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ABSTRACT

Foundational vision-language models have shown impressive performance on
various downstream tasks. Yet, there is still a pressing need to update these models
later as new tasks or domains become available. Ongoing Continual Learning
(CL) research provides techniques to overcome catastrophic forgetting of previous
information when new knowledge is acquired. To date, CL techniques focus only on
supervised training sessions. This results in significant forgetting yielding inferior
performance to even the prior model zero shot performance. In this work, we argue
that test-time data hold great information that can be leveraged in a self-supervised
manner to refresh the model’s memory of previously learned tasks and hence greatly
reduce forgetting at no extra labeling cost. We study how unsupervised data can be
employed online to improve models’ performance on prior tasks upon encountering
representative samples. We propose a simple yet effective student-teacher model
with gradient-based sparse parameter updates and show significant performance
improvements and reduction in forgetting. This could alleviate the role of an offline
episodic memory/experience replay buffer.

1 INTRODUCTION

Foundation models in computer vision have shown impressive performance on various downstream
tasks and domains which renders them a key building block of various solutions including generative
vision language models |Li et al.| (2022); |Chen et al.| (2023); Bommasani et al.|(2021). In spite of
these models’ generality, carefully fine-tuning them on specific tasks and domains usually results
in significant performance gains. However, naively adapting pretrained models to changes in data
distribution or new tasks faces the well-known catastrophic forgetting phenomena McCloskey &
Cohen| (1989) where new learning sessions interfere with what a model has previously acquired. To
overcome catastrophic forgetting, Continual Learning (CL) has emerged as a branch of machine
learning to enable models to continuously adapt to evolving distributions of training samples or
supervision signals over time. A variety of approaches have been proposed to mitigate catastrophic
forgetting, such as regularization-based methods Kirkpatrick et al.[|(2017); Maltoni & Lomonaco
(2019); |Schwarz et al.| (2018)), external memory approaches Lopez-Paz & Ranzato| (2017); |[Li &
Hoiem| (2017, and dynamic model architecture techniques Shin et al.| (2017)); |Singh et al.| (2024).
Most of these works typically focus on models trained from scratch and might fail when applied
to large pretrained models. The rise of large foundation models has sparked increased interest in
merging CL with the benefits offered by potent pre-trained models Han et al.|(2021)); Radford et al.
(2021)); Ridnik et al.| (2021); (Caron et al.| (2021));|(Oquab et al.| (2023)); Radford et al.| (2021)).

Despite the increased attempts to efficiently improve foundational models performance on new
streams of data|Ermis et al.| (2022)); Pelosin| (2022); [Wang et al.[(2022¢); [Smith et al.| (2023)); Janson
et al.[(2022); Zhou et al.|(2023)); Zhang et al.|(2023a); Wang et al.|(2022b); |Ding et al.| (2022)); Goyal
et al.| (2023)); Wang et al.| (2022d), forgetting is still a significant problem in applications of continual
learning [Wang et al.| (2024); |Prabhu et al.| (2023)). Importantly continual learning systems are often
deployed throughout their lifecycle, performing inference on large amounts of unsupervised data. We
argue that an important factor is to continuously learn irrespective of whether supervision is provided
or not. Despite the promise of continual learning, most works focus solely on training in distinct
supervised sessions, while the model remains passive and frozen at test time.
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Figure 1: An illustration of our proposed Continual Learning with Interleaved Test Time Learning. Following
each session of supervised learning, the model is deployed to adapt in an unsupervised setting. It can encounter
data distributions encompassing all previously encountered tasks or sessions. The model adapts to the classes of
the current task while trying to minimize the forgetting on all the classes of previously seen tasks.

Consider an embodied agent equipped with a Vision Language model (VLM) that can recognize
various objects in its environment, and answer users’ queries, upon introducing new types of objects,
layouts, or skills, it is still expected to encounter instances of previously learned objects or tasks at
evaluation time. We propose that a key factor in overcoming catastrophic forgetting and effectively
accumulating knowledge is leveraging test-time data to reinforce the model’s understanding of
previously learned tasks. Furthermore, the data encountered during test time represents the distribution
of interest that directly impacts the agent’s tasks. We propose that data learned in the past but
never encountered during test time is of lesser importance and can indeed be forgotten to enhance
performance on data frequently encountered during deployment.

We consider a scenario where a model is continually trained on supervised datasets, while unsuper-
vised data becomes available during deployment between training phases, providing an opportunity
to mitigate forgetting. In this work we constrain the unsupervised adaptation to be online, to allow a
practical computational overhead. In particular data privacy constraints with test data encountered in
deployment are often more rigid [Verwimp et al.| (2023)) necessitating online algorithms for this phase
that discard samples after they are processed.

Test-Time Adaptation (TTA)|Sun et al.|(2020) and Continual Test-Time Adaptation (CoTTA) Wang
et al.|(2022a)) are related research areas that focus on leveraging test-time data for dynamic model
adaptation. These areas focus on adapting the model towards unknown distribution shifts using
test-time data, while our formulation aims to use test-time data to control the model forgetting,
without any assumption of distribution shifts from training to test data.

