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ABSTRACT

Recommender system aims to recommend items or information that may be of
interest to users based on their behaviors and preferences. However, there may be
sampling selection bias in the process of data collection, i.e., the collected data is not
a representative of the target population. Many debiasing methods are developed
based on pseudo-labelings. Nevertheless, the effectiveness of these methods relies
heavily on accurate pseudo-labelings (i.e., the imputed labels), which is difficult to
satisfy in practice. In this paper, in contrast to the existing doubly robust estimators
that take strictly accurate pseudo-labelings as an unbiasedness condition, we
theoretically propose several novel doubly robust estimators that are unbiased when
either (a) the pseudo-labelings deviate from the true labels with an arbitrary user-
specific inductive bias, item-specific inductive bias, or a combination of both, or (b)
the learned propensities are accurate. We further propose a principled propensity
reconstruction learning approach that adaptively updates the constraint weights
using an attention mechanism and effectively controls the variance. To summarize,
the proposed methods greatly relax the unbiasedness condition of the widely-
adopted doubly robust estimators, which empirically result in much lower bias.
Extensive experiments show that our approach outperforms the state-of-the-art on
one semi-synthetic dataset and three real-world datasets.

1 INTRODUCTION

By analyzing users’ historical behaviors and preferences, recommender system (RS) predicts and
recommends items or information that users may like. However, as users are free to choose which
item to rate, so that the collected data is always not a representative of the target population (or
inference space) (Schnabel et al., 2016; Wang et al., 2019; Chen et al., 2022; Wu et al., 2022; Saito
and Nomura, 2022), and similar findings occur with tasks such as post-click conversion rate (pCVR)
prediction (Guo et al., 2021; Dai et al., 2022), post-view click-through & conversion rate (CTCVR)
prediction (Ma et al., 2018; Zhang et al., 2020; Wang et al., 2022), and uplift modeling (Saito et al.,
2019; Sato et al., 2019; 2020). Since the labels are observable only in the collected data and missing
in the target population, this poses a great challenge to achieve unbiased learning (Wang et al., 2020a).

To address this problem, the error-imputation-based (EIB) methods (Hernández-Lobato et al., 2014)
first impute the missing labels and then train the prediction model using both the observed labels
and pseudo-labelings. However, as the pseudo-labeling model is trained with observed data while
deployed in the missing data, it is difficult to obtain accurate pseudo-labelings, leading to sub-optimal
performance (Dai et al., 2022). The inverse-propensity-scoring (IPS) methods inversely weights
the prediction error for each observed rating with the propensity of observing that rating (Schnabel
et al., 2016), but it is empirically difficult to set proper propensity scores and theoretically has greater
variance (Saito, 2020). By utilizing both pseudo-labeling and propensity models, the doubly robust
(DR) method is proposed to weaken the unbiasedness condition of the EIB and IPS estimators (Wang
et al., 2019), with many enhanced DR approaches developed (Guo et al., 2021; Zhang et al., 2020;
Chen et al., 2021; Wang et al., 2021; Dai et al., 2022; Wang et al., 2022). The advantage of DR
estimators is attributed to the property of double robustness, i.e., it is unbiased if either the learned
propensities or the pseudo-labelings are accurate. We summarize the unbiasedness condition of the
previous debiasing estimators in Table 1 (see Appendix A for more discussions on related works).
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Table 1: Comparison of the various debiasing methods, where p̂ and r̃ denotes the learned propensities
and pseudo-labelings, respectively. The red and blue color highlight the unbiasedness of the proposed
DR estimator under arbitrary user-specific inductive bias bu and item-specific inductive bias bi.

Method Unbiasedness Condition
EIB r̃u,i = ru,i
IPS, Multi-IPS, ESCM2-IPS p̂u,i = pu,i
DR, Multi-DR, DR-JL, MRDR, ESCM2-DR p̂u,i = pu,i or r̃u,i = ru,i
User-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +bu, for all bu ∈ R
Item-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +bi, for all bi ∈ R
User-Item-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +bu +bi, for all bu, bi ∈ R
Note: bu and bi are arbitrary user-specific and item-specific inductive biases (see section 3 for more details). Since the proposed methods
require to reconstruct the learned propensities, so we use p̃u,i instead of p̂u,i for distinguish.

Despite the double robustness providing additional protection against inaccurate pseudo-labelings,
recent studies have shown that DR methods are highly sensitive to inaccurate pseudo-labelings.
Specifically, when the learned propensities are slightly inaccurate, the DR estimator can be severely
biased with inaccurate pseudo-labelings (Kang and Schafer, 2007; Molenberghs et al., 2015; Ver-
meulen and Vansteelandt, 2015; Seaman and Vansteelandt, 2018). These inaccurate pseudo-labels
would as a result lead to biased prediction models during the training phase (Wen et al., 2022;
Mansoury et al., 2020; Krauth et al., 2022). Therefore, we believe it is essential to develop novel DR
estimators with relaxed unbiasedness conditions on the accurate pseudo-labelings.

To this end, in this paper we theoretically propose several novel DR estimators that are unbiased under
inaccurate pseudo-labelings, named User-DR, Item-DR, and User-Item-DR. As shown in Table 1,
our theoretical analysis proves that the User-DR estimator is unbiased as long as the pseudo-labelings
deviate the true labels with an arbitrary user-specific inductive bias. Whereas the corresponding
unbiasedness condition of previous DR estimators require the pseudo-labelings to be strictly equal to
the true labels, which is much stronger than that of the proposed User-DR estimator. Similarly, the
Item-DR (or User-Item-DR) estimators are unbiased as long as the pseudo-labelings deviate the true
labels with an arbitrary item-specific inductive bias (with an arbitrary user-specific inductive bias).
In addition, similar to the DR estimators, all the User-DR, Item-DR, and User-Item-DR estimators
are unbiased if the learned propensities are accurate. Table 1 compares the proposed DR estimators
with the existing estimators, and it is clear that the newly proposed DR estimators greatly relaxes the
conditions for achieving unbiasedness and notably alleviate the risk of inaccurate pseudo-labelings.

In fact, the requirements on pseudo-labelings for achieving unbiasedness in the proposed estimators
are realistic and have important implications. In RS, the user-item interactions are influenced by
various factors, such as user herding effect (Liu et al., 2016), user conformity (Zheng et al., 2021),
item popularity (Zhang et al., 2021), and item exposure position (Ai et al., 2018). These user-specific
and item-specific factors may cause user-specific and item-specific inductive biases in the pseudo-
labeling model. Remarkably, the proposed DR estimators can still achieve unbiased learning, even if
the user-specific and item-specific inductive biases are arbitrary and unknown. Based on this, we
further propose a principled propensity reconstruction learning approach that alternatively updates the
propensity model, the imputation model, and the prediction model, where the constraint weights in the
propensity reconstruction loss are adaptively updated using an attention mechanism. To summarize,
the proposed methods greatly relax the unbiasedness condition of the widely-adopted doubly robust
estimators, which empirically result in much lower bias.

