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Abstract

We study the statistical-computational trade-offs
for learning with exact invariances (or symme-
tries) using kernel regression. Traditional meth-
ods, such as data augmentation, group averaging,
canonicalization, and frame-averaging, either fail
to provide a polynomial-time solution or are not
applicable in the kernel setting. However, with
oracle access to the geometric properties of the
input space, we propose a polynomial-time al-
gorithm that learns a classifier with exact invari-
ances. Moreover, our approach achieves the same
excess population risk (or generalization error)
as the original kernel regression problem. To the
best of our knowledge, this is the first polynomial-
time algorithm to achieve exact (as opposed to
approximate) invariances in this setting, partially
addressing a question posed by Diaz et al. (2025)
regarding the avoidance of prohibitively large and
computationally intensive group averaging meth-
ods in kernel regression with exact invariances.
Our proof leverages tools from differential geom-
etry, spectral theory, and optimization. A key re-
sult in our development is a new reformulation of
the problem of learning under invariances as opti-
mizing an infinite number of linearly constrained
convex quadratic programs, which may be of in-
dependent interest.

1. Introduction

While humans can readily observe symmetries or invari-
ances in systems, it is generally challenging for machines
to detect and exploit these properties from data. The ob-
jective of machine learning with invariances is to develop
approaches that enable models to be trained and utilized
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under the symmetries inherent in the data. This framework
is broadly applicable across various domains in the natural
sciences and physics, including atomistic systems (Grisafi
et al., 2018), molecular wavefunctions and electronic den-
sities (Unke et al., 2021), interatomic potentials (Batzner
et al., 2022), and beyond (Batzner et al., 2023). While many
applications involve Euclidean symmetries (Smidt, 2021),
the scope of such methods extends well beyond them to
other geometries (Bronstein et al., 2017).

Learning with invariances has a longstanding history in ma-
chine learning (Hinton, 1987; Kondor, 2008). In recent
years, there has been significant interest in the development
and analysis of learning methods that account for various
types of invariances. This surge in interest is strongly mo-
tivated by many models showing considerable success in
practice. Empirical evidence suggests the existence of algo-
rithms that can effectively learn under invariances while ex-
hibiting strong generalization and computational efficiency.
However, from a theoretical perspective, much of the fo-
cus has been on the expressive power of models, gener-
alization bounds, and sample complexity. There remains
a relative lack of understanding regarding the statistical-
computational trade-offs in learning under invariances, even
in foundational settings such as kernel regression.

Symmetries can be incorporated into learning in multiple
ways. An immediate solution for learning with invariances
seems to be data augmentation over the elements of the
group. Moreover, some approaches to learning with invari-
ances rely on group averaging, a technique that involves
summing over group elements. However, the typically large
size of the group can make both of these approaches com-
putationally prohibitive, even super-exponential in the di-
mension of input data. Alternative approaches, such as
canonicalization and frame averaging, also suffer from is-
sues like discontinuities and scalability challenges (Dym
et al., 2024).

This paper seeks to address the following question:

Can we obtain an invariant estimator for learning
with invariances that achieves both strong general-
ization and computational efficiency?

The first contribution of this work is a detailed study of
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the problem of learning with invariances in the context of
kernel methods. Kernels, which have been among popular
learning approaches, offer both statistical and computational
efficiency (Scholkopf & Smola, 2002). We argue that while
group averaging fails to produce exactly invariant estimators
within a computationally efficient time frame, alternative
algorithms can generate invariant estimators for the kernel
regression problem in time that is polylogarithmic in the
size of the group. In other words, we demonstrate that it is
possible to achieve an invariant estimator that is both com-
putationally efficient and exhibits strong generalization. At
first glance, this result may seem counterintuitive and even
impossible, since it implies that enumerating all possible
invariances is not required to design statistically efficient
learning algorithms. This provides theoretical support for
the empirical observation that computational efficiency and
strong generalization are attainable in learning with invari-
ances. To the best of our knowledge, this is the first algo-
rithm that is both statistically and computationally efficient
for learning with invariances in the kernel setting,

Learning with invariances can be formulated as a nonconvex
optimization problem, which is not tractable directly. To
design an efficient algorithm, we leverage the spectral the-
ory of the Laplace-Beltrami operator on manifolds. Notably,
since this operator commutes with all (isometric) group
actions on the manifold, it is possible to find an orthonor-
mal basis of Laplacian eigenfunctions such that each group
action on the manifold acts on the eigenspaces of the Lapla-
cian via orthogonal matrices. This theoretical framework
allows us to reformulate the original problem of learning
with invariances on manifolds as an infinite collection of
finite-dimensional convex quadratic programs—one for each
eigenspace—each constrained by linear conditions. By trun-
cating the number of quadratic programs solved, we can
efficiently approximate solutions to the primary noncon-
vex optimization problem, thereby approximating kernel
solutions to the problem of learning with invariances. This
reformulation not only enables us to derive a polynomial-
time algorithm for kernel regression under invariances, but
it may also have broader applications, the exploration of
which we defer to future research.

Finally, we emphasize again that this work is cen-
tered on achieving exact invariance, as many applica-
tions—especially neural networks with strong empirical
performance—are explicitly designed to incorporate exact
invariances by construction. In summary, this paper makes
the following contributions:

* We initiate the exploration of statistical-computational
trade-offs in the context of learning with exact invari-
ances, focusing specifically on kernel regression.

* We reformulate the problem of learning under invari-
ances in kernel methods, leveraging differential geom-

etry and spectral theory, and cast it as infinitely many
convex quadratic programs with linear constraints, for
which we derive an efficient solution in terms of time
complexity. We trade off computational and statisti-
cal complexity by controlling the number of convex
quadratic programs solved to obtain the estimator.

* We introduce the first polynomial algorithm for learn-
ing with invariances in the general setting of kernel
regression over manifolds.

2. Related Work

Generalization bounds and sample complexity for learning
with invariances have been extensively studied, particularly
in the context of invariant kernels. Works such as Elesedy
(2021), Bietti et al. (2021), Tahmasebi & Jegelka (2023),
and Mei et al. (2021) provide insights into this area. Ad-
ditionally, studies on equivariant kernels (Elesedy & Zaidi,
2021; Petrache & Trivedi, 2023) further our understanding
of how equivariances affect learning. PAC-Bayesian meth-
ods have also been applied to derive generalization bounds
under equivariances (Behboodi et al., 2022). More recently,
Kiani et al. (2024) explored the complexity of learning un-
der symmetry constraints for gradient-based algorithms. For
studies on the optimization of kernels under invariances, see
Teo et al. (2007).

A variety of methods have been proposed to enhance the per-
formance of kernel-based learning models. One prominent
approach is the use of random feature models (Rahimi &
Recht, 2007), which approximate kernels using randomly se-
lected features. Low-rank kernel approximation techniques,
such as the Nystrom method (Williams & Seeger, 2000;
Drineas et al., 2005), have also been proposed to reduce the
computational complexity of kernel methods; see also Bach
(2013); Cesa-Bianchi et al. (2015). Divide-and-conquer al-
gorithms offer another pontential avenue for kernel approxi-
mation (Zhang et al., 2013). Additionally, the impact of ker-
nel approximation on learning accuracy is well-documented
in Cortes et al. (2010).

Our work focuses on learning with invariances, which dif-
fers significantly from the tasks of learning invariances and
measuring them in neural networks. For example, Benton
et al. (2020) address how neural networks can learn invari-
ances, while Goodfellow et al. (2009) study methods to
measure the degree of invariance in network architectures.
Moreover, in this paper, we assume that the invariances in
the formulation are given a priori, meaning that the problem
of identifying the appropriate group of invariances in the
data—and/or verifying the assumption of invariance—is to
be treated as a separate and independent task. For further
discussion on testing and learning invariances from data,
see Soleymani et al. (2025).