To the best of our knowledge, we are the first to explore how test-time data can be leveraged in a
continual learning setting to reduce forgetting. We consider the foundation model CLIP Radford
et al.|(2021) for our experiments since it has been shown to encompass an extensive knowledge base
and offer remarkable transferability Rasheed et al.| (2023)); [Pei et al.| (2023). It undergoes through
supervised and unsupervised sessions, leveraging the unsupervised data to control forgetting.

We propose an effective approach based on student-teacher models with sparse parameter selection
based on gradient values. Student and teacher models suggest labels for test data and the predictions
from the most confident model are used to update the student model, where the teacher is updated in
an exponential moving average adding a stability component to the learning process. We show that
such a simple approach achieves significant improvements on all studied sequences. Our approach
is stable in class incremental learning (CIL), especially in the challenging setting where no replay
buffers are used, which in many cases can be a critical bottleneck.

Our contributions are as follows: 1) We propose a new setting for continual learning where test-time
data can be leveraged especially in the challenging scenario of CIL-CL. 2) We investigate different
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Figure 2: An illustration of our method DoSAPP. It utilises teacher-student (M, M g) models respectively.
During the Supervised Continual Learning phase, M s undergoes sparse parameter selection throu§h a gradient-
based scoring function F, followed by supervised training of these selected parameters 0™ € 6~. After each
gradient update step, M parameters, 97, are updated through a weighted exponential smoothing based on the
affine projection of the boolean mask: m. The affine projections are controlled through dual momentum terms
0, for Mt and M s respectively. Now both M1, Mg are deployed for the unsupervised test time learning
where the M g is adapted based on the "pseudo label groundtruth" generated from M1 - Mg logits comparison.
Finally Mt model again undergoes weighted smoothing, with dual momentum terms 6, A for M7 and Mg
model respectively such that v < A < 4. This 2 phase approach preserves the generalizations over previous
knowledge along with adaptability on the latest task.

baselines for this setting. 3) We propose a novel approach that illustrates the utility of test-time data
in supervised continual learning and the significant reduction in forgetting without any external replay
buffer.

In the following we discuss the closely related work, Section [2 and present our setting, and our
approach, Section [3| we evaluate our approach on various CL sequences, Section[d} perform ablations
on different components of our approach, Section[5] put forth some limitations of our work, Section 6]
and conclude in Section [71

2 RELATED WORK

Continual Learning considers learning in an incremental manner where training data is received at
various time steps (sessions). The typical problem is catastrophic forgetting [ McCloskey & Cohen
(1989)) of previously learned information. We refer to|De Lange et al.|(2021) for a survey on class
incremental learning where different classes are learned at distinct sessions, a setting we consider
in this work. Weight regularization methods |Aljundi et al.[ (2018)); Kirkpatrick et al.|(2017)) and
functional regularization |Li & Hoiem)|(2017);|Asadi et al.| (2023) direct the training to stay optimal
for tasks of previous sessions via various regularization terms. Experience Replay [French| (1999) is
usually deployed where samples of previous training session data are replayed during new sessions to
reduce forgetting. In this work, we consider continual learning with limited or no replay. Our work
is orthogonal to other continual learning methods and can be combined with any CL method in the
supervised training sessions.

Continual Learning from Pre-trained Models: Due to the abundance of powerful pre-trained
models |[Radford et al.|(2021));/Oquab et al.| (2023)); Brown et al.| (2020) continual learning that begins
with a pre-trained model is becoming a popular paradigm. Recent methods like |[Koh et al.[(2022);
Boschini et al.| (2022) have utilized a Teacher-Student framework for knowledge distillation on
previously seen tasks. However, these methods utilize an additional buffer to mitigate catastrophic
forgetting. This often entails significant memory Zhou et al.|(2022); |Prabhu et al.| (2023). Additionally,
such methods often face an outdated logit problem, as the memory-stored logits are not updated
to preserve information on previous tasks. |Boschini et al.| (2022)) addresses this issue by updating
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logits stored in the past using task boundary information (e.g., input’s task identity) during training,
but it may not always be available, especially in task-free CL setups. However, foundation models
Radford et al.|(2021); |Oquab et al.| (2023) often have a reasonable initial performance on novel tasks,
indicating some pre-existing knowledge relevant to these tasks. |[Zhang et al.| (2023b) utilizes this
property and preservers generic knowledge by modifying only a small set of parameters based on
gradient scoring mechanism. But this method also suffers from recency bias since the gradient scores
are computed for the current task and only those sparse parameters are updated based on current task
scores. Moreover, none of the methods utilize test data in continual learning scenarios and leave a
strong potential for self-supervised techniques to capture robust feature representations.

Test Time Adaptation(TTA) where a pre-trained model is adapted based on the test data has been
heavily studied in recent years. Typically the goal is to improve performance on the test data being
used for adaptation itself, while we focus on using this data to control forgetting of past tasks. Several
methods have been proposed for TTA including those that leverage self-supervised learning |Sun et al.
(2020), batch normalization Nado et al.[(2020); |Vianna et al.| (2024), entropy minimization [Wang
et al.| (2020); Niu et al.| (2023), as well as pseudo labeling |Chen et al.|(2022)); Li & Hoiem!|(2017). It
should be noted that our method is not merely a modification, a novel variation, or a combination of
existing TTA approaches. Unlike typical TTA methods, which primarily address data corruptions
and show limited benefits when changes are restricted to label distributions, our approach leverages
unsupervised data from previous tasks without requiring it to be corrupted to deliver its advantages.

