣∣} and GΣ◦

1 := supt≥tcut,x∈Σ ρ̃
Σ◦

t ≤ 2G1, and the

Term (2) can be bounded by
|Term (2)| ≤ GΣ◦

6 VMβ
h e

−αβt.

with GΣ◦

6 := GΣ◦

4 +GΣ◦

1 MΣ. Also, Term (3) is upper bounded by

Term (3) ≤ Cpe
−γptKLΣ(ρ̃Σ

◦

t ||ρΣ)

Therefore, combining the bounds with the LSI condition gives the following inequality:

∂tKLΣ(ρ̃Σ
◦

t ||ρΣ)≤−2λLSI

(
1− C̃5e

−αt− Cp

2λLSI
e−γpt

)
KLΣ(ρ̃Σ

◦

t ||ρΣ) +
(
C̃6+ αGΣ◦

4 G5Mh

)
e−αt

+GΣ◦

6 VMβ
h e

−αβt.

Hence, applying the Grönwall-type inequality recovers the following inequality:

KLΣ(ρ̃Σ
◦

t ||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)− Cp

γp

(
e−γpt − e−γptcut

))
×

[KLΣ(ρ̃Σ
◦

tcut
||ρΣ) +

∫ t

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut) +

Cp

γp

(
e−γps − e−γptcut

))
×[(

C̃6 + αGΣ◦

4 G5Mh

)
e−αs +GΣ◦

6 VMβ
h e

−αβs
]
ds]

which can again be summarized as follows:
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KLΣ(ρ̃Σ
◦

t ||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)− Cp

γp

(
e−γpt − e−γptcut

))
×

[KLΣ(ρ̃Σ
◦

tcut
||ρΣ) + C̃Σ◦

7 + C̃Σ◦

8 ]

where C̃Σ◦

7 := (C̃6 + αGΣ◦

4 G5Mh)
e−αtcut

α−2λLSI
and C̃Σ◦

8 := (GΣ◦

6 VMβ
h )

e−αβtcut

αβ−2λLSI
.

Lastly, we observe that

WΣ
2 (ρ̃∂Σt , ρΣ) :=

(
inf

π∈Π(ρ̃∂Σ
t ,ρΣ)

∫
Σ×Σ

dΣ(p, q)
2π(dp, dq)

) 1
2

≤ diamΣ(Σ)

where diamΣ(Σ) := sup {dΣ(x, y) | x, y ∈ Σ} < ∞ due to the compactness of Σ. Therefore,
combining the above upper bounds, we recover the following inequality:

WΣ
2 (ρ̃t, ρΣ) ≤

√
2

λLSI
KLΣ(ρ̃Σ

◦
t ||ρΣ) + Cpe−γp · diamΣ(Σ)2)

Therefore, applying the same reasoning as in Theorem 3 completes the proof.

Remark 5 (Effect of number of Hutchinson probes N on the decaying speed of constraint functions).
In this remark, under the single equality case, we demonstrate that exponential decay of h via
OLLA-H and analyze the effects of the number of Hutchinson probes N . When there is only a single
equality constraint, we recall that the OLLA-H update rule is given as

Xk+1 = Xk + (b(Xk) + ϵk(Xk))∆t+
√
2∆tΠ(Xk)ξk, ξk ∼ N (0, Id)

where b(x) := −Π(x)∇f(x)− α∇h(x)G(x)−1h(x)−∇h(x)G−1(x)Tr
(
Π(x)∇2h(x)

)
and

Ŝ(x) =
1

N

N∑
i=1

vTk,iΠ(x)∇2h(x)vk,i, ϵk(x) := −∇h(x)G(x)−1
(
Ŝ(x)− Tr (S(x))

)
with S(x) := Π(x)∇2h(x) and vk,i ∼ N (0, Id). Also, we note that E [ϵk(Xk) | Xk] = 0 and

E
[
ϵk(Xk)ϵk(Xk)

T | Xk

]
=
∇h(Xk)∇h(Xk)

T

∥∇h(Xk)∥4
·Var(Ŝ(Xk)|Xk) =

2∇h(Xk)∇h(Xk)
T

N∥∇h(Xk)∥4
∥S(Xk)∥2F .

Proposition A.1 (Exponential decay of constraint function under OLLA-H). . Assume the single
equality constraint scenario and the following conditions:

• (Dissipativity of b(x)) ⟨x, b(x)⟩ ≤ −m∥x∥2 + c for some m > 0, c ≥ 0.

• (Linear growth of b(x)) ∥b(x)∥2 ≤ A+B∥x∥2 for some A,B ≥ 0.

• (Boundedness of tangential Hessian-gradient ratio) Ch = supx∈Rd
∥Π(x)∇2h(x)∥2

F

∥∇h(x)∥2 <∞.

• (L1-smoothness of h) For some L1 > 0, ∥∇2h(x)∥ ≤ L1 for any x ∈ Rd.

• (L2-Lipschitzness of ∇2h) For some L2 > 0, ∥∇2h(x) − ∇2h(y)∥ ≤ L2∥x − y∥ for any
x ∈ Rd.

• (Step size control) 0 < ∆t < min
{
1, mB ,

1
2m

}
.

Then, the OLLA-H dynamics with N Hutchinson probes have the following decaying property of h:

E [h(XK)] ≤ (1− α∆t)K E [h(X0)] +O
(
∆t

α

(
d+

1

N

))
for K ≥ 0.
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Proof. We first prove that supk≥0 E∥∆Xk∥2 <∞ where ∆Xk := Xk+1 −Xk. To show this, we
define Fk := σ(Xm, ξm, vm,j | m ≤ k, j ≤ N) to be the k th canonical filtration and observe that

E
[
∥Xk+1∥2 | Fk

]
= ∥Xk∥2 + 2∆t⟨Xk, b(Xk)⟩+∆t2∥b(Xk)∥2 +∆t2E

[
∥ϵk(Xk)∥2 | Xk

]
+ 2∆tE

[
∥Π(Xk)ξk∥2 | Xk

]
because E [ξk | Xk] = E [ϵk(Xk) | Xk] = 0 and ∆Xk = (b(Xk) + ϵk(Xk))∆t +

√
2∆tΠ(Xk)ξk.

Applying the disspativity and linear growth assumption, we have

E
[
∥Xk+1∥2 | Fk

]
≤ (1− (2m−B∆t)∆t) ∥Xk∥2 +

(
2c+ 2(d− 1) + (A+

2Ch

N
)∆t

)
∆t

because

E
[
∥ϵk(Xk)∥2 | Xk

]
≤ 2

N

∥Π(Xk)∇2h(Xk)∥2F
∥∇h(Xk)∥2

≤ 2Ch

N

holds from the tangential Hessian-gradient ratio assumption, and E
[
∥Π(Xk)ξk∥2 | Xk

]
= d − 1.

Because the step size control assumption guarantees (1 − (2m − B∆t)∆t) ∈ (0, 1), we have the
following inequality:

sup
k≥0

E[∥Xk∥2] ≤
2c+ 2(d− 1) + (A+ 2Ch

N )∆t

2m−B∆t
:=MN <∞

by taking expectations and iterating the recursion. Therefore, it holds that

E
[
∥∆Xk∥2 | Fk

]
= E

[
∥∆Xk∥2 | Xk

]
= ∆t2∥b(Xk)∥2 +∆t2E

[
∥ϵk(Xk)∥2 | Xk

]
+ 2∆t(d− 1)

≤ ∆t2
(
A+B∥Xk∥2

)
+

2Ch∆t
2

N
+ 2∆t(d− 1)

and

sup
k≥0

E∥∆Xk∥2 ≤ ∆t2
(
A+BMN +

2Ch

N

)
+ 2∆t(d− 1) :=M1∆t

2 +M2∆t <∞

with M1 := A+BMN + 2Ch

N and M2 = 2(d− 1).

Similarly, let us define B(Xk) := (b(Xk) + ϵk(Xk))∆t. Then, under the similar proof, it holds that

E
[
∥B(Xk)∥2 | Fk

]
= E

[
∥B(Xk)∥2 | Xk

]
= ∆t2∥b(Xk)∥2 +∆t2E

[
∥ϵk(Xk)∥2 | Xk

]
≤ ∆t2

(
A+B∥Xk∥2

)
+

2Ch∆t
2

N

and

sup
k≥0

E
[
∥B(Xk)∥2

]
≤ ∆t2

(
A+BMN +

2Ch

N

)
= ∆t2M1. (10)

Next, we prove the decaying property of h : Rd → R. From the 2nd order Taylor expansion on h, the
following holds almost surely:

h(Xk+1) = h(Xk) +∇h(Xk)∆Xk +
1

2
∆XT

k ∇2h(X̃k)∆Xk

= (1− α∆t)h(Xk)− Tr
(
Π(Xk)∇2h(Xk)

)
∆t+

(
ζTk Π(Xk)∇2h(Xk)Π(Xk)ζk

)
∆t

+
1

2
∆XT

k ∇2h(X̃k)∆Xk −
(
ζTk Π(Xk)∇2h(Xk)Π(Xk)ζk

)
∆t

where X̃k is some point ∈ Rd between Xk and Xk+1 and ∆Xk := Xk+1 − Xk. Therefore, by
applying thet previous observations, we get the following:

E[h(Xk+1)|Fk] ≤ (1− α∆t)h(Xk) +
L

2
E
[
∥B(Xk)∥2 | Xk

]
+ L∆tE

[
∥∆Xk∥2 | Xk

]
which implies

E[h(Xk+1)] ≤ (1− α∆t)E [h(Xk)] +
L∆t2(M1(1 + 2∆t) + 2M2)

2
.
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By applying the telescoping sum with expectation, we recover the following formula:

E [h(XK)] ≤ (1− α∆t)K E [h(X0)] +
L∆t(M1(1 + 2∆t) + 2M2)

2α
.

Finally, we note that

MN = O
(
d+∆t

(
1 +

1

N

))
, M1 = O

(
d+∆t

(
1 +

1

N

)
+

1

N

)
, M2 = O (d)

and, therefore,

E [h(XK)] ≤ (1− α∆t)K E [h(X0)] +O
(
∆t

α

(
d+

1

N

))
.

As we can see in the above proposition, the effect of N scales withO(1/N) and vanishes as N →∞.
Therefore, the usage of the Hutchinson estimator does not affect the convergence speed of constraint
functions under the single-equality scenario with sufficiently regular h and f .
Remark 6 (Geometric control of λLSI). We state the following result from geometric analysis that
provides a lower bound for λLSI:

Theorem A.1 (Informal, [49, 47]). Let Σ be a compact Riemannian manifold with diameter D and
non-negative Ricci curvature. Then, λLSI ≥ λ1

1+2D
√
λ1

, or λLSI ≥ π2

(1+2π)D2 holds, where λ1 is the
first eigenvalue of the Laplace-Beltrami operator on Σ.

This theorem implies if the constraints shrink the diameter D (or increase λ1) of Σ, the lower bound
of λLSI increases, so the on-manifold decay KLΣ(ρ̃t||ρΣ) accelerates (dominated by its exponential
rate −2λLSI appearing in Theorem 1 or Theorem 3).
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B Algorithms of OLLA, OLLA-H, and baselines

Algorithm 1 Euler–Maruyama discretization of OLLA & OLLA-H

1: Input: initial point x0 ∈ Rd, step size ∆t, number of steps K, landing rate α, boundary
repulsion rate ϵ, potential f , constraints {hi}mi=1, {gj}lj=1, Hutchinson probe numbers N , mode
∈ {OLLA,OLLA-H}

2: Output: sample trajectory {xk}Kk=0

3: for k = 0, . . . ,K − 1 do
4: Evaluate constraints: {hi(xk)}mi=1, {gj(xk)}lj=1

5: Compute: ∇f(xk), J(xk),∇J(xk)
6: Compute: G(xk)← ∇J(xk)∇J(xk)T
7: if rank(G) < m+ Ix: then G−1 ← G† else G−1 ← G−1

8: if mode = OLLA:
Compute: Tr← [Tr

(
Π(xk)∇2h1

)
, ...,Tr

(
Π(xk)∇2gi|Ix|

)
]T

9: else
Compute: Tr←

∑N
k=1[v

T
k Π(xk)∇2h1vk, ..., v

T
k Π(xk)∇2gi|Ix|vk]

T , vk ∼ N (0, Id)

10: Compute: H(xk)← ∇J(xk)TG−1(xk)Tr
11: Compute: q(xk)← −Π(xk)∇f(xk)− α∇J(xk)TG−1(xk)J(xk) +H(xk)
12: Update: xk+1 ← xk + q(xk)∆t+

√
2∆tΠ(xk)ξk where ξk ∼ N (0, Id)

13: end for
14: return {xk}Kk=0

Remark 7 (Pseudo-inverse of Gram matrix when LICQ fails). A second issue of OLLA arises
if the Gram matrix G = ∇J∇JT becomes singular. This may happen when the LICQ condition
momentarily fails near the neighborhood of Σ. In that case, we replace the inverse G−1 with
the Moore-Penrose pseudo-inverse G†. Because G† still projects onto the row space of ∇J and
annihilates its null space, it enforces the same exact orthogonality to constraint gradients, preserving
the exponential landing behavior and numerical stability of OLLA.

