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ABSTRACT

Following the success of the in-context learning paradigm in large-scale language
and computer vision models, the recently emerging field of in-context reinforce-
ment learning is experiencing a rapid growth. However, its development has been
held back by the lack of challenging benchmarks, as all the experiments have
been carried out in simple environments and on small-scale datasets. We present
XLand-100B, a large-scale dataset for in-context reinforcement learning based
on the XLand-MiniGrid environment, as a first step to alleviate this problem. It
contains complete learning histories for nearly 30, 000 different tasks, covering
100B transitions and 2.5B episodes. It took 50, 000 GPU hours to collect the
dataset, which is beyond the reach of most academic labs. Along with the dataset,
we provide the utilities to reproduce or expand it even further. We also benchmark
common in-context RL baselines and show that they struggle to generalize to novel
and diverse tasks. With this substantial effort, we aim to democratize research in
the rapidly growing field of in-context reinforcement learning and provide a solid
foundation for further scaling.

1 INTRODUCTION

In-context learning, i.e. the ability to learn new tasks purely based on examples given in the context
during inference and without any weight updates, was initially thought to be an emergent property
of large language models, such as GPT-3 (Brown et al., 2020). However, it was quickly discovered
that small transformers are also capable of in-context learning (Kirsch et al., 2022; Von Oswald
et al., 2023), and even many non-transformer models have such abilities (Bhattamishra et al., 2023;
Akyürek et al., 2024; Park et al., 2024; Grazzi et al., 2024; Vladymyrov et al., 2024; Tong & Pehlevan,
2024). More importantly, driven by properties of data, rather than the architecture (Chan et al., 2022;
Gu et al., 2023), in-context learning is not specific to language modeling and has been found in other
domains, e.g. image generation (Bai et al., 2023; Najdenkoska et al., 2023; Doveh et al., 2024; Tian
et al., 2024).

However, despite the rapid adoption of the transformer architecture in reinforcement learning (RL)
after the release of Decision Transformer (DT) (Chen et al., 2021; Hu et al., 2022; Agarwal et al.,
2023; Li et al., 2023), models with in-context learning capabilities appeared only recently. This delay
is caused by a number of reasons. Firstly, to transition from in-weights to in-context learning, a model
should be trained on tens of thousands of unique tasks (Kirsch et al., 2022). Unfortunately, even
the largest RL datasets currently contain only hundreds of tasks (Padalkar et al., 2023). Secondly, it
was necessary to determine the right way to provide a context to a transformer and develop the data
collection pipeline, which for many methods (Laskin et al., 2022; Lee et al., 2023; Shi et al., 2024)
was different from what is commonly available in existing datasets (see Section 3).

Due to the lack of suitable datasets and the high cost of collecting data in existing environments,
the recent wave of in-context RL research (Laskin et al., 2022; Lee et al., 2023; Norman & Clune,
2023; Kirsch et al., 2023; Sinii et al., 2023; Zisman et al., 2023) used environments with very simple
task distributions, where it was feasible to collect datasets with hundreds of tasks. While these
benchmarks are affordable, they are not suitable for the comparison of methods at scale on tasks
with high diversity and difficulty, which is essential for real-world applications. Because of this,
the development of in-context RL is currently hindered by these factors. We believe it is crucial to
address these barriers, given the essential role of in-context learning in the path to foundation models
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Table 1: Comparison with other RL datasets.

Data # tasks # transitions # episodes Size Open-Source Enables ICRL
XLand-100B (ours) 28,876 100B 2.5B 320GB ✓ ✓
JAT 157 323M N/A 1TB ✓ ✗
GATO 596 1.5T 63M N/A ✗ ✗
Open X-Embodiment 527 N/A 2.4M 9TB ✓ ✗
AlphaStar Unplugged 1 21B 2.8M N/A ✗ ?
NetHack 1 3.5B 110K 97 GB ✗ ✗
D4RL 11 N/A 40 M 4.8GB ✓ ✗
V-D4RL 4 2.4M N/A 17GB ✓ ✗
D5RL 50 N/A 2500 N/A ✗ ✗
RL Unplugged 90 80M N/A 54.1TB ✓ ✗
Procgen 16 37M N/A 500GB ✓ ✗

and truly generalist agents (Team et al., 2021; 2023; Kirsch et al., 2023; Lu et al., 2024; Liu et al.,
2024).

We release XLand-100B, a large-scale dataset for in-context RL based on the XLand-MiniGrid
(Nikulin et al., 2023) environment. It contains complete learning histories for nearly 30, 000 different
tasks, covering 100B transitions and 2.5B episodes. It took 50, 000 GPU hours to collect the dataset,
which is beyond the reach of most academic labs. In contrast to most existing datasets for RL, our
dataset is compatible with the most widely used in-context learning RL methods (see Section 3). With
this substantial effort, we aim to democratize the research in the rapidly growing field of in-context
RL and provide a solid foundation for further scaling.

Along with the main dataset, we provide a smaller and simpler version for faster experimentation,
as well as utilities to reproduce or extend the datasets even further. We carefully describe the entire
data collection procedure (see Section 4), providing all necessary details about the algorithm used for
collection, filtering and relabelling with expert actions (see Section 4.2). We analyse the resulting
dataset to ensure that we have met all the requirements for in-context RL (see Section 4.3). In addition,
we conducted preliminary experiments with the common baselines on the collected datasets, showing
there is still a lot of research needed to improve the in-context adaptation abilities on complex tasks
(see Section 5).