Continual Test-Time Adaptation: Recent work has studied the setting of performing Online Test-
Time Adaptation where the distribution of test-time data is changing over time |Wang et al.|(2022al).
This is distinct from the proposed setting as we focus on the setting where the model is updated with
supervised data, while the test-time data is leveraged to control forgetting on the supervised tasks.

3 METHODOLOGY

We introduce a novel setting for continual learning that leverages test-time data, particularly in
the challenging context of Class Incremental Continual Learning (CIL-CL). As depicted in Figure
this setting allows the deployed model to recover lost knowledge from distributions spanning
all previously encountered tasks after each supervised learning session. The model adapts to the
current task’s classes while minimizing forgetting of earlier tasks’ classes. Our proposed approach
demonstrates how test-time data can significantly reduce forgetting in supervised continual learning,
achieving this without relying on an external replay buffer.

3.1 SETTING

We consider a setting where a sequence of supervised datasets [D§, D3, ..... D] drawn from different
distributions are observed at incremental training sessions ¢ ranging from 0 to 7, where D] =
Ny

(xt,yt),~, is the t incremental session with N; instances. Here the training instance x! € R”
belongs to class y; € Y;, where Y; is the label space of task/dataset at ¢ step. Y; N'Yy = ¢ fort # t/,
where ¢ is any other training session. During a given training session ¢ data samples only from
Dy can be accessed. CIL aims to progressively build a unified model encompassing all previously
encountered classes. This involves gaining insights from new classes while retaining knowledge from
previous ones. The model’s performance is evaluated over all the seen classes )V, = Y7 U - - - Y; after
each incremental task/dataset. Formally, the target is to fit a model M (x;0) : X — ), that achieves
a minimal loss £ across all testing datasets Dy :

Y LM(x550),y) eh)

(x;,y;)€DTU-- D,

where L(.,.) measures the difference between prediction and groundtruth label. D denotes a testing
set of task ¢. Finally, 6 denotes the model parameters.

After training is complete on each Dy, the model is put into production until Dj, ; becomes available
for supervised training. Between supervised phases, an unsupervised dataset, D}', is observed
corresponding to test-time data encountered in production. Note that this unsupervised data can
be drawn from a different distribution than the supervised data, including the distributions of old
supervised datasets/tasks. Our goal is to leverage this data to control the forgetting of the model
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by allowing online unsupervised adaptation. Figure [T] depicts our setting. Note that we evaluate
our models on test datasets {D¢} that are distinct in terms of instances from those used during the
self-supervised online adaptation phase to adequately measure model generalization.

We further note that although supervised phases may permit multiple passes through the data until
convergence, it would be impractical to collect unsupervised data in production and then perform
adaptation on it, we thus restrict the unsupervised phase to be in the online setting [Sun et al.| (2020);
Jang et al.| (2022)); |Cai et al.| (2021). This is especially important in cases where data privacy is
important e.g., assistant robot in a private smart home environment.

3.2 DOSAPP: DOUBLE SMOOTHING VIA AFFINE PROJECTED PARAMETERS

Algorithm 1 DoSAPP algorithm for continual and test time learning

Require: Mg (0°), CLIP loss: £(.,.,.), sparsity threshold ¢
1. 07 =65 > Initialize M (07) with Mg (6%)
2: for ¢ in tasks do

3: 6™ < top-K(K=c) params from MLP layers of §° based on F > Sparse Selection, Eq.
4: for (x;,y;) in D] do
5: o™ = 0™ — nVL( Mg(2;),y:) > Take one SGD ste
6: 0L = pof +q67 > Dual momentum for teacher EMA update, Eq
7: end for
8: Compute union of masks for all tasks seen so far m,, > Start of Unsupervised Phase
9: Select m,, params in Mg

10: for z; in D} do

11: Ir = max(Myp(z;),dim = 1)

12: ls = max(Mg(z;),dim = 1)

13: if [ > lg then

14: g = arg max(Mr(z;))

15: else

16: g = argmax(Mg(z;))

17: end if

18: g™ = g™ — VLM g(24),9) > Take one SGD step

19: 0F , =p'0F + 407, > Dual momentum for teacher EMA update, Eq

20: end for

21: end for

We propose a simple yet effective method for continual test-time learning, Double Smoothing via
Affine Projected Parameters aka DoSAPP. Our approach combines two key components: 1) sparse
and local updates: to reduce forgetting, maintain generalization, and ensure efficient updates, and
2) teacher-student framework to promote stability in online updates and minimize forgetting. In
the continual test time learning we can identify two distinct phases of learning as outlined in the
following.