Algorithm 2 Constrained Langevin (CLangevin) with slack variables [19, 20]

1: Input: initial position x0 ∈ Σ, step size ∆t, number of steps K, potential f , constraints {hi}mi=1,
{gj}lj=1, projection iterations L, tolerance τ , regularization λ

2: Output: sample trajectory {xk}Kk=0

3: Initialize slack variables: s0,j ←
√

max{−2gj(x0), 0} for j ∈ [l]

4: Set the extended state: s0 ← (s0,1, ..., s0,l) ∈ Rl, y0 ← (x0, s0,1, ..., s0,l) ∈ Rd+l

5: for k = 0, . . . ,K − 1 do
6: Draw ξk ∼ N (0, Id+l)
7: Compute the augmented constraint vector:

J(yk) =
[
h1(xk), . . . , hm(xk), g1(xk) +

1

2
s2k,1, . . . , gl(xk) +

1

2
s2k,l]

T

8: Constrained update:

yk+1 ← yk −∇fext(yk)∆t+
√
2∆tξk +∇J(yk)Tλk

where fext(x, s) = f(x) and λk is chosen such that ∥J(yk+1)∥∞ ≤ τ by Newton’s
method with regularization λ and max iterations L

9: Set : xk ← yk[1 : d], sk ← yk[d+ 1 : l]
10: end for
11: Output: {xk}Kk=0
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Algorithm 3 Constrained HMC (CHMC) with slack variables [19, 20]

1: Input: initial position x0 ∈ Σ, step size ∆t, number of steps K, potential f , constraints
{hi}mi=1,{gj}lj=1, projection iterations L, tolerance τ , regularization λ, friction γ

2: Output: sample trajectory {xk}Kk=0

3: Initialize slack variable: s0,j ←
√
max{−2gj(x0), 0} for j ∈ [l]

4: Set the extended state: s0 ← (s0,1, ..., s0,l) ∈ Rl, y0 ← (x0, s0,1, ..., s0,l) ∈ Rd+l

5: Sample momentum p0 ∼ N (0, Id+l) such that ∇J(y0)p0 = 0
6: for k = 0, . . . ,K − 1 do
7: Draw ξk, ξk+1/2 ∼ N (0, Id+l)
8: Compute the augmented constraint vector:

J(yk) =
[
h1(xk), . . . , hm(xk), g1(xk) +

1

2
s2k,1, . . . , gl(xk) +

1

2
s2k,l]

T

9: Midpoint Euler step:

pk+1/4 = pk −
∆t

4
γ(pk + pk+1/4) +

√
∆tγξk +∇J(yk)Tλk+1/4

such that ∇J(yk)pk+1/4 = 0
10: Verlet step - (1):

pk+1/2 = pk+1/4 −
∆t

2
∇fext(yk) +∇J(yk)Tλk+1/2

yk+1 = yk + pk+1/2∆t

such that ∥J(yk+1)∥∞ ≤ τ by Newton’s method with regularization λ and max iterations L
11: Verlet step - (2):

pk+3/4 = pk+1/2 −
∆t

2
∇fext(yk+1) +∇J(yk+1)λk+3/4

such that∇J(yk+1)
T pk+3/4 = 0

12: Midpoint Euler step:

pk+1 = pk+3/4 −
∆t

4
γ(pk+3/4 + pk+1) +

√
∆tγξk+1 +∇J(yk+1)λk+1

such that ∇J(yk+1)
T pk+1 = 0

13: Set : xk ← yk[1 : d], sk ← yk[d+ 1 : l]
14: end for
15: Output: {xk}Kk=0
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Algorithm 4 Constrained generalized HMC (CGHMC) with MH correction [19, 21]

1: Input: initial position x0 ∈ Σ, step size ∆t, number of steps K, potential f , equality constraints
{hi}mi=1, {gj}lj=1, projection iterations L, tolerance τ , regularization λ, friction γ

2: Output: sample trajectory {xk}Kk=0

3: Sample momentum p0 ∼ N (0, Id) such that∇J(x0)p0 = 0
4: for k = 0, . . . ,K − 1 do
5: Draw ξk, ξk+1/2 ∼ N (0, Id)
6: Compute the augmented constraint vector: J(xk) = [h1(xk), . . . , hm(xk)]
7: Midpoint Euler step:

pk+1/4 = pk −
∆t

4
γ(pk + pk+1/4) +

√
∆tγξk +∇J(xk)Tλk+1/4

such that ∇J(xk)pk+1/4 = 0

8: Compute the Hamiltonian: H(xk, pk+1/4) = f(xk) +
1
2∥pk+1/4∥22

9: Verlet step - (1):

pk+1/2 = pk+1/4 −
∆t

2
∇f(xk) +∇J(xk)Tλk+1/2

x̃k+1 = xk + pk+1/2∆t

such that ∥J(x̃k+1)∥∞ ≤ τ by Newton’s method with regularization λ and max iterations L
10: Verlet step - (2):

p̃k+3/4 = pk+1/2 −
∆t

2
∇f(x̃k+1) +∇J(x̃k+1)λk+3/4

such that∇J(x̃k+1)
T p̃k+3/4 = 0

11: Compute the Hamiltonian: H(x̃k+1, p̃k+3/4) = f(x̃k+1) +
1
2∥p̃k+3/4∥22

12: Metropolis-Hasting Correction: With probability

min
{
exp

(
−(H(x̃k+1, p̃k+3/4)−H(xk, pk+1/4))

)
, 1
}

set
(xk+1, pk+ 3

4
) = (x̃k+1, p̃k+ 3

4
), if g(x̃k+1) ≤ 0

Otherwise, reject and flip momentum (xk+1, pk+ 3
4
) = (xk,− pk+ 1

4
)

13: Midpoint Euler step:

pk+1 = pk+3/4 −
∆t

4
γ(pk+3/4 + pk+1) +

√
∆tγξk+1 +∇J(xk+1)λk+1

such that ∇J(xk+1)
T pk+1 = 0

14: end for
15: Output: {xk}Kk=0
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C Proof of Basic Properties on Σ

C.1 Intrinsic Gradient on Σ

Recall that our target manifold Σ is defined by Σ :=
{
x ∈ Rd | h(x) = 0, g(x) ≤ 0

}
. For a smooth

function f : Σ→ R, the Riemannian gradient∇Σf is defined by the relation

⟨∇Σf(x), v⟩ = dfx(v), for every v ∈ TxΣ

To check Π(x)∇f(x) = ∇Σf(x), observe that Π(x)∇f(x) ∈ TxΣ and Π(x)∇f(x) reproduces
dfx on every tangent vector. This is because if v ∈ TxΣ, ⟨Π(x)∇f(x), v⟩ = ⟨∇f(x),Π(x)v⟩ =
⟨∇f(x), v⟩ = dfx(v) due to the symmetric nature of Π(x). Therefore, the intrinsic gradient on Σ
can be extrinsically defined by∇Σf(x) = Π(x)∇f(x).

C.2 Intrinsic Divergence on Σ

Recall that if X ∈ X (Σ) where X (Σ) is a set of smooth vector fields on Σ, then the divergence of X
on Σ is defined by divΣX(x) =

∑d−(m+|Ix|)
i=1 ⟨∇Σ

Ei
X,Ei⟩ where ∇Σ is Levi-Civita connection on

Σ and
{
E1, ...Ed−(m+|Ix|)

}
is an orthonormal frame of TxΣ. To check its extrinsic formula, first

observe that the induced Levi-Civita connection is given by∇Σ
YX(x) := (∇YX)⊤ = Π(x)∇YX(x)

where X,Y ∈ X (Σ), ⊤ indicates tangential component on Σ, and∇ is the Levi-Civita connection
(or usual directional gradient) in Rd. Then, ifX and

{
E1, ...Ed−(m+Ix)

}
are extended to the ambient

space Rd, it holds that

divΣX =

d−(m+|Ix|)∑
i=1

⟨Π∇Ei
X,Ei⟩ =

d−(m+|Ix|)∑
i=1

⟨Π∇XEi, Ei⟩ = Tr (Π∇X)

where the last equation is obtained by taking a basis
{
E1, ...Ed−(m+|Ix|), ν1, ..., νm+|Ix|

}
of Rd with{

ν1, ..., νm+|Ix|
}

being the orthonormal basis of (TxΣ)⊥, and applying the definition of trace.

C.3 Recoverable Tubular Neighborhood of Boundaryless Riemannian Manifold

Let Uϵ(Σ) :=
{
x ∈ Rd | dist(x,Σ) < ϵ

}
be a tubular neighborhood of Σ with reach ϵ, whose

existence is guaranteed by the compactness of Σ [50]. In the proof of Theorem 1, we require a
property that enables us to recover the unique x ∈ Uϵ(Σ) such that y = π(x) and h(x) = p, given
the information of y ∈ Σ and p ∈ Rm.

The following theorem indicates the existence of such a nice neighborhood of Σ such that any x
in this neighborhood can be recovered from the information of y, p. In addition to this, we need
a regularity lemma to connect the decrease of ∥h(x)∥2 with the decrease of dist(x,Σ), which is a
crucial property to show the convergence of the W2 distance.

Lemma C.1 (Regularity lemma). Assume h ∈ C2 and LICQ condition is satisfied on Σ. Then,
there exist constants ϵ̂, κ > 0 such that for all x ∈ Uϵ̂(Σ) ⊂ Uϵ(Σ)

∥h(x)∥2 ≥ κ∥x− π(x)∥2
where κ = 1

2 miny∈Σ σmin(∇h(y)) > 0.

Proof. For each y ∈ Σ, ∇h(y) has full rank by the LICQ condition, so its smallest singular value
σy := σmin(∇h(y)) > 0. Since, any x ∈ Uϵ(Σ) can be decomposed into x = y + v for some
y ∈ Σ, v ∈ Ny(Σ) := (TyΣ)

⊥, Taylor’s theorem gives

h(x) = h(y + v) = ∇h(y)v +Ry(v)

where the norm of the remainder term Ry(v) is bounded above by ∥Ry(v)∥2 ≤ 1
2M∥v∥

2
2 for

M := supy∈Uϵ̂(Σ)∥∇2h(y)∥2 <∞. Hence,

∥h(x)∥2 = ∥h(y + v)∥2 ≥ ∥∇h(y)v∥2 − ∥Ry(v)∥2 ≥ σy∥v∥2 −
1

2
M∥v∥22.
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Furthermore, because h ∈ C2 and y 7→ σmin(∇h(y)) is a continuous function on Σ, the compactness
of Σ implies there exists σ = miny∈Σ σmin(∇h(y)) > 0. Also, choose 0 < ϵ̂ ≤ ϵ such thatMϵ̂ ≤ σ.
Then whenever x ∈ Uϵ̂(Σ) so that ∥v∥2 < ϵ̂, we get

∥h(x)∥2 ≥ σ∥v∥2 −
1

2
M∥v∥22 ≥ (σ − 1

2
Mϵ̂)∥v∥2 ≥

σ

2
∥v∥2 =

σ

2
∥x− π(x)∥2.

Lemma C.1 shows that an upper bound on ∥h(x)∥2 yields an upper bound on ∥x− π(x)∥2; however,
this guarantee holds only once x has entered Uϵ̂. Therefore, to ensure that x indeed enters Uϵ̂

whenever ∥h(x)∥2 is sufficiently small, we appeal to Lemma C.2.

Lemma C.2 (Entrance cutoff of Uϵ̂(Σ) in terms of ∥h(x)∥2). Assume h is continuous and coercive,
i.e. ∥h(x)∥2 → ∞ whenever ∥x∥2 → ∞. Then, there exists δ∗ > 0 such that dist(x,Σ) < ϵ̂ if
∥h(x)∥2 < δ∗ where ϵ̂ > 0 is the constant defined in Lemma C.1.

Proof. First, we show that h is a proper map. Let C be a compact set in Rm so that it is closed
and bounded. Then, h−1(C) is closed because h is continuous. Also, suppose h−1(C) were
unbounded so that there is a sequence {xk}k∈N ∈ h−1(C) with ∥xk∥2 →∞. Then, by coercivity
of h, ∥h(xk)∥2 → ∞ while every h(xk) lies in C, which is bounded and leads to a contradiction.
Therefore, h−1(C) is bounded and closed and therefore is compact by the Heine-Borel theorem. This
proves h is a proper map.

Now, define a set Sϵ̂ :=
{
x ∈ Rd | dist(x,Σ) ≥ ϵ̂

}
and assume infx∈Sϵ̂

∥h(x)∥2 = 0. In this case,
there must be a sequence {xk}k∈N ⊂ Sϵ̂ with ∥h(xk)∥2 → 0. This implies xk ∈ h−1(B̄(0, 1))

for ∀k ≥ K for some K ∈ N. Since h−1(B̄(0, 1)) is a compact set, there is a subsequence{
xkj

}
of {xk} converging to some x∗ from the Bolzano-Weierstrass theorem. Subsequently, the

continuity of h implies h(x∗) = limj→∞ h(xkj
) = 0 and x∗ ∈ Σ. However, because Sϵ̂ is closed

and every xkj
∈ Sϵ̂, it should satisfy x∗ ∈ Sϵ̂ ⇒ dist(x∗,Σ) ≥ ϵ̂, which is a contradiction that

x∗ ∈ Σ ⇔ dist(x,Σ) = 0. Therefore, δ∗ := infx∈Sϵ̂
∥h(x)∥2 > 0 holds and dist(x,Σ) < ϵ̂ if

∥h(x)∥2 < δ∗.

Theorem C.1 (Recoverable tubular neighborhood). Let Σ :=
{
x ∈ Rd | h(x) = 0

}
be a compact

and boundaryless Riemannian manifold with LICQ condition. Then, there exists a recoverable
tubular neighborhood of Σ with width δ, Ûδ(Σ) :=

{
x ∈ Rd | ∥h(x)∥2 < δ

}
⊂ Uϵ̂(Σ) for some

δ > 0 such that

1. The nearest-point projection map π : Ûδ(Σ) → Σ, π(x) = argminy∈Σ∥x − y∥2 is
well-defined.

2. The following recovery map ζ(y, p) is well-defined

ζ(y, p) : Σ×B(0, δ)→ Ûδ(Σ), ζ(y, p) = y +∇h(y)TL(y, p) (11)

where L : Σ × B(0, δ) → Rm is the C1 function such that h(ζ(y, p)) = p and
π(ζ(y, p)) = y for ∀(y, p) ∈ Σ×B(0, δ).

In this case, we refer to Ûδ(Σ) as the recoverable tubular neighborhood of Σ.

Proof. Define F ((y, p), L) : R(d+m)+m → Rm by F ((y, p), L) = h(y+∇h(y)TL)− p. Then, for
each y ∈ Σ, F ((y, 0), 0) = h(y) − 0 = 0. Also, ∇LF ((y, p), L) = ∇h(y + ∇h(y)TL)∇h(y)T
implies∇LF ((y, 0), 0) = ∇h(y)∇h(y)T , which is invertible due to full rank assumption of ∇h(y).
Therefore, by the implicit function theorem, there exists δy > 0 and an open set Uy :=
{(y′, p′) ∈ Σ× Rm | dΣ(y, y′) < δy, ∥p′∥2 < δy} ⊂ Rd+m such that there exists a unique C1 func-
tion L : Uy → Rm satisfying L(y, 0) = 0 and F ((y, p), L(y, p)) = 0 for ∀(y, p) ∈ Uy .

Now, observe that ∪y∈ΣUy is the open cover of Σ × {0}, which is a compact set. Therefore,
using its finite subcovers, we can pick δ̂ > 0 such that for ∀y ∈ Σ and ∥p∥2 < δ̂, L(y, p) is
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well-defined C1 function on Σ × B(0, δ̂) and the recovery map ζ(y, p) : Σ × B(0, δ̂) → Rd,
ζ(y, p) = y +∇h(y)TL(y, p) is also well-defined and C1 on Σ×B(0, δ̂) such that h(ζ(y, p)) = p
holds (from F ((y, p), L(y, p)) = 0).

Finally, setting δ = min
{
δ̂, δ∗

}
(where the constant δ∗ comes from Lemma C.2) and Ûδ(Σ) :={

x ∈ Rd | ∥h(x)∥2 < δ
}
⊂ Uϵ̂(Σ) enables the well-defined nearest-point projection map π on

Ûδ(Σ). By applying π to ζ(y, p), we recover the formula π(ζ(y, p)) = π(y +∇h(y)TL(y, p)) =
y, ∀(y, p) ∈ Σ×B(0, δ).

C.4 Recoverable Tubular Neighborhood of Riemannian Manifold with Boundary

The following results generalize the proceeding lemmas and theorems by incorporating inequality
constraints alongside the equality constraints.

Lemma C.3 (Regularity lemma with boundary). Let Σ =
{
x ∈ Rd | h(x) = 0, g(x) ≤ 0

}
. As-

sume h, g ∈ C2 and LICQ condition is satisfied on Σ. Then, there exist constants ϵ̂, κ > 0 such
that for all x ∈ Uϵ̂(Σ) ⊂ Uϵ(Σ)

∥h(x)∥2 + ∥gIπ(x)
(x)∥2 ≥ κ∥x− π(x)∥2

where κ = 1
2 miny∈Σ σmin

([
∇h(y)T ,∇gIy (y)T

])
> 0.