Invariance in kernel methods is not limited to group averag-
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ing. Other approaches such as frame averaging (Puny et al.,
2022), canonicalization (Kaba et al., 2023; Ma et al., 2024),
random projections (Dym & Gortler, 2024), and parameter
sharing (Ravanbakhsh et al., 2017) have also been proposed
to construct invariant function classes. However, canoni-
calization and frame averaging face challenges, particularly
concerning continuity, which has been addressed in recent
works like Dym et al. (2024).

In specialized tasks such as graphs, image, and pointcloud
data, Graph Neural Networks (GNNs) (Scarselli et al., 2008;
Xu et al., 2019), Convolutional Neural Networks (CNN5s)
(Krizhevsky et al., 2012; Li et al., 2021), and Pointnet (Qi
et al., 2017a;b) have demonstrated the effectiveness of lever-
aging symmetries. Symmetries have also been successfully
integrated into generative models (Bilo§ & Giinnemann,
2021; Niu et al., 2020; Kohler et al., 2020). For a broader
discussion on various types of invariances and their appli-
cations across machine learning tasks, see Bronstein et al.
(2017).

3. Background and Problem Statement

Notation. We begin by establishing some frequently used
notation. Let M be a smooth, compact, and boundaryless
d-dimensional Riemannian manifold. The uniform distri-
bution over the manifold is the normalized volume element
corresponding to its metric. We denote the space of square-
integrable functions over M by L?(M) and the space of
continuous functions by C'(M). Furthermore, H* (M) rep-
resents the Sobolev space of functions on M with parame-
ter s, defined as the set of functions with square-integrable
derivatives up to order s. Larger values of s correspond to
greater smoothness, and it holds that H*(M) C C(M) if
and only if s > d/2, a condition we will assume throughout
this paper. For each n € N, we define [n] := {1,2,...,n}.
We use log to denote the logarithm with base 2. We refer to
Appendices A.1 and A.2 for a quick review of Riemannian
manifolds.

Problem statement. We consider a general learning setup
on a smooth, compact, and boundaryless Riemannian man-
ifold M of dimension d. Our objective is to identify an
estimator f € F from a feasible space of estimators F C
L?(M), based on n independent and uniformly’ distributed
labeled samples S = {(z;,v;) : @ € [n]} € (M x R)"
drawn from the manifold. Here, the labels y; for i € [n] are
produced based on the (unknown) ground truth regression
function f* € C (M), meaning that y; = f*(z;) + ¢;, for
each i € [n], where ¢;, i € [n], is a sequence of independent
zero-mean random variables with variance bounded by o2.
The population risk (or generalization error) of an estimator

'We assume uniformity for simplicity, with results extending
to non-uniform sampling with bounded density.

fer? (M), which quantifies the quality of the estimation,
is defined as:

o~

R(F) =B [If = FBaun)

where the expectation is taken over the randomness of the
data and labels.

Given a dataset of size n, finding estimators with minimal
population risk can be quite complex, often requiring the
resolution of non-convex optimization objectives. However,
in scenarios where f* € H, with H C L?(M) being a
Reproducing Kernel Hilbert Space (RKHS), it is feasible to
compute kernel-based estimators with low risk efficiently.
Specifically, the Kernel Ridge Regression (KRR) estimator
for the RKHS H = H*®(M), denoted as fKRR, achieves
a population risk of R(fkrr) = O (n=s/(s+4/2)) while
being computable in time O(n?), assuming access to an
oracle that computes the kernel associated with the space
(Bach, 2024). Note that Sobolev spaces H®(M) with s >
d/2 are RKHS. We refer the reader to Appendices A.8
and A.9 for a detailed review of the KRR estimator and
related topics on Sobolev spaces.

Learning with invariances. We assume that a finite group
G acts smoothly and isometrically’ on the manifold M,
represented by a smooth function § : G x M — M map-
ping the product manifold G x M to M. We employ the
notation (g, x) as g« for any g € G and x € M. In a sce-
nario of learning under invariances, the regression function
f* is invariant under the action of the group G, satisfying
f*(gx) = f*(x) for each g € G and « € M. Thus, learn-
ing under invariances introduces an additional requirement:
not only must we compute an estimator with minimal pop-
ulation risk efficiently, but fmust also be invariant with
respect to G. This additional condition is often satisfied in
neural network applications by constructing networks that
are invariant by design, such as graph neural networks.

In the context of learning with Sobolev kernels, the KRR
estimator ]?KRR is not G-invariant (see Appendix A for more
details). Consequently, the KRR estimator cannot provide
a solution for learning under invariances. However, with a
shift-invariant Positive Definite Symmetric (PDS) kernel®
K : MxM — R, one can utilize group averaging to derive
a new kernel and a new RKHS holding only G-invariant

The assumption of isometric action is made for simplicity;
the proof can be extended to non-isometric actions using standard
techniques in the literature, as discussed in (Tahmasebi & Jegelka,
2023).

A kernel K : M x M — R is termed shift-invariant with
respect to group G if and only if K (gz1, gz2) = K(x1,z2) for
each g € G and x1,x2 € M. Shift-invariant kernels are not
necessarily G-invariant. For example, one can show that H* (M)
adopts a shift-invariant kernel while still producing non-invariant
functions in its RKHS. We cover the details in Appendix A.9.
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functions:

Kiny (a:l, J:Q) = L Z K(gxl, xg).
G| 22
Given that the Sobolev space H®(M) adopts a shift-
invariant PDS kernel (Appendix A.8), one can apply the
above method to construct and compute a G-invariant ker-
nel (assuming access to evaluating its original kernel). This
indicates that the KRR estimator on Kj,, yields an invari-
ant estimator for f* with a desirable population risk (see
(Tahmasebi & Jegelka, 2023) for a comprehensive study).

However, in terms of computational complexity, this method
requires (n?|G|) time to compute the new kernel between
pairs of input data. In many practical scenarios, |G| can be
intolerably large. For instance, for the permutation group P,
we have |G| = d! ~ V/d(£)? which is super-exponential
in d. Consequently, the group averaging method cannot
provide an efficient algorithm for learning with exact invari-
ances. We emphasize “exact invariance” here, as the sum
involved in Kj,, can be approximated by summing over a
number of random group transformations. However, this
does not guarantee exact invariance, which is the primary
goal of this paper.

Other traditional approaches for achieving learning under
invariances include data augmentation, canonicalization,
and frame averaging. For data augmentation, we need to
increase our dataset size by a multiplicative factor of |G|,
which is often impractical within efficient time constraints.
This is because, for any datapoint z; € S, data augmentation
requires adding a new datapoint gz; for each group element
g € G to ensure invariance of the underlying learning pro-
cedure in a black-box manner, leading to a complexity of
Q(n|G|). Canonicalization involves mapping data onto the
quotient space of the group action and subsequently finding
an estimator (e.g., a KRR estimator) on the reduced input
space. However, this method is also infeasible for kernels
due to the unavoidable discontinuities and non-smoothness
of the canonicalization maps, which violate RKHS require-
ments (Dym et al., 2024). Finally, frame averaging is anal-
ogous to canonicalization, but it remains unclear how to
address continuity issues for efficient frame sizes. More-
over, it requires careful design of frames tailored to the
specific problem at hand, making it unsuitable for a general-
purpose algorithm. Thus, motivated by these observations,
we pose the following question:

Is it possible to obtain a G-invariant estimator
for f* € H®(M) with a desirable population
risk (similar to the case without invariances) in
poly(n,d,log(|G|)) time?

J

In the next section, we answer this question affirmatively.
This is surprising, as it suggests that enumerating the set

G is not required to find statistically efficient G-invariant
estimators.