PHASE 1: CONTINUAL LEARNING SUPERVISED TRAINING WITH SPARSE SELECTED
PARAMETERS

Our primary objective is to swiftly accumulate new knowledge without catastrophically forgetting
the generic knowledge both at training and test time. To achieve this, we opt for updating only a
small subset of selected parameters. It has been suggested by Zhang et al.| (2023b)) that for a generic
pretrained model like CLIP and a given task, relevant parameters can be identified before training,
and updating only those parameters would result in a reduced forgetting of previous knowledge.
Further (Geva et al.| (2020) suggested that MLP blocks in a transformer model emulate key-value
neural memories, where the first layer of MLP acts as memory keys operating as pattern detectors.
This suggests that for updating knowledge of previously known "patterns", it might be sufficient to
update only the first MLP layer parameters. Thus we limit candidate parameters to the first MLP layer
parameters of each transformer block in the CLIP model |Zhang et al|(2023b). From these candidate
parameters of the first MLP layer of each transformer, we select top-K (K=c) parameters. This results
in efficient training without loss of previously acquired knowledge as all other layers remain frozen.
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Following Zhang et al.|(2023b)) we use the gradient magnitude of the loss w.r.t. the incoming data
as a score of how relevant a parameter is, the larger the gradient magnitude the larger the expected
decrease in loss after small changes to that parameter. We refer to the model being optimized as
M. UpSon receiving supervised data, we first estimate the most relevant parameters, 0™ such that
o™ < 6°).

N/

\ 1
F(65.D7) = MZ% (k) )

k=1

where g;; (z) is the gradient of the loss function (L(Mg, z, yx)) regarding the parameter ij
evaluated at the data point and its label xy,yr € Dj. The loss function L(Mg, xk,yx) is the
same CLIP loss, and the entire data is iterated once to compute the gradient score as given in Eq[2]
Specifying the sparsity threshold (c), top-K (K=c) most relevant parameters are selected. We set
¢ = 0.1 as shown in [Zhang et al|(2023b)). This results in a binary mask m where only selected
parameters are updated and others are masked out and kept frozen.

TEACHER STUDENT FRAMEWORK

To ensure stability later during online updates and reduce forgetting, we utilize a Student-Teacher
framework Tarvainen & Valpolal (2017); Koh et al.| (2022); Boschini et al. g2022) where the student
model is denoted by M g (60°) and the teacher model is denoted by M7 (67).

During both train and test time, teacher model M parameters 87 move with exponentially moving
average (EMA) of student model parameters 8°. Normally in a teacher-student framework, all
teacher model parameters move similarly toward the student parameters with a single smoothing
parameter (momentum). However, in Tables[I]and [3]we show that a single smoothing parameter is
insufficient and yields poor performance. Indeed, in our case, most of the student model parameters
remain frozen, and only a small portion is updated, we propose that the teacher model’s parameters
corresponding to the student frozen parameters should move at a different pace than those selected
for updates. Therefore we use dual smoothing parameters (referred to as momentum parameters)
based on the affine transformation of the binary mask m to adapt the teacher parameters 87 .

WEIGHTED EXPONENTIAL SMOOTHING WITH DUAL MOMENTUM

After each gradient update step (¢) for Mg, parameters of M are updated by EMA of the student
model parameters. Typically, EMA is governed by

0L, =507 +(1-4)67, (3)

where ¢ is the smoothing parameter. Further, it has been shown in ([Tarvainen & Valpola (2017);
Oquab et al.| (2023)); Koh et al.| (2022)) that setting ¢ to a high value (eg 0.998), maintains a stable
teacher model that can be considered as a strong reference for past tasks {0, ..., ¢ — 1}. But updating
the teacher model with a single smoothing parameter in cases where parameters are masked creates
dissonance and increases forgetting because all the parameters are updated with equal importance,
disregarding those parameters which are selected by the gradient scoring function (where [m;; = 1J).
To account for masking, we modify Eq [3]as

aiTﬂ =pb; + qa?ﬂ 4

where p and g denote the smoothing parameters for the teacher and student model respectively and
can be computed as

p=(y—46m+4d

g=(F—y)m+1-0 ©)

where v < . This means that the selected parameters of the teacher model ([m;; = 1]), move a
little bit faster towards the student model as compared to the frozen candidate parameters (where
[m;; = 0]). As such, parameters where [m;; = 0] will move at a slow rate of J, and unmasked
parameters would be updated with v. When v = §, the weighted scheme becomes EMA with a single
smoothing parameter. A detailed proof is given in appendix
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PHASE 2: UNSUPERVISED TEST TIME LEARNING (TTL)

After supervised training is completed, both M7 and M g are deployed for Test Time Learning (TTL).
We consider teacher (M) and student (M g) models as two experts on different data distributions,
the Mg on the most recent and the M7 on previous sessions distributions.

We take inspiration from Out Of Distribution (ODD) literature [Hendrycks & Gimpel (2016), where
a sample has to be identified as In Distribution (ID) for a given predictor with a score function
predicting high values for ID samples as opposed to OOD samples. Recently it has been shown that
using the un-normalized maximum logit output of a given predictor as an ID score is significantly
more robust than softmax probability Hendrycks et al.|(2019). Indeed the softmax probability is
shown to provide high probability predictions even for unknown samples|Yang et al.| (202 1)), which
we want to avoid in our case. Note that for CLIP the logit corresponds to the cosine similarity of the
image batch with given text features.