Proof. For every subset I ⊂ [l], consider ΣI := {y ∈ Σ | Iy = I}. Then for y ∈ ΣI , ∇JI(y) :=
[∇h(y)T ,∇gI(y)T ]T ∈ R(m+|I|)×d has full rank due to the LICQ condition, so its smallest singular
value σI

y := σmin(∇JI(y)) > 0. Because y 7→ σI
y is continuous on ΣI , we also have σ :=

min
I⊂[l]

inf
y∈ΣI

σI
y > 0 by Lemma C.4. Also, since any x ∈ Uϵ(Σ) can be decomposed into x = y + v for

some y ∈ Σ, v ∈ Ny(Σ), Taylor’s theorem gives

h(x) = h(y + v) = ∇h(y)v +Rh(v), gIy (x) = gIy (y + v) = ∇gIy (y)v +Rg(v)

where the norm of the remainder term Rh(v), Rg(v) is bounded above by ∥Rh(v)∥2 ≤
1
2M∥v∥

2
2, ∥Rg(v)∥2 ≤ 1

2M∥v∥
2
2 for M := max

z∈Uϵ(Σ)

{
∥∇2h(z)∥2, ∥∇2g(z)∥2

}
< ∞. Now, we

set w = ∇J(y)v, which satisfies ∥w∥2 ≥ σ∥v∥2 by the definition of σ. Then, we observe

∥h(x)∥2 + ∥gIy (x)∥2 = ∥w∥2 −
(
∥w∥2 − ∥h(x)∥2 − ∥gIy (x)∥2

) (◦)
≥ σ∥v∥2 −M∥v∥22

where (◦) comes from the following observation:

∥w∥2 − (∥h(x)∥2 + ∥gIy (x)∥2) ≤ ∥w∥2 − ∥[h(x)T , gIy (x)T ]T ∥2 ≤ ∥w − [h(x)T , gIy (x)
T ]T ∥2

= ∥[Rh(v)
T , Rg(v)

T ]T ∥2 ≤ ∥Rh(v)∥2 + ∥Rg(v)∥2
≤M∥v∥22.

Now, choose small 0 < ϵ̂ ≤ ϵ such that Mϵ̂ ≤ σ
2 . Then whenever x ∈ Uϵ̂(Σ) so that ∥v∥2 < ϵ̂, we

get
∥h(x)∥2 + ∥gIπ(x)

(x)∥2 ≥
σ

2
∥v∥2 =

σ

2
∥x− π(x)∥2.

Lemma C.4. For every subset I ⊂ [l], consider ΣI := {y ∈ Σ | Iy = I}. For y ∈ ΣI , de-
fine ∇JI(y) := [∇h(y)T ,∇gI(y)T ]T ∈ R(m+|I|)×d and σI

y := σmin(∇JI(y)) > 0. Then,
inf

y∈ΣI

σI
y > 0 holds.

Proof. Suppose inf
y∈ΣI

σI
y = 0, then there exists a sequence yk ∈ ΣI with σmin(∇JI(yk)) →

0. Because Σ is compact, the sequence has a subsequence of yk converging to y∗ ∈ Σ by
Bolzano–Weierstrass theorem. In this case, there are two possibilities:
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1. When Iy∗ = I , σmin(JI(y∗)) > 0 by LICQ, contradicting the assumption inf
y∈ΣI

σI
y = 0.

2. When Iy∗ = I ∪ K for some non-empty set K ⊂ [l], the LICQ condition implies
∇JI∪K(y∗) = [∇h(y∗)T ,∇gI(y∗)T ,∇gK(y∗)

T ]T has a full rank, thereby, imposing
∇JI(y∗) to have full rank. This again implies inf

y∈ΣI

σI
y > 0, a contradiction.

Note that Iy∗ does not deactivate already activated inequality index i ∈ I . This is because gi(yk) = 0
for ∀i ∈ I and continuity of gi implies gi(y∗) = 0. Thus, the previous argument on two possibilities
completes the proof.

Lemma C.5 (Entrance cutoff of Uϵ̂(Σ) in terms of ∥h(x)∥2 and g(x)). Let Σ :={
x ∈ Rd | h(x) = 0, g(x) ≤ 0

}
. Assume h, g are continuous and h is coercive, i.e. ∥h(x)∥2 →

whenever ∥x∥2 → ∞. Then, there exists δ∗ > 0 such that dist(x,Σ) < ϵ̂ if ∥h(x)∥2 < δ∗ and
gi(x) < δ∗ for i ∈ [l], where ϵ̂ > 0 is defined in Lemma C.3.

Proof. Define Sϵ̂ :=
{
x ∈ Rd | dist(x,Σ) ≥ ϵ̂

}
and let ψ(x) := max {∥h(x)∥2, g1(x), ..., gl(x)}.

Assume infx∈Sϵ̂
ψ(x) = 0. In this case, there must be a sequence {xk}k∈N ⊂ Sϵ̂ with ∥h(xk)∥2 → 0

and gi(xk) ≤ ψ(xk)→ 0 for ∀i ∈ [l].

This implies xk ∈ h−1(B̄(0, 1)), ∀k ≥ K and for some K ∈ N. Since h−1(B̄(0, 1)) is a compact
set due to the properness of h (Lemma C.2), there exists a subsequence

{
xkj

}
of {xk} converging

to some x∗ from the Bolzano-Weierstrass theorem. Subsequently, the continuity of h implies
h(x∗) = limj→∞ h(xkj

) = 0, gi(x) ≤ 0,∀i ∈ [l], therefore, x∗ ∈ Σ.

However, because Sϵ̂ is closed and every xk ∈ Sϵ̂, it should satisfy x∗ ∈ Sϵ̂ ⇒ dist(x∗,Σ) ≥ ϵ̂,
which is a contradiction that x∗ ∈ Σ ⇔ dist(x,Σ) = 0. Therefore, δ∗ := infx∈Sϵ̂

ψ(x) > 0 holds
and dist(x,Σ) < ϵ̂ if ψ(x) < δ∗.

Theorem C.2 (Recoverable tubular neighborhood with boundary). Let Σ :={
x ∈ Rd | h(x) = 0, g(x) ≤ 0

}
be a compact Riemannian manifold with boundary. As-

sume LICQ condition on Σ. Then, there exists a recoverable tubular neighborhood of Σ with
width δ, Ûδ(Σ) :=

{
x ∈ Rd | ∥h(x)∥2 < δ, g(x) < δ

}
⊂ Uϵ̂(Σ) for some δ > 0 such that

1. The nearest-point projection map π : Ûδ(Σ) → Σ, π(x) = argminy∈Σ∥x − y∥2 is
well-defined.

2. The following recovery map ζ(y, p, qIy ) is well-defined

ζ(y, p, qIy ) : Σ×Bm(0, δ)×B|Iy|(0, δ)→ Ûδ(Σ), ζ(y, p, qIy ) = y+∇J(y)TL(y, p, qIy )

where Iy is the index set of active inequalities at y ∈ Σ, J(y) := [h(y), gIy (y)] ∈
Rm+|Iy|, and L : Σ×Bm(0, δ)×B|Iy|(0, δ)→ Rm+|Iy| is the function such that

h(ζ(y, p, qIy )) = p,

{
gi(ζ(y, p, qIy )) = qi, i ∈ Iy
gi(ζ(y, p, qIy )) < 0, i /∈ Iy,

π(ζ(y, p, qIy )) = y

∀(y, p, qIy ) ∈ Σ×Bm(0, δ)×B|Iy|(0, δ). Furthermore, when y ∈ int(Σ), L = L(y, p)

is a C1 function on Σ×Bm(0, δ).

Proof. Let us first define F ((y, p, qIy ), L) : R(d+m+|Iy|)+(m+|Iy|) → Rm+|Iy|, F ((y, p, qIy ), L) :=(
h(y +∇J(y)TL)− p, gIy (y +∇J(y)TL)− qIy

)
∈ Rm+|Iy| and consider the stratum ΣI :=

{y ∈ Σ | Iy = I} for each subset I of inequality indices.

Then for y ∈ ΣI , we observe that F ((y, 0, 0), 0) = 0 and ∇LF ((y, 0, 0), 0) = ∇J(y)∇J(y)T
which is invertible by the LICQ condition. Therefore, the implicit function theorem ensures the ex-
istence of δy > 0, Uy :=

{
(y′, p′, q′I) ∈ ΣI × Rm × RI | dΣ(y, y′) < δy, ∥p′∥2 < δy, ∥q′I∥2 < δy

}
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such that there exists a unique C1 map L : Uy → Rm+|I| satisfying F ((y, p, qI), l(y, p, qI)) =
0, ∀(y, p, qI) ∈ Uy .

Now, observe that ∪y∈ΣI
Uy is the open cover of ΣI × {0}m × {0}I , which is a compact set.

Therefore, using the finite subcovers of ΣI , we can pick δ̂I > 0 such that for ∀y ∈ ΣI , ∥p∥2 < δ̂I ,
and ∥gI∥2 < δ̂I , L(y, p, qI) is well-defined C1 function on ΣI × Bm(0, δ̂I) × B|I|(0, δ̂I) and the
recovery map ζ(y, p, qI) : Σ× Bm(0, δ̂)× B|I|(0, δ̂)→ Rd, ζ(y, p, qI) = y +∇J(y)TL(y, p, qI)
is also well-defined C1 map on ΣI × Bm(0, δ̂I) × B|I|(0, δ̂I) such that h(ζ(y, p, qI)) = p and
gi(ζ(y, p, qI)) = qi for i ∈ I , which comes from the property F (y, p, qI), l(y, p, qI)) = 0.

Furthermore, from the continuity of gi, i /∈ I , there exists γI > 0 such that gi(z) ≤ −γI for all z ∈
B(y, γI) and the compactness of Ūϵ̂(Σ) givesG-Lipschitzness of gi on Uϵ̂(Σ) for all i ∈ [l], for some
G > 0. Also, we recall that L(y, p, qI) is C1 map on

{
(y, p, qI) | y ∈ ΣI , ∥p∥2 < δ̂I , ∥gI∥2 < δ̂I

}
with L(y, 0, 0) = 0.

Hence, the Taylor expansion ofL(y, p, qI) with boundedness of ∥∇pL(y, p, qI)∥2, ∥∇qIL(y, p, qI)∥2
on
{
(y, p, qI) | y ∈ ΣI , ∥p∥2 < δ̂I , ∥gI∥2 < δ̂I

}
and boundedness of ∥∇J(y)∥2 on Σ gives

∥L(y, p, qI)∥ ≤ CI(∥p∥2 + ∥qI∥2) ⇒ ∥∇J(y)TL(y, p, qI)∥2 ≤ C ′
I(∥p∥2 + ∥qI∥2)

for some CI , C
′
I > 0. Then, choosing δ̃I := min

{
δ̂I ,

γI

4C′
IG

}
concludes that whenever ∥p∥2 <

δ̃I , ∥qI∥2 < δ̃I , the inequality

gi(ζ(y, p, qI)) = gi(y +∇J(y)TL(y, p, qI)) ≤ gi(y) +G∥∇J(y)TL(y, p, qI)∥2 ≤ −
γI
2
< 0

holds for all i /∈ I . Finally, setting δ = min
{
minI⊂[l] δ̃I , δ

∗
}

(where the constant δ∗ comes from

Lemma C.5) and Ûδ(Σ) :=
{
x ∈ Rd | ∥h(x)∥2 < δ, ∥g(x)∥2 < δ

}
⊂ Uϵ̂(Σ) enable well-defined

nearest-point projection map π on Ûδ(Σ). By applying π to ζ(y, p, gIy ), we recover the formula
π(ζ(y, p, qIy )) = π(y +∇J(y)T l(y, p, qIy )) = y, ∀(y, p, qIy ) ∈ Σ×Bm(0, δ)×B|Iy|(0, δ).

D Construction of SDE with Exponentially Fast Decaying Constraints
Proposition 1 (Construction of OLLA and its closed form SDE). Consider the following SDE:

dXt = q(Xt)dt+Q(Xt)dWt (12)

where

Q := argmin
Q̄∈Rd×d

∥
√
2I − Q̄∥2F s.t

{
Q̄∇hi = 0, ∀i ∈ [m],

Q̄∇gj = 0, ∀j ∈ Ix.

q := argmin
q̄∈Rd

∥q̄ +∇f∥22 s.t
{
∇hTi q̄ + 1

2Tr
(
∇2hiQQ

T
)
+ αhi = 0, ∀i ∈ [m],

∇gTj q̄ + 1
2Tr
(
∇2gjQQ

T
)
+ α(gj + ϵ) = 0, ∀j ∈ Ix

Then, there exists a closed form SDE of (12) given by:

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+H(Xt)dt+

√
2Π(Xt), (Ito)

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+

√
2Π(Xt) ◦ dWt, (Strato.)

where ◦ denotes the Stratonovich integral and

H := −∇JTG−1
[
Tr
(
∇2h1Π

)
, ...,Tr

(
∇2hmΠ

)
Tr
(
∇2gi1Π

)
, ...,Tr

(
∇2gi|Ix|Π

)]T
is the related Ito-Stratonovich correction, or mean curvature of

{
x ∈ Rd | h(x) = 0, gIx(x) = 0

}
.

Proof. Define J(x) := [h(x)T , gTIx + ϵ1|Ix|]
T ∈ Rm+|Ix| and ∇J(x) := [∇h(x)T ,∇gIx(x)T ]T ∈

R(m+|Ix|)×d. Then, the Lagrangian function associated with the optimization problem forQ becomes
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L(Q̄,Λ) := ∥
√
2Id − Q̄∥2F + Tr

(
ΛT∇JQ̄

)
where Λ ∈ R(m+|Ix|)×d is a Lagrangian multiplier.

Then, the stationarity condition with respect to Q̄ gives

0 =
∂L

∂Q̄
= −2(

√
2I − Q̄) + ΛT∇J ⇒ Q̄ =

√
2I − 1

2
ΛT∇J.

Also, the constraint condition implies

0 = Q̄∇JT = (
√
2I − 1

2
ΛT∇J)∇JT ⇒ ΛT = 2

√
2∇JT (∇J∇JT )−1,

where ∇J∇JT is invertible due to the LICQ condition. Therefore, we get optimal Q = Π :=√
2
(
I −∇JT (∇J∇JT )−1∇J

)
. For the q part, we set

b :=
1

2

[
Tr
(
∇2h1QQ

T
)
+ αh1, ...,Tr

(
∇2gi|Ix|QQ

T
)
+ α(gi|Ix| + ϵ)

]T
and the associated Lagrangian function L(q̄, λ) := ∥q̄+∇f(x)∥2+λT (∇Jq̄+ b) with λ ∈ Rm+|Ix|

being an Lagrangian multiplier. Then, the stationarity with respect to q̄ gives

0 =
∂L

∂q̄
= 2(q̄ +∇f) +∇JTλ ⇒ q̄ = −∇f −∇JTλ.