Oracles. To characterize computational complexity, first we
need to specify the type of oracle access provided for the
estimation. Before doing so, we briefly review the spectral
theory of the Laplace-Beltrami operator on manifolds. For
further details, we refer the reader to Appendix A.

The Laplace-Beltrami operator generalizes the Laplacian
operator to Riemannian manifolds. It has a basis of smooth
eigenfunctions ¢ , € L?(M), which serve as an orthonor-
mal basis for L?(M). The index \ represents the eigenvalue
corresponding to the eigenfunction ¢ ¢, and £ € [m,] runs
over the multiplicity of A\, denoted by m . The eigenvalues
can be ordered such that 0 = \g < Ay < Ay < --+ — 00.
For example, in the case of the sphere S9!, the spherical
harmonics, which are homogeneous harmonic polynomials,
are a natural choice of eigenfunctions.

The sequence of eigenfunctions and their corresponding
eigenvalues provide critical information about the geometry
of the manifold. In this work, we make use of the following
two types of oracles:

* The ability to evaluate any eigenfunction ¢y ((x) at a
given point z € M.

* The ability to compute the L?(M) inner product be-
tween a shifted eigenfunction ¢, ¢(gz) and another
eigenfunction ¢ ¢ (x) for any group element g € G.

For both oracles, we assume free access as long as D), =
Y v <xmy = poly(n,d), where D, denotes the number
of eigenfunctions with eigenvalues less than or equal to .
This assumption is motivated by the case of S?~!, where
spherical harmonics can be efficiently evaluated or multi-
plied in low dimensions (in such cases, only a few mono-
mials need to be processed, making the task simple*). The
first oracle handles the geometric structure of the manifold,
while the second oracle captures the relationship between
the group action and the manifold’s spectrum.

4. Main Result

In this section, we address the question raised in the previous
section by presenting the primary result of the paper, which
is encapsulated in the following theorem.

Theorem 1 (Learning with exact invariances in polynomial
time). Consider the problem of learning with invariances
with respect to a finite group G using a labeled dataset of
size n sampled from a manifold of dimension d. Assume
that the optimal regression function belongs to the Sobolev
space of functions of order s, i.e., f* € H*(M) for some

“This extends to the Stiefel manifold and tori.
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s > d/2 and let o == 2s/d. Then, there exists an algorithm
that, given the data, produces an exactly invariant estimator
f such that:

o It runs in time O(log®(|G|)n3/(1+e) 4 n(2Fe)/(1+a),

* It achieves an excess population risk (or generalization

~

error) of R(f) = O(n=%/(s+d/2);

« Itrequires O (log(|G[)n? (1+e) 4-n(2+)/(1+)) oracle
calls to construct the estimator;

~

* Forany x© € M, the estimator f(x) can be computed in
time O (n'/(1+2)) using O (n*/1+)) oracle calls.

The full proof of Theorem 1 is presented in Appendix B.3,
while a detailed proof sketch is provided in Section 5, and
the algorithm is outlined in Algorithm 1.

Let us interpret the above theorem. Note that without any in-
variances, the Kernel Ridge Regression (KRR) estimator (de-
tails are given in Appendix A.9) provides an estimator fKRR
for the Sobolev space H*®(M) that is computed in time
O(n?) and achieves the risk R(fxrr) = O (n=s/(s+d/2)),
which is minimax optimal. Here, while KRR cannot guar-
antee an exactly invariant estimator, we propose another
estimator which is both exactly invariant and also converges
with the same rate O (n~%/(*+4/2)) As a result, we achieve
exact invariances with statistically desirable risk (or sample
complexity). In other words, the population risk is the same
as the optimal case without invariances, which shows that
the algorithm introduces no loss in statistical performance
while enforcing group invariances.

We thus come to the following conclusion:

The problem of learning with exact invariances can
be efficiently solved in time poly(n,d, log(|G|))
and with excess population risk (or generalization
error) O (n=%/(s+4/2)) which is the same statistical
performance as for learning without invariances.

\ J

It is worth mentioning that, according to the theorem, the
proposed estimator f is not only efficiently achievable but
also efficiently computes new predictions on unlabeled data.

Remark 4.1. We notice that in the proof of Theorem 1, the
actual time and sample complexity depends only on the size
of the minimum generating set of the group G, denoted by
p(G), instead of log(|G|). We use the logarithm in the theo-
rem just to make the improvement from the naive approach
clearer. The actual proof allows to achieve the tighter result
with p(G) < log(|G|), which holds for any finite group (see
Proposition B.1 in Appendix B.1). Note that for some cases
(such as cyclic groups) p(G) < log(|G|).

5. Algorithm and Proof Sketch

In this section, we provide a proof sketch for Theorem 1,
introducing several new notations and concepts necessary
for achieving the reduction in time complexity.

We begin with the most natural optimization program for
obtaining an estimator: the Empirical Risk Minimization
(ERM), which proposes the following estimator:

—~ 1 & 5

ferm = argmin § = » (f(@:) —vi)” ¢,
feHs(M) | T ;

where S = {(z;,v;) : @ € [n]} C (M x R)™ denotes the

sampled (labeled) dataset.

However, as discussed, this method does not necessarily
produce an estimator that is exactly invariant. A natural
idea is to introduce group invariances as constraints into the
above optimization, leading to the following constrained
ERM solution:

fera.c = argmin {1 > (flw) - Z/i)2}

feHs (M) (T i=1
st. V(g,x) € Gx M : f(gz) = f(x).

While this formulation ensures exact invariance, it intro-
duces |G| functional equations. This is problematic for
two reasons: first, |G| constraints are prohibitively many,
and second, these constraints require solving functional
equalities, which are not easily achievable. Moreover, the
functional equations involve non-linear (pointwise) con-
straints on the estimator function, which at first glance
appear intractable due to nonconvexity of the contraints
f(gx) = f(x) for general choice of g.

Therefore, it is necessary to reformulate the above optimiza-
tion program. The goals of the reformulation are to reduce
the number of constraints and encode the functional equa-
tions into more tractable constraints, ideally linear ones.

Reducing the number of constraints. We begin by using
the following basic property (based on the group law):

(¥9 € {g1.02}vw € M: fgo) = f()
— (Yo e M: flgig0) = £(@)).

This observation allows us to eliminate many unnecessary
constraints. Specifically, we only need constraints over a
small subset of G if this subset can generate any group ele-
ment through arbitrary group multiplications. To formalize
this, we introduce the following definition:

Definition 5.1. A finite group G is said to be generated by
asubset S C G if for every g € G, there exists a sequence
of elements s1, sa, . . ., S, such that for each i € [k], either
si € Sor s{l € Sand g = $183 - - - 8. The minimum size
of such a subset S is denoted by p(G).
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Clearly, p(G) < |G|. However, it can be shown (see Ap-
pendix B.1) that p(G) < log(|G|), which represents an
exponential improvement over the trivial upper bound.

Thus, we can reformulate the constrained ERM as:

~ ) 1 & 5
JERM-C = argmin ¢ — > (f(zs) — i)
feHs(M) | T ;

st. V(g,z) € Sx M: f(g9z) = f(x),

where |S| < log(|G|). This way we reduce the number of
constraints from |G| to log(|G|) by leveraging the concept
of minimal group generators. Note that this fact cannot
be directly used in data augmentation, group averaging, or
canonicalization techniques.

Optimization in the spectral domain. The constrained
ERM formulation presented above, while advantageous in
terms of reducing the number of constraints, involves opti-
mizing over the infinite-dimensional space H*®(M), which
is computationally intractable. One way to make this prob-
lem tractable is to parametrize the estimator and search for
the optimal parameters. To achieve this, we utilize the spec-
tral theory of the Laplace-Beltrami operator over manifolds.
While a detailed discussion of spectral theory is provided in
Appendix A, we summarize the relevant concepts here.