The main contributions of this paper are:

• We theoretically propose several novel DR estimators that are unbiased when the pseudo-
labelings deviate from the true labels with an arbitrary and unknown user-specific inductive
bias, item-specific inductive bias, or a combination of both.

• We further propose a principled propensity reconstruction learning approach that adaptively
updates the constraint weights using an attention mechanism, and theoretically demonstrates
the variance of our DR estimators are highly controllable and manageable.

• We perform semi-synthetic experiments to verify the effectiveness of the proposed methods
for arbitrary user-specific and item-specific inductive bias, while previous methods fail
to unbiasedly estimate the ideal loss. We also conducted extensive experiments on three
real-world datasets to demonstrate the advantages of the proposed methods.
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2 PRELIMINARIES

Let U = {u1, u2, . . . , um} be the set of m users, I = {i1, i2, . . . , in} be the set of n items, and
D = U × I be the set of all user-item pairs. Denote R ∈ Rm×n as the rating matrix of all user-item
pairs, where ru,i indicates the rating of user u on item i. Let xu,i be the feature of user u and item
i, and R̂ ∈ Rm×n be the rating prediction matrix for R, where r̂u,i = f(xu,i; θ) is the predicted
rating induced by a prediction model, θ is the parameter. Let ou,i be the indicator of whether user u
rated item i, and O = {(u, i) ∈ D|ou,i = 1} be the user-item index set with observed ratings, and
Ro = {ru,i ∈ R|ou,i = 1} be the observed ratings. If R is fully observed, then the prediction model
f(xu,i; θ) can be trained by minimizing the ideal loss function

Lideal(θ) =
1

|D|
∑

(u,i)∈D

δu,i,

where δu,i = ru,iδ
(1)(r̂u,i) + (1− ru,i) δ

(0)(r̂u,i) is the prediction error, and δ(r)(r̂u,i) is a pre-
defined loss function for r = 0, 1. For example, δ(r)(r̂u,i) = −r log r̂u,i − (1− r) log (1− r̂u,i)
represents the cross-entropy loss. However, optimizing the ideal loss is infeasible, as ru,i is observable
only when ou,i = 1. A naive method is to optimize the prediction model directly using the user-item
pairs with observed ratings, but this will incurs sample selection bias because the user-item pairs with
observed ratings are no longer representative of all user-item pairs.

To address this problem, many debiasing methods have been proposed by designing unbiased
estimators of the ideal loss. For example, the EIB method directly imputes the label ru,i corresponding
to missing events, with the estimator

LEIB(θ) =
1

|D|
∑

(u,i)∈D

[
ou,iδu,i + (1− ou,i)δ̂u,i

]
,

where δ̂u,i = r̃u,iδ
(1)(r̂u,i) + (1− r̃u,i) δ

(0)(r̂u,i) is the imputed error, r̃u,i is the pseudo-labeling
for estimating ru,i given by a labeling-imputation model. Clearly, LEIB(θ) is an unbiased estimator
of the ideal loss when all the pseudo-labelings are accurate, i.e., r̃u,i = ru,i for (u, i) ∈ D \ O.
Nevertheless, the EIB method usually has sub-optimal performance in practice due to the difficulty
of obtaining accurate pseudo-labelings for the missing ratings (Guo et al., 2021). By additionally
introducing the propensity pu,i = P(ou,i = 1|xu,i), the DR estimator is proposed as

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̂u,i

]
,

where p̂u,i is the propensity model for estimating pu,i. Despite theoretically being doubly robust, i.e.,
unbiasedness holds when either the learned propensities or the pseudo-labelings are accurate for all
user-item pairs, however, it has been widely shown that the DR estimator would result in severe bias
under inaccurate pseudo-labelings if the learned propensities are slightly inaccurate (Tan, 2007; Kang
and Schafer, 2007; Molenberghs et al., 2015; Seaman and Vansteelandt, 2018).

3 PROPOSED METHOD

In this section, we first propose User-DR, Item-DR, and User-Item-DR estimators in Section 3.1,
and theoretically show the unbiasedness of the proposed estimators for arbitrary user-specific and
item-specific inductive biases, which greatly weakens the unbiasedness condition of the previous DR
estimators on pseudo-labelings. In Section 3.2, we show that the variances of the proposed estimators
are highly controllable and manageable, provided that the reconstructed propensities do not differ
much from the original propensities. In Section 3.3, we further propose a propensity reconstruction
learning approach to effectively achieve unbiased learning.

3.1 USER-DR, ITEM-DR, AND USER-ITEM-DR ESTIMATORS

In contrast to previous DR estimators that directly use p̂u,i as propensities, where p̂u,i are obtained by
performing a binary classification on ou,i using xu,i (Wang et al., 2019; Saito, 2020; Guo et al., 2021),
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given a prediction model r̂u,i, the proposed User-DR estimator first learns a constrained propensity
model p̃u,i that satisfies∑

i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, for all u ∈ U , (1)

where δ(r)(r̂u,i) is a pre-defined loss function for r = 0, 1, such as the cross-entropy loss δ(r)(r̂u,i) =
−r log r̂u,i − (1− r) log (1− r̂u,i). Then the User-DR estimator is

LUDR(θ) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
,

which adopts a similar form to the DR estimator, but requiring the learned propensities p̃u,i satisfies
the above constraints in Eq. (1).

Now, we prove that the constraints in Eq. (1) can effectively alleviate the inaccurate pseudo-labelings
problem in the previous DR estimators. Formally, the bias of User-DR estimator is

Bias(LUDR(θ)) = Lideal(θ)− E(LUDR(θ))

=
1

|D|
∑

(u,i)∈D

δu,i −
1

|D|
∑

(u,i)∈D

E
[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
= E

[ 1

|D|
∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

)
(δ̂u,i − δu,i)

]
= E

[ 1

|D|
∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

){(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
(r̃u,i − ru,i)

}]
.

The last equation holds directly from the definitions of δ̂u,i and δu,i. On the one hand, similar to the
previous DR estimators, the User-DR estimator is unbiased under either accurate pseudo-labelings
r̃u,i = ru,i or accurate learned propensities p̃u,i = pu,i = P(ou,i = 1|xu,i) for all user-item
pairs. On the other hand, when the pseudo-labelings model has a user-specific inductive bias, i.e.,
r̃u,i = ru,i + bu, multiplying both sides of the Eq. (1) by bu and summing over all u yields

Bias(LUDR(θ)) = E
[∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

)
·
(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
· bu

]
= 0.

We summarize and compare the unbiasedness conditions of previous DR estimators (Wang et al.,
2019; Saito, 2020; Zhang et al., 2020; Guo et al., 2021; Wang et al., 2022) and the proposed User-DR
estimator in Lemma 1 and Theorem 1, respectively.
Lemma 1 (Wang et al. (2019)). The DR estimator is unbiased when either pseudo-labelings are
accurate r̃u,i = ru,i or learned propensities are accurate p̂u,i = pu,i for all user-item pairs.
Theorem 1. The User-DR estimator is unbiased when either pseudo-labelings deviate from the
true labels with arbitrary user-specific inductive bias r̃u,i = ru,i + bu or learned propensities are
accurate p̃u,i = pu,i for all user-item pairs.