Again, the constraint condition implies

0 = ∇Jq̄ + b = −∇J∇f − (∇J∇JT )λ+ b ⇒ λ = (∇J∇JT )−1[b−∇J∇f ]

using the invertibility of ∇J∇JT . By plugging this expression to q̄, we recover the optimal q :=
−Π∇f −∇JT (∇J∇JT )−1b. Therefore, the Ito version of closed form SDE is given by

dXt = −[Π(Xt)∇f(Xt) +∇J(Xt)
TG(Xt)

−1b(Xt)]dt+
√
2Π(Xt)dWt

where G := ∇J∇JT is the associated Gram matrix. Also, some tensor-calculus computation
(Equation 3.46 in [19]) gives

−∇JTG−1
[
Tr
(
∇2h1Π

)
, ...,Tr

(
∇2hmΠ

)
,Tr
(
∇2gi1Π

)
, ...,Tr

(
∇2gi|Ix|Π

)]T
= ∇Π(x)Π(x)

which is the Ito-Stratonovich correction term. Furthermore, applying the technique in [19] (Remark
3.17), we can recover that this expression is equal to the mean curvature term H(x) of a manifold
defined by ΣIx :=

{
x ∈ Rd | h(x) = 0, gIx(x) = 0

}
. Therefore, we get the following closed form

expression of the SDE:

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+H(Xt)dt+

√
2Π(Xt), (Ito)

dXt = −[Π(Xt)∇f(Xt) + α∇J(Xt)
TG−1(Xt)J(Xt)]dt+

√
2Π(Xt) ◦ dWt, (Strato.)

where H = −∇JTG−1
[
Tr
(
∇2h1Π

)
, ...,Tr

(
∇2hmΠ

)
,Tr
(
∇2gi1Π

)
, ...,Tr

(
∇2gi|Ix|Π

)]T
is the

associated Ito-Stratonovich correction term (or mean curvature term of ΣIx ).

Lemma 1 (Exponential decay of constraint functions). The dynamics induced by (12) satisfies the
following properties almost surely for ∀i ∈ [m],∀j ∈ IX0

:

hi(Xt) = hi(X0)e
−αt, t ≥ 0 (13)

and 
gj(Xt) = −ϵ+ (gj(X0) + ϵ)e−αt, t ≤ 1

α
ln

(
gj(X0) + ϵ

ϵ

)
gj(Xt) ≤ 0, t ≥ 1

α
ln

(
gj(X0) + ϵ

ϵ

)
with gj(Xt) ≤ 0,∀t ≥ 0 for j /∈ IX0 , where Ix := {k ∈ [l] | gk(x) ≥ 0} is the index set of active
inequality constraints.
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Proof. Observe that, for each k ∈ [m], the Stratonovich chain rule implies

dhk(Xt) = ∇hk(Xt)
T
[
(−Π(Xt)∇f(Xt)− α∇J(Xt)

TG−1(Xt)J(Xt))dt+
√
2Π(Xt) ◦ dWt

]
(1)
= −α∇hk(Xt)

T∇J(Xt)
TG−1(Xt)J(Xt)dt

= −α
m+Ix∑
i,j=1

[G(Xt)]ki[G
−1(Xt)]ijhj(Xt)dt = −αhk(Xt)dt,

where (1) holds due to the fact ∇hk(x)TΠ(x) = 0. By integrating both side with respect to t, we
recover h(Xt) = h(X0)e

−αt, t ≥ 0 almost surely. Repeating the same calculation for gj for k ∈ Ix,
we obtain

dgk(Xt) = −α
m+Ix∑
i,j=1

[G(Xt)]ki[G
−1(Xt)]ij(gj(Xt) + ϵ)dt = −α(gk(Xt) + ϵ)dt,

which again recovers gk(Xt) = −ϵ + (gk(X0) + ϵ)e−αt. Furthermore, once gj(Xt) ≤ 0, it is
instantaneously reflected into interior of Σ whenever it hits the boundary ∂Σ. Therefore, gj(Xt) ≤ 0
holds for ∀t ≥ 0, j ∈ IX0

.

E Proof of Theoretical Results - Equality-constraint OLLA

Observe that when the constraints are only equality constraints, the equality-constraint OLLA (3) is
given by

dXt = −[Π(Xt)∇f(Xt) + α∇h(Xt)G
−1(Xt)h(Xt)]dt+

√
2Π(Xt) ◦ dWt. (14)

The high-level proof idea of Theorem 1 is to decompose the convergence analysis into two parts: (1)
Convergence of W2 distance between ρt and ρ̃t, (2) Convergence of KLΣ between ρ̃t and ρΣ where
ρt, ρ̃t are the law of Xt, Yt(:= π(Xt)) respectively and ρΣ is the law of the target distribution, which
satisfies dρΣ ∝ exp(−f(x))dσΣ.

E.1 Upper Bound of W2(ρt, ρ̃t)

Lemma E.1 (Upper bound of W2(ρt, ρ̃t)). Let ρt be the law of Xt which follows equality-
constrained OLLA (14) and define t0 := 1

α ln
(
1
δ

)
. For t ≥ t0, the law ρ̃t of Yt := π(Xt) is

well-defined and it holds that

W2(ρt, ρ̃t) ≤
Mh

κ
e−αt. (15)

Proof. For t ≥ t0, observe that ∥Xt − Yt∥2 = ∥Xt − π(Xt)∥2 ≤ 1
κ∥h(Xt)∥2 ≤ Mh

κ e−αt by
Lemma C.1 and Lemma 1. Then, by integrating both sides with respect to optimal coupling of ρt and
ρ̃t, we get

W2(ρt, ρ̃t) ≤
(
E [∥Xt − Yt∥]22

) 1
2

(◦)
≤ E [∥Xt − Yt∥2] ≤

Mh

κ
e−αt,

where (◦) holds by Jensen’s inequality.
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E.2 Upper Bound of KLΣ(ρ̃t||ρΣ)
Lemma E.2 (SDE representation of projected process). Let Xt be the stochastic process following
the SDE:

dXt = b(Xt, t)dt+
√
2Π(Xt) ◦ dWt

where Xt ∈ Ûδ(Σ), ∀t ≥ 0. Then, the stochastic process Yt defined by Yt = π(Xt) follows the
SDE below:

dYt = Π(Yt)b(Yt, t)dt+
√
2Π(Yt) ◦ dWt + [∇π(Xt)b(Xt, t)−∇π(Yt)b(Yt, t)] dt

+
√
2 [∇π(Xt)Π(Xt)−∇π(Yt)Π(Yt)] ◦ dWt

Proof. From the the Stratonovich chain rule, we observe that

dYt = dπ(Xt) = ∇π(Xt)b(Xt, t)dt+
√
2∇π(Xt)Π(Xt) ◦ dWt.

This expression can be re-written as follows

dYt =
[
∇π(Yt)b(Yt, t)dt+

√
2∇π(Yt)Π(Yt) ◦ dWt

]
+ [∇π(Xt)b(Xt, t)−∇π(Yt)b(Yt, t)] dt

+
√
2 [∇π(Xt)Π(Xt)−∇π(Yt)Π(Yt)] ◦ dWt

(◦)
=
[
Π(Yt)b(Yt, t)dt+

√
2Π(Yt) ◦ dWt

]
+ [∇π(Xt)b(Xt, t)−∇π(Yt)b(Yt, t)] dt

+
√
2 [∇π(Xt)Π(Xt)−∇π(Yt)Π(Yt)] ◦ dWt

where (◦) holds because ∇π(y) = Π(y), Π(y)2 = Π(y) (idempotent) for ∀y ∈ Σ and Yt ∈ Σ.

Corollary E.1 (SDE representation of projected process from equality-constrained OLLA). LetXt

be the stochastic process following equality-constrained OLLA (14). Then, for t ≥ t0(:= 1
α ln

(
1
δ

)
),

the projected process Yt := π(Xt) follows the following SDE:

dYt = [−Π(Yt)∇f(Yt) + bN (Yt, t)] dt+
√
2Π(Yt)(I +AN (Yt, t)) ◦ dWt

where ∥bN (Yt, t)∥2 = CbN e
−αt, ∥AN (Yt, t)∥ = CAN

e−αt for t ≥ 0 almost surely for some
constant CbN , CAN

:=
CLA

Mh

κ > 0 with CLA
being the Lipschitz constant of ∇π(x)Π(x) on

Ûδ(Σ)

Proof. By applying Lemma E.2 to the SDE (14), it holds that

dYt = Π(Yt)b(Yt, t)dt+
√
2Π(Yt) ◦ dWt + [∇π(Xt)b(Xt, t)−∇π(Yt)b(Yt, t)] dt

+
√
2 [∇π(Xt)Π(Xt)−∇π(Yt)Π(Yt)] ◦ dWt

for b(x, t) = b(x) := −
[
∇Π(x)∇f(x) + α∇h(x)TG−1(x)h(x)

]
. By using Lemma 1, Theo-

rem C.1, we can set Xt = ζ(Yt, h(X0)e
−αt) where ζ : Σ × Rm → Ûδ(Σ) is the recovery map.

Now, since Xt, Yt ∈ Ûδ(Σ) and the closure of Ûδ(Σ) is compact, ∇π(x)b(x) and ∇π(x)Π(x) is
CLb

, CLA
-Lipschitz on Ûδ(Σ), respectively for some CLb

, CLA
> 0. Therefore, it holds that

∥bN (Yt, t)∥2 ≤ CLb
∥ζ(Yt, h(X0)e

−αt)− Yt∥2 ≤
CLb
∥h(X0)∥2
κ

e−αt ≤ CLb
Mh

κ
e−αt

where bN (Yt, t) := ∇π(ζ(Yt, h(X0)e
−αt)b(ζ(Yt, h(X0)e

−αt)) − ∇π(Yt)b(Yt) and the second
last inequality comes from Lemma C.1. Similarly, we obtain the bound of AN (Yt, t) :=
∇π(ζ(Yt, h(X0)e

−αt))Π(ζ(Yt, h(X0)e
−αt))−∇π(Yt)Π(Yt) as follows:

∥AN (Yt, t)∥2 ≤ CLA
∥ζ(Yt, h(X0)e

−αt)− Yt∥2 ≤
CLA
∥h(X0)∥2
κ

e−αt ≤ CLA
Mh

κ
e−αt

Finally, we complete the proof by setting CbN :=
CLb

Mh

κ , CAN
:=

CLA
Mh

κ and observing that
∇π(x) = Π(π(x))∇π(x) for ∀x ∈ Ûδ(Σ), which implies AN (Yt, t) = Π(Yt)AN (Yt, t).

The following theorem is a Fokker-Planck equation of a Stratonovich SDE defined on a Riemannian
manifold. We will rely on this theorem to describe the time derivative of ρ̃t.
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Theorem E.1 (Fokker-Planck equation on Riemannian manifold [51, 52]). Let Xt ∈ Σ be a
stochastic process following the SDE:

dXt = V0dt+

d∑
k=1

Vk ◦ dBk
t ,

where V0, Vk are smooth vector fields on Σ for each k ∈ [d] and Bk
t are kth components of

Brownian motion Bt. Then, the law ρt of the stochastic process Xt satisfies the following Fokker-
Planck equation:

∂tρt = −divΣ(ρtV0) +
1

2

d∑
k=1

divΣ(divΣ(ρtVk)Vk).

Lemma E.3 (Upper bound of KLΣ(ρ̃t||ρΣ)). Assume that ρΣ satisfies the LSI condition with
constant λLSI. Let Xt be the stochastic process following equality-constrained OLLA (14) and ρ̃t
be the law of Yt := π(Xt) after t ≥ tcut, tcut := max

{
1
α ln δ, 1

α ln(C5)
}

. Then, for α ̸= 2λLSI, the
following non-asymptotic convergence rate of KLΣ(ρ̃t||ρΣ) can be obtained as follows

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ)

+ C6

∫ t

tcut

exp

(
2λ(s− tcut) +

2λLSIC5

α
(e−αs − e−αtcut)

)
e−αsds]

In particular, if α > 2λLSI, it becomes

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C7]

for some constants C5 = O(1 + CAN
+ C2

AN
), C6, C7 := C6e

−αtcut

α−2λLSI
> 0.

Proof. By Theorem E.1, Corollary E.1, and the choice of ∇f = −∇ ln ρΣ, we know that the
projected process Yt is given by

dYt = [−Π(Yt)∇f(Yt) + bN (Yt, t)] dt+
√
2Π(Yt)(I +AN (Yt, t)) ◦ dWt

and its associated Fokker-Planck equation can be written as follows:

∂tρ̃t = −divΣ(ρ̃t (∇Σ ln ρΣ + bN )) +

d∑
k=1

divΣ (divΣ(ρ̃t(fk + δk))(fk + δk))

where fk = Πek, δk = ΠANek, and ek is kth standard basis vector for Rd. Now observe the
following equations:

∂tKLΣ(ρ̃t||ρΣ) =
∫
Σ

∂tρ̃t · ln
(
ρ̃t
ρΣ

)
dσΣ + ∂t

∫
ρ̃tdσΣ =

∫
Σ

∂ρ̃t ln

(
ρ̃t
ρΣ

)
dσΣ

=

∫
Σ

[
−divΣ(ρ̃t∇Σ ln ρΣ) +

d∑
k=1

divΣ(divΣ(ρ̃tfk)fk)

]
ln

(
ρ̃t
ρΣ

)
dσΣ︸ ︷︷ ︸

Term (1)

+

∫
Σ

[−divΣ(ρ̃tbN )] ln

(
ρ̃t
ρΣ

)
dσΣ︸ ︷︷ ︸

Term (2)

+

∫
Σ

d∑
k=1

[divΣ(divΣ(ρ̃tδk)fk + divΣ(ρ̃tfk)δk + divΣ(ρ̃tδk)δk] ln
(
ρ̃t
ρΣ

)
dσΣ︸ ︷︷ ︸

Term (3)

.
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Analysis of Term (1) - induced by the main SDE. From integration by parts, we obtain

Term (1) =
∫
Σ

ρ̃t⟨∇Σ ln ρΣ,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

d∑
k=1

∫
Σ

divΣ(ρ̃tfk)⟨fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

=

∫
Σ

ρ̃t⟨∇Σ ln ρΣ,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

d∑
k=1

∫
Σ

⟨∇Σρ̃t, fk⟩⟨fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

−
d∑

k=1

∫
Σ

ρ̃tdivΣ(fk)⟨fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

(△)
=

∫
Σ

ρ̃t⟨∇Σ ln ρΣ,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

∫
Σ

ρ̃t⟨∇Σ ln ρ̃t,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

= −
∫
Σ

ρ̃t∥∇Σ ln

(
ρ̃t
ρΣ

)
∥22dσΣ = −IΣ(ρ̃t||ρΣ)

where (△) holds using Lemma E.4 (the third term = 0) and the fact that ρ̃t∇Σ ln ρ̃t = ∇Σρ̃t.

Analysis of Term (2) - induced by the noise drift bN . Again, using the integration by
parts, we observe that

|Term (2)| =
∣∣∣∣∫

Σ

divΣ(ρ̃tbN ) ln

(
ρ̃t
ρΣ

)
dσΣ

∣∣∣∣ = ∣∣∣∣∫
Σ

ρ̃t⟨bN ,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣
≤
∫
Σ

ρ̃t∥bN∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ ≤ CbN e

−αt

∫
Σ

ρ̃t · 1 · ∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

(□)

≤ CbN e
−αt

∫
Σ

ρ̃t

[
CbN

4
+

1

CbN

∥∇Σ ln

(
ρ̃t
ρΣ

)
∥22
]
dσΣ = e−αtIΣ(ρ̃t||ρΣ) +

C2
bN

4
e−αt,

where (□) inequality holds using the AM-GM inequality.