As mentioned earlier, the Laplace-Beltrami operator yields
a sequence of orthonormal eigenfunctions ¢, ¢ € L*(M),
where A € {Ag, A1,...} C [0, 00) represents the eigenvalue
corresponding to the eigenfunction ¢y ¢, and ¢ € [m,]
indexes the multiplicity of A\, denoted by m ). Therefore,
any estimator f € L%(M) can be expressed as:

my

flz) = ZZfA,e@,e(ﬂﬂ), e = (f,dr.0L2Mm)-

A 4=1

The idea is to parametrize the problem by finding the best
coefficients fy . However, since there are infinitely many
eigenvalues, there are infinitely many parameters to estimate,
which is not feasible in finite time. Fortunately, we know
that f* € H®(M). From the definition of Sobolev spaces
(see Appendix A.8), we have:

DN

1 e oy = D > _(F5.0)* D5,

A e=1
where D, = ZA'gA my,and o == = > 1.
Thus, we conclude that:
mx
S S (B <D ey = O(D™),
A:Dy>D f=1

for any D > 0. This shows that for Sobolev regression
functions f* € H*(M), we can truncate the estimation of

coefficients at a certain cutoff frequency A, which allows the
problem to be parametrized with finitely many parameters.
Although this introduces bias into the estimation (since
higher-frequency eigenfunctions will not be captured), the
bias is bounded by the above inequality for Sobolev spaces.

Interestingly, this spectral approach yields a more meaning-
ful optimization problem when considering the population
risk function rather than ERM. The population risk, which
is the primary objective in regression, is given by:

R(F) = Bs [If = Pl3can] = 3 DBl — 07

A 4=1

Constrained spectral method. To review, we introduced
an efficient way to impose the constraints related to group
invariances in the ERM objective and later presented spec-
tral methods for obtaining estimators. The last step here
is to combine these to achieve exact invariances via a con-
strained spectral method. We use an important property of
the Laplace-Beltrami operator to introduce the algorithm.

Let A o denote the Laplace-Beltrami operator on the man-
ifold M, and let G be a group acting isometrically on M.
Define the linear operator T, : f(x) — f(gx) for each
group element ¢ € G and any smooth function f on the
manifold. Then, we have

Am (Tg¢) = Tg(AM (¢))a

for any smooth function ¢ on the manifold (for a formal
proof, please refer to Appendix A.5).

This identity tells us that the Laplace-Beltrami operator
A pq commutes with the operator Ty, for each g. Since
both operators are linear, spectral theory implies that the
commutativity shows the eigenspaces of A ¢ are preserved
under the action of the group G, meaning the operators can
be simultaneously diagonalized. Specifically, for any A, ¢,
and any g € G, the function ¢, ¢(gz) is a linear combina-
tion of eigenfunctions ¢ ¢, ¢ € [m,]. In particular, the
group G acts via orthogonal matrices on the eigenspace
Vi == span(¢y ¢ : £ € [my]) for each \.

Let D*(g) denote the m x m, orthogonal matrix corre-
sponding to the action of an element g € G on V), for each
A. Then, a function

1) =Y Fusonele)

A 4=1

is G-invariant if and only if

DXg)fx = f,

where f\ = (far)ecim,) € R™* for each A\. We can
further reduce the number of conditions by passing G to a
generator set, which gives only log(|G|) conditions.

Vg eGVAe {A(),)\l,...},
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Thus, the commutativity of the Laplace-Beltrami operator
and any isometric group action allows us to introduce only
linear constraints on the spectral method to achieve exact
invariances. This leads to the following optimization pro-
gram:

I}}\iil ZZE[(f,\,e - 507,

A 4=1
st. YgeSVYAe o, A,...} : DNg)fa = fo

Here, f3, = E.[f*(2)dre(2)] = Esy[yoae(z)] is not
known a priori; only n samples (x;,y;) € M x R, i € [n],
are given. Furthermore, the constraints are independent for
different eigenspaces (i.e., different \), and the objective
is a sum over eigenspaces. This means we can decompose
the problem into a set of linearly constrained optimization
programs, one for each eigenspace V):

I;lin ZE[(f,\,z - f;,z)Q]y
JX e —1
st. YgeS:DNg)fr= fr

This reformulation allows us to propose efficient estimators
for the problem.

Empirical estimator. In this paper, we suggest the follow-
ing auxiliary empirical mean estimator from the data for the
above optimization program on Vy:

~ 1
fae = - Z;yisﬁ,\,e(%), Ve € [my]. ey
Moreover, we stop estimation and set f,\,g = 0 when

Dy > D, where D is a hyperparameter. To obtain a G-
invariant estimator from our primary estimator, we solve the
following quadratic program to find a solution satisfying the
constraints for each V) with Dy < D:

ma
Fre = argmin Y (fre— fro),

Ire 4
st. YgeS:DMNg)fr= fir.

This optimization problem is a convex quadratic program
with linear constraints that can be solved iteratively using
the rich convex optimization machinery. Additionally, it
has a closed-form solution as noted in Proposition B.2 in
Appendix B.2. Let B} € RISI™xx™x pe defined as the
augmented matrix resulting from concatenating D*(g) — I
forall g € S, ie., B = [(DMg1) — I)T,(D*g2) —
I)T, ey (D/\(g|5|) - I)T]T. Then,

Fae= b= BX (B BX)(B* ROl

where § denotes Moore—Penrose inverse.
The final estimator of the algorithm is given by

mx

fla) = > Zﬁ\,m,\x(f).

A:D,<D ¢=1

This meta approach to design a G-invariant estimator f
from any primary estimtor f is novel and may be of inde-
pendent interest. Pseudocode for the method is presented in
Algorithm 1. Since the invariance is imposed in the spec-
tral representation, we refer to our proposed algorithm as
Spectral Averaging (Spec-Avg).

Algorithm 1 Learning with Exact Invariances by Spectral
Averaging (Spec-Avg)

Input: S = {(x;,y;) 1% € [n]} and o = 2s/d € (1, 00).
Output: f(z).

1: Initialize D + nt/(1+e),

2: for each A such that Dy < D do

3:  foreach { € [my] do
A ~
5

VRSB DRI WICH R
end for
6: end for
7: for each A such that D), < D do
8:  Solve the following linearly constrained quadratic
program over m variables:

my
Fae e argmin Y (fae— fre),

e 44
st. VgeS:DMNg)fr = fi.

9: end for R
10: Return: f(z) = 33 p, <p 2opoy Faedae(z).

We conclude this section by reviewing how we apply the
results from Algorithm 1 to the two following important
examples.

Example 5.2. Consider the problem of learning under in-
variances over the unit sphere S9! = {x € R? : ||z]|> =
1}, where the group G is the group of all permutations of
coordinates. Note that |G| = d!, which is prohibitively
large for data augmentation or group averaging. However,
this group is generated by only two elements: o; = (12)
and oo = (12 ... d). Here, o1 swaps the first and second
coordinates, while o5 is a cycle that maps 1 — 2, 2 — 3,
and so on, cyling with d — 1.

The eigenspaces V), for the sphere are precisely the sets of
homogeneous harmonic polynomials of degree k, where
A = k(k + d — 2). The permutation group acts on V) by
permuting the variables of the polynomials. This action
is clearly linear, and the matrices D*(g) can be efficiently
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computed (using tensor products) as long as k is small.
Moreover, homogeneous polynomials of degree k can also
be computed efficiently for small k. This shows that the
oracles considered in this paper align perfectly with what
we observe in the important case of spheres and polynomial
regression. In Algorithm 1, we first compute the coefficients
of each polynomial for degree &, up to a small k, and then
solve a quadratic program with only two linear constraints
to obtain an exactly invariant polynomial solution.