Empirically, it is meaningful to weaken the unbiasedness condition of the previous DR estimators to
inaccurate pseudo-labelings with user-specific inductive bias. One scenario is the user conformity
effect (Zheng et al., 2021; Chen et al., 2022), e.g., in the movie rating, a user may give a higher rating
for a movie simply because the public gives it a high rating, ignoring such influence will make r̃u,i
overestimates ru,i. Another scenario is user self-selection (Schnabel et al., 2016; Liu et al., 2022; Lin
et al., 2023), since each user may have a specific preference to items.

Since the improved theoretical guarantees for User-DR originate from constraints in Eq. (1), one
may argue whether such constraints are too strong to be satisfied. In fact, a key observation is that
when the learned propensities are accurate, i.e., p̃u,i = pu,i, then these constraints will be satisfied
naturally, and LUDR(θ) will degenerates to LDR(θ), which does not impose additional constraints to
reduce the accuracy of learned propensities. In contrast, if the learned propensities are inaccurate, i.e.,

4



Under review as a conference paper at ICLR 2024

p̃u,i ̸= pu,i, the bias of the previous DR estimators will strictly depend on the accuracy of the pseudo-
labelings, whereas the proposed User-DR reduces the influence of those inaccurate pseudo-labelings
by learning an alternative propensity model that satisfies constraints in Eq. (1).

Similar to the construction of the User-DR estimator, we propose the Item-DR estimator that is
unbiased to item-specific inductive bias by replacing the constraints in Eq. (1) with∑

u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, for all i ∈ I. (2)

Furthermore, the User-Item-DR estimator, which is robust to both user-specific and item-specific
inductive biases, can be obtained by learning a propensity model satisfying constraints in both Eq.
(1) and Eq. (2). Following a similar argument in Theorem 1, we have the following results.
Corollary 1. (a) The Item-DR estimator is unbiased, if either (i) r̃u,i = ru,i + bi, or (ii) p̃u,i = pu,i;

(b) The User-Item-DR estimator is unbiased, if either (i) r̃u,i = ru,i + bu + bi, or (ii) p̃u,i = pu,i.

It is also meaningful to consider inaccurate pseudo-labelings with item-specific inductive bias, e.g.,
item popularity bias and item exposure position bias (see Appendix B for more discussions). Notably,
we would like to clarify that even if the "user/item-specific inductive bias" conditions are not strictly
satisfied, the biases of the proposed DR estimators are still strictly smaller than the previous DR, as
long as the existence of a user-specific constant bu or an item-specific constant bi such that the bias
arises from the inaccurate pseudo-labelings {r̃u,i : i ∈ I} or {r̃u,i : u ∈ U} can be reduced. We
illustrate this with a toy example as follows. Suppose the inductive biases of the r̃u,i for user u on
items i1, i2, and i3 are r̃u,i1 − ru,i1 = 1, r̃u,i2 − ru,i2 = 2, and r̃u,i3 − ru,i3 = 3, respectively. Then
the UDR estimator are able to cancel a user-specific constant bu (e.g., bu = 2) to make the inductive
biases become 1 − bu, 2 − bu, and 3 − bu, which leads to smaller biases. Table 1 summarizes
the advantages of the proposed DR estimators over the previous studies (Steck, 2010; Schnabel
et al., 2016; Wang et al., 2019), which clearly relaxes the unbiasedness conditions on accurate
pseudo-labelings, and provides a new research direction for debiased recommendations.

3.2 FURTHER THEORETICAL ANALYSIS ON VARIANCE

The proposed estimators greatly enhances the robustness of DR to inaccurate pseudo-labelings. A
further question is whether such unbiasedness come at the cost of increased variance. Impressively,
the variance are highly controllable and manageable as shown below (see Appendix C for proof).
Theorem 2. If 1/L ≤ p̂2u,i/p̃

2
u,i ≤ L for a constant L,

1

L
· V(LDR(θ)) ≤ V(LUDR(θ)) ≤ L · V(LDR(θ)).

Theorem 2 shows that the variance of the User-DR estimator1 can be controlled by the distance
between the base propensities p̂u,i and the learned constrained propensities p̃u,i, which is essentially
a bias-variance trade-off compared with the previous DR estimators. This motivates us to further
propose a propensity reconstrction learning approach to meet the constraints in Eq. (1) and Eq. (2)
with minimal changes to the original propensities p̂u,i in the following Section 3.3.

3.3 PROPENSITY RECONSTRUCTION LEARNING

We next propose a propensity reconstruction learning approach that adaptively updates the constraint
weights to meet the constraints of the proposed User-Item-DR estimator2. The proposed algorithm
alternately trains a reconstructed propensity model, a pseudo-labeling model for imputating the
prediction errors Ê = {δ̂u,i|(u, i) ∈ D}, and a rating prediction model R̂ = {r̂u,i|(u, i) ∈ D}.

Step 1. Propensity Reconstruction P̂→ P̃. Given the learned propensities P̂ = {p̂u,i|(u, i) ∈ D}
without constraints, Theorem 2 states the distance between P̂ and P̃ = {p̃u,i|(u, i) ∈ D} can
provide an upper bound on the variance of the proposed User-Item-DR estimator. Therefore, a natural

1Theorem 2 also holds for Item-DR and User-Item-DR estimators from similar arguments.
2Without loss of generality, we use User-Item-DR estimator in Section 3.3 for illustration purpose.
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idea is to reconstruct P̂ to the nearest P̃ that satisfies the constraints in Eq. (1) and Eq. (2) in the
User-Item-DR estimator. Formally, the optimization problem is

min
p̃

∑
u∈U

∑
i∈I

(
1

p̂u,i
− 1

p̃u,i

)2

,

s.t. p̃u,i > 0, (u, i) ∈ D,∑
i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, u ∈ U ,

∑
u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, i ∈ I,

which is a convex optimization problem with respect to 1/p̃. The following states the rationality of
reconstructing the inverse of the propensities rather than the propensities themselves: first, the former
leads to a convex optimization, so that gradient-based algorithms can efficiently find globally optimal
solutions; second, from the theoretical analysis of DR estimators (Wang et al., 2019; Guo et al.,
2021; Dai et al., 2022), the bias and variance of the DR estimators are proportional to the inverse
propensities and squared inverse propensities, respectively, therefore providing more theoretical
guarantees. In practice, the optimization problem can be solved by minimizing the reconstruction
loss with the constraints as the regularizations that

L(p̃ | p̂) = 1

2

∑
u∈U

∑
i∈I

(
1

p̂u,i
− 1

p̃u,i

)2

+
γ

2

∑
u∈U

λu

[∑
i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

) ]2
+

γ

2

∑
i∈I

λi

[∑
u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

) ]2
,

where p̃u,i = π(xu,i;α) is the reconstructed propensity model, λu and λi are Lagrange multipliers
reflecting the constraint strength, γ is a trade-off hyper-parameter. Nevertheless, there are O(|U|+|I|)
constraints as well as the Lagrange multipliers in Eq. (1) and Eq. (2). Therefore, the dual optimization
will not lead to faster efficiency. To address this problem, we propose an attention mechanism for
collaborative filtering that adaptively learns the constraint strength (which is also considered to
be the role of Lagrange multipliers), thus reducing the number of parameters of the dual problem.
Specifically, let su and ti be the latent vectors of user u and item i, we propose to use an attention
mechanism to learn λu and λi, which can be formalized as

λu =

∑
i∈I exp(s̃⊤u ti)∑

u∈U
∑

i∈I exp(s̃⊤u ti)
, and s̃u = tanh(Asu + b),

where A is the connection weight matrix and b is the bias, and λi can be obtained from a similar way.
We further empirically explored other selections of λu in Section 5, such as the constant weights
λu = λ = 1/|U|, or obtain the weights via a multilayer perceptron.