2 BACKGROUND

2.1 IN-CONTEXT REINFORCEMENT LEARNING

Multiple methods for in-context RL have come out, each offering a different way of training and
organising the context (Laskin et al., 2022; Lee et al., 2023; Mirchandani et al., 2023; Liu & Abbeel,
2023; Raparthy et al., 2023; Shi et al., 2024). We focus on Algorithm Distillation (AD) (Laskin et al.,
2022) and Decision-Pretrained Transformer (DPT) (Lee et al., 2023), which we chose as the main
methods for our work due to their simplicity and generality.

Algorithm Distillation. AD (Laskin et al., 2022) was one of the first to show that in-context learning
was possible in RL, and captures the details of many other more recent methods (Mirchandani et al.,
2023; Liu & Abbeel, 2023; Shi et al., 2024) while remaining very simple. It trains a transformer,
or any other sequence model, to autoregressively predict next actions given the history of previous
interactions, i.e. observations, actions and rewards. To transition from in-weights to in-context
learning, it is essential that the context should contain multiple episodes ordered by an increasing
return, which is different from the way it is done in DT-like methods (Chen et al., 2021; Janner et al.,
2021; Lee et al., 2022).

Decision-Pretrained Transformer. DPT is an alternative approach inspired by the Bayesian inference
approximation (Müller et al., 2021). Unlike AD, it trains a transformer to predict the optimal action
for a query state given a random, task specific, context. That is, the context that does not have to
be ordered, but only has to contain transitions belonging to the same task. Thus, DPT requires access
to optimal actions, but does not require a dataset of learning histories.
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In addition, the theoretical analyses of AD and DPT methods (Lin et al., 2023; Wang et al., 2024)
showed that they can implement near-optimal online RL algorithms such as Lin-UCB, Thompson
sampling or even temporal difference (TD) methods solely during the forward pass.

2.2 XLAND-MINIGRID

Figure 1: Visualization of a
generic XLand-MiniGrid envi-
ronment. Grid layout should
be selected in advance, while
the positions of the objects are
randomized on each reset. For
the dataset we use simpler lay-
out with just one room, see Ap-
pendix L

Starting from the seminal work of Wang et al. (2016); Duan et al.
(2016); Finn et al. (2017) on meta-RL, much of the subsequent
work (Zintgraf et al., 2019; Melo, 2022; Grigsby et al., 2023; Lu
et al., 2024; Shala et al., 2024; Beck et al., 2024) has focused on
environments that either have very simple task distributions, or
have very small and limited distributions of hard tasks. This is
because, to generalize in meta-RL, training needs to be performed
on many different tasks, significantly increasing the cost and time
required for experimentation. Recently, Nikulin et al. (2023) released
XLand-MiniGrid, a GPU-accelerated environment and million-task
benchmarks that significantly lowered the entry barrier for meta-RL
research. We will describe it shortly here.

Environment. XLand-MiniGrid is a complete rewrite of MiniGrid
(Chevalier-Boisvert et al., 2023) in JAX (Bradbury et al., 2018),
incorporating a notion of rules and goals from XLand (Team et al.,
2023). Leveraging JAX, it can run on a GPU or TPU accelerators
at millions of steps per seconds. At its core, it is a goal-oriented
grid-world environment with simple underlying dynamics, partial
observability and sparse rewards. The action space is simple, con-
sisting mainly of navigation and interaction with game objects, such
as opening a door or picking and placing items. Observations are
symbolic "images" encoding the agent surrounding as tile and color ID’s. Rules are functions that
can change the state of the environment based on some conditions, e.g. when two specific objects are
places near each other, they both disappear and one new object is placed. Goals are similar, except
they only validate some predefined conditions and do not change anything. Composing different rules
and goals together we can create new tasks with varying reward and dynamics functions. For more
detailed description we refer to Nikulin et al. (2023).

Benchmarks. Along with the environment itself, Nikulin et al. (2023) released a tool for the
procedural generation of a vast number of unique tasks with varying levels of difficulty. Each task
is represented by a binary tree, where the root is the goal to be achieved and rest of nodes define
rules of the environment to be triggered in a recurring sequence. To standardize comparisons, four
pre-sampled benchmarks with increasing diversity were provided: trivial, small, medium,
high, each with one million unique tasks. For this work, we chose medium as a middle ground
between yet unsolved high and less challenging small benchmarks. We also use trivial for
smaller and simpler dataset version (see Section 4).

3 THE MISSING PIECE FOR IN-CONTEXT RL

In order to successfully train an in-context agent, training data shall meet certain criteria. To start with,
the data should be comprised of actual learning histories (Laskin et al., 2022) or their approximations
(Zisman et al., 2023), that contain enough exploration and exploitation phases of learning. Learning
with just expert trajectories would not be sufficient for in-context ability to emerge, since an agent
needs to know the history of policy improvement (Laskin et al., 2022; Kirsch et al., 2023). Another
approach is to learn from optimal actions as proposed by Lee et al. (2023), but it is unclear how to
access the optimal policies to get them. Besides, the data needs to contain thousands of different
tasks to learn from (Kirsch et al., 2022). That is, for a simple task to find two squares on a 9 × 9
grid, an agent needs to see around 2000 different combinations of goals to start adapting for unseen
locations (Laskin et al., 2022). Since such data was never collected and put into a single dataset, all
current in-context RL practitioners were forced to generate data on their own, which inevitably added
more complications in reproduction of the methods.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Descriptive statistics of XLand datasets.