Example 5.3. Consider the same setup as the previous ex-
ample but assume d = 2, i.e., the manifold is the unit circle.
In this case, each eigenspace V), is spanned by sin(k6) and
cos(kf), where A = k2. Let us assume our task is to find
an estimator invariant with respect to rotations by integer

multiples of I%TI This group is cyclic and is generated
by only one element gy = %T' Thus, we have only one

constraint for each eigenspace. Indeed, one can observe
that D*(go) = R(k{;), where R(.) € R**? is the two-
dimensional rotation matrix. Thus, this example further
illustrates how our oracles are defined to solve the problem.

6. Experiments

In this section, we provide complementary experiments
to support our theoretical results. We first show that,
in practice, Kernel Ridge Regression (KRR) is not a G-
invariant estimator. Then, we demonstrate that our algo-
rithm (Spec—-Avg) achieves the same rate of population
risk as KRR, while enjoying exact invariance properties.

6.1. Problem Statement

We consider the input space (manifold) T¢ = [~1,1),
which represents a flat d-dimensional torus. Additionally,
we consider the group of sign-invariances G = {£1}4,
acting on this space via coordinate-wise sign inversions.
The dataset is generated as n independent and identically
distributed (i.i.d.) samples drawn uniformly from this space,
with the target function defined as: f*(z) = & Z?zl iz?.

Clearly, this function is invariant w.r.t. group action G. To
analyze estimation via kernels in this setup, we consider a
periodic kernel on the torus T¢, specifically the von Mises
Kernel (von Mises, 1918; Mardia & Jupp, 2009), defined as:
K, (z,y) = exp (ncos(m(z —y))), where 7 is a positive
parameter associated with kernel bandwidth. This kernel
function is particularly useful for circular and directional
statistics.

Moreover, the kernel admits the following sign-invariant
eigenfunctions: ¢, ¢,,.¢,(x) = Hle cos(ml;x;), where
¢; € NU {0}. The corresponding eigenvalues can be com-
putedas A =m Z;‘i:l 2, derived from the partial differen-
tial equation Ay, ¢,....0, + APty 05,....¢, = 0. This formu-

lation facilitates the analysis of KRR and Spec—Avg under
symmetry constraints, ensuring their compatibility with the
underlying group structure. It is worth noting that, in this
setting, |G| = 27. Consequently, group averaging is com-
putationally inefficient due to the exponential growth of the
group size with the dimensionality d.

6.2. Settings

We conduct our experiments for d = 10. The trained models
are evaluated on a test dataset of size 100. Both the test
and train datasets are generated uniformly from the interval
[—1,1]¢, independently and identically distributed. Each
point in our plots represents an average over 10 different
random seeds (from 1 to 10) to account for the randomness
in the data generation process.

6.3. Results

The results of the experiments are depicted in Figure 1 and
Figure 2 in Appendix C. While our algorithm (Spec-Avg)
is G-invariant by construction, there is no theoretical guaran-
tee for Kernel Ridge Regression (KRR) to be G-invariant. In
Figure 1 in Appendix C, we demonstrate that this is indeed
the case in practice, as the estimator KRR is not G-invariant.
We define the following measure of Invariance Discrepancy:

. def ~ ~

ID(f) = sup |f(x) - fgx)l,
reX,geG

where f is the estimator. We report this value for KRR
across different choices of the regularization parameter \.

It is worth noting that ID(f) is zero for the Spec-Avg
estimator, as it is G-invariant by design.

In Figure 2 in Appendix C, we present the empirical ex-
cess population risk of KRR and Spec-Avg for different
hyperparameters A and D, respectively. As expected, it is
demonstrated that with an appropriate choice of hyperpa-
rameters, KRR and Spec—Avg achieve the same order of
test error. Higher values of the regularization parameter A
for KRR correspond to lower values of the sparsity parame-
ter D for Spec—Avg, both of which act as mechanisms for
regularizing the norm of the estimator. It can be observed
that Spec—Avg with D = 176 achieves the same order of
performance as KRR with A = 50.

7. Conclusion

In this paper, we explore the statistical-computational trade-
offs in learning with invariances, focusing on kernel regres-
sion. We observe that while the Kernel Ridge Regression
(KRR) estimator can address this problem, it is not invariant
without group averaging, and since group averaging is costly
for large groups, we ask whether it is possible to develop
statistically sound estimators with efficient time complexity.
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Our findings show that by reformulating the problem and
reducing the number of constraints using group laws, we
can express it as solving an infinite series of quadratic opti-
mization programs under linear constraints. We conclude
with an algorithm that achieves an exactly invariant estima-
tor with polynomial time complexity and highlight several
additional questions for future research.

8. Discussion and Future Directions

We initiated the study on computational-statistical trade-
offs in learning with exact invariances. We designed an
algorithm that shows achieving the desirable population
risk (the same as kernel regression without invariances) in
poly(n, d,log(|G|)) time for the task of kernel regression
with invariances on general manifolds. We note that, for sim-
plicity, we have focused on boundaryless manifolds and iso-
metric group actions. However, using standard techniques,
the theory can be extended to more general cases as well>.
While the proposed spectral algorithm is computationally
efficient, it does not offer any improvement in sample com-
plexity over the baseline R(f) = O(n=%/(+4/2)) Tt has
been observed that without computational constraints, better
convergence rates are possible for learning with invariances
(Tahmasebi & Jegelka, 2023), which are minimax optimal.
Thus, it remains open whether those improved rates are
achievable in poly(n, d,log(|G|)) time.

We note that the oracle access we assumed is primarily
motivated by the case of the sphere, where polynomials
can be evaluated, multiplied, composed by group elements,
and integrated efficiently when they are of relatively low
degree. We believe this is the most natural oracle access
for this problem, as it aligns well with applications involv-
ing polynomials. An interesting future work could be to
investigate the statistical-computational trade-offs using al-
ternative oracles, e.g., similar to the kernel trick, how to
design computationally efficient algorithms that have only
access to the inner product of the RKHS. Another interesting
future direction is to find whether random feature models
as approximations for kernels can significantly improve the
statistical-computational trade-off of learning with invari-
ances. At present, our theory does not apply to random
feature models.

We also observe that the spectral algorithm used in this pa-
per does not employ the kernel trick, as it requires access to
the entire set of features, rather than just their inner products.
An interesting question is whether it is possible to utilize
kernel tricks and find an alternative (polynomial-time) algo-
rithm for learning under invariances. This approach could
potentially improve the statistical efficiency of the spectral
algorithm. In the end, we would like to note that captur-

>See e.g., Tahmasebi & Jegelka (2023).

ing computational-statistical trade-offs in other estimation
problems with invariances such as density estimation (Chen
et al., 2023; Tahmasebi & Jegelka, 2024) could serve as a
compelling avenue for future research.
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A. Background
A.1. Riemannian Manifolds
In this section, we review some fundamental definitions from differential geometry and refer the reader to Lee (2006);

Petersen (2006); Lee (2012) for further details.

Definition A.1 (Manifold). A topological manifold M of dimension dim(M) is a completely separable Hausdorff space
that is locally homeomorphic to an open subset of Euclidean space of the same dimension, specifically Rdim(/\f\). More
formally, for each point z € M, there exists an open neighborhood U C M and a homeomorphism ¢ : U — U, where
UcC Rdim(/\/l)'

The value dim(M) is referred to as the dimension of the manifold. Examples of manifolds include tori, spheres, RY,
and graphs of continuous functions. Manifolds with boundaries differ from boundaryless manifolds in that they may
have neighborhoods that locally resemble open subsets of closed dim(M )-dimensional upper half-spaces, denoted as
HAmM) € RAm(M) defined as follows:

HY = {(z1,22,...,7q4) €R? |24 > 0}.

Definition A.2 (Local Coordinates). Given a chart (U, ¢)—a pair consisting of a local neighborhood U and the corresponding
homeomorphism ¢ : U — U—on a manifold M with dimension d, we define local coordinates (x',x2,. .. %) such that

o(p) = (&' (p), 2*(p), ..., 2*(p)),

for each pointp € U.