Step 2. Training Pseudo-labelling with P̃. The pseudo-labeling model can be learned by minimizing
the weighted average loss of the prediction error and imputed error of the observed samples

Le(β;α, θ | P̃) =
1

|D|
∑

(u,i)∈D

ou,i(δu,i − δ̂u,i)
2

p̃u,i
,

where β is the parameter of the pseudo-labeling model, δu,i = ru,iδ
(1)(r̂u,i) + (1− ru,i) δ

(0)(r̂u,i)

is the prediction error, and δ̂u,i = r̃u,iδ
(1)(r̂u,i) + (1− r̃u,i) δ

(0)(r̂u,i) is the imputed error.

Step 3. Training Prediction Model with P̃. Given the reconstructed propensities p̃u,i obtained in
Step 1, the prediction model can be learned by minimizing the proposed User-Item-DR loss

Lr(θ;α, β | P̃) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
.

By alternately implementing the above steps, the prediction model can achieve debiased learning
under inaccurate pseudo-labelings. We summarize the alternating training process in Appendix D.
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Table 2: Relative errors on ML-100K dataset with user-specific and item-specific inductive bias.
U-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.068 ± 0.003 0.223 ± 0.004 0.035 ± 0.004 0.034 ± 0.004 0.047 ± 0.005 0.006 ± 0.006∗ 0.016 ± 0.011∗ 0.003 ± 0.002∗
THREE 0.078 ± 0.004 0.234 ± 0.004 0.040 ± 0.004 0.039 ± 0.005 0.049 ± 0.005 0.005 ± 0.003∗ 0.017 ± 0.028∗ 0.002 ± 0.001∗
FIVE 0.100 ± 0.004 0.247 ± 0.004 0.050 ± 0.004 0.050 ± 0.005 0.054 ± 0.005 0.009 ± 0.009∗ 0.028 ± 0.025∗ 0.010 ± 0.006∗
ROTATE 0.137 ± 0.002 0.036 ± 0.001 0.068 ± 0.004 0.069 ± 0.002 0.008 ± 0.002 0.001 ± 0.001∗ 0.003 ± 0.003∗ 0.002 ± 0.001∗
SKEW 0.025 ± 0.002 0.108 ± 0.002 0.012 ± 0.002 0.012 ± 0.002 0.028 ± 0.003 0.003 ± 0.002∗ 0.014 ± 0.015 0.002 ± 0.001∗
CRS 0.105 ± 0.003 0.216 ± 0.004 0.053 ± 0.003 0.052 ± 0.004 0.024 ± 0.003 0.004 ± 0.005∗ 0.012 ± 0.013∗ 0.003 ± 0.000∗

I-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.069 ± 0.004 0.222 ± 0.003 0.034 ± 0.004 0.035 ± 0.005 0.049 ± 0.005 0.031 ± 0.012 0.010 ± 0.007∗ 0.004 ± 0.002∗
THREE 0.078 ± 0.003 0.234 ± 0.004 0.038 ± 0.003 0.039 ± 0.004 0.050 ± 0.004 0.017 ± 0.013∗ 0.012 ± 0.020∗ 0.006 ± 0.003∗
FIVE 0.103 ± 0.004 0.245 ± 0.005 0.050 ± 0.004 0.052 ± 0.004 0.057 ± 0.004 0.013 ± 0.012∗ 0.012 ± 0.008∗ 0.007 ± 0.003∗
ROTATE 0.138 ± 0.002 0.035 ± 0.001 0.070 ± 0.004 0.069 ± 0.003 0.008 ± 0.001 0.002 ± 0.002∗ 0.001 ± 0.000∗ 0.002 ± 0.001∗
SKEW 0.025 ± 0.003 0.106 ± 0.001 0.011 ± 0.002 0.012 ± 0.003 0.028 ± 0.002 0.009 ± 0.006∗ 0.009 ± 0.003∗ 0.004 ± 0.001∗
CRS 0.105 ± 0.004 0.216 ± 0.002 0.051 ± 0.003 0.052 ± 0.004 0.024 ± 0.004 0.031 ± 0.019 0.008 ± 0.006∗ 0.006 ± 0.003∗

UI-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.066 ± 0.001 0.445 ± 0.006 0.031 ± 0.002 0.032 ± 0.002 0.094 ± 0.003 0.062 ± 0.011 0.025 ± 0.023 0.007 ± 0.007∗
THREE 0.076 ± 0.002 0.470 ± 0.004 0.036 ± 0.003 0.037 ± 0.003 0.099 ± 0.003 0.050 ± 0.032 0.062 ± 0.063 0.009 ± 0.003∗
FIVE 0.099 ± 0.001 0.488 ± 0.003 0.047 ± 0.002 0.048 ± 0.002 0.109 ± 0.001 0.037 ± 0.028∗ 0.013 ± 0.013∗ 0.009 ± 0.006
ROTATE 0.138 ± 0.001 0.071 ± 0.002 0.070 ± 0.002 0.069 ± 0.002 0.015 ± 0.001 0.004 ± 0.004∗ 0.007 ± 0.010∗ 0.002 ± 0.001∗
SKEW 0.025 ± 0.001 0.214 ± 0.003 0.011 ± 0.001 0.012 ± 0.001 0.056 ± 0.002 0.015 ± 0.011 0.027 ± 0.030 0.012 ± 0.004
CRS 0.105 ± 0.003 0.432 ± 0.003 0.051 ± 0.003 0.052 ± 0.003 0.048 ± 0.002 0.048 ± 0.035 0.013 ± 0.007∗ 0.009 ± 0.008∗

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline. We bold the best
three results and underline the best baseline result.

4 SEMI SYNTHETIC EXPERIMENTS

Experiment Setup. We conduct semi synthetic experiments using MOVIELENS 100K (ML-100K)
dataset, which contains 100,000 ratings from 943 users for 1,682 items. We focus on two research
questions below: (1) whether the proposed estimators are unbiased in the presence of user-specific
and item-specific inductive bias; (2) how the varying bias level affects the estimators’ performance.