Dataset XLand-Trivial-20B XLand-100B
Episodes 868,805,556 2,500,152,898
Transitions 19,496,960,000 112,598,843,392
History length 60,928 121,856
Num tasks 10,000 28,876
Max task rules 0 9
Observation shape (5, 5) (5, 5)
Num actions 6 6

Mean final return 0.915 0.894
Median final return 0.948 0.925
Median episode transitions 22.45 57.75

Disk size (compressed) 60 GB 326 GB

Besides, collecting thousands of different in-context episodes requires a considerable commitment,
as training numerous RL agents is expensive in terms of time and resources. To that matter, the data
used in current research is collected in very simplistic environments with straightforward goals, like
reaching a specific target on a map (Laskin et al., 2022; Lee et al., 2023; Zisman et al., 2023) or to
apply forces to actuators in order to walk a robot (Kirsch et al., 2023). This significantly slows down
the pace of in-context RL research, as it is not only hard to test the applicability of proposed methods,
but also yet unfeasible to determine the scaling laws in these environments.

To provide a complete picture for the reader, we briefly discuss the existing datasets and highlight
why they are unfit for training in-context RL agents. For simplicity, we categorize them into two
groups: classical datasets designed for offline-RL and datasets collected for large-scale supervised
learning. Note that this categorization is fuzzy in nature and serves only for better understanding of
the current structure in RL data.

Offline RL Datasets. The datasets in this category can be considered classical, as some of them
exist for more than four years now (Fu et al., 2020). They were initially proposed for offline RL,
containing simple tasks with a flat structure, e.g. perform locomotion with different robots (Lu et al.,
2023) or path finding in a maze. Some of them also contain data from robotic manipulators (Fu et al.,
2020; Rafailov et al., 2023), or even Atari frames (Gulcehre et al., 2021). Other datasets collect
data for more sophisticated environments, such as NetHack Learning Environment (Hambro et al.,
2023; Kurenkov et al., 2024) or ProcGen (Cobbe et al., 2019; Mediratta et al., 2024). However, the
aforementioned datasets offer < 100 different tasks with a fixed policy (except for the -replay
datasets, which have limited coverage of various policies). This limitation makes it difficult for
in-context RL to emerge from such data. To overcome this pitfall, we collected almost 30, 000 tasks
with a deep ruleset structure, that are a challenging problem to solve.

Large-Scale Supervised Pretraining. Recent progress in generalist agents, which can solve a
multitude of environments, has been made possible thanks to large datasets. GATO dataset (Reed
et al., 2022), however not being released to the public, consists of 1.5 trillion transitions along with
596 tasks, which makes it one of the largest dataset in RL. The open-sourced analogue, the JAT
dataset (Gallouédec et al., 2024), is smaller in size with 157 tasks and 300 million transitions, but
it provides comparable performance on most of the benchmarks. Both datasets contain expert RL
demonstrations from BabyAI (Hui et al., 2020), Atari games (Bellemare et al., 2013), Meta-World
(Yu et al., 2020) and more.

Another large dataset, Open X-Embodiment (Padalkar et al., 2023), is a combination of more than 60
datasets from different robotics research labs. It consists of 527 different tasks in robotics with the
demonstrations from mostly human experts. Despite the large quantity of transitions in these datasets,
they do not contain learning histories with improving policies, making their application for in-context
RL quite challenging. On the contrary, our XLand-100B dataset consists of 100 billions of transitions
of RL agents’ learning histories, making it possible for in-context abilities to emerge.

The only potentially applicable dataset to use for in-context RL is AlphaStar Unplugged (Mathieu
et al., 2023). Although the authors did not initially plan to collect a suitable dataset, the data can be

4
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sorted by players’ MMR (analogous to Elo rating). This sorting can be considered a steady policy
improvement, thus enabling the in-context RL ability. For more details on the datasets, refer to
Table 1.

4 XLAND-100B DATASET

We present XLand-100B, a large dataset for in-context RL, and its smaller and simpler version
XLand-Trivial-20B for faster experimentation. Together they contain about 3.5B episodes, 130B
transitions and 40,000 unique tasks (see Table 2 for detailed statistics). Datasets are hosted on public
S3 bucket and will be freely available for everyone under CC BY-SA 4.0 licence. Next, we describe
the data format, collection and evaluation.

4.1 DATA FORMAT

Storage format. We chose to store the datasets in HDF51 file format based on its popularity and
convenience. It allows to work with large amounts of structured data without loading it to memory,
store arbitrary metadata, and customise compression and chunk size to maximize the sampling
throughput. We used gzip compression with default compression strength of 6, which reduced dataset
size from almost 5TB+ to just ∼600GB for our main dataset. Using a little trick described later,
we were able to reduce the size even more to just 326 GB (see Table 2). However, a naive use of
compression can dramatically increase batch sampling time and slow overall training time down.
We tuned HDF5 cache chunk size specifically to maximize sampling throughput for large sequence
lengths. After tuning, we achieved a fourfold speedup over the naive compression, and were only
two times slower compared to no compression. Given that we reduced the dataset size by a factor
of 15, we see this as a good trade-off, which increases the overall affordability of the dataset. See
Appendix C for throughput benchmarks.