Definition A.3 (Tangent Space). At each point z € M, the tangent space T, M is defined as the vector space formed by
the tangent vectors to the manifold M at x. A tangent vector v € T, M can be represented as the derivative of a smooth
curve y(t) : (—e, €) — M defined on the manifold with the property that v(0) = z. It is expressed as

d
= —(t
v=—() -
The tangent space T, M is a real vector space with dimension dim(M).

Definition A.4 (Riemannian Metric Tensor). A Riemannian metric tensor g® on a manifold M is a smooth inner product
defined on the tangent space T, M at each point x € M. For any two tangent vectors u, v € T, M, the metric assigns a real
number g, (u,v) € R.

Definition A.5 (Riemannian Manifold). A Riemannian manifold is defined as a pair (M, g), where M is a manifold and g
is a Riemannian metric tensor defined on the tangent space 7, M at each point x € M.

A Riemannian metric tensor provides essential tools for the study of manifolds, which we formalize below. It enables the
following:

* the definition of the geodesic distance d(z, y) between any two points x,y € M on the manifold,

* avolume element d vol,(x) over the manifold, serving as the measure for the Borel sigma-algebra over open subsets of
the manifold M, and

* the measurement of the angle between any two tangent vectors u, v € T, M, which in turn provides the size of tangent
vectors.

Definition A.6 (Geodesic Distance). The geodesic distance d (2, y) between any two points =,y € M on the manifold is
defined as the infimum length among all smooth curves ~ : [0, 1] — M connecting z to y (7(0) = x,v(1) = y). The length

of a curve « is defined as
1
L) = [ o Gt
0

where  denotes the derivative i—;’.

SThis notation differs from g, which denotes group elements.
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Definition A.7 (Volume Element). The volume element dvol,(z) on a Riemannian manifold (M, g) is defined as

dvol, = \/det(gi;) dz* Adz® A -+ A da™,

where g;; are the components of the Riemannian metric tensor, (xt,22,... ™) are the local coordinates, and A denotes the

exterior product.

The volume element provides a way to compute the volume of subsets of M by integrating functions over M. Moreover, a
Borel measure i on open subsets of M can be derived form the volume element to form probability measure space, e.g.,
uniformly over the manifold.

Definition A.8 (Smooth Map). A maping f : M — A is a smooth map if for any charts (U, ¢) on M, and (V, 1)) on N,
the composition function ¢ o f o ¢~1 : RIMM) _ RAMW) s infinitely differentiable.

Definition A.9 (Pullback of the metric tensor). Given Riemannian manifolds M, (N, g) and ¢ : M — N a smooth map
between them. The pullback of the metric tensor g by ¢, denoted by ¢* g is the Riemannian metric tensor on manifold M
defined by,

(©79)2(u,v) = gy(2) (dpz(u), dps(v)), for all points x € M and all u,v € T, M,
where dyp, : T, M — T@(I)N is the differential of the map ¢ at point x.

Thus, the pullback metric ¢*g on M captures the relation between tangent vectors of M in terms of how they are mapped
to the manifold N via ¢.

Definition A.10 (Connected Manifold). A manifold M is connected if for any two points z, ' € M, there is a smooth
curve v : [0, 1] — M such that v(0) = = and v(1) = .

Throughout this paper, we focus on smooth, connected, compact and boundaryless Riemannian manifolds (M, ¢) unless
stated otherwise. For a Riemannian manifolds (M, g), we denoted the dot product induced by the metric tensor g as
(u,v)g, = gu(u,v) forall u,v € T,. We drop the subscript z whenever it is clear from the context.

A.2. Functional Spaces over Manifolds

Now equipped with probability measures on manifold discussed in Appendix A.1, we are ready to define functional spaces
L?(M) and Sobolev spaces H*(M) on manifold M analogously to their Euclidean counterparts in the following,

Definition A.11 (Functional Spaces on Manifolds). The Lebesgue functional spaces L? (M) for p € [1, o], and the Sobolev
spaces H*(M) for s > 0 on a smooth Manifold M, are defined as follows:

* The Lebesgue space LP (M) consists of measurable functions f : M — R such that || f||L»(aq) < 0o where,
1 .
lvoan = { Ul F@P du@)™” ifp e [Loc)
essSupyer |f(7) <00, ifp=o0
where p is the uniform measure over the manifold M.
s The Sobolev space H*(M) consists of measurable functions whose derivatives up to order s are in L*(M), i.e.,

H*(M) = {f € L*(M) | D*f € L*(M) for all multi-indices a with |a| < s} .

A.3. Lie Group of Isometry Maps

In this section, first we state basic definition of isometric mappings over manifolds and then wrap up by characterizing the
isometry group over the manifold.

Definition A.12 (Isometry Map). A bijective mapping 7 : M — M is an isometry on the manifold (G, g) if d(7(x), 7(z')) =
d(z, ).

We also state a brief definition of Lie groups for completeness.

13
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Definition A.13 (Lie group). A group G is a Lie group with smooth group operations (multiplication and inversion) if it is
additionally a smooth manifold.

The space of bijective Riemannian isometries defined on the manifold (M, g), denoted by ISO(M, g) constitutes a group
with composition operation. The celebrated Myers—Steenrod theorem states that any isometry map 7 € ISO(M, g) between
connected manifolds is an isometry (Myers & Steenrod, 1939; Palais, 1957). Myers & Steenrod (1939) took it a step further
and proved that isometry group of a Riemannian manifold (M, g) is a Lie group.

Alternatively, ISO(M, g) can be charecterized by the pullback of the metric tensor. In terms, 7 € ISO(M, g) if and only if
g = T*g (Petersen, 2006).

A.4. Laplacian on Manifolds

In this section, we reiterate over definition of Laplace-Beltrami operator on manifolds (which is the generalization of the
Laplacian operator A = 9% + 03 + - - - + 03 defined on the Euclidean space R%) and state a several interesting properties
that will utilize later. We refer to Chavel (1984) for additional details.

Definition A.14 (Laplace-Beltrami operator). Given a Riemannian manifold (M, g), the Laplace-Beltrami operator
Ayt H¥ (M) — H*~2(M) acts on a smooth function f : M — R by

Agf = divg(gradg(f)).

Moreover, A, f has an equivalent weak formulation (Evans, 2022), as the unique continuous linear operator A, : H*(M) —
H*~2(M) which is a solution to the equation,

/ W(2) A, 6(x)d vol, () + /M<ng(ac),ngb(x)>gdvolg(x) — 0¥, € HA(M). @

The Laplace-Beltrami operator A, is self-adjoint, eliptic and diagonalizable in LP(M) (Chavel, 1984; Evans, 2022),
yielding a sequence of orthonormal eigenfunctions ¢ ¢ € L?*(M), where X € {Ao, A1,...} C [0,00) represents the
eigenvalue corresponding to the eigenfunction ¢y ¢, and £ € [m,] indexes the multiplicity of A, denoted by m such that
Agdr, o+ ey, o =0forall £ € {1,...,m,,}. Note that the basis starts with the constant function ¢y = 1 and Ay = 0.

Hence, one can write Ay f = — 377 S 7" N (f, da, o) O, e
Lemma A.15. For any function f € L*(M), such that f is decomposed into the basis {px}S2, as f
Dito 02 (fy Dxie) L2 () e we know that

oo My

”vng%Z(M) = ZZ)\z fa ¢)\ é L2(M)

i=0 (=1

for convergent summations.