Following [Hendrycks et al.| (2019), we use the maximum logit value of each expert as an ID score,
and select for each test sample the expert with the highest ID score indicating that the sample is
likely to be better represented by said expert. We then accept the pseudo label of the selected expert.
Formally the pseudo label can be calculated as follows:

- Jyr iflr =ls
s  otherwise

= (6)
where  is the accepted pseudo label and [ = max(Mr(x)) and [g = max(Mg(x)) are the maxi-
mum logit score for teacher and student model respectively, and similarly yr = arg max(Mqp(x))
and ys = arg max(M g (x)) are the pseudo labels by teacher and student models respectively. During
test-time training the student model M g is updated by minimizing CLIP contrastive loss given pseudo
label §. In realistic settings, often multiple iterations on test data are not always possible, for eg, in
a streaming data pipeline. We too mimic this setting, where the entire data is processed only once
during the TTL phase.

Similar to the above-mentioned supervised
phase, we also here apply sparse local updates to Airoraft
M . However, the estimation of masks based Momentum (v, A)

. . X Acc. () FE.() FTA.(1)
on the online data might be noisy and largely
reduce the efficiency as gradients of all param-

0.9999, 0.9999 23.99 18.36 12.15

eters must be estimated for each mini-batch of 0.5,0.9 3841 3.2 37.64
. . 0.7,0.9 37.22 3.05 37.72

test samples. To overcome this, and following

the assumption that test data are drawn from 0.8,0.9% 3940  2.61  38.13

the distributions of all previous tasks, we lever- 0.8,0.6 37.06 5.12 29.63

age the masks estimated for previous tasks. We 0.8,0.5 32.95 3.40 26.33

accumulate a union of the binary masks (m,,)
over all the previously seen tasks ¢ such that Table 1: Effect of Momentum (7, A) on Average Accu-
m, =m UmsyU...... m,. To maintain the same racy (Acc in % ), Average Forgetting (F.) and First Task
sparsity level (¢ = 0.1) of performed updates, Accuracy (FTA.) *0.9999, 0.8, 0.9 have been used in the
we further select the same top-K (K=c) most main results.

relevant parameters, from these new masked m,,

parameters based on their previously computed gradient scores.

Finally, M (07) is updated using the same dual momentum scheme, but with different smoothing
vectors p’, q’ as:

07, =p'0] +4'0}, N
where p’ = (A—d)m+d and ¢’ = (§ — \)m+ 1 — 4. In the TTL phase, the momentum parameter A
is kept such that v < \ < &. This means that 87 moves more slowly in the direction of 8 during the
TTL phase as compared to the supervised phase. As we encounter frequent, and possibly noisy, online
updates, stability is better ensured by a slower pace of movements towards student parameters. We
show the sensitivity of our method on the choice of momentum values A, § in Table[I} A high § has
been chosen to keep the Teacher model stable as shown in Tarvainen & Valpolal (2017);|Oquab et al.
(2023)); [Koh et al.| (2022). It can be seen that when v = A (single momentum EMA), the performance
significantly drops. DoSAPP is less sensitive to on choice of +, but it highly depends on A\. We can
also see that as A < +, the performance again drops. The algorithm can be fully understood as given

in[1l
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Method Aircraft | Cars | CIFAR100 CUB | GTSRB |
Acc. (1) EW() Acc. (1) E ) Acc. (1) EW() Acc. (1) Ed) Acce. (1) Ed)
_CLIP-Zeroshot|Radford et al.|(2021} 24.45 - 64.63 - 68.25 - 55.13 - 43.38
Finetune|Goyal et al.|(2023} 18.63 39.93 51.64 25.65 46.26 37.78 45.74 26.62 21.76 55.48
SL 10.81 50.81 23.49 30.42 38.03 42.67 28.60 33.82 5.14 62.31
MAS|Aljundi et al. |(2018] 33.69 27.50 69.43 9.18 63.88 21.16 61.72 12.05 42.04 25.38
L2P|Wang et al.|(2022¢) 32.20 21.73 67.04 11.22 67.71 18.81 64.04 6.82 75.45 2.68
DualPrompt|Wang et al. |(2022d) 26.61 17.20 63.30 18.67 61.72 19.87 64.38 12.94 69.65 8.43
SLCA |Zhang et al.|(2023a) 29.40 11.45 62.65 4.42 70.03 0.19 53.87 7.75 46.01 0.83
ZSCL|Zheng et al.|(2023] 30.96 15.65 67.79 8.27 80.50 1.05 61.09 7.69 62.92 13.54
SparseCL|Wang et al. [(2022c}) 31.95 19.77 71.57 5.38 69.35 15.23 62.50 9.66 48.99 2491
SPU|Zhang et al.|(2023b} 30.94 28.36 69.41 1691 58.80 26.37 62.31 7.2 43.06 19.16
DoSAPP 39.14 £+ 0.73 12.55 + 0.22 74.87 £ 0.03 -0.74 £ 0.68 79.16 +0.42 7.73 £ 1.68 68.17 + 1.24 2.15 + 0.81 72.33 £ 0.89 1.02 £2.10
ER methods
ER|[French|(1999) 41.42 31.38 69.08 16.42 82.86 341 64.07 17.72 96.28 -7.48
ER + LWF|L1 & Hoiem (2017} 36.08 18.12 72.56 4.04 74.32 8.16 65.11 5.90 53.56 11.86
ER + PRD|Asadi et al. (2023 37.11 17.35 74.08 3.75 79.66 3.10 65.92 6.55 63.00 12.44
SPU + ER=1000 44.43 14.42 717.51 3.26 83.99 -0.39 71.51 4.84 94.25 -7.87
DoSAPP + ER=200 4732 +0.84 8.10+0.79 79.17 + 1.02 3.92 4+ 0.63 88.41 £ 1.01 -1.96 + 0.09 74.39 + 0.91 2.77 £ 0.58 83.67 £ 0.95 1.92 +0.28