Experimental Details. We first generate the ground truth probability matrix R, ground truth
propensity matrix P and observation matrix O following the previous studies (Schnabel et al., 2016;
Wang et al., 2019; Guo et al., 2021) (see Appendix E for the generation process details). To verify the
effectiveness of the proposed estimators, we generate several R̂ based on R as follows:
• ONE: The predicted matrix R̂ is identical to the true matrix R, except that randomly select
ru,i = 0.1 with total amount |{(u, i) | ru,i = 0.9}| are flipped to 0.9.
• THREE: Same as ONE, but flipping ru,i = 0.3 instead.
• FIVE: Same as ONE, but flipping ru,i = 0.5 instead.
• ROTATE: r̂u,i = ru,i − 0.2 when ru,i ≥ 0.3, and r̂u,i = 0.9 when ru,i = 0.1.
• SKEW: Predicted r̂u,i are sampled from the Gaussian distribution N (µ = ru,i, σ = (1− ru,i)/2),
and clipped to the interval [0.1, 0.9].
• CRS: If the true ru,i ≤ 0.6, then r̂u,i = 0.2. Otherwise, r̂u,i = 0.6.

Following the previous studies (Guo et al., 2021; Dai et al., 2022), we estimate the propensity by
1/p̂u,i = (1− ρ)/pu,i + ρ/pe, where pu,i is the ground truth propensity, pe = |D|−1

∑
(u,i)∈D ou,i,

and ρ is randomly sampled from the uniform distribution U(0, 1) to introduce noises. Next, we
simulate the biased pseudo-labelings r̃u,i for EIB, DR and the proposed estimators in three ways:
(1) r̃u,i = ru,i + bu (user-specific inductive bias); (2) r̃u,i = ru,i + bi (item-specific inductive
bias); (3) r̃u,i = ru,i + bu + bi (user-item inductive bias), where bu and bi are randomly sampled
from the uniform distribution U(0, ν) to generate inaccurate pseudo-labelings. Finally we use
ru,i ∈ [0, 1] as the positive sample probabilities for Bernoulli sampling to obtain the binary rating
matrix. The absolute relative error (RE) is used for evaluation, which is defined as RE(Lest) =

|Lideal(R̂) − Lest(R̂)|/Lideal(R̂), where Lest denotes the loss of estimator to be compared. RE
evaluates the accuracy of the estimated loss, the smaller the RE, the more accurate the estimation.

Performance Comparison. The experiment results with bias level ν = 0.2 are shown in Table 2.
First, the proposed estimators significantly outperform the baselines in all scenarios. Impressively,
the proposed User-DR (or Item-DR) estimator is still able to outperform previous DR estimator
in item-specific (or user-specific) inductive bias scenarios. Second, the User-DR (or the Item-DR)
outperforms in the case of user-specific (or item-specific) inductive bias, and the User-Item-DR
estimator shows the most competing performance in all three scenarios, which further validates
the ability to eliminate the corresponding types of inductive bias. Meanwhile, since the IPS and
SNIPS estimators are not affected by pseudo-labelings, they show competitive performance in a few
scenarios when increasing the inductive biases of the pseudo-labelings.
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Figure 1: Relative error with varying inductive bias size. The left (right) two figures are user(item)-
specific inductive bias scenario with the item(user)-specific inductive bias fixed as 0 and 0.1.

Table 3: Performance on AUC, NDCG@K, and F1@K on the unbiased test set of Music and KuaiRec.
The best three results are bolded, and the best baseline is underlined.

COAT MUSIC KUAIREC

Method AUC N@5 F1@5 AUC N@5 F1@5 AUC N@50 F1@50

MF 0.680±0.006 0.616±0.011 0.470±0.006 0.651±0.005 0.626±0.001 0.300±0.001 0.741±0.003 0.724±0.003 0.566±0.002

IPS 0.710±0.003 0.603±0.009 0.450±0.008 0.656±0.002 0.633±0.001 0.308±0.001 0.750±0.003 0.734±0.003 0.572±0.002

ASIPS 0.712±0.008 0.627±0.010 0.470±0.007 0.661±0.003 0.641±0.004 0.322±0.003 0.746±0.009 0.733±0.004 0.585±0.006

DR 0.710±0.006 0.632±0.003 0.471±0.003 0.656±0.009 0.669±0.007 0.330±0.005 0.745±0.004 0.718±0.003 0.574±0.003

DR-JL 0.714±0.007 0.646±0.009 0.486±0.006 0.682±0.001 0.660±0.002 0.326±0.001 0.759±0.002 0.757±0.004 0.582±0.005

MRDR-JL 0.715±0.004 0.653±0.006 0.492±0.005 0.684±0.001 0.645±0.001 0.315±0.001 0.762±0.003 0.751±0.002 0.579±0.003

CVIB 0.718±0.004 0.640±0.008 0.486±0.008 0.685±0.001 0.647±0.003 0.316±0.002 0.758±0.001 0.752±0.001 0.575±0.001

DIB 0.726±0.003 0.628±0.008 0.469±0.007 0.690±0.002 0.653±0.002 0.320±0.001 0.775±0.001 0.760±0.001 0.592±0.001

DR-BIAS 0.725±0.004 0.643±0.008 0.474±0.008 0.687±0.004 0.659±0.004 0.331±0.005 0.775±0.001 0.761±0.002 0.593±0.001

DR-MSE 0.715±0.001 0.630±0.009 0.475±0.008 0.685±0.001 0.648±0.002 0.316±0.002 0.779±0.002 0.773±0.002 0.589±0.002

MR 0.728±0.006 0.655±0.009 0.489±0.007 0.698±0.004 0.680±0.004 0.323±0.005 0.776±0.002 0.793±0.001 0.599±0.002

TDR 0.730±0.008 0.651±0.013 0.487±0.010 0.694±0.002 0.667±0.003 0.337±0.002 0.792±0.004 0.799±0.003 0.604±0.003

TDR-JL 0.729±0.005 0.656±0.011 0.493±0.010 0.702±0.002 0.672±0.004 0.332±0.003 0.793±0.004 0.799±0.004 0.603±0.003

Stable-DR 0.719±0.006 0.631±0.008 0.475±0.006 0.687±0.001 0.650±0.003 0.316±0.002 0.764±0.003 0.791±0.003 0.595±0.002

ESMM 0.686±0.004 0.638±0.005 0.485±0.004 0.601±0.002 0.665±0.003 0.328±0.001 0.721±0.006 0.764±0.006 0.576±0.004

Multi-IPS 0.711±0.005 0.604±0.005 0.463±0.008 0.651±0.005 0.667±0.006 0.331±0.004 0.748±0.005 0.738±0.008 0.579±0.004

Multi-DR 0.719±0.004 0.634±0.009 0.480±0.011 0.686±0.002 0.660±0.003 0.323±0.002 0.752±0.014 0.767±0.012 0.581±0.008