Data and metadata format. We collect complete learning histories, i.e. for each history we store all
observations, actions, rewards and dones encountered during agent training in separate HDF5 groups
with unique IDs per history (see Appendix B for more details). To be compatible with DPT-like
methods (Lee et al., 2023), we also store expert actions for each transition (see Section 4.2). Unlike
popular formats such as RLDS2 and Minari3, we store transitions as one sequential array per history
per modality. The rationale here is that under compression, it is much cheaper to sample slices of
long episodes in sequence rather than sampling across different groups.

We also store observations efficiently to further reduce dataset size. Instead of storing two channels
for tile and color, we map their indexes into Cartesian product of colors and tiles, halving the storage
size. They can be decoded easily during sampling without any overhead with divmod function. In
addition, for each history we store the XLand-MiniGrid environment ID, benchmark ID and ruleset
ID, which can be used later to filter the dataset, e.g. based on the complexity of the tasks, split into
train and test or set up the environment for evaluation.

4.2 DATA COLLECTION

At a high level, data collection was organized into three stages, namely multi-task task-conditioned
pre-training; single-task fine-tuning to collect learning histories; and finally post-processing and
filtering. Although we used highly optimised GPU-accelerated implementations of the base RL
algorithm and environment, it still took 50, 000 GPU hours to collect the full dataset. Collecting a
dataset of this size for any other environment suitable for in-context RL, e.g. Meta-World (Yu et al.,
2020), would take much longer, which is unlikely to be feasible for most practitioners (Nikulin et al.,
2023). Next, we describe the collection process, including the selection of the base RL algorithm and
all subsequent steps. We provide exact hyperparameters for each stage in Appendix O.

Base algorithm. For our datasets we chose PPO (Schulman et al., 2017), due its high scalability and
compatibility with massively parallel environments. We ported the implementation from recurrent

1https://github.com/HDFGroup/hdf5
2https://github.com/google-research/rlds
3https://github.com/Farama-Foundation/Minari
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Figure 2: Evaluation return
for multi-task goal-conditioned
reccurent PPO pretraining on
65k tasks. Pretrained agent
was further used a starting point
for single-task finetuning dur-
ing dataset collection.
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Figure 3: Single-task evalua-
tion curves on 36 hard tasks for
policies trained from scratch or
fine-tuned from multi-task pre-
trained checkpoints. See Ap-
pendix D for curves on tasks of
all difficulty.
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Figure 4: Distribution of the
tasks by difficulty sampled
initially and in the resulting
dataset. To ensure the quality,
we filtered tasks where the fi-
nal return was below 0.3 or the
data was corrupted due to some
errors during training.

PPO provided by (Nikulin et al., 2023), customizing it to meet our needs. We added callbacks
for saving transitions during training and extended agent architecture to take ruleset encoding as
an optional condition for pre-training. We used GRU (Cho et al., 2014) for memory, as it showed
satisfactory performance on preliminary experiments. Since the base algorithm was implemented in
JAX (Bradbury et al., 2018), we were able to just-in-time compile the entire training loop, achieving
1M steps per second during training on one GPU with mixed precision enabled. As PPO is not the most
sample-efficient algorithm, it was still necessary to train it on billions of transitions. Fortunately, as we
trained it on thousands of environments in parallel, learning history for each particular environment
is quite short, i.e. around 120k transitions.

Pretraining. For our main XLand-100B dataset we uniformly sampled tasks from medium-1m
benchmark from XLand-MiniGrid. It contains tasks of various difficulty, ranging from zero to nine
rules. Unfortunately, on many hard tasks our base algorithm could not manage to converge in the
time budget allocated for a single training run. On the hardest tasks, it was not even possible to get a
non-zero reward at all, due to the exploration challenge that such tasks poses. In order to speed up
convergence and exploration on harder tasks, we pre-train an agent in a multi-task task-conditioned
manner and also use simpler grid layout with just one room (see Appendix L). We expose the ruleset
specification, which is usually hidden from the agent, and encode the goal and rules via embeddings,
concatenating resulting encodings and passing it as an additional input to the agent. After that, we
train the agent on 65k tasks simultaneously for 25B transitions. As Figure 2 shows, such an agent
learns to generalize zero-shot on new tasks quite well, although we do not aim to push it to the
limit, as zero-shot generalization does not produce a smooth learning history during fine-tuning. We
skip this stage for XLand-Trivial-20B dataset due to the simplicity of the tasks in trivial-1m
benchmark.

Finetuning. This is a key stage in the data collection process, during which we finetune a pretrained
agent while recording the transitions encountered into the dataset. We finetune the agent using
8192 parallel environments for 1B transitions on 30k uniformly sampled tasks from medium-1m
benchmark. We mask out the task-conditioning encoding to prevent zero-shot generalization. We
record transitions only from first 32 parallel environments. This way, we can keep the size of the
dataset manageable, still leaving the possibility to study scaling laws and generalization in a controlled
manner. For example, we can train AD (Laskin et al., 2022) on all 30k tasks using one history per
task or on ∼ 900 tasks using all histories per task to equalize the number of training tokens. For the
XLand-Trivial-20B dataset, instead of fine-tuning, we train the agent from scratch on 10k uniformly
sampled tasks from the trivial-1m benchmark, keeping all other hyperparameters the same. In
the Figure 3 we show the effect of finetuning on hard tasks (with more than seven rules) compared to
training from scratch. It can be seen that we are able to show strong performance even on the hardest
tasks, increasing the diversity and coverage of the resulting dataset. For the same results on tasks of
all levels of difficulty, see Appendix D.