Analysis of Term (3) - induced by noise diffusion AN . To analyze Term (3), we apply
integration by parts and the chain rule of the divergence, i.e., divΣ(ρ̃tak) = ⟨∇Σρ̃t, ak⟩+ ρ̃tdivΣ(ak)
for a vector field ak on Σ:

Term (3) = −
d∑

k=1

∫
Σ

ρ̃t⟨(divΣδk)δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

d∑
k=1

∫
Σ

ρ̃t⟨(divΣδk)fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

−
d∑

k=1

∫
Σ

ρ̃t⟨(divΣfk)δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

d∑
k=1

∫
Σ

⟨∇Σρ̃t, δk⟩⟨fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

−
d∑

k=1

∫
Σ

⟨∇Σρ̃t, fk⟩⟨δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ −

d∑
k=1

∫
Σ

⟨∇Σρ̃t, δk⟩⟨δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ.

Now, note that
∑d

k=1 δkf
T
k = ΠANΠ,

∑d
k=1 fkδ

T
k = ΠAT

NΠ, and
∑d

k=1 δkδ
T
k = ΠANA

T
NΠ.

Then it holds that∣∣∣∣∣−
d∑

k=1

∫
Σ

⟨∇Σρ̃t, δk⟩⟨fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ =
∣∣∣∣∫

Σ

ρ̃t(∇Σ ln ρ̃t)
TΠANΠ(∇Σ ln

(
ρ̃t
ρΣ

)
)

∣∣∣∣ dσΣ
≤ CAN

e−αt

∫
Σ

ρ̃t∥∇Σ ln ρ̃t∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

(×)

≤ CAN
e−αtIΣ(ρ̃t||ρΣ) + CAN

C3e
−αt

∫
Σ

ρ̃t∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

(◦)
≤ CAN

e−αtIΣ(ρ̃t||ρΣ) + CAN
C3e

−αt

∫
Σ

ρ̃t

[
C3

4
+

1

C3
∥∇Σ ln

(
ρ̃t
ρΣ

)
∥22
]
dσΣ

≤ 2CAN
e−αtIΣ(ρ̃t||ρΣ) +

CAN
C2

3

4
e−αt,
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where C3 := maxx∈Σ∥∇Σ ln ρΣ∥2 < ∞ by compactness of Σ, and (×) holds using the triangle
inequality; ∥∇Σ ln ρ̃t∥2 ≤ ∥∇Σ ln

(
ρ̃t

ρΣ

)
∥2 + ∥∇Σ ln ρΣ∥2. Also, (◦) comes from the AM-GM

inequality. By following the same reasoning, the following inequalities are obtained:∣∣∣∣∣−
d∑

k=1

∫
Σ

⟨∇Σρ̃t, fk⟩⟨δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ ≤ 2CAN
e−αtIΣ(ρ̃t||ρΣ) +

CAN
C2

3

4
e−αt

∣∣∣∣∣−
d∑

k=1

∫
Σ

⟨∇Σρ̃t, δk⟩⟨δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ ≤ 2C2
AN
e−2αtIΣ(ρ̃t||ρΣ) +

C2
AN
C2

3

4
e−2αt

≤ 2C2
AN
e−αtIΣ(ρ̃t||ρΣ) +

C2
AN
C2

3

4
e−αt

Next, we observe that the following terms decay exponentially fast :∣∣∣∣∣
d∑

k=1

∫
Σ

ρ̃t⟨divΣ(fk)δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ ≤
∫
Σ

ρ̃t∥
d∑

k=1

divΣ(fk)δk∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

(⊕)

≤
∫
Σ

ρ̃t∥ΠAN∥2∥divΣ(Π)∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

≤ CAN
C4e

−αt

∫
Σ

ρ̃t1 · ∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ

≤ CAN
C4e

−αt

∫
Σ

ρ̃t

[
CAN

C4

4
+

1

CAN
C4
∥∇Σ ln

(
ρ̃t
ρΣ

)
∥22
]
dσΣ

≤ e−αtIΣ(ρ̃t||ρΣ) +
C2

AN
C2

4

4
e−αt,

whereC4 := maxx∈Σ∥divΣ(Π(x))∥2 <∞, (⊕) holds because
∑d

k=1 divΣ(fk)δk = divΣ(Π)TΠAN

once divΣ(Π) is given by (divΣΠ)k := divΣ(fk) for each k ∈ [d]. Similarly, we obtain the following
bound by using Lemma E.5 :∣∣∣∣∣

d∑
k=1

∫
Σ

ρ̃t⟨divΣ(δk)fk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ ≤
∫
Σ

ρ̃t∥Π∥2∥div(ΠAN )∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥dσΣ

LemE.5
≤ Cdive

−αt

∫
Σ

ρ̃t∥∇Σ ln

(
ρ̃t
ρΣ

)
∥2dσΣ ≤ e−αtIΣ(ρ̃t||ρΣ) +

C2
div

4
e−αt

and∣∣∣∣∣
d∑

k=1

∫
Σ

ρ̃t⟨divΣ(δk)δk,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ

∣∣∣∣∣ ≤
∫
Σ

ρ̃t∥ΠAN∥2∥div(ΠAN )∥2∥∇Σ ln

(
ρ̃t
ρΣ

)
∥dσΣ

LemE.5
≤ CdivCAN

e−2αt

∫
Σ

ρ̃t∥∇Σ ln

(
ρ̃t
ρΣ

)
∥dσΣ ≤ e−αtIΣ(ρ̃t||ρΣ) +

C2
divC

2
AN

4
e−αt,

where divΣ(ΠAN ) is similarly defined by (divΣΠAN )k := divΣ(δk) for each k ∈ [d].

Applying Gronwall-type inequality. By summing all the bounds, we arrive at

∂tKLΣ(ρ̃t||ρΣ)
LSI
≤ −2λLSI(1− C5e

−αt)KLΣ(ρ̃t||ρΣ) + C6e
−αt,

withC5 := (4+4CAN
+2C2

AN
),C6 :=

(
C2

bN

4 +
CAN

C2
3

2 +
C2

AN
C2

3

4 +
C2

AN
C2

4

4 +
C2

div

4 +
C2

divC
2
AN

4

)
.

Therefore, the Grönwall-type inequality gives for t > tcut, tcut := max
{

1
α ln δ, 1

α ln(C5)
}

:

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ)

+ C6

∫ t

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC5

α
(e−αs − e−αtcut)

)
e−αsds].
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In particular, if α > 2λLSI, it holds that

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C7]

where C7 := e−αtcut

α−2λLSI
from the fact that∫ ∞

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC5

α
(e−αs − e−αtcut)

)
e−αsds ≤

∫ ∞

tcut

exp(2λLSI(s− tcut))e
−αsds

=
e−αtcut

α− 2λLSI
<∞.

Lemma E.4. Let {fk}dk=1 be a set of vectors defined by fk = Π(x)ek, where Π(x) is the
orthogonal projector onto TxΣ and ek is the kth standard basis vector of Rd. Then, it holds that

d∑
k=1

(divΣfk)fk = 0.

Proof. Recalling that Π(x) = I − ∇h(x)T (∇h(x)∇h(x)T )−1∇h(x), we define N(x) =

∇h(x)T (∇h(x)∇h(x)T )− 1
2 ∈ Rd×m so that N(x)TN(x) = Im and Π(x) = I − N(x)N(x)T .

If we let the columns of N(x) to be {n1(x), ..., nm(x)}, then these produce an orthonormal basis
of NxΣ. This is because Im(N(x)) = Im(∇h(x)T ) (from the invertibility (∇h(x)∇h(x)T )− 1

2 )
implies {n1(x), ...nm(x)} span NxΣ and N(x)TN(x) = I guarantees the orthonormality.

Next, we define a vector field F (x) by F (x) = Π(x)divΣ(Π(x)) where (divΣΠ(x))k :=
divΣ(fk(x)) for each k ∈ [d]. With this definition, we have divΣΠ = −divΣ(NNT ) =
−
∑m

k=1 divΣ(nknTk ). Now observe that for l ∈ [d],

(divΣ(nknTk ))l = Tr
(
Π∇((nknTk )l)

)
=

d∑
i,j=1

Πij∂j(nkn
T
k )il =

d∑
i,j

[Πij∂jnkinkl +Πijnki∂jnkl]

= (divΣnk)nkl +
d∑

j=1

(nkΠ)j︸ ︷︷ ︸
=0

∂jnkl = (divΣnk)nkl

where nkl is the lth component of nk. From this fact, we have the following result:

divΣΠ = −
d∑

k=1

divΣ(nknTk ) = −
d∑

k=1

(divΣnk)nk ⇒ F = ΠdivΣ(Π) = 0.

Finally, the definition of F gives
∑d

k=1 divΣ(fk)fk = F , which is zero by the above argument.

Lemma E.5. Let ρ̃t be the law of the projected process Yt of Xt, where Xt follows equality-
constrained OLLA. Define δk(t, x) := Π(x)AN (x, t)ek and denote divΣ(ΠAN ) as a vector in Rd

such that (divΣΠAN )k := divΣ(δk) for each k ∈ [d]. Then, it holds almost surely

∥divΣ(Π(Yt)AN (Yt, t))∥2 ≤ Cdive
−αt

for t ≥ t0(:= 1
α ln

(
1
δ

)
) and some constant Cdiv > 0.

Proof. First, for each k ∈ [d], observe that∇δk = ∇Π(y)AN (y, t)ek +Π(y)∇AN (y, t)ek and

divΣ(δk(y)) = Tr (Π(y)∇Π(y)AN (y, t)ek)︸ ︷︷ ︸
Term (1)

+Tr (Π(y)∇AN (y, t)ek)︸ ︷︷ ︸
Term (2)

(16)
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where, for a matrix-valued functionG(y),∇G(y) is the third-order tensor defined by (∇Gij(y))ijk =
∂Gij(y)

∂yk
for i, j, k ∈ [d], and the gradient ∇ is taken over y.

For the Term (1), we know that when y = Yt, t ≥ t0,

|Term (1)| ≤ ∥Π(∇Π)(ANek)∥F ≤ ∥(∇Π)(ANek)∥F ≤ K1∥ANek∥2 ≤ K1CAN
e−αt a.s.

where K1 := supy∈Σ,∥v∥2=1∥∇Π(y)v∥F <∞.

For the Term (2), recall that AN (y, t) := ∇π(ζ(y, h(X0)e
−αt))Π(ζ(y, h(X0)e

−αt))−∇π(y)Π(y)
conditionally on X0, from Corollary E.1. For the notational convenience, we define η(y, t) :=
ζ(y, h(X0)e

−αt). Then, it follows that

∇AN (y, t) = ∇2π(η(y, t))∇η(y, t)Π(η(y, t)) +∇π(η(y, t))∇Π(η(y, t))∇η(y, t)
−∇2π(y)Π(y)−∇π(y)∇Π(y)

= ∇2π(η(y, t))(∇η(y, t)− I)Π(η(y, t)) +∇π(η(y, t))∇Π(η(y, t))(∇η(y, t)− I)
+∇2π(η(y, t))Π(η(y, t))−∇2π(y)Π(y) +∇π(η(y, t))∇Π(η(y, t))−∇π(y)∇Π(y).

At this moment, from the recovery map ζ in Theorem C.1, the integral form of the remainder gives

∥∇η(y, t)− I∥2 = ∥∇ (ζ(y, p)− ζ(y, 0))∥2 = ∥∇yζ(y, p)−∇yζ(y, 0)∥2 ≤ K2∥p∥2,

where p := h(X0)e
−αt, K2 := sup(y,p)∈Σ×B(0,δ)∥∇p∇yζ(y, p)∥2 <∞.

By combining these results with the previous expression of∇AN (y, t), we get

∥∇AN (Yt, t)∥2 ≤ D4e
−αt

for some D4 > 0, using the boundedness of ∥∇2π∥2, ∥∇π∥2, ∥∇Π∥2 on Ûδ, the Lipschitzness of
(∇2π)Π,∇π∇Π on Ûδ , and the contraction of ∥η(Yt, t)− Yt)∥2 ≤ Mh

κ e−αt. Finally, when y = Yt,
we get the following upper bound of Term (2) by applying the previous result:

|Term (2)| ≤ ∥Π∇ANek∥F
(◦)
≤
√
d−m∥∇ANek∥2 =

√
d−mD4e

−αt = D5e
−αt a.s.

where (◦) comes from the fact that ∥Π(y)∥2F = Tr (Π(y)) = rank(Π(y)) = d − m and D5 :=√
d−mD4. Therefore, by combining results for Term (1) and Term (2), we obtain

|divΣ(δk(Yt))| ≤ D6e
−αt ⇒ ∥divΣ(Π(Yt)AN (Yt, t))∥2 =

√√√√ d∑
k=1

(divΣ(δk(Yt)))2 ≤ D7e
−αt

for t ≥ t0 and D6 := K1CAN
+ D5, D7 :=

√
dD6. Because the final result holds without any

dependency on X0, the result holds almost surely without conditioning on X0.
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Lemma E.6 (LSI implies Talagrand inequality [43, 53, 19]). For the probability measures µ, ν
defined on a smooth complete Riemannian manifold Σ, define the WΣ

2 distance between µ and ν in
Σ by

WΣ
2 (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Σ×Σ

dΣ(p, q)
2π(dp, dq)

) 1
2

where Π(µ, ν) denotes the set of coupling probability measures of µ, ν, and dΣ denotes the geodesic
distance on Σ so that for p, q ∈ Σ

dΣ(p, q) := inf

{(∫ 1

0

∥γ̇(t)∥2gdt
) 1

2

| γ ∈ C1([0, 1],Σ), γ(0) = p, γ(1) = q

}
with ∥·∥g being the induced metric on Σ. Then, the probability ν is said to satisfy the Talagrand
inequality (T ) with constant λT >0 if for all probability measures µ with µ≪ ν, it holds that

WΣ
2 (µ, ν) ≤

√
2

λT
KLΣ(µ||ν).

Particularly, if ν satisfies a Logarithmic Sobolev Inequality (LSI) with constant λLSI, then ν satisfies
the Talagrand inequality with constant λLSI.

Theorem 1 (Convergence result for equality-constrained OLLA). Suppose assumptions (C1)
to (C4) hold. Let Xt be the stochastic process following the equality-constrained OLLA (14)
and let ρt, ρ̃t be the law of Xt and its projection Yt = π(Xt) on Σ for t ≥ tcut, tcut :=
max

{
1
α ln δ, 1

α lnC5

}
, respectively. Then, for all t ≥ tcut, it holds that

W2(ρt, ρΣ) ≤
Mh

κ
e−αt +

√
2

λLSI
KLΣ(ρ̃t||ρΣ)

where

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ)

+ C6

∫ t

tcut

exp

(
2λ(s− tcut) +

2λLSIC5

α
(e−αs − e−αtcut)

)
e−αsds]

In particular, if α > 2λLSI, it holds that

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C7]

for some constants C5 = O
(
1 +

CLA
Mh

κ +
(

CLA
Mh

κ

)2)
, C6, C7 := C6e

−αtcut

α−2λLSI
> 0 with CLA

being the Lipschitz constant of∇π(x)Π(x) on Ûδ(Σ).