Proof. By Equation (2),

IV 1220y = / (V£ (2), Vo f (2))g dvoly ()

/ z) dvol,(z)

oo MM

= ZZ (f: x0Tz (m)-

i=0 (=1

A.5. Commutativity of Laplacian and Isometric Group Actions

Let G be a group acting isometrically on a compact, smooth, boundaryless manifold M. As we stated in the main body
of the paper, we have A y((Ty¢) = Ty(Aa(¢)) for each smooth function ¢ on manifold M, where T,¢ = ¢(gz). A

14
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complete proof of this claim can be found in Canzani (2013). Note that by Equation (2), this fact is equivalent to
/ hAp(Tygp)dvoly(z) = / hTy(Arm(@))dvoly(z), 3)
M M

for each smooth function A on manifold M.

A.6. Weyl’s Law under Invariances

Weyl’s law characterizes the asymptotic distribution of the eigenvalues in a closed-form formula (Hérmander, 1968; Sogge,
1988; Canzani, 2013). Let us denote dimension of the space spanned by the eigenvectors corresponding to eigenvalue of the
Laplace-Beltrami operator up to A as

Theorem A.16 (Weyl’s law (Hormander, 1968; Sogge, 1988; Canzani, 2013)). Let (M, g) be a compact, boundaryless
d-dimensional Riemannian manifold. The asymptotic behavior of dimension count Dy follows

_ wgq vol(M) d/2 (d—1)/2
D)\ - (27T)d A + O()‘ )7

is the volume of the unit d-dimensional ball in R, vol(M) is the Riemannian volume of M, and
)

h xd/2
wnere Wqg — —75—~
4= T(d41

O(ANA=1/2) represents the error term.
Define D) ¢ as the dimension of the space induced by projection of the corresponding eigenspaces of D) into the space of
G-invariant functions. Tahmasebi & Jegelka (2023) proved the following characterization over this dimension as A — co.

Theorem A.17 (Dimension counting (Tahmasebi & Jegelka, 2023)). Ler (M, g) be a compact, boundaryless d-dimensional
Riemannian manifold, and G be a compact finite Lie group acting isometrically on (M, g). Then.

wq vol(M/G) NE
(2m)

as A — oo, where again wq is the volume of the unit d-dimensional ball in R,

Dyg = + O

A.7. Sobolev Spaces on Manifolds

The ordinary definition of Sobolev spaces on manifolds deals with having square-integrable derivatives up to an order s.
Here, since our focus is on the spectral approach, we present the spectral definition of Sobolev spaces.

Definition A.18 (Sobolev spaces). The Sobolev space of functions H*(M) on a compact, smooth, boundaryless Riemannian
manifold M is defined as:

m

H M) = {1 =33 fredne@) 1 = 2. D DifEe < oo},

A =1 A 4=1

where « = 2s/d.

Note that the above definition is equivalent to the other definition of the Sobolev spaces that involves considering A° instead
of DY above. Using Weyl’s law (see Appendix A.6), one can show that both definitions are equivalent.

A.8. Sobolev Kernels

Sobolev spaces are RKHS when s > d/2. Indeed, the Sobolev kernel can be defined as:

Kpeo(z,9) = > > Dy *éxe(x)dre(y).

A U=1
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Note that any group G that acts isometrically on the manifold, also acts on the eigenspace of Laplacian via orthogonal
matrices. Since orthogonal matrices preserve the inner product we conclude that

Koy (97, 9y) = Koy (2, ),

for any g € GG, which means that the Sobolev kernel is shift-invariant. However, this is clearly not G-invariant since it
produces small bump functions, which need not be invariant.

A.9. Kernel Ridge Regresion (KRR)

Consider a Positive-Definite Symmetric (PDS) kernel K (., .) on a smooth, compact, boundaryless manifold with H denoting
its RKHS. The objective of Kernel Ridge Regression (KRR) estimator is to introduce the RKHS norm to the ERM objective
to make sure of finding smooth interpolators:

min {577 () — ) +nll £ 1% ) ¥
i=1

feH

where 7 denotes the regularization parameter that balances the bias and variance terms. Here, the objective function takes a
closed-form solution to the represented theorem for kernels. This gives an efficient estimator, which is termed KRR in the
literature.

However, this estimator need not be G-invariant even when trained on invariant data. To see why, note that as long as the
space H includes non-invariant functions, there is a chances that we find a non-invariant function optimizing the above
objective due to the observation noise. Thus, the only way to make sure that the KRR estimator is G-invariant is to impose
the assumption of having G-invariant kernels, which translated to group averaging over the Sobolev kernel:

1
Koo (,y) = il > Kue (g2, y).- )
pre

This method is unfortunately not computationally feasible, even though it achieves minimax optimal generalization bounds
for learning under invariances with kernels (Tahmasebi & Jegelka, 2023).

B. Proofs

B.1. Minimal generating set of a Group

Here, we restate and prove the following lemma on the size of the minimal generating set in group theory for completeness.

Proposition B.1. The minimal generating set S of a finite group G, has a size p(G) = |S| < logsy(|G]).

Proof. Consider the minimal generating set S = {g1, 92, ..., 9|5} of the finite group G. For each k € {1,2,...,[S|},
define Gk = <glag27 s 7gk>

The identity e is not equal to any of g, and hence cannot be a member of any G,,, since it can always be produced by
combining an element with its inverse. Moreover, for all k € {1,2,...,|S|}, we know that g1 ¢ Gy, since otherwise
(91,92, -+ 9ks Gk+2, - - - g|s|) = G which contradicts the minimality of the generating set S for the group G'. Therefore,
9n+1G., the left coset of G, is disjoint from G,,. Additionally, by definition, we know that g,,+1G,, |J G, € G,,+1. Hence,
|Grt1| > [9n+1Gnl + |Gy| = 2|Gy|. By induction, 2! = 2151|G;| < |G|5|| = |G| which establishes the claim. O

B.2. Constrained Optimization

In this section, we preset a detailed analysis of the constrained quadratic optimization problem that is used in Algorithm 1.

Proposition B.2 (Projection into invariant subspace of eigenspaces). The optimization problem,

o~

fa= argfmin > (e = Fu)? (6)
A =1
st. Vg e S:DNg)lfr= fx,
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with |S| = m, has a closed form solution,

h=hHh-=B" (B*B* )I(B*),
where
D’\(Ql) -1
B Dk(gz) -1
D/\(gm) -1

and t denotes Moore—Penrose inverse.

Proof. For better readability, we define B(g;) == D’\(g,») — I, where I € R™>*" is the identity matrix of size m, then,

B(gl)
N B(Qz)
B .

B(gm)
For ease of notation, let a := f)\ € R™* and a* := f)\ € R™*, then the optimization problem (6) can be rewritten as,
1
a* = min §Ha — a'||* subject to B*a' = 0. 7
a/

Now, we need to show that the projection of @ onto the subspace defined by {a’ | Ba’ = 0} has the following analytical
form,

a* =a— B (B B (B a).
We form the Lagrangian,
1
L' \) = §Ha —d||> + ¢ Ba,

where £ € R™* is the vector of Lagrange multipliers. By taking gradients,

% = (@ —a)+B* e=0,
thus,
a*=a— B¢ ®)
Substituting back into the constraint B*a* = 0,
BMa— B ¢)=B*— B*B* ¢ = 0. ©)

Hence, ¢ satisfies the above linear system which may have infinite number of solutions. We claim that the choice of
¢* = (B*B»" )1 B a leads to the optimal solution of optimization problem (7). The objective of optimization (7) is
lla —a*|)? = ||B’\T§||%. Any solution £ to the linear system (9), can be decomposed as £ = £* + &, where & is in the
nullspace of BB, Hence,

T T, ., (1) T, T T,

1B €3 = 1B (¢" +o)l3 = 1B €15+ 1B &lls > [1BY €3
() follows since B* ' &* and B ' & are orthogonal w.r.t. each other. Placing &* = (B’\B’\T)TB’\a in Equation (8)
concludes the proof. O