Postprocessing. After fine-tuning, it was necessary to additionally label the transitions with the
expert actions to support DPT-like methods (Lee et al., 2023). To do this, we walk through the entire
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learning history with the final policy, starting from the initial hidden state for the RNN. We evaluate
the validity of such a labelling scheme later in the Section 4.3. Finally, all individual learning histories
from different tasks were combined into one large dataset. To ensure quality, we filtered out any task
with a final return below 0.3 as an unrepresentative learning history. There were some failures, such
as GPU crashes, which are inevitable during large-scale training. So any runs with corrupted data
were also filtered out. In total, we filtered out about 1k tasks, leaving almost 29k tasks in the final
dataset. We provide detailed statistics for each dataset in Table 2 and the final distribution of tasks by
number of rules in Figure 4.

4.3 DATA EVALUATION
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9 rules

Figure 5: Learning histories
for the XLand-100B dataset
separated by number of rules.
For visual clarity, we show
only a sample of the possible
number of rules and normal-
ize the number of episodes, as
they may vary considerably.

In this section we validate that the resulting XLand-100B dataset
actually fulfils the two most important requirements for in-context
RL, namely it contains learning histories with distinct policy im-
provement pattern and has expert actions for each transition (see
Section 3 for a discussion). We provide analogous results for XLand-
Trivial-20B in the Appendix E.

Improvement history. In the Figure 5 we show the averaged return
from the learning histories separated by the number of rules. In
order to better show the speed of learning on the same scale, we
have normalized the x-axis for each level of difficulty, as the number
of episodes can vary greatly (as it takes more time to solve complex
tasks). One can see that the dataset provides a whole range of
learning speeds, from very fast on easy problems to much slower
on the hardest, which may be important for methods based on AD
(Zisman et al., 2023; Shi et al., 2024). For a learning history averaged
over full dataset see Appendix E.

Expert actions relabeling. In contrast to AD, which predicts next
actions from the trajectory itself, DPT-like methods require access to optimal actions on each
transition for prediction. However, for the most nontrivial or real-world problems, obtaining true
optimal actions in large numbers is unlikely to be possible. Recently, Lin et al. (2023) introduced
approximate DPT, scheme where expert actions are estimated from the entire history by some
algorithm. We implemented this scheme for lack of evident alternatives. However, we had to make
sure that such a labeling is adequate in our case and the expert at the end predicts actions close to
what the policy did in reality near the end of training. This is not obvious, as during the labeling it can
diverge into out-of-distribution hidden states for RNN. In the Figure 6 we show that on XLand-100B
the agreement between the predicted actions by the expert and the actual actions increases closer to
the end of the learning history, meaning that the expert does not diverge during relabeling.

5 EXPERIMENTS
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Figure 6: Agreement between
actions predicted by the expert
and the actual actions in the
learning history. We use final
PPO policy as an expert for
actions labeling.

In this section, we investigate whether our datasets can enable an in-
context RL ability. Additionally, we demonstrate how well current
in-context algorithms perform across different task complexities and
outline their current limitations. We take AD (Laskin et al., 2022)
and DPT (Lee et al., 2023) for our experiments, the exact implemen-
tations details are in Appendix F and Appendix G. Both methods
were trained on XLand-Trivial-20B and XLand-100B with
{512, 1024, 2048, 4096} and {1024, 2048, 4096} context lengths re-
spectively. We do not include a 512 context length for the -100B
dataset as we consider it too short, given the nearly 3x increase in
median episode length between the two datasets. For evaluation, we
run three models on 1024 unseen tasks for 500 episodes.

AD. Algorithm Distillation shows an emergence of in-context abil-
ity during training on both datasets. Figure 8 demonstrates the
performance of the method for different context lengths. On
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Figure 7: Comparison of the learning histories in -100B dataset vs. AD performance on the same
training tasks. AD is able to solve simple tasks, however its performance degrades as the rulesets get
deeper. The context length of the model is 1024. The evaluation parameters, except training tasks,
are the same as in Figure 8.

-Trivial-20B dataset it is able to show a stable policy improvement from about 0.28 to 0.4
during the evaluation. For -100B the performance is similar, but the pace of improvement is faster.
We hypothesise that it happens due to wider data-coverage, since the agent sees more complex tasks
and is able to learn faster from them.

Figure 8: AD performance on
our datasets for different se-
quence lengths. Both datasets
lead to the emergence of in-
context ability. We report the
average return on 1024 unseen
tasks across 3 seeds.

To further examine the performance on the -100B dataset, we
evaluate AD on the training tasks from the dataset and separate the
performance based on the complexity of the tasks. The complexity
is defined by the number of rules an agent needs to trigger before
the successful completion. As shown in Figure 7, AD is able to
demonstrate in-context abilities on simple tasks, but it struggles with
more complex ones. We speculate that our results are not final, as
AD is not yet fully capable of learning to solve the training tasks. We
believe there is a need for further research to discover new and more
sample-efficient architectures capable of solving the more complex
rulesets of our dataset.