Proof. First, observe that d2(p, q) = ∥p− q∥2 ≤ dΣ(p, q), ∀p, q ∈ Σ because Σ is the submanifold
of Rd with Euclidean metric. Thus, W2(ρ̃t, ρΣ) ≤WΣ

2 (ρ̃t, ρΣ) holds and we have

W2(ρt, ρΣ)
△−ineq
≤ W2(ρt, ρ̃t) +W2(ρ̃t, ρΣ) ≤W2(ρt, ρ̃t) +WΣ

2 (ρ̃t, ρΣ).

Now, recall that Σ :=
{
x ∈ Rd | h(x) = 0

}
is a smooth compact and connected Riemannian mani-

fold. Therefore, it is complete by the Hopf-Rinow theorem. Thus, Lemma E.6 implies

WΣ
2 (ρ̃t, ρΣ) ≤

√
2

λLSI
KLΣ(ρ̃t||ρΣ) ⇒ W2(ρt, ρΣ) ≤W2(ρt, ρ̃t) +

√
2

λLSI
KLΣ(ρ̃t||ρΣ).

Hence, we conclude the proof by borrowing the results of Lemma E.1 and Lemma E.3
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F Proof of Theoretical Results - Inequality-constrained OLLA

In this section, we analyze the non-asymptotic convergence rate of inequality-constrained OLLA.
Note that Proposition 1 gives

dXt = −∇f(Xt)dt+
√
2dWt, if g(Xt) < 0

dXt = −Π(Xt)∇f(Xt)dt− α∇gTIxG(Xt)
−1(gIx + ϵ1Ix)dt+

√
2Π(Xt) ◦ dWt, otherwise

as the closed form SDE of inequality-constrained OLLA.

F.1 Convergence Result for Inequality-constrained OLLA
Lemma F.1 (Boundary behavior of ρt of inequality-constrained OLLA). Let Xt be the stochastic
process following the inequality-constrained OLLA and ρt be the law of Xt. Also, denote Jt be the
probability current density defined by ∂tρt = −∇ · Jt. Then, for t ≥ tcut, tcut :=

1
α ln

(
Mg+ϵ

ϵ

)
, it

holds that
⟨n(x), Jt(x)⟩ = 0, ρt(x) = 0, ∀x ∈ ∂Σ,

where n is the unit normal vector of Σ and σ∂Σ is the surface measure of ∂Σ.

Proof. From the Fokker-Planck equation of the inequality-constrained OLLA, we know that

Jt = qρt −
1

2
∇ · [QQT ρt] =

[
q − 1

2
∇ · (QQT )

]
ρt −

1

2
QQT∇ρt,

where the last equality comes from the chain rule of the matrix divergence. Then, for each ∇gj ,
j ∈ Ix, observe that

∇gTj (∇ · (QQT )) =

d∑
k=1

(∂kgj)
[
∇ · (QQT )

]
k
=

d∑
i,k=1

(∂kgj)∂i(QQ
T )ik

(◦)
=

d∑
i=1

∂i


d∑

k=1

(QQT )ik∂kgj︸ ︷︷ ︸
=0

−
d∑

i,k=1

(QQT )ik∂i∂kgj = −Tr
(
∇2gjQQ

T
)

holds for x ∈ ∂Σ, where (◦) holds due to the ∇gTk Q = 0 condition of Proposition 1 and Q2 = Q.
Therefore, for each j ∈ Ix, we have

⟨Jt,∇gj⟩ = ∇gTj Jt =
[
∇gTj q +

1

2
Tr
(
∇2gjQQ

T
)]
ρt

(△)
= −α(g + ϵ)ρt = −αϵρt ≤ 0,

where (△) holds from the ∇gjq + 1
2Tr
(
∇2gjQQ

T
)
+ α(g + ϵ) = 0 condition of Proposition 1.

Finally, we conclude the proof by observing the following:

0
(+)
=

d

dt

∫
Σ

ρtdσΣ = −
∫
Σ

∇ · JtdσΣ = −
∫
∂Σ

nTJtdσ∂Σ =

∫
∂Σ

αϵρt︸︷︷︸
≥0

dσ∂Σ ⇒ ρt = 0,

where n is the outward unit normal vector of ∂Σ and (+) holds because supp(ρt) ⊂ Σ for t ≥ tcut
implies

∫
Σ
ρtdσ = 1 for t ≥ tcut.
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Theorem 2 (Convergence result for inequality-constrained OLLA). Assume that ρΣ satisfies
the LSI condition with constant λLSI. Let Xt be the stochastic process following the inequality-
constrained OLLA and let ρt be the law of Xt. Then, for t ≥ tcut, tcut := 1

α ln
(

Mg+ϵ
ϵ

)
, the

following holds

W2(ρt, ρΣ) ≤
√

2

λLSI
KLΣ(ρt||ρΣ),

where
KLΣ(ρt||ρΣ) ≤ e−2λLSI(t−tcut)KLΣ(ρtcut ||ρΣ).

Proof. Observe that

∂tKLΣ(ρt||ρΣ) =
∫
Σ

∂tρt ln

(
ρt
ρΣ

)
dσΣ + ∂t

∫
ρtdσΣ =

∫
Σ

∂ρt ln

(
ρt
ρΣ

)
dσΣ

=

∫
Σ

(−∇ · Jt) ln
(
ρt
ρΣ

)
dσΣ =

∫
Σ

Jt∇ ln

(
ρt
ρΣ

)
dσΣ −

∫
∂Σ

⟨Jt, n⟩︸ ︷︷ ︸
=0

ln

(
ρt
ρΣ

)
dσ∂Σ

(◦)
=

∫
Σ

Jt∇ ln

(
ρt
ρΣ

)
dσΣ

(△)
= −IΣ(ρt||ρΣ) ≤ −2λLSIKLΣ(ρt||ρΣ),

where (◦) holds due to Lemma F.1 for t ≥ tcut and (△) comes from the fact that Jt = ∇ ln ρΣ(x)ρt−
ρt∇ ln ρt = −ρt∇ ln

(
ρt

ρΣ

)
almost everywhere in Σ. Therefore, we recover the upper bound of

KLΣ(ρt||ρΣ) by applying the Gronwall-type inequality as follows:

KLΣ(ρt||ρΣ) ≤ e−2λLSI(t−tcut)KLΣ(ρtcut ||ρΣ).

Also, we recall that Σ :=
{
x ∈ Rd | g(x) ≤ 0

}
is a smooth compact and connected Riemannian

manifold, thereby it is complete by the Hopf-Rinow theorem. Thus, Lemma E.6 implies

W2(ρt, ρΣ) ≤WΣ
2 (ρt, ρΣ) ≤

√
2

λLSI
KLΣ(ρt||ρΣ).

Hence, we conclude the proof by applying the previous upper bound of KLΣ(ρt||ρΣ).

G Proof of Theoretical Results - Mixed-constrained OLLA

G.1 Upper Bound of W2(ρt, ρ̃t)

Lemma G.1 (Upper bound of W2(ρt, ρ̃t)). Let ρt be the law of Xt which follows mixed-

constrained OLLA (12) and define t1 := max
{

1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)}
. For t ≥ t1, the

law ρ̃t of Yt := π(Xt) is well-defined and it holds that

W2(ρt, ρ̃t) ≤
Mh

κ
e−αt (17)

Proof. For t ≥ t1, observe that

∥Xt − π(Xt)∥2 ≤
1

κ

∥h(Xt)∥2 + ∥gIπ(Xt)
(Xt)∥2︸ ︷︷ ︸

=0

 ≤ Mh

κ
e−αt

by Lemma C.3 and Lemma 1. Then, by integrating both side with respect to optimal coupling of ρt
and ρ̃t, we get

W2(ρt, ρ̃t) ≤
(
E [∥Xt − Yt∥]22

) 1
2

(◦)
≤ E [∥Xt − Yt∥2] ≤

Mh

κ
e−αt

where (◦) holds by Jensen’s inequality.
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G.2 Upper Bound of KLΣ(ρ̃t||ρΣ)
Corollary G.1 (SDE representation of projected process from mixed-constrained OLLA).
Let Xt be the stochastic process following mixed-constrained OLLA (12). Define t1 :=

max
{

1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)}
and assume Yt = π(Xt) ∈ int(Σ) for t ≥ t1 via the assumption

(M1). Then, the projected process Yt follows the following SDE:

dYt = [−Π(Yt)∇f(Yt) + bN (Yt, t)] dt+
√
2Π(Yt)(I +AN (Yt, t)) ◦ dWt,

where ∥bN (Yt, t)∥2 = C̃bN e
−αt, ∥AN (Yt, t)∥ = C̃AN

e−αt for t ≥ t1 almost surely for some

constant C̃bN , C̃AN
:=

C̃LA
Mh

κ > 0 with C̃LA
being the Lipschitz constant of ∇π(x)Π(x) on

Ûδ(Σ).

Proof. By applying Lemma E.2 to the SDE (3), it holds that

dYt = Π(Yt)b(Yt, t)dt+
√
2Π(Yt) ◦ dWt + [∇π(Xt)b(Xt, t)−∇π(Yt)b(Yt, t)] dt

+
√
2 [∇π(Xt)Π(Xt)−∇π(Yt)Π(Yt)] ◦ dWt

for b(x, t) = b(x) := −
[
Π(x)∇f(x) + α∇J(x)TG−1(x)J(x)

]
. Now note that π(Xt) ∈ int(Σ)

for t ≥ t1 and the recovery map ζ (Theorem C.2) is C1 for π(x) ∈ int(Σ), x ∈ Ûδ(Σ). Therefore, we
can set Xt = ζ(Yt, h(X0)e

−αt) by using Lemma 1 and Theorem C.2. Again, since Xt, Yt ∈ Ûδ(Σ)

and the closure of Ûδ(Σ) is compact,∇π(x)b(x) and∇π(x)Π(x) is C̃Lb
, C̃LA

-Lipschitz on Ûδ(Σ),
respectively for some C̃Lb

, C̃LA
> 0. Therefore, it holds that

∥bN (Yt, t)∥2 ≤ C̃Lb
∥ζ(Yt, h(X0)e

−αt)− Yt∥2 ≤
C̃Lb
∥h(X0)∥2
κ

e−αt ≤ C̃Lb
Mh

κ
e−αt,

where bN (Yt, t) := ∇π(ζ(Yt, h(X0)e
−αt))b(ζ(Yt, h(X0)e

−αt)) − ∇π(Yt)b(Yt) and the last
inequality comes from Lemma C.1. Similarly, we obtain the bound of AN (Yt, t) :=
∇π(ζ(Yt, h(X0)e

−αt))Π(ζ(Yt, h(X0)e
−αt))−∇π(Yt)Π(Yt) as follows:

∥AN (Yt, t)∥2 ≤ C̃LA
∥ζ(Yt, h(X0)e

−αt)− Yt∥2 ≤
C̃LA
∥h(X0)∥2
κ

e−αt ≤ C̃LA
Mh

κ
e−αt.

Hence, we complete the proof by setting CbN :=
C̃Lb

Mh

κ , CAN
:=

C̃LA
Mh

κ and noting that∇π(x) =
Π(π(x))∇π(x) for π(x) ∈ int(Σ), x ∈ Ûδ(Σ), which implies AN (Yt, t) = Π(Yt)AN (Yt, t).
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Lemma G.2 (Upper bound of KLΣ(ρ̃t||ρΣ)). Assume that ρΣ satisfies the LSI condition with
constant λLSI . Let Xt be the stochastic process following mixed-constrained OLLA (12) and
ρ̃t be the law of Yt := π(Xt) after t ≥ tcut, tcut := max

{
1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)
, 1
α ln(C̃5)

}
.

Suppose

• (Regularity of Σp) Σp := π(
{
x ∈ Rd | h(x) = p, g(x) ≤ 0

}
) ⊂ int(Σ) for 0 < ∥p∥2 ≤ δ.

• (Regularity of ∂Σp) The boundary velocity vbp of ∂Σp satisfies supx∈∂Σp
∥vbp∥2 ≤ V ∥p∥

β
2 for

some V > 0, β > 0. Also, assume MΣ := sup∥p∥2<δ σ∂Σp(∂Σp) <∞.

• (Bound on ρt, ρΣ) G1 := supt≥0,x∈Σ ρ̃t <∞ and 0 < G2 ≤ ρΣ ≤ G3 for x ∈ Σ.

Then, for α ̸= 2λLSI, the following non-asymptotic convergence rate of KLΣ(ρ̃t||ρΣ) can be
obtained as follows

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
×

[KLΣ(ρ̃tcut ||ρΣ) +
∫ t

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut)

)
×[(

C̃6 + αG4G5Mh

)
e−αs +G4VM

β
h e

−αβs
]
ds].

In particular, if α > 2λLSI, β ≥ 1, the inequality becomes

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C̃7 + C̃8]

for some constants C̃5 = O(1 + C̃AN
+ C̃2

AN
), G4, G5, G6, C̃6, C̃7 > 0, and C̃7 := (C̃6 +

αG4G5Mh)
e−αtcut

α−2λLSI
and C̃8 := (G6VM

β
h )

e−αβtcut

αβ−2λLSI
.

Proof. First, Corollary G.1, and the choice of ∇f = −∇ ln ρΣ gives the following SDE of the
projected process Yt of Xt for t ≥ tcut:

dYt = [−Π(Yt)∇f(Yt) + bN (Yt, t)] dt+
√
2Π(Yt)(I +AN (Yt, t)) ◦ dWt

where bN (x, t) := ∇π(ζ(x, h(X0)e
−αt))b(ζ(x, h(X0)e

−αt)) − ∇π(x)b(x), AN (x, t) :=
∇π(ζ(x, h(X0)e

−αt))Π(ζ(x, h(X0)e
−αt))−∇π(x)Π(x) for x ∈ Σ, conditionally on X0.

Hence, from Corollary G.1, its associated Fokker-Planck equation can be written as follows:

∂tρ̃t = −divΣ(ρ̃t (∇Σ ln ρΣ + bN )) +

d∑
k=1

divΣ (divΣ(ρ̃t(fk + δk))(fk + δk)) .