Table 2: Acc. (Average Accuracy, 1) and F. (Forgetting, }) of different methods all using CLIP ViT-B/16
backbone with trainable vision and text encoders, without any Replay Buffer in CIL scenario. DoSAPP
can achieve positive backward transfer - forgetting is negative on Cars data. All experiments are mean of 5
experiments with random seeds. STD. is not shown for baselines for the ease of reading and space constraints.

4 EXPERIMENTS

4.1 SETUP

Architecture: We apply DoSAPP to vision-language classification tasks, given their relatively robust
knowledge measurement in such tasks. CLIP-ViT-B/16 Radford et al.|(2021)), is used as backbone.
We report the accuracies recorded by the Teacher model. We refer to |[Zhang et al.| (2023b) for
hyperparameters selection other than dual momentums, which are given in Appendix|[A.2]

Datasets: We consider five different vision datasets, three fine-grained (Aircraft Maji et al.| (2013)),
CUB|Wah et al.|(2011)), Stanford Cars |Krause et al.|(2013)), Oxford Pets Parkhi et al.| (2012), one
coarse dataset (CIFAR100 Krizhevsky|(2012)) and one out-of-distribution dataset (GSTRB Stallkamp
et al.| (2012)). These datasets are chosen primarily based on their initially low zero-shot performance
with CLIP pre-trained models. To form the continual learning sequences, we split each dataset into
10 subsets with disjoint classes composing 10 tasks. For all the datasets, the training data is used
in the supervised learning phase. The test data is divided into 2 splits, namely D“, D¢ where D" is
utilized for test-time unsupervised learning and D¢ is used for evaluation.

Evaluation Metrics: After each supervised session ¢; and the following test-time adaptation session,
we evaluate the model test performance on holdout datasets from all 7 tasks. To do this, we construct
the matrix R € R™*T, where R; ; is the test classification accuracy of the model on task ¢; after

observing the last sample from task ¢;. Thus, we compute Average Accuracy (Acc. = % ZiTzl Rr;.)

and Average Forgetting (F. = — 1 iT:]l Rr; — Ri;.) Lopez-Paz & Ranzato (2017). Taken
together, these two metrics allow us to assess how well a continual learner solves a classification
problem while overcoming forgetting. All experiments have been done on NVIDIA A100 GPU and

each one takes approximately 1 hour for completion.

4.2 RESULTS

We compare a variety of baselines with our proposed method in Table. [2] in the challenging scenario
of class incremental learning (CIL). Along with the methods mentioned in Table. [2] we also compare
our method with self-labeling (SL) where the groundtruth pseudo label comes from the trained model
itself (without any student-teacher framework). When comparing methods without ER, DoSAPP
achieves state-of-the-art results in all the five datasets used in the experiments. This highlights the fact
that test time data can be utilized for improving transferability as well as preserving previously learned
knowledge. Even when comparing methods with ER, DoSAPP (without ER) gives a comparable
performance in almost all the datasets. We note that SPU+ER employs a very high buffer of 1000,
which is attributed to such a high performance in some datasets like Cifar100 and GTSRB. Although
our method is robust enough to be used without ER and our primary motivation is to circumvent the
usage of buffer, we still present results with a small buffer (DoSAPP+ER, ER=200), for a comparison
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Components of DoSAPP Aircraft | Cars | CIFAR100 CUB | GTSRB

P ) Acc. (1) E. () Ace. (1) E.(1) Acc. (1) F.(1) Acc. (1) F.(}) Ace. (1) E(1)
Only Teacher-Student 30.12 350 67.72 3.66 77.82 517 62.67 4.11 5357 538
+ sparse params 3416 861 6942 341 7193 824 6632 398 5532 5.81

single momentum+mask 31.79 1042 7099 3.64 7266 886 6698 3.17 61.54 401
union

dual momentum+mask union* 39.14 2.55 7487 -0.74 79.16 7.73 68.17 2.15 7233 1.02
+ imbalanced TTL 3599 522 72,68 638 7570 9.81 64.84 373 68.17 5.63

Table 3: Acc. (Average Accuracy, 1) and F. (Forgetting, |) of different components of DoSAPP. All the
experiments are averaged over 5 randomized trials with different seeds.

to the baselines using ER. DoSAPP + ER outperforms all other baselines except GTSRB by a
significant margin.