DPT. Decision-Pretrained Transformer (Lee et al., 2023) is another
method that exhibit in-context RL capabilities. However, in our
experiments we were unable to train it so that these abilities emerge.
Figure 18 in Appendix K demonstrates the lack of performance even
on the simplest trivial tasks. We believe this is closely connected
to the inability of DPT to reason in POMDP environments. For a
detailed investigation, we refer the reader to Appendix H.

6 LIMITATIONS AND FUTURE WORK

There are several limitations to our work, some of which we hope
to address in future releases. Despite the size and diversity of the
datasets provided in terms of tasks, we do not provide diversity
in terms of the domains, as all tasks share the same observation
and action spaces. In addition, the tasks also share an overall latent
structure, i.e. it is always a form of binary tree. This can be addressed
with more diverse benchmark generators in the XLand-MiniGrid library (Nikulin et al., 2023). All
learning histories were collected on grids with only one room, which may limit the transfer to the
harder layouts with multiple rooms containing doors. Finally, the effect of fine-tuning from pre-trained
checkpoints is underexplored and could potentially hurt performance, as there are many learning
histories that start from a high reward. We hope to improve the RL baseline for data collection to
avoid the need for multi-task pre-training in the future.

ETHICS STATEMENT

Legal Compliance and Licensing. The dataset will be released under the CC BY-SA 4.0 license,
and the accompanying code will be available under the Apache 2.0 license. We have ensured that our
data and code releases comply with all relevant legal and ethical guidelines.
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Data Privacy and Security. The dataset does not include any human subjects or personally identifi-
able information. All data are generated by artificial agents interacting within a simulated environment.
Consequently, there are no privacy or security concerns associated with the dataset.

Potential Misuse and Harmful Applications. The dataset and methods are intended to advance
research in in-context reinforcement learning. We do not anticipate any immediate risks of misuse or
harmful applications arising from our work. Nonetheless, we encourage users to apply the dataset
responsibly and adhere to ethical standards in their research.

Environmental Impact. Collecting the dataset required substantial computational resources, totaling
approximately 50,000 GPU hours. We acknowledge the environmental footprint associated with
large-scale computations. By openly releasing this dataset, we aim to minimize redundant data
collection efforts by other researchers, potentially reducing the overall environmental impact in this
field.

REPRODUCIBILITY STATEMENT

To ensure reproducibility we share the important details throughout the paper and appendix. We
explain how we pretrain, finetune models for collecting data and the post-processing step in Sec-
tion 4.2, as well as discussing the dataset details (size, compression ratios, etc.) in Appendix B
and Appendix C. For experiments section, we discuss the details of baselines implementation in
Appendix F and Appendix G. We provide hyperparameters for collecting the dataset and for baselines
in Appendix O. We also plan to release the codebase with tools for creating and expanding the dataset
after de-anonymization.
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A DOWNLOADING THE DATASETS

Both XLand-100B and XLand-Trivial-20B datasets hosted on public S3 bucket and will be
freely available for everyone under CC BY-SA 4.0 Licence after the de-anonymization. We advise
starting with Trivial dataset for debugging due to smaller size and faster downloading time. Datasets
can be downloaded with the curl (or any other similar) utility.

B WHAT IS INSIDE DATASET?

Both -Trivial and -100B dataset are HDF5 files holding the same structure. The dataset is
grouped the following way:

data["{key_id}/{entity_name}"][learning_history_id]

where key_id is an ordinal number of a task in dataset, learning_history_id is a learning
history number from 0 to 32 and entity_name is one of the names mentioned in Table 3.

NB! Do not confuse key_id with the task ID, which should be accessed via

data["{key_id}"].attrs["ruleset-id"]

Table 3: Data description

Name Type Shape Description
states np.uint8 (5, 5) st, colors and tiles from agent’s POV
actions np.uint8 scalar at, from 0 to NUM_ACTIONS
rewards np.float16 scalar rt, which agent recieved at timestep t
dones np.bool scalar dt, terminated or truncated episode flag
expert_actions np.uint8 scalar same as at but from a generating policy

C COMPRESSION CHUNK SIZE TUNING

Table 4: Throughput with PyTorch dataloader with different HDF5 compression chunk size settings.
We used 2048 sequence length, 64 batch size and 8 workers. Chunking was applied along the learning
history dimension.

Compression Chunk size Throughput

None None 1,549,619
gzip None 173,895
gzip 256 423,513
gzip 512 549,397
gzip 1024 666,152
gzip 2048 768,706
gzip 4096 749,851
gzip 8192 737,646
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D ADDITIONAL FIGURES OF DATA COLLECTION
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Figure 9: Single-task evalua-
tion curves on 256 tasks for
policies trained from scratch or
fine-tuned from multi-task pre-
trained checkpoints.
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Figure 10: Final return by num-
ber of rules on 256 tasks for
policies trained from scratch or
fine-tuned from multi-taks pre-
trained checkpoints.
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Figure 11: Final return by
number of rules in the final
XLand-100B dataset after post-
processing.