ESCM2-IPS 0.721±0.005 0.645±0.006 0.490±0.005 0.680±0.002 0.653±0.002 0.322±0.002 0.779±0.001 0.767±0.001 0.592±0.002

ESCM2-DR 0.730±0.009 0.642±0.010 0.489±0.009 0.688±0.001 0.669±0.002 0.326±0.001 0.788±0.001 0.796±0.001 0.606±0.001

UDR (ours) 0.739∗
±0.004 0.676∗

±0.003 0.521∗
±0.003 0.705∗

±0.001 0.766∗
±0.002 0.389∗

±0.001 0.802∗
±0.003 0.804∗±0.002 0.610∗

±0.002

IDR (ours) 0.721±0.002 0.681∗
±0.003 0.529∗

±0.005 0.694±0.003 0.747∗
±0.002 0.378∗

±0.001 0.801∗
±0.001 0.803∗±0.002 0.607±0.002

UIDR (ours) 0.740∗
±0.006 0.722∗

±0.006 0.539∗
±0.005 0.713∗

±0.001 0.752∗
±0.001 0.382∗

±0.001 0.804∗
±0.004 0.804∗±0.004 0.610∗

±0.003

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline.

Moreover, we also conduct experiments when the unbiasedness conditions are violated, i.e., r̃u,i =
ru,i + bu,i, where bu,i is the inductive bias for more general cases, and the results are shown in the
Appendix E to further validate the superiority of our methods. Figure 1 shows the experiment results
with varying inductive bias levels by taking ONE for illustration, and similar results can be found
in the other five prediction matrices. In the user-specific inductive bias scenario, as the bias level
increases, both User-DR and User-Item-DR estimators demonstrate relatively stable performance.
The Item-DR estimator exhibits a slow increase in REs, while the DR estimator experiences a rapid
increase in such REs. Similar trends are observed in the item-specific inductive bias scenario.

5 REAL-WORLD EXPERIMENTS

Dataset and Experimental Details. Three widely-used real-world datasets are adopted in our
experiments, which are COAT, MUSIC and KUAIREC (Gao et al., 2022). COAT contains ratings
from 290 users to 300 items, with 6,960 biased ratings and 4,640 unbiased ratings in total. MUSIC
contains ratings from 15,400 users to 1,000 items, with 311,704 biased ratings and 54,000 unbiased
ratings. KUAIREC contains a fully exposed industrial dataset which contains 4,676,570 video
watching ratio records from 1,411 users to 3,327 videos. Three widely-used evaluation metric,
namely AUC, NDCG@K, and F1@K, are used to evaluate performance, where K is set to 5 for COAT
and MUSIC and K is set to 50 for KUAIREC (see Appendix F for more experiment details).

Baselines. We take Matrix Factorization (MF) (Koren et al., 2009) as the base model. We compare
the proposed methods with the following baselines: IPS (Saito et al., 2020; Schnabel et al., 2016),
ASIPS (Saito, 2020), DR (Saito, 2020), CVIB (Wang et al., 2020b), DIB (Liu et al., 2021), TDR (Li
et al., 2023b), DR-BIAS (Dai et al., 2022), DR-MSE (Dai et al., 2022), Stable-DR (Li et al., 2023c),
and MR (Li et al., 2023a). We also consider the following baselines based on joint learning and
multi-task learning: DR-JL (Wang et al., 2019), MRDR-JL (Guo et al., 2021), TDR-JL (Li et al.,
2023b), ESMM (Ma et al., 2018), Multi-IPS (Zhang et al., 2020), Multi-DR (Zhang et al., 2020),
ESCM2-IPS (Wang et al., 2022) and ESCM2-DR (Wang et al., 2022).
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Performance Analysis. The results of proposed methods and baselines on COAT, MUSIC and
KUAIREC are shown in Table 3. First, almost all debiasing methods perform better than the base
model (MF), which shows the necessity of debiasing in RS. Second, all three proposed methods
significantly outperform the competing baselines with p-value less than 0.05, which is attributed to
the more relaxed and realistic unbiasedness conditions compared to the baseline DR methods. Finally,
among three proposed methods, Item-DR performs slightly worse than User-DR and User-Item-DR,
which reveals the inductive bias on the item-side is less than that on the user-side in practice.

Ablation Studies. We conduct the ablation study for User-DR on the large-scale industrial dataset
KUAIREC. The results are shown in Table 4. When only the reconstruction loss is retained, our
propensity model will be the same as the base propensity model. Therefore, User-DR degenerates to
the DR-JL. Conversely, when only the constraint losses are retained, the reconstructed propensities
will be considerably more distinct from the base propensities, leading to an increasing variance as
shown in Theorem 2, which harms the prediction performance.

Table 4: Ablation study on KUAIREC.

Method Lre γ AUC N@50 F1@50

DR-JL × × 0.759 0.757 0.582
UDR w/o γ ✓ × 0.754 0.754 0.589
UDR w/o Lre × ✓ 0.787 0.789 0.599
UDR ✓ ✓ 0.802 0.804 0.610

Table 5: In-depth Analysis for λu.

MUSIC KUAIREC

Method AUC N@5 F1@5 AUC N@50 F1@50

Constant 0.695 0.739 0.373 0.797 0.796 0.605
MLP 0.696 0.743 0.376 0.803 0.801 0.605
Attention 0.713 0.752 0.382 0.804 0.804 0.610

Sensitivity Analysis. The hyper-parameter γ balances between the constraints to combat the inaccu-
rate pseudo-labelings and the propensity reconstruction loss to control the variance. Specifically, a
large value of γ causes the reconstructed propensities to satisfy the constraints in Section 3, but may
reduce the accuracy of the propensity estimation. We explore the effect of hyper-parameter γ on the
performance of User-Item-DR on two datasets MUSIC and KUAIREC, and the corresponding results
are shown in Figure 2. We can see that moderate constraints are most helpful to trade-off between
propensity estimation and estimator robustness and thus improve the debiased performance.

(a) AUC on MUSIC (b) AUC on KUAIREC (c) N@5 on MUSIC (d) N@50 on KUAIREC

Figure 2: Effects of varying hyper-parameter γ in UIDR loss.

In-Depth Analysis. The weight of each constraint is crucial throughout the learning process. Table 5
shows the impact of different models when learning λu on User-DR prediction performance. When
we use the constant model to generalize all the λu, each user’s constraint is equally important. As
a result, the model will not utilize the user information effectively, which harms the performance.
In addition, although MLP has a good fitting capacity, it is easy to allocate a higher weight to some
specific constraints and to ignore other constraints, which also harms the performance. Therefore,
when the attention mechanism is used for model training, it allows the model to adaptively obtain
fitting capacity and to prevent overfitting, which results in the most desirable performance.