Defining Σt := π(
{
x ∈ Rd | h(x) = h(X0)e

−αt, g(x) ≤ 0
}
) conditionally on X0, we observe

∂tKLΣ(ρ̃t||ρΣ) = ∂t

∫
Σt

ρ̃t ln

(
ρ̃t
ρΣ

)
dσΣ

=

∫
Σt

∂tρ̃t ln

(
ρ̃t
ρΣ

)
dσΣ︸ ︷︷ ︸

Term (1)

+

∫
∂Σt

ρ̃t

[
ln

(
ρ̃t
ρΣ

)
− 1

]
⟨vbt , nt⟩dσ∂Σt︸ ︷︷ ︸

Term (2)

+ ∂t

∫
Σt

ρ̃tdσΣ︸ ︷︷ ︸
=0

where the last equality holds from the Leibniz integral rule with vbt being the velocity vector of the
boundary of Σt and nt being the outward unit normal vector of ∂Σt. Therefore, the expression of
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∂tρ̃t implies that Term (1) becomes

Term (1) =
∫
Σt

⟨

[
ρ̃t(∇Σ ln ρΣ + bN )−

d∑
k=1

divΣ(ρ̃t(fk + δk))(fk + δk)

]
,∇Σ ln

(
ρ̃t
ρΣ

)
⟩dσΣ︸ ︷︷ ︸

Term (1-1)

−
∫
∂Σt

⟨

[
ρ̃t(∇Σ ln ρΣ + bN )−

d∑
k=1

divΣ(ρ̃t(fk + δk))(fk + δk)

]
ln

(
ρ̃t
ρΣ

)
, nt⟩dσ∂Σt︸ ︷︷ ︸

Term (1-2)

by integration by parts, where fk := Πek, δk := ΠANδk. Now, we observe that Term (1-1) can be
bounded as

Term (1-1) ≤ −(1− C̃5e
−αt)IΣ(ρ̃t||ρΣ) + C̃6e

−αt

following the same proof of Lemma E.3 with different constants C̃5 = O(1 + C̃AN
+ C̃2

AN
), C̃6 > 0

(note that we ignored the integrand at ∂Σ which is measure zero with respect to dσΣ).

For the analysis of Term (1-2), we first observe the following fact:∫
∂Σt

∣∣∣∣ρ̃t ln( ρ̃tρΣ
)∣∣∣∣ dσ∂Σt

≤ G3 max

{
1

e
,

∣∣∣∣G1

G2
ln

(
G1

G2

)∣∣∣∣}σ∂Σt
(∂Σt)

≤ G3MΣ max

{
1

e
,

∣∣∣∣G1

G2
ln

(
G1

G2

)∣∣∣∣} := G4

from the assumptions of G1 := supt≥0,x∈Σ ρ̃t <∞, 0 < G2 ≤ ρΣ ≤ G3, and the regularity of ∂Σt

such that supt≥tcut
σ∂Σt

(∂Σt) ≤MΣ <∞.

Next, from Corollary G.1, we note that the following holds conditionally on X0:

fk(x) + δk(x) = Π(x)(I +AN (t, x))ek = ∇π(ζ(x, h(X0)e
−αt))Π(ζ(x, h(X0)e

−αt))ek.

Because Π(ζ(x, h(X0)e
−αt))ek is a tangent vector on

{
x ∈ Rd | h(x) = h(X0)e

−αt, g(x) ≤ 0
}

,
fk(x) + δk(x) = ∇π(ζ(x, h(X0)e

−αt))Π(ζ(x, h(X0)e
−αt))ek becomes a tangent vector of Σt.

Similarly, it also becomes a tangent vector of ∂Σt on the boundary because Π is the orthogonal
projector induced by h and active g. Hence, ⟨fk + δk, nt⟩ = 0 holds, where nt is the outward unit
normal vector of ∂Σt.

Therefore, Term (1-2) becomes

|Term (1-2)|
(1)

≤ αG5Mhe
−αt

∫
∂Σt

∣∣∣∣ρ̃t ln( ρ̃tρΣ
)∣∣∣∣ dσ∂Σt ≤ αG4G5Mhe

−αt,

where (1) holds because Corollary G.1 gives

∇Σ ln ρΣ(x) + bN (x, t) = ∇π(ζ(x, h(X0)e
−αt))b(ζ(t, h(X0)e

−αt))

with b(x) := −
[
Π(x)∇f(x) + α∇J(x)TG−1(x)J(x)

]
and, therefore,

|⟨∇Σ ln ρΣ(x) + bN (x, t), nt(x)⟩| ≤ αG5∥J(ζ(x, h(X0)e
−αt))∥2 ≤ αG5Mhe

−αt

for x ∈ ∂Σt with G5 := supx∈Σ,∥p∥2<δ∥∇π(ζ(x, p))∇J(ζ(x, p))TG−1(ζ(x, p))∥2 <∞.

Also, similarly, Term (2) is bounded as follows:

|Term (2)| ≤ sup
x∈∂Σt

∥vbt∥2
∫
∂Σt

(∣∣∣∣ρ̃t ln( ρ̃tρΣ
)∣∣∣∣+ |ρ̃t|) dσ∂Σt

≤ G6VM
β
h e

−αβt

withG6 := G4+G1MΣ. Therefore, combining the results with the LSI condition gives the following
inequality:

∂tKLΣ(ρ̃t||ρΣ) ≤ −2λLSI(1− C̃5e
−αt)KLΣ(ρ̃t||ρΣ) +

(
C̃6 + αG4G5Mh

)
e−αt +G6VM

β
h e

−αβt
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where the last inequality comes from the LSI condition. Finally, applying the Grönwall-type inequality
recovers the following inequality:

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ)

+

∫ t

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut)

)
×[(

C̃6 + αG4G5Mh

)
e−αs +G6VM

β
h e

−αβs
]
ds].

Also, similarly in the last argument of Lemma E.3, we observe that if α > 2λLSI and β ≥ 1∫ ∞

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut)

)
e−αsds ≤

∫ ∞

tcut

exp (2λLSI(s− tcut)) e
−αsds

≤ e−αtcut

α− 2λLSI
<∞

and ∫ ∞

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut)

)
e−αβsds ≤ e−αβtcut

αβ − 2λLSI
<∞.

Therefore, there exists C̃7, C̃8 <∞ such that

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C̃7 + C̃8],

where C̃7 := (C̃6 + αG4G5Mh)
e−αtcut

α−2λLSI
and C̃8 := (G6VM

β
h )

e−αβtcut

αβ−2λLSI
.
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Theorem 3 (Convergence result for mixed-constrained OLLA). Assume that ρΣ satisfies
the LSI condition with constant λLSI. Let Xt be the stochastic process following mixed-
constrained OLLA (3) and ρ̃t be the law of Yt := π(Xt) after t ≥ tcut, tcut :=

max
{

1
α ln

(
Mg+ϵ

ϵ

)
, 1
α ln

(
Mh

δ

)
, 1
α ln(C̃5)

}
. Suppose

• (Regularity of Σp) Σp := π(
{
x ∈ Rd | h(x) = p, g(x) ≤ 0

}
) ⊂ int(Σ) for 0 < ∥p∥2 ≤ δ.

• (Regularity of ∂Σp) The boundary velocity vbp of ∂Σp satisfies supx∈∂Σp
∥vbp∥2 ≤ V ∥p∥

β
2 for

some V > 0, β > 0. Also, assume MΣ := sup∥p∥2<δ σ∂Σp
(∂Σp) <∞.

• (Bound on ρt, ρΣ) G1 := supt≥0,x∈Σ ρ̃t <∞ and 0 < G2 ≤ ρΣ ≤ G3 for x ∈ Σ.

Then, for α ̸= 2λLSI the following non-asymptotic convergence rate of W2(ρt, ρΣ) can be obtained
as follows

W2(ρt, ρΣ) ≤
Mh

κ
e−αt +

√
2

λLSI
KLΣ(ρ̃t||ρΣ)

where

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
×

[KLΣ(ρ̃tcut ||ρΣ) +
∫ t

tcut

exp

(
2λLSI(s− tcut) +

2λLSIC̃5

α
(e−αs − e−αtcut)

)
×[(

C̃6 + αG4G5Mh

)
e−αs +G6VM

β
h e

−αβs
]
ds]

In particular, if α > 2λLSI and β ≥ 1, the previous bound simplifies to

KLΣ(ρ̃t||ρΣ) ≤ exp

(
−2λLSI(t− tcut)−

2λLSIC̃5

α
(e−αt − e−αtcut)

)
[KLΣ(ρ̃tcut ||ρΣ) + C̃7 + C̃8]

for some constants C̃5 = O
(
1 +

C̃LA
Mh

κ +
(

C̃LA
Mh

κ

)2)
, G4, G5, G6, C̃6, C̃7 > 0, and C̃7 :=

(C̃6 + αG4G5Mh)
e−αtcut

α−2λLSI
and C̃8 := (G6VM

β
h )

e−αβtcut

αβ−2λLSI
, with C̃LA

being the Lipschitz constant

of ∇π(x)Π(x) on Ûδ(Σ).

Proof. We note that ρ̃t(x) = 0 on ∂Σ for t ≥ tcut holds from the regularity of the Σp assumption.
Therefore, by the same approach in Theorem 1 and Lemma E.6, it holds that

WΣ
2 (ρ̃t, ρΣ) ≤

√
2

λLSI
KLΣ(ρ̃t||ρΣ) ⇒ W2(ρt, ρΣ) ≤W2(ρt, ρ̃t) +

√
2

λLSI
KLΣ(ρ̃t||ρΣ).

Therefore, we conclude the proof by combining the results of Lemma G.1 and Lemma G.2.
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H Experiment Settings and Supplementary Results

Settings. The first two experiments were executed on a desktop with an AMD Ryzen 9 7900X CPU
(12 cores) with 32 GB RAM. Runs were implemented in WSL2 (Ubuntu) environment (CPU-only),
using the Python and the PyTorch [54] framework.

H.1 Experiment Settings and Supplementary Results for Synthetic 2D Examples

Experiment Settings. In this experiment, we compare four samplers (OLLA, OLLA-H, CLangevin,
CHMC) on the following synthetic 2D examples:

1. (Star) a star-shaped equality manifold with uniform density:

f(x) = 0, h(x) =
√
x21 + x22 − (1.5 + 0.3 cos(5θ)), θ = arctan 2(x2, x1).

2. (Two Lobes) a two-lobe inequality manifold (from [18]) with uniform density:

f(x) = 0, g(x) = − ln q(x)− 2, q(x) =
e−2(x1−3)2+e−2(x1+3)2

e2(∥x∥2−3)2
.

3. (Quadratic Poly) a quadratic curve defined by mixed polynomial equality and inequality
under a standard Gaussian target:

f(x) =
1

2
∥x∥22, h(x) = x41x

2
2 + x21 + x2 − 1, g(x) = x31 − x32 − 1.

4. (Mixture Gaussian) a nine-Gaussian mixture restricted by a seven-lobe manifold:

f(x) = − ln

(
9∑

i=1

exp
(
−5∥x− ci∥22

))
, h(x) =

√
x21 + x22 − (3 + cos(7θ)).

g(x) = (x1 − 2)2 − 5x1x
3
2 + 0.5x52 − 40, θ = arctan 2(x2, x1).

with {ci}9i=1 = {−2, 0, 2}2.

where x = [x1, x2]
T ∈ R2. For each 2D example, we run 200 independent chains for K = 5000

steps each. From each chain, we retain only the state at step K, yielding 200 samples per sampler.

Table 6: Hyperparameter settings for 2D synthetic
examples (∆t = 5× 10−4)

Method Hyperparameters

OLLA α = 200, ϵ = 1

OLLA–H α = 200, ϵ = 1, N = 5

CLangevin L = 3, τ = 10−4, λ = {1, 0.1}
CHMC γ = 1, L = 3, τ = 10−4, λ = 0

CGHMC γ = 1, L = 3, τ = 10−4, λ = 0

To provide a fixed target distribution for distance
calculation, we generate 200 samples using
CGHMC. This reference is held constant across
all comparisons. For each sampler, we compute
W 2

2 , energy distance as well as the mean con-
straint violations E[|h(x)|] and E[max g(x)+],
over the 200 samples.

The hyperparameter setup is provided in Table 6.
To mitigate ill-conditioning in the Newton solver
of CLangevin, we add Tikhonov regularization
with Tikhonov matrix Γ =

√
λI , λ = 1.0 for the

Mixture Gaussian example, and λ = 0.1 for the
other three. For the CLangevin, CHMC, CGHMC,X0 is initialized exactly on Σ to ensure the stability
of algorithms while OLLA and OLLA-H have noisy initialization X0 = Y0 +N (0, I), Y0 ∈ Σ and
Xt progressively approaches to Σ by the landing mechanism.
Remark 8. The results shown in Figure 2 and Figure 3 were obtained under a different setup
described above: a larger step size ∆t was used; all methods were initialized from the same initializa-
tion point X0 ∈ Σ, rather than via random sampling near Σ; and the regularization parameter λ in
CLangevin was increased for improved numerical stability under large step size.
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Figure 6: Convergence diagnostics on the Star example (equality-only case). (1) energy distance to
CGHMC samples (left), (2) W 2

2 distance to CGHMC samples (center), and (3) mean of |h(x)| (right)
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Figure 7: Convergence diagnostics on the Two Lobes example (inequality-only case). (1) energy
distance to CGHMC samples (left), (2) W 2

2 distance to CGHMC samples (center), and (3) mean of
max g(x)+ (right)
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Figure 8: Convergence diagnostics on the Quadratic Poly example (mixed-case). (1) energy distance
to CGHMC samples (top left) and (2) W 2

2 distance to CGHMC samples (top right). (3) mean of
|h(x)| (bottom left) and (4) mean of max g(x)+ (bottom right)
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Figure 9: Convergence diagnostics on the Mixture Gaussian example (mixed-case). (1) energy
distance to CGHMC samples (top left) and (2) W 2

2 distance to CGHMC samples (top right). (3)
mean of |h(x)| (bottom left) and (4) mean of max g(x)+ (bottom right)

Supplementary Results - Sampling Accuracy & Constraint Violation. In addition to the Mixture
Gaussian example (Figure 3), we evaluated OLLA and OLLA-H on three further 2D geometries
to verify that the distributional accuracy observed in Figure 3 of the main text generalize to other
settings. Across all three additional examples, OLLA and OLLA-H closely match the convergence
behavior of CLangevin and CHMC in both energy distance and W 2

2 metrics, while maintaining
constraint violations at low levels without requiring explicit projection steps. These trends are
illustrated in Figure 6 (Star), Figure 7 (Two Lobes), Figure 8 (Quadratic Poly), and Figure 9 (Mixture
Gaussian under the hyperparameter setup of Table 6). These additional experiments confirm that our
landing-based sampler can provide relatively accurate, constraint-respecting samples across diverse
manifold geometries.

Supplementary Results - Effect of Hyperparameters α and ϵ. In Table 7, we report how varying
the landing rate α (with ϵ = 1) affects sampling performance on the Mixture Gaussian example.
For both OLLA and OLLA–H, increasing α from 1 to 500 leads to consistent reductions in energy
distance, W 2

2 , and the average constraint violation E[|h(x)|]. However, setting α too large causes
sampling failures and numerical errors (e.g. α = 5000).