E ADDITIONAL FIGURES OF DATA EVALUATION

0k 2k 4k 6k 8k
Episodes

0.0

0.5

1.0

Re
tu

rn

XLand-Trivial-20B

Figure 12: Return averaged
over all learning histories in
the final XLand-Trivial-20B
dataset.
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Figure 13: Return averaged
over all learning histories in the
final XLand-100B dataset.
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Figure 14: Agreement between
actions predicted by the expert
and the actual actions in the
learning history. We use final
PPO policy as an expert for ac-
tions labeling.
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F AD IMPLEMENTATION

Table 5: Time for training and evaluation.

sequence length 1024 2048 4096

train 15 hrs 10 hrs 11.5 hrs
eval 20 min 30 min 50 min

We implement AD following the original paper of Laskin et al. (2022). To optimize the speed of
training and inference we use FlashAttention-2 (Dao, 2024) with KV-caching and ALiBi positional
embeddings (Press et al., 2022). We also concatenate observations, actions and rewards along the
embedding dimensions, as it reduces the context size by the factor of three. We also use DeepSpeed
(Rasley et al., 2020) to enable distributed training. The total number of parameters of our model is 25
M.

The approximate time of training for single epoch on a -100B dataset and evaluation on 1024 tasks
on 8 H100 GPUs is shown in the Table 5. The computations were done on an internal cluster.

The hyperparameters was copied from (Laskin et al., 2022) except for the size of the network, it was
scaled up to 25 M. The exact hyperparameters can be found in Table 8.

We also show training logs for both datasets. Trivial: wandb [available after de-anon]; medium:
wandb [available after de-anon]

G DPT IMPLEMENTATION

Our implementation is based on the original one (Lee et al., 2023). Compared to AD implementation
(Laskin et al., 2022), during training phase, the model context is generated with decorrelated dataset
transitions to increase data diversity and model robustness: given a query observation and a respective
expert action for it, an in-context dataset is provided by random interactions within the same ruleset.
During evaluation phase, multi-episodic contextual buffer consists only of previous episodes and
updates after the current one ends. The intuition behind this approach is the observed policy during
any given episode is fixed, so it is a lot easier to analyze this policy than a dynamically changing one
while it is executing.

Both AD and DPT shares the same observation encoder and transformer block, except there is no
positional encoding in DPT, as stated in (Lee et al., 2023).

The training consisted of 3 epochs due to computational and time limitations as 1 epoch approximately
lasted 12 hours, while the evaluation on 1024 rulesets on 500 episodes could take from 5 to 21 hours,
depending on the model’s sequence length. All experiments ran on 8 A100 GPUs. The computations
were done on an internal cluster.

The hyperparameters was copied from (Lee et al., 2023) except for the size of the network, it was
made up to 25 M, and sequence length, it was increased due to complexity of the tasks. The exact
hyperparameters can be found in Table 7.

We also show DPT training logs. Trivial: wandb [available after de-anon]; medium: wandb [available
after de-anon]

H ON DPT LIMITATIONS IN POMDP

We additionally demonstrate the inability of DPT to learn in-context in Partially Observable MDP
(POMDP) on the example of a toy Dark Key-To-Door environment (Laskin et al., 2022). The agent
is required to find an invisible key and then open an invisible door. The reward of 1 is given when
the agent first reaches the key and then the door. Note that the door cannot be reached until the key
is found. This way Key-To-Door can be considered a POMDP. However, the environment can be
reformulated as an MDP by providing additional boolean indicator of reaching a key in addition to the
agent’s position. This way, algorithms that work only with MDPs are able to solve this environment.
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Based on this fact, we learn two different Q-tables for both environments: with and without the key
indicator. The learning histories of Q-Learning algorithm are stored together with optimal actions
computed via the oracle.

For clarity, we call DPT training and evaluation Markovian when "reached key" indicator is provided
for every state. We trained DPT on Key-To-Door for 150, 000 updates in Markovian and non-
Markovian setups to show the difference in performance. As it can be seen in Figure 15, in the
Markovian case the model converges to the optimal return, finding both a key and a door. In the
latter case, the model reaches a plateau reward of 1 which means it finds a key. As we empirically
observe, without the indicator DPT reaches only a suboptimal return. We believe it happens due to
DPT inability to reason whether a key was already found from the random context. Without this
knowledge, it is impossible for the agent to know whether it should search for the key or for the door.

We also show logs for Key-To-Door Experiments: Markovian: wandb [available after de-anon];
non-Markovian: wandb [available after de-anon]

Table 6: Q-Learning Hyperparameters

Hyperparameter Value

Num. Train Goals 2424
Num. Histories 5000
Num. Updates 50,000
Learning Rate 3e-4
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Figure 15: The performance of DPT on Key-To-Door environment. From left to right: first two plots
indicate returns on 20 train and 50 test goals, respectively, for Key-To-Door as MDP by providing
additional indicator of reaching the key to the model. Second two plots indicate returns with the
model that has no access to the fact of reaching a key. The results are averaged across four seeds

I DETAILS OF IN-CONTEXT EVALUATION

The evaluation process resembles the standard in-weight learning, with the key difference being
that the learning itself happens during evaluation. When interacting with the environment, the agent
populates the Transformer’s context with the latest observations, actions and rewards. At the start of
the evaluation, the context is empty. Note that the agent’s context is cross-episodic, which makes it
possible for the agent to access transitions in previous episodes. We report the cumulative reward that
the agent achieved at the end of each episode. We run evaluation for each model for 500 episodes,
reporting mean return across 1024 unseen tasks with standard deviation across 3 seeds. We claim
that the in-context emerged when the mean return rises up until some level. This means the agent
improves its policy from episode to episode, learning how to solve a task.
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J ADDITIONAL FIGURES OF AD PERFORMANCE
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Figure 16: AD performance on different complexities of rulesets. AD is evaluated on 1024 training
tasks from -100B. Sequence length is 1024.
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Figure 17: AD’s performance on different task complexities, a full variant of Figure 7.
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K ADDITIONAL FIGURES OF DPT PERFORMANCE