6 CONCLUSION

In this paper, we proposed the User-DR, Item-DR, and User-Item-DR estimators that can achieve
unbiased learning even under inaccurate pseudo-labelings. The proposed estimators greatly relax the
unbiasedness condition and improve the robustness of existing DR estimators to inaccurate pseudo-
labelings. Our theoretical analysis shows that the variance of the proposed estimators are highly
controllable and manageable. We further propose a principled propensity reconstruction learning to
be compatible with the theory of the proposed estimators, which uses an attention mechanism that
adaptively updates the weights of the proposed constraints. Extensive experiments are conducted to
verify the validity of our proposal. A limitation of this work is the proposed learning method cannot
guarantee that all the constraints in Eq. (1) and Eq. (2) hold strictly, due to the computational burden,
although this may lead to a more desirable debiasing performance.
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A MORE DISCUSSIONS ON RELATED WORKS

Selection bias is a common issue recommendation datasets due to the self-selection behavior of users
and the item selection process of the system (Chen et al., 2022; Wu et al., 2022). Error imputation-
based (EIB) methods first learn pseudo-labelings for missing events and train the prediction model
with both pseudo-labelings and observed labels (Marlin et al., 2007; Steck, 2013; Hernández-Lobato
et al., 2014). However, the unbiasedness EIB requires that pseudo-labelings are accurate for all
user-item pairs. By introducing an additional propensity model, doubly robust (DR) method is
proposed to improve EIB (Wang et al., 2019), with many enhanced DR approaches developed (Guo
et al., 2021; Zhang et al., 2020; Chen et al., 2021; Wang et al., 2021; 2022; Oosterhuis, 2023). The
advantage of DR estimators is attributed to the property of double robustness, i.e., it is unbiased if
either the pseudo-labelings or the learned propensities are accurate.

Despite the double robustness providing additional protection against inaccurate pseudo-labelings,
i.e., unbiasedness holds when either the learned propensities or the pseudo-labelings are accurate
for all user-item pairs, recent studies have shown that DR methods are highly sensitive to inaccurate
pseudo-labelings, i.e., when the learned propensities are slightly inaccurate, the DR estimator can be
severely biased with inaccurate pseudo-labelings (Kang and Schafer, 2007; Molenberghs et al., 2015;
Vermeulen and Vansteelandt, 2015; Seaman and Vansteelandt, 2018). Thus, it can be summarized
that the effectiveness of both the EIB and DR methods rely heavily on accurate pseudo-labelings.

Unfortunately, obtaining such accurate pseudo-labelings for all user-item pairs is usually impractical
in practice, as user-item interactions are influenced by various factors, such as user self-selection (Ma
et al., 2018; Luo et al., 2021), user conformity (Liu et al., 2016; Zheng et al., 2021), item popular-
ity (Zhang et al., 2021; Wei et al., 2021), and item exposure position (Ai et al., 2018; Agarwal et al.,
2019), causing inaccurate pseudo-labelings in practice. Motivated by this, we theoretically proposes
several novel DR estimators and learning approach that achieve unbiasedness even with inaccurate
pseudo-labelings, which greatly relaxes the unbiasedness condition of the doubly robust estimators.

B MORE DISCUSSIONS ON ITEM-SPECIFIC INDUCTIVE BIAS

In the following, we provide more discussions on the rationality of the item-specific inductive bias.
For example, a recommender system algorithm that over-recommends popular items leads to item
popularity bias (Zhang et al., 2021). In this case, the item-specific inductive bias arises from the
influence of item popularity on the pseudo-labeling model. Another form of item-specific inductive
bias may be caused by the item exposure position (Ai et al., 2018), and in such a case, the item-specific
inductive bias is caused from the effect of item position on the learned pseudo-labelings.

C PROOF OF THEOREM 2

Theorem 2. If 1/L ≤ p̂2u,i/p̃
2
u,i ≤ L for a constant L,

1

L
· V(LDR(θ)) ≤ V(LUDR(θ)) ≤ L · V(LDR(θ)).

Proof. As shown in Guo et al. (2021); Dai et al. (2022),

V(LDR(θ)) =
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)(δu,i − δ̂u,i)
2

p̂2u,i
.

The variance of UDR has the same form of DR but replaces p̂u,i with p̃u,i satisfying Eq. (1),

V(LUDR(θ)) =
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)(δu,i − δ̂u,i)
2

p̃2u,i
.

Now, it is clear that if 1/L ≤ p̂2u,i/p̃
2
u,i ≤ L for a constant L, then we have

1

L
≤ V(LUDR(θ))

V(LDR(θ))
=

p̂2u,i
p̃2u,i
≤ L.
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D PSEUDO-CODE FOR PROPENSITY RECONSTRUCTION LEARNING

We provide pseudo-code for the proposed propensity reconstruction learning in Section 3.3 below,
where three steps (step 1: propensity reconstruction, step 2: training pseudo-labelling with P̃, and
step 3: training prediction model with P̃) are alternatively implemented.

Algorithm 1: Propensity Reconstruction Learning

Input: observed ratings Ro and learned propensities P̂
while stopping criteria is not satisfied do

for number of steps training the propensity model do
Sample a batch of user-item pairs from D
Update P̃: α← α− η∇αLp(α; θ, β | P̂)

end for
for number of steps training the imputation model do

Sample a batch of user-item pairs from O
Update Ê: β ← β − η∇βLe(β;α, θ | P̃)

end for
for number of steps training the prediction model do

Sample a batch of user-item pairs from D
Update R̂: θ ← θ − η∇θLr(θ;α, β | P̃)

end for
end while

E ADDITIONAL SEMI SYNTHETIC EXPERIMENTS DETAILS

Data Generation Process. Following the previous studies (Schnabel et al., 2016; Wang et al., 2019;
Guo et al., 2021), the detailed preprocessing for the ML-100K 3 dataset is shown as follows.

(1) Complete the full rating matrix using Matrix Factorization (MF) (Koren et al., 2009). Since the
rating matrix completed by MF will have a unrealistic high prediction value for ratings of almost all
user-item pair, we adjust the proportion of ratings to match a more realistic rating distribution by first
sorting all ratings in ascending order, then set ratings below the p1 quantile to 1, set ratings between
p1 quantile and p2 quantile to 2, and so on. The adjusted rating matrix contains Ru,i ∈ {1, 2, 3, 4, 5}
with proportion [p1, p2, p3, p4, p5], respectively (Schnabel et al., 2016; Guo et al., 2021).

(2) Set a propensity pu,i ∈ (0, 1) for each user-item pair with pu,i = pαmin(4,6−Ru,i). In our
experiment, p = 1 and α = 0.5 (Wang et al., 2019; Guo et al., 2021). Then we obtain the ground
truth propensity matrix P.

(3) Transfer the adjusted rating matrix to the probability matrix by replacing Ru,i ∈ {1, 2, 3, 4, 5}
with ru,i ∈ {0.1, 0.3, 0.5, 0.7, 0.9} correspondingly. Because only binary click indicators can be
observed, we sample click indicators according to the following Bernoulli distribution:

ou,i ∼ Bern(pu,i),∀(u, i) ∈ D,

where Bern(·) denotes the Bernoulli distribution. Then we obtain a fully observed observation matrix
O and a ground truth probability matrix R.

Additional Experiment Results.