4.3 CLASS INCREMENTAL LONG SEQUENCE SCENARIO WITH DOMAIN SHIFT

We also consider the case where we have a long sequence of tasks each to be trained in a class
incremental fashion. For these experiments, we combined the 10 tasks of Aircraft dataMaji et al.
(2013)) and 10 tasks of Cars data|Krause et al.|(2013). This firstly creates a long sequence of tasks
in a class incremental scenario, and secondly causes a domain shift after 10 tasks of aircraft. From
Table [] it can be clearly seen that our proposed method DoSAPP outperforms SPU without ER
and Finetune (without any TTL phase). Further, it can be inferred that in other baselines, there is
a recency bias towards the current task, whereas in DoSAPP, with a marginal decrease of 3.8% on
current task accuracy (CTA), there is an overall increase in the average accuracy and the first task
accuracy. This shows that our approach retains the knowledge on the first task as well as adapts to the
current task, with strong generalization performance.

5 ABLATION STUDY

In this section, we quantitatively analyze the effect of different components of our proposed method
DoSAPP. We evaluate the effects of each component incrementally as seen in Table 3] Starting with
only a student and teacher model setup, we subject it to TTL data and this forms our baseline. Next, we
compare with localized sparse updates for the first MLP layer of each of the transformer blocks. This
gives an increase in performance in 4 out of 5 datasets. It is to be noted that the momentum used to
update the teacher model is according to Eq. [3] We then take the union of supervised task masks to use
them at the TTL phase, but this deteriorates performance since the masked parameters and unmasked
parameters are updated with a sin-

gle momentum. Finally, we add 700 (CLIP)

Avg Acc. (1) FTA (1) CTA () E{
our dual momentum approach -
hich gives the best perf: Finetune (no TTL) 35.24 +0.87 590 + 1.20 75.44 +0.52 16.87 & 1.04
wihich gives the best performance.  gpyy 39.62 + 1.62 24.31 +0.30 74.94 +2.43 7.32+0.38
We also subject our approach  poSAPP 45.01 £ 0.31 30.63 +£0.76 71.13 +1.17 2.34+0.75

to a more challenging scenario
where the tasks in TTL phases are
class-imbalanced. Here we sam-
ple each task from a symmetric
Dirichlet distribution whose con-
centration parameter is the length
of each task. This causes a high
imbalance of classes within each task, and sometimes, even absence of certain classes. This imbal-
anced case is of particular importance since in real settings, test suites are often skewed. This is done
by randomly sampling classes from a Dirichlet distribution. Although the performance is inferior to
the balanced case, it should not be interpreted as a drawback. This is because the model should adapt
more to the classes that are seen often in TTL phases and loss of performance on rarely seen classes
is but natural.

Table 4: Average Accuracy (Avg Acc.), First Task Accuracy (FTA),
Current Task Accuracy (CTA), Average Forgetting (F.) measured for
a long sequence of tasks from the concatenation of aircraft Maji et al.
(2013) and cars |[Krause et al.| (2013 dataset. All experiments are mean
of 5 randomized experiments with different seeds.

We highlight the innovative aspect of our approach, which leverages unsupervised test data—readily
available in production environments, to enhance continual learning. Unlike our method, existing
continual learning (CL) techniques are not inherently designed to incorporate unsupervised test data,
making them less adaptable to this scenario. Indeed, naive approaches to using the unsupervised
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Method Aircraft | Cars | CIFAR100 CUB | GTSRB |
Acc. (1) F.(}) Ace. (M) E () Acc. (1) E(}) Ace. () E (1) Acc. (1) E(})
SPU 3094 28.36 6941 1691 58.80 26.37 62.31 7.2 4306 19.16
SPU+Test Time Data (D) 2772 2486 6891 734 7409 1043 6121 4.01 60.17 6.94
SparsCL+RMT 27.11 1629 69.81 17.22 70.82 12.25 60.03 10.58 5198 11.40
SPU+RMT 29.33 15.10 6232 21.95 63.06 2328 63.87 634 5413 17.56
DoSAPP 39.14 12,55 7487 -0.74 79.16 7.73 68.17 215 7233 1.02

Table 5: Acc. (Average Accuracy, 1) and F. (Forgetting, |) for comparing CIL methods like SPU [Zhang et al.
(2023b)), SparsCL |Wang et al.| (2022c)) integrated with most recent TTA method: RMT Daobler et al.| (2023) with
our proposed method: DoSAPP. It can be observed that typically fusing typical TTA method in CIL pipeline
exacerbates the catastrophic forgetting. DoSAPP on the other hand outperforms all of them, by a significant
margin on all the datasets.

data alongside existing methods proved unfruitful in our preliminary analysis. To illustrate this, we
combined the best-performing CL method (compared to ours), SPU, with a simple pseudo-labeling
baseline, namely SPU + test-time data (D). The model is updated with SPU-learned masks using
a standard self-labeling approach on test-time data, using the max logit of the model as the label.
Further, we integrate RMT [Dobler et al.| (2023) one of the most recent Test Time Adaptation methods,
with SPU Zhang et al.| (2023b)) and SparsCL Wang et al.| (2022c), and observed that our proposed
method DoSAPP outperforms all of them as shown in Table[5] This highlights that TTA methods when
fused with continuous supervised training pipeline cause the model to significantly lose knowledge.
As there are long sequences of distinct tasks, it becomes difficult for any TTA method to adapt
to these ever-changing source distributions. Our method mitigates this issue by intuitive usage of
dual momentum over masked parameters. We further observe that the TTA method gives inferior
performance for almost all datasets in comparison to self-labeling, proving that these methods are
not suitable for deploying under continuous supervised learning and expanding tasks. Further in
Appendx [A.3]and [A.4] we demonstrate the superiority of our method in adapting to noise present
in the unsupervised test data, and the effect of the proportion of test data D" on the performance of
DoSAPP.