0 100 200 300 400 500
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
tu

rn

XLand-Trivial-20B
512
1024
2048
4096

0 100 200 300 400 500
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
tu

rn

XLand-100B
1024
2048
4096

Figure 18: DPT performance on both datasets. Evaluation parameters are the same as in Figure 8.
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Figure 19: DPT performance on different complexities of rulesets. DPT is evaluated on 1024 training
tasks from -100B. Sequence length is 1024.
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Figure 20: Comparison of the learning histories in -100B dataset vs. DPT performance on the same
training tasks. DPT is not able to solve simple tasks and there is no observation in-context learning
emerges, model’s performance also degrades as the rulesets get harder. The context length of the
model is 1024. The evaluation parameters, except training tasks, are the same as in Figure 8.
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L RULESETS VIZUALIZATION
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Figure 21: Rulesets with increasing difficulty (i.e. with 3, 5, and 9 rules respectively) sampled from
medium-1m benchmark. They can be accessed by ID’s via the XLand-MiniGrid package.

M GRID LAYOUTS USED FOR DATASET COLLECTION

Figure 22: Layout used for XLand-Trivial-20B.
Corresponds to XLand-MiniGrid-R1-9x9 environ-
ment from the XLand-MiniGrid suite. Game ob-
jects are task dependent.

Figure 23: Layout used for XLand-100B. Cor-
responds to XLand-MiniGrid-R1-13x13 environ-
ment from the XLand-MiniGrid suite. Game ob-
jects are task dependent.
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N ADDITIONAL EXPERIMENTS ON NUMBER OF TASKS

We run additional experiments with different number of tasks to show how it can affect the perfor-
mance. Experiments are run with the sequence length of 2048. To make the number of gradient
updates closer to the original experiments, we progressively increased the number of epochs for each
smaller subset. Note that the return increases from 100 goals to 3k goals, indicating the importance
of scaling the number of goals in the dataset. Running the AD for a single epoch on full goals dataset
is clearly not enough, however, a large scale training is too computationally expensive and it is left
for future research.

Figure 24: Training AD for different number of goals.
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O HYPERPARAMETERS

Table 7: DPT Hyperparameters

(a) DPT Hyperparameters for
datasets

Hyperparameter Value
Embedding Dim. 64
Number of Layers 8
Number of Heads 8
Feedforward Dim. 256
Layernorm Placement Pre Norm
Embedding Dropout Rate 0.1

Batch size [512, 256, 128]
Sequence Length [1024, 2048, 4096]

Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3
Learning Rate Schedule Cosine Decay
Warmup Ratio 0.05
# Parameters 25 M

(b) DPT Hyperparameters Key-to-
Door

Hyperparameter Value
Embedding Dim. 64
Number of Layers 4
Number of Heads 4
Feedforward Dim. 64
Layernorm Placement Pre Norm
Residual Dropout 0.5

Sequence Length [50, 100, 250, 350, 500]

Batch size 128
Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3
Label Smoothing 0.3
Learning Rate Schedule Cosine Decay
Warmup Ratio 0.05
# Parameters 200 K

Table 8: AD Hyperparameters

Hyperparameter Value
Embedding Dim. 64
Number of Layers 8
Number of Heads 8
Feedforward Dim. 512
Layernorm Placement Pre-norm
Embedding Dropout 0.1

Batch size [256, 128, 64]
Sequence Length [1024, 2048, 4096]

Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3

Learning Rate Schedule CosineLR
Warmup Steps 500
# Parameters 25 M
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Table 9: PPO hyperparameters used in multi-task pre-training from Section 4.2.

Hyperparameter Value

env_id XLand-MiniGrid-R1-13x13
benchmark_id medium-1m
use_bf16 True
pretrain_multitask True
context_emb_dim 16
context_hidden_dim 64
context_dropout 0.0
obs_emb_dim 16
action_emb_dim 16
rnn_hidden_dim 1024
rnn_num_layers 1
head_hidden_dim 256
num_envs 65536
num_steps 256
update_epochs 1
num_minibatches 64
total_timesteps 25,000,000,000
optimizer Adam
decay_lr True
lr 0.0005
clip_eps 0.2
gamma 0.995
gae_lambda 0.999
ent_coef 0.001
vf_coef 0.5
max_grad_norm 0.5
eval_episodes 256
eval_seed 42
train_seed 42
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Table 10: PPO hyperparameters used in single-task fine-tuning from Section 4.2.

Hyperparameter Value

env_id XLand-MiniGrid-R1-13x13
benchmark_id medium-1m
use_bf16 True
pretrain_multitask False
context_emb_dim 16
context_hidden_dim 64
context_dropout 0.0
obs_emb_dim 16
action_emb_dim 16
rnn_hidden_dim 1024
rnn_num_layers 1
head_hidden_dim 256
num_envs 8192
num_steps 256
update_epochs 1
num_minibatches 8
total_timesteps 1,000,000,000
optimizer Adam
decay_lr True
lr 0.0005
clip_eps 0.2
gamma 0.995
gae_lambda 0.999
ent_coef 0.001
vf_coef 0.5
max_grad_norm 0.5
eval_episodes 256
eval_seed 42
train_seed 42
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