Similarly, Table 8 examines the effect of boundary repulsion rate ϵ (with α = 100). Across the
full range of ϵ tested, sampling accuracy—as measured by both W 2

2 and energy distance—remains
essentially invariant, exhibiting smaller variation than when α is changed. In contrast, inequality-
constraint enforcement steadily improves as ϵ increases: the average violation E[g(x)+] declines
monotonically, reflecting stronger repulsion. Only when ϵ becomes exceedingly large does one
observe a degradation in equality-constraint enforcement and occasional numerical instabilities,
mirroring the breakdown seen at an extreme α value.
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Table 7: Effect of α on energy distance, W 2
2 , E[|h(x)|], and E[g(x)+] on the Mixture Gaussian

example with ϵ = 1 (top: OLLA, bottom: OLLA-H)

α energy distance W 2
2 E[|h(x)|] E[g(x)+]

1 0.121±0.025 0.363±0.064 0.682±0.017 1.113±0.351

10 0.066±0.019 0.200±0.035 0.130±0.001 0.234±0.032

100 0.053±0.016 0.159±0.032 0.017±0.001 0.045±0.007

200 0.040±0.012 0.121±0.019 0.008±0.001 0.054±0.009

500 0.033±0.011 0.104±0.020 0.004±0.000 0.021±0.018

700 0.044±0.012 0.132±0.019 0.003±0.000 0.016±0.011

5000 NaN (results unavailable)

1 0.104±0.019 0.333±0.077 0.643±0.032 1.102±0.337

10 0.059±0.018 0.181±0.038 0.129±0.011 0.189±0.023

100 0.052±0.017 0.156±0.026 0.015±0.001 0.055±0.024

200 0.052±0.018 0.153±0.037 0.009±0.000 0.039±0.015

500 0.041±0.013 0.124±0.027 0.004±0.000 0.013±0.009

700 0.037±0.011 0.110±0.019 0.002±0.000 0.007±0.006

5000 NaN (results unavailable)

Table 8: Effect of ϵ on energy distance, W 2
2 , E[|h(x)|], and E[g(x)+] on the Mixture Gaussian

example with α = 100 (top: OLLA, bottom: OLLA-H)

ϵ energy distance W 2
2 E[|h(x)|] E[g(x)+]

0.1 0.048±0.014 0.151±0.026 0.014±0.001 0.082±0.017

1 0.033±0.004 0.108±0.011 0.017±0.002 0.067±0.027

5 0.040±0.006 0.123±0.018 0.016±0.001 0.040±0.015

10 0.036±0.016 0.112±0.034 0.017±0.001 0.019±0.006

50 0.038±0.014 0.112±0.029 0.018±0.001 0.003±0.004

200 0.041±0.020 0.119±0.057 0.018±0.002 0.006±0.012

10000 0.066±0.022 0.137±0.124 0.033±0.020 0.000±0.000

0.1 0.039±0.012 0.126±0.014 0.013±0.001 0.073±0.026

1 0.048±0.018 0.142±0.029 0.016±0.001 0.048±0.014

5 0.035±0.011 0.111±0.031 0.018±0.001 0.027±0.007

10 0.044±0.014 0.127±0.026 0.018±0.001 0.027±0.007

50 0.047±0.013 0.134±0.019 0.018±0.002 0.010±0.016

200 0.040±0.007 0.117±0.016 0.018±0.001 0.001±0.001

10000 0.073±0.027 1.111±1.830 0.083±0.117 0.000±0.000
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H.2 Experiment Settings and Supplementary Results for High-dimensional Manifold with
Large Number of Constraints

Experiment Settings. In this high-dimensional experiment, we construct a synthetic “stress-test”
manifold in Rd by imposing m − 1 linear equality and l spherical inequality constraints inside a
bounding sphere. Concretely, we generate m− 1 random hyperplanes hi(x) = aTi x− bi (with ai ∼
N (0, Id), bi ∼ N (0, 0.12)) for i ∈ [m− 1], together with the sphere constraint hm(x) = ∥x∥22−R2

(with R = 5), and l spherical obstacles gj(x) = r2 − ∥x − cj∥22 (with r = 1 and obstacle centers
cj ∼ N (0,

√
R/2Id)) for j ∈ [l]. All randomness is fixed via a seed across experiments.

Table 9: Hyperparameter settings for high-
dimensional manifold example (∆t = 1× 10−2)

Method Hyperparameters

OLLA α = 200, ϵ = 1

OLLA–H α = 200, ϵ = 1, N = 5

CLangevin L = 5, τ = 10−4, λ = 0.1

CHMC γ = 1, L = 5, τ = 10−4, λ = 0

CGHMC γ = 1, L = 5, τ = 10−4, λ = 0

For each choice of ambient dimension d, the
number of equality constraints m, and the num-
ber of obstacles l, we run one single chain
of each algorithm for 1000 iterations. We
discard the first 200 iterations as burn-in and
then retain every 5th iterate, yielding 160 post-
burn-in samples. Similar to 2D synthetic ex-
periments, the baseline samplers (CLangevin,
CHMC, and CGHMC) are initialized exactly
on Σ so that X0 ∈ Σ, where as OLLA and
OLLA-H start from noisy initialization Y0 =
X0 +N (0, Id), X0 ∈ Σ.

We measure performance along two complementary criteria. First, we report the computational cost
per effective sample size (ESS), defined as

CPU time / ESS :=
total CPU runtime (s)

min1≤i≤d ESSi
,

where ESSi is the uni-variate ESS in coordinate i. Second, we assess the estimation accuracy via the
sample means of representative test functions—e.g. P (x1 > 0) and some complicated test functions.
To isolate the effect of each problem parameter, we vary one element of {d,m, l} at a time while
holding the others fixed.
Remark 9. The results shown in Figure 4 and Figure 5 were obtained under a different setup as
described above: a larger step size ∆t was used and the regularization parameter λ in CLangevin,
CHMC, and CGHMC was increased for improved numerical stability under large step size.

Supplementary Results - Scaling under Dimension and the Number of Inequality Constraints
In Figure 10, we plot the performance of samplers as the ambient dimension d increases from 50 to
700 (with m = l = 5). Across all d, OLLA and OLLA-H produce virtually identical estimates of our
benchmark test functions similar to the baselines. In contrast, CPU time per ESS of OLLA-H stays
essentially flat (on the order of ≈ 0.05s/sample), whereas OLLA grows roughly linearly (reaching
≈ 1.1s/sample at d = 700), Also, the CPU runtime plot exhibits OLLA-H achieves the lowest
wall-clock times across all dimensions.

Similarly, Figure 11 shows results with dimension fixed at d = 100 and the number of inequality
constraints l varying form 10 to 60 (with m = 5). Again, OLLA and OLLA-H approximately match
baseline methods in estimating the mean of test functions, and OLLA-H demonstrates dramatically
lower CPU time per ESS and CPU runtime than both OLLA and the other baselines.

Supplementary Results - Scaling under the Number of Equality Constraints In Figure 12,
we show how sampling performance changes as the number of equality constraints m grows from
10 to 60 (with d = 100, l = 5, fixed α = 200). Although OLLA-H continues to show the lowest
CPU time/ESS (and total CPU time) among the methods, its sampling accuracy gradually degrades
as m increases, drifting away from the baseline values. Especially, we observe that the equality
constraint violation worsens, and one must compensate by increasing α, reducing ∆t with a longer
chain to suppress the equality constraint violation. Each of these solutions may lead to increase
of computational cost, and α cannot be driven arbitrarily high due to its induced discretization
instabilities (Table 7). Equality-only baselines therefore achieve more accurate estimates-albeit at
higher cost-indicating that large m regimes are particularly challenging to OLLA-H compared to the
high-dimensional or many inequality constraints settings.
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Figure 10: Scaling under the change of ambient dimension d. (1) CPU time per ESS (top left), (2)
total CPU runtime (top center), (3) estimates of test functions (others) as the dimension d increases
from 50 to 700 (with m = l = 5).
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Figure 11: Scaling under the change of inequality count l. (1) CPU time per ESS (top left), (2)
total CPU runtime (top center) (3) estimates of test functions (others) as the number of inequalities l
increases from 10 to 60 (with d = 100,m = 5). The average inequality violation is maintained at
E[g(x)+] = 0.000± 0.000 for all samplers.
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Figure 12: Scaling under the change of equality count m. (1) CPU time per ESS (top left), (2) total
CPU runtime (top center), (3) estimates of test functions (others) as the number of inequalities m
increases from 10 to 60 (with d = 100, l = 5).

H.3 Experiment Settings for Molecular system and Bayesian logistic regression task

Settings. These two experiments were executed on a Linux machine equipped with Intel Xeon
Gold 6226 CPU (24 cores) and 192 GB RAM.

Experiment Settings (Molecular System). This experiment models a polymer chain of Natoms
atoms in R3, so the state space dimension is d = 3Natoms. Let p ∈ Rd be the flattened vector of
atom positions, and let Pk ∈ R3 denote the position of the k-th atom (where p is reshaped into an
Natoms × 3 matrix).

The equality constraints h(p) = 0 enforce fixed bond lengths (lb) between adjacent atoms and fixed
angles (θa) between consecutive bonds:

1. Bond length constraints (k = 0, . . . , Natoms − 2):

hbond,k(p) = ∥Pk − Pk+1∥22 − l2b = 0

2. Bond angle constraints (k = 1, . . . , Natoms − 2): Let vk1 = Pk−1 − Pk and vk2 = Pk+1 − Pk.

hangle,k(p) =
vk1 · vk2

∥vk1∥2∥vk2∥2
− cos(θa) = 0

with lb = 1.0 and θa = 109.5◦.

The inequality constraints (g(p) ≤ 0) enforce steric hindrance, ensuring a minimum distance (rmin)
between non-adjacent atoms (|i− j| ≥ 2):

gij(p) = r2min − ∥Pi − Pj∥22 ≤ 0 for j ≥ i+ 2

with rmin = 1.0.

The potential function f(p) models the energy of the polymer configuration and includes terms for
torsion angles and non-bonded interactions based on the Weeks-Chandler-Andersen (WCA) potential.
It is calculated as f(p) = β(Utor(p) + Unb(p)), where β is an inverse temperature parameter (default:
β = 1.0).

The torsion potential, Utor, depends on the dihedral angles ϕk (for k = 1, . . . , Natoms − 3) formed by
consecutive bonds, where ϕk denotes the dihedral angle between atoms Pk−1, Pk, Pk+1, Pk+2.
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The potential is a sum over modes m ∈M (default: M = {1, 3}) with corresponding force constants
km (default: k1 = 0.5, k3 = 0.2) and phase shifts δm (default: δ1 = 0.0, δ3 = 0.0):

Utor(p) =

Natoms−3∑
k=1

∑
m∈M

km(1 + cos(mϕk − δm)).

The non-bonded WCA potential, Unb, models repulsion between atoms i and j that are not directly
bonded and are separated by at least two bonds (|i − j| ≥ 3). Let Rij = ∥Pi − Pj∥2 be the
distance between atoms i and j. With the steric minimum distance rmin, its associated length scale
σ = rmin/2

1/6, and the potential cutoff is rc = 21/6σ. The interaction energy is given by:

ULJ(Rij) = 4ϵWCA

[(
σ

Rij

)12

−
(
σ

Rij

)6
]
+ ϵWCA

where ϵWCA is the energy scale (default: 1.0). The total non-bonded potential is the sum over eligible
pairs (j ≥ i+ 3) where the distance is less than the cutoff:

Unb(p) =

Natoms−4∑
i=0

Natoms−1∑
j=i+3

ULJ(Rij) · I(Rij < rc)

where I(·) is the indicator function.

We vary Natoms ∈ {5, 10, 15, 20, 30}, corresponding to d ∈ {15, 30, 45, 60, 90}. We run a single
chain for K = 5000 steps, discard the first 1000 as burn-in, and thin by 5. To measure the accuracy
of sampling, we use the radius of gyration squared (R2

g) as a test function, which is defined as:

R2
g(p) =

1

Natoms

Natoms−1∑
k=0

∥Pk − Pcm∥22, where Pcm =
1

Natoms

Natoms−1∑
k=0

Pk

Table 10: Hyperparameter settings for the Molecular System example (∆t = 1× 10−5)

Method Hyperparameters

OLLA-H α = 500, ϵ = 1.0, N ∈ {0, 5}
CLangevin L = 30, τ = 10−4, λ = 0.5

CHMC γ = 1.0, L = 30, τ = 10−4, λ = 0.0

CGHMC γ = 1.0, L = 30, τ = 10−4, λ = 0.0

Experiment Settings (Bayesian logistic regression). This experiment involves sampling the
posterior distribution of weights θ ∈ Rd for a two-layer Bayesian neural network applied to the
German Credit dataset [41]. Let σ(·) denote the sigmoid function and p̂logit(θ, x, a) be the network’s
output probability for input features x and sensitive attribute a.

The neural network consists of an input layer, two hidden layers with ReLU activation (sizesH1 = 32,
H2 = 16), and a final linear output layer combined with a bias term b0 and a term α · a dependent on
the sensitive attribute:

h1 = ReLU(W1x+ b1) ∈ RH1

h2 = ReLU(W2h1 + b2) ∈ RH2

p̂logit(θ, x, a) = wT
3 h2 + αa+ b0 ∈ R

where the parameters constituting θ have dimensions: W1 ∈ RH1×input_dim, b1 ∈ RH1 , W2 ∈
RH2×H1 , b2 ∈ RH2 , w3 ∈ RH2 , α ∈ R, and b0 ∈ R. So, the total dimension d = H1 · input_dim +
H1 + H2 · H1 + H2 + H2 + 2 varies based on the input dimension, which itself depends on the
feature hashing dimension used for categorical features. In particular, the parameter size of θ can be
changed by adjusting hashing dimension.

The potential function is the negative log-posterior f(v) = − (logP (D|θ) + logP (θ)), where D is
the training data, P (D|θ) is the log-likelihood using the sigmoid of the logits, and logP (θ) is the
log-prior based on an isotropic Gaussian distribution with precision 10−3.
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The equality constraints (h(θ) = 0) enforce fairness via demographic parity on True Positive Rate
(TPR) and False Positive Rate (FPR) between groups defined by the sensitive attribute (default:
gender) a ∈ {0, 1}:

hTPR(v) = Ex,y|a=1,y=1[σ(p̂logit(v, x, 1))]− Ex,y|a=0,y=1[σ(p̂logit(v, x, 0))] = 0

hFPR(v) = Ex,y|a=1,y=0[σ(p̂logit(v, x, 1))]− Ex,y|a=0,y=0[σ(p̂logit(v, x, 0))] = 0.

These expectations are estimated using averages over the training data subsets corresponding to each
sensitive attribute a and true label y.

The inequality constraints (g(θ) ≤ 0) enforce monotonicity on selected features (default: duration,
credit amount, existing credit, age) by requiring the gradient of the logit with respect to these features
to have a specific sign (or be close to zero, within a margin δ = 1.0) at a subset of anchor data points
Danchor. Let S+ = {duration, credit amount, existing credits} and S− = {age}. The constraints are
formulated as:

gmono(v) = max

(
max

j∈S+,xi∈Danchor

{
−
∂p̂logit(v, xi, ai)

∂xij

}
, max
k∈S−,xi∈Danchor

{
∂p̂logit(v, xi, ai)

∂xik

})
− δ.

The dimension d varies based on feature hashing as d ∈ {706, 1986, 4994, 9986, 49986, 100002}.
We run a single chain for K = 200 steps, discard the first 40 as burn-in, and thin by 2. Also, we use
the test Negative Log-Likelihood (NLL) as the metric.

Table 11: Hyperparameter settings for the Bayesian logistic regression task

Method Hyperparameters

OLLA-H α = 100, ϵ = 1.0, N ∈ {0, 5} ,∆t = 5× 10−4

CLangevin L = 10, τ = 1.0, λ = 0.5,∆t = 5× 10−4

CHMC γ = 1.0, L = 10, τ = 1.0, λ = 0.5,∆t = 5× 10−3

CGHMC γ = 1.0, L = 10, τ = 1.0, λ = 0.5,∆t = 5× 10−3
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