Remark B.3 (Time complexity of optimization in each eigenspace). We arbitrarily chose to use the closed-form solution of the
optimization problem (6) instead of iterative approaches. In the closed form solution, we need to calculate the pseuedoinverse

of matrix BAB» € RISImAxISImx which can be done via singular value decomposition (SVD) in O(|S|3m3). The other
operations are matrix multiplications that are dominated by this part in terms of computational complexity.
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B.3. Main Theorem

Theorem 1 (Learning with exact invariances in polynomial time). Consider the problem of learning with invariances with
respect to a finite group G using a labeled dataset of size n sampled from a manifold of dimension d. Assume that the
optimal regression function belongs to the Sobolev space of functions of order s, i.e., f* € H*(M) for some s > d/2 and

let & := 2s/d. Then, there exists an algorithm that, given the data, produces an exactly invariant estimator f such that:
* It runs in time O log®(|G|)n?/ (1) 4 n(2te)/(1+a)),

* It achieves an excess population risk (or generalization error) ofR(f) = O(n’s/(5+d/2));
o It requires O (log(|G|)n?/ (1+e) 4 n(2+)/ (14 oracle calls to construct the estimator;

» For any x € M, the estimator f(x) can be computed in time (’)(nl/(l“'a)) using (’)(nl/(H'a)) oracle calls.

Proof. To prove Theorem 1, we use Algorithm 1. Let us start by calculating the time and oracle complexity of the algorithm.
Given a dataset S of size n, we first compute

~ 1 &
o=~ ; Yidr.e(xi), (10)

for each A such that Dy < D = n'/(%) and each ¢ € [m,]. This requires O(n'*/(1+®)) oracle calls and can be
accomplished in time O(n!+1/(1+)),

Next, we solve the following constrained quadratic program:

Fae arg min > (fae = o), (1)
M =1
st. VgeS:DMNg)fr= fi. (12)

This is done for each A such that Dy < n'/(1+)_ Note that to even set up this program, we need O(|S|m2) oracle calls to
find the constraints. We have

(DMg))e,er = (Dre(@), daer (97)) L2 (M) (13)
for each £, ¢ € [m,].

Therefore, the total oracle complexity of the proposed algorithm is

@, > ISIm3 4 e/t (14)
A:Dy<nl/(4e)

We have already shown in Proposition B.1 that one can use a generator set with p(G) < log(|G|). Moreover, note that
Yo mi=0m0r), (15)
XDy <nl/(+a)

Therefore, the oracle complexity is

10) (1og(\G|)n2/(1+°‘) + n(2+a)/(1+a)) ) (16)

Let us now calculate the time complexity of finding the estimator. We have already established that we can compute the
empirical estimation in time O(n'*!/(1+2)), Next, we need to solve the constrained quadratic program with log(|G/)
constraints and m, variables for each A such that Dy < n'/(1+®)_ Using the proposed algorithm in Appendix B.2 and also
Remark B.3, we can solve each of these constrained quadratic programs in time O (log®(|G|)m3). Therefore, the total time
complexity of this step is bounded by

o > 1eg(Ghm] | =0 (log’(Gn* ). (17)

XDy <nl/(+a)
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This proves that the total time complexity of Algorithm 1 is

0 (10g3(|G|)n3/(1+0‘) + n(2+a)/(1+°‘)> : (18)

Finally, note that given f, one can evaluate it on new unlabeled data « € M using the formula:
mx R
SN Busaela), (19)
A:DA<D £=1
with D = n'/(1+) which requires both time and oracle complexity of O(n!/(1+)),
To complete the proof, we need to study the convergence of the population risk of the proposed estimator. We first note that

R() =EIF = N 720n) < 2E1F = F201Z200) + 2ElLF2 pl 7200 (20)

where fZ , denotes the orthogonal projection of the function f* onto the space of eigenfunctions with eigenvalues satisfying
Dy < D. Moreover, f5p = f*— fZp.

First, let us upper bound the second term. Note that, according to the assumption, f* € H*(M). Thus,

my

E(ll f2pl 72 = Z Z f30)? 2D

A:D\>D (=1
> D DiDI(SL)’ (22)
A:Dy>D (=1
<D 3 Y DR 23)
A:D\>D ¢=1
<D 33 DY(f)? (24)
A e=1
= D e (ot (25)
Now we focus on the first term. Note that
E(If - fipliemn) = D D Ellfe— el (26)
A:DA<D ¢=1
According to the definition, we have
Fre = Eo[f*(2)r0(7)] = Eqy[yon e()], (27)
for each )\, £. Moreover, f,\ ¢ 1s the empirical estimation obtained from data:
~ 1<
Fre=— > vidae(xi). (28)
i=1
Thus, we obtain
~ 1
Ellfre— fi %] = E [lyoa.e(z) — Elydae(2)]]?] (29)
1
=-E [lepre(x) + f*(@)dae(x) — E[f* () x e(2)]]?] (30)
1
= (®E[¢3 o] + E [| /* () re(z) — E[f* () e(2)][*]) (31
1
< — (0 +E[f*(2)°3.0(@)]) (32)
1 *
<~ (1 W ay) (33)
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where we used the orthonormality of the eigenfunctions ¢y ¢. Then, summing this up to dimension D gives:

~ D
E(F = f2nl30) < = (02 + 15 3w o) (4)

Note that, by definition, f= Pif, where Pg : L?(X) — L%(X) is the orthogonal projection operator onto the invariant
functions. Therefore, we have

E[lIf - fEoll32an) = EllPaf = f2pl3ea0)] (35)
=E[|Paf — Pafiplliziam) (36)
<E[If - Fplli2 )] (37)
D *
< = (o2 + 1 ey (38)

where the penultimate step follows from Pe fZ, = fZp.

Therefore, we can combine the two terms to derive the following population risk bound:

N N * D * —a|| £*
R =EIIF - 13 a0) £ = (04 1 e ) + D1 Wire rny- (39)
We can now specify the above bound to D = n!/(1+®) which is used in the algorithm, to get:

R(P) = BT = 1 13acaa) <070 (02 1773 ag)) 0 D e (40)

which is equivalent to

o~

R(f) = O(n=o/ 0+, 41)

This completes the proof.

Remark B.4. Note that other choices of D may or may not yield better bounds depending on the sparsity of the solution. For
this sparsity-unaware upper bound that we use, such a choice of D is optimal. Additionally, since we focus on polynomial
time algorithms, we cannot choose exponentially large D even if they deliver gains in sample complexity.

O

C. Experimental Results

The plots for the experiments discussed in Section 6 are presented below.
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Discrepancy Values vs. Number of Training Samples
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Figure 1. Invariance Discrepancy measure of Kernel Ridge Regression (KRR) for various choices of the regularization parameter A. The
resulting estimator, KRR, is not invariant with respect to the group G of sign averages {1}, whereas Spec-Avg is G-invariant by
construction. Each point in the plot represents an average over 10 different random seeds. The Invariance Discrepancy measure used for

this plot is defined as sup, ¢ x yeq |f (@) — f(gx)|, where f is the estimator. The set X consists of 100 points uniformly sampled from
the interval [—1, 1]%, independently and identically distributed.

Test Errors vs. Number of Training Samples

Method
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Figure 2. Test error (empirical excess population risk) of KRR for different choices of the regularization parameter A and Spec—Avg for
different choices of the sparsity parameter D. Conceptually, higher values of A and lower values of D encourage sparser representations
for the estimators KRR and Spec—-Avg, respectively. As suggested by our theory, it can be observed that test error rates of the same order
can be achieved by Spec—Avg and KRR with appropriate choices of hyperparameters. Note that the test errors are shown on a log scale.
Their almost linear behavior implies that they are polynomial functions of the number of training samples with comparable orders. We
note that each point in the plot represents an average over 10 different random seeds.
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