6 LIMITATION

DoSAPP is a robust algorithm which can be potentially applied to any CL technique for unsupervised
adaptation of Test Time Data. However, since it utilizes the test data, its primary bottleneck becomes
the quality of test data especially if it’s highly skewed. Another limitation is the increase in the
computational budget due to two deployed models: Student-Teacher framework. We address this by
leveraging the efficient sparse parameter selection method.

7 DISCUSSION AND CONCLUSION

In this work, we discuss how to leverage test-time data to improve models’ representation of previous
tasks, mimicking human learning and striving for real intelligent agents. In summary, to the best of our
knowledge, we are the first to explore test-time learning to control forgetting. We show that test-time
data can provide a great source of information when leveraged correctly. Our method, DoSAPP, was
able to significantly improve over the zero-shot performance of CLIP when continually learning a
dataset without any replay and with no specific CL method applied at the supervised training session.
DoSAPP is stable due to sparse parameter updates and the weighted EMA teacher-student framework.
Further during TTL, the max-logit in distribution scores makes it more robust to class imbalance than
other strategies.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DERIVATION FOR DUAL MOMENTUM

In section the teacher model parameters 67 undergo exponential moving average as
0111 =P8 +4qb7, ®)

where p and g denote the smoothing parameters for the teacher and student model respectively and
can be computed as

p=om+ 3
p = aom+ B

where a; and 3; for ¢ € {1, 2} are the coefficients for the affine transformation of the boolean mask
vector m.

(€))

To account for masked parameters, two momentum values ¢, v are introduced for teacher and student
models respectively, such that for the teacher model, affine coefficients oy, S; are computed by
solving the equations:

aim; =11+ 51 =7, armg; =0] + By =9 (10)

and a, B2 are computed by solving the equations

asm; =11+ fo=1—-7, azmi; =0+ B, =1-9¢ (1D
This gives
=~ -0 =90
[&5] Y 9 ﬂl (12)
ag=0—7, Pa=1-9¢
This gives

p=(y—96m+4
g=(0—ym+1-9 (13)

A.2 HYPERPARAMETERS

Table [6] shows different hyperparameters that have been used for all the experiments using CLIP
backbones. The hyperparameters were selected based on the performance of the first task of Cars
Krause et al.|(2013)) dataset. All the results have been gathered over experiments averaged over 5
random seeds.

Hparams CLIP model
Batch Size 64
Optimizer AdamW
Learning Rate 7.5e —6
CL Epochs 10
Buffer 0
TTL batch size 64
Momentum-EMA (4,v,A)  0.9999, 0.8, 0.9
sparsity (c) 0.1

Table 6: Hyper Parameters for all the experiments using CLIP ViT-B/16 model.

A.3 DEPENDENCE ON QUALITY OF TEST DATA USED FOR UNSUPERVISED LEARNING

We want to highlight that the trained model is expected to generalize to the distribution of the test
data. We also assume that any quality degradation will be consistent across time steps. For instance, if
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the data is corrupted with noise, our method would generalize and adapt the model to this corruption
as well. To illustrate this, we conducted a small experiment by adding random Gaussian noise (mean
=0, std = 0.1) to different combinations of the test and evaluation suite (referred to as GN in Table[7).
The results are shown below, with average accuracy (Acc.) followed by forgetting (F.). We observe
that when corruption is present in the test-time data, the model is still able to leverage these data and
improve on clean evaluation data compared to the test-time baseline by a significant margin of 17%
(SPU alone). Interestingly, the model adapted to test-time data with Gausian noise performs better on
evaluation data with Gausian noise than the case when the test-time data is clean. This is the evidence
of our method’s ability to adapt and generalize to the present test-time conditions.

Test Time Data (D*)  Evaluation Data (D¢)  Acc. (1) F. (})

Clean Clean 79.16 7.73
GN Clean 75.67 9.93
Clean GN 69.50 12.86
GN GN 73.42 6.86

Table 7: Performance of DoSAPP with noise added to D* and D¢ for CIFAR100 Data

A.4 ABLATION STUDY ABOUT THE SIZE OF TEST-TIME DATA D%

In our method, we divided the evaluation data into two halves. One half is for unsupervised learning
(D%), and the other half is for evaluation (D¢). In the table below, we feed the fraction of D" for
test time learning. 0.25 means that 25% of the original D" is fed to the model for unsupervised
learning. We notice that when the fraction is below 0.75, there is an appreciable difference between
the performance of our proposed model. However, at 0.75, the performance is quite close to that of
the whole D*.

Fraction of D* Acc. (1) FE ()

0.25 73.97 14.23
0.5 76.83 9.44
0.75 79.02 8.16

1 79.16 7.73

Table 8: Dependence of performance of DoSAPP with different proportion of the testing data D" on
CIFAR100 dataset.
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