Table 6 shows the results when the inductive bias bu,i is sampled from a uniform distribution U(0, α)
with α = 0.2, 0.3 and 0.4 for each user-item pair. Remarkably, UDR, IDR and UIDR also significantly
outperform other estimators, which further shows the effectiveness of the proposed estimators.

3https://grouplens.org/datasets/movielens/100k/
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Table 6: Relative errors on ML-100K dataset. For each user-item pair, the inductive bias bu,i is
independently sampled from the uniform distribution U(0, α).

α = 0.2 Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.068 ± 0.003 0.112 ± 0.069 0.034 ± 0.004 0.035 ± 0.004 0.024 ± 0.016 0.005 ± 0.004∗ 0.013 ± 0.014 0.006 ± 0.004∗

THREE 0.078 ± 0.003 0.103 ± 0.061 0.038 ± 0.003 0.039 ± 0.003 0.022 ± 0.015 0.006 ± 0.005∗ 0.018 ± 0.016 0.002 ± 0.001∗

FIVE 0.101 ± 0.004 0.124 ± 0.040 0.050 ± 0.004 0.050 ± 0.004 0.028 ± 0.010 0.006 ± 0.003∗ 0.014 ± 0.025 0.006 ± 0.003∗

ROTATE 0.137 ± 0.001 0.019 ± 0.011 0.069 ± 0.003 0.068 ± 0.002 0.004 ± 0.003 0.002 ± 0.002 0.002 ± 0.001∗ 0.001 ± 0.001∗

SKEW 0.026 ± 0.002 0.047 ± 0.035 0.012 ± 0.003 0.013 ± 0.002 0.013 ± 0.009 0.004 ± 0.003∗ 0.007 ± 0.007 0.003 ± 0.003∗

CRS 0.106 ± 0.002 0.106 ± 0.065 0.053 ± 0.004 0.053 ± 0.003 0.012 ± 0.009 0.004 ± 0.003∗ 0.012 ± 0.013 0.004 ± 0.004∗

α = 0.3 Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.067 ± 0.002 0.145 ± 0.093 0.034 ± 0.003 0.033 ± 0.003 0.031 ± 0.002 0.005 ± 0.003∗ 0.019 ± 0.016∗ 0.006 ± 0.005∗

THREE 0.078 ± 0.003 0.207 ± 0.103 0.040 ± 0.003 0.039 ± 0.004 0.044 ± 0.021 0.006 ± 0.003∗ 0.014 ± 0.011∗ 0.006 ± 0.005∗

FIVE 0.101 ± 0.003 0.227 ± 0.086 0.051 ± 0.003 0.050 ± 0.003 0.050 ± 0.019 0.005 ± 0.005∗ 0.017 ± 0.013∗ 0.005 ± 0.003∗

ROTATE 0.137 ± 0.002 0.267 ± 0.016 0.068 ± 0.002 0.069 ± 0.002 0.006 ± 0.004 0.002 ± 0.002∗ 0.002 ± 0.001∗ 0.002 ± 0.001∗

SKEW 0.025 ± 0.003 0.063 ± 0.040 0.013 ± 0.004 0.012 ± 0.003 0.016 ± 0.010 0.003 ± 0.002∗ 0.007 ± 0.005∗ 0.004 ± 0.002∗

CRS 0.105 ± 0.002 0.144 ± 0.098 0.052 ± 0.003 0.052 ± 0.003 0.016 ± 0.011 0.004 ± 0.003∗ 0.019 ± 0.021 0.004 ± 0.003∗

α = 0.4 Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.069 ± 0.002 0.207 ± 0.122 0.036 ± 0.003 0.035 ± 0.026 0.045 ± 0.003 0.006 ± 0.005∗ 0.006 ± 0.027∗ 0.004 ± 0.004∗

THREE 0.079 ± 0.002 0.257 ± 0.137 0.040 ± 0.003 0.040 ± 0.003 0.055 ± 0.028 0.006 ± 0.005∗ 0.017 ± 0.014∗ 0.003 ± 0.002∗

FIVE 0.102 ± 0.003 0.253 ± 0.133 0.052 ± 0.003 0.052 ± 0.003 0.058 ± 0.030 0.010 ± 0.009∗ 0.017 ± 0.025∗ 0.006 ± 0.004∗

ROTATE 0.137 ± 0.001 0.039 ± 0.017 0.068 ± 0.002 0.068 ± 0.002 0.008 ± 0.004 0.002 ± 0.001∗ 0.003 ± 0.003∗ 0.002 ± 0.001∗

SKEW 0.026 ± 0.003 0.115 ± 0.058 0.014 ± 0.003 0.013 ± 0.003 0.016 ± 0.003 0.007 ± 0.007∗ 0.011 ± 0.011∗ 0.005 ± 0.004∗

CRS 0.108 ± 0.002 0.176 ± 0.120 0.056 ± 0.002 0.055 ± 0.002 0.022 ± 0.012 0.009 ± 0.007∗ 0.012 ± 0.011∗ 0.004 ± 0.003∗

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline. We bold the best
three results and underline the best baseline result.

F DATASET PREPROCESSING, EXPERIMENTAL PROTOCOLS AND DETAILS.
Dataset and Preprocessing. Following the previous studies (Wang et al., 2019; 2021; Chen
et al., 2021), we conduct extensive experiments on three real-world datasets: COAT4, MUSIC5,
and KUAIREC6 (Gao et al., 2022). COAT dataset contains 290 users and 300 items with 6,960 biased
ratings and 4,640 unbiased ratings. MUSIC dataset contains 15,400 users and 1,000 items with
311,704 biased ratings and 54,000 unbiased ratings. COAT and MUSIC are both five-scale datasets,
and we binarize ratings less than three to 0, otherwise to 1. KUAIREC is a large-scale fully exposed
industrial dataset collected from a short video sharing platform, which contains 4,676,570 video
watching ratios from 1,411 users to 3,327 videos. For KUAIREC dataset, we binarize the video
watching ratios less than one to 0, otherwise to 1.

Experimental Protocols and Details. We use three widely adopted evaluation metric, AUC,
NDCG@K and F1@K, where K is set to 5 for COAT and MUSIC and 50 for KUAIREC. All the experi-
ments are implemented on PyTorch with Adam as the optimizer. For all experiments, we use GeForce
RTX 3090 as the computing resource. Logistic regression is used as the propensity model for all the
methods with propensity. We tune the learning rate in {0.001, 0.005, 0.01, 0.05, 0.1} and the batch
size in {32, 64, 128, 256} for COAT and {1024, 2048, 4096, 8192} for MUSIC and KUAIREC. We
tune the embedding dimension in {2, 4, 8, 16, 32, 64} for COAT and {16, 32, 64, 128, 256, 512} for
MUSIC and KUAIREC. Moreover, we tune the hyper-parameter γ in {1e−6, 5e−5, 1e−5, ..., 1e−1}.

4https://www.cs.cornell.edu/~schnabts/mnar/
5http://webscope.sandbox.yahoo.com/
6https://github.com/chongminggao/KuaiRec
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