
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLUSTERING IMPROVES DIFFERENTIALLY PRIVATE
INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private (DP) language model inference is an approach for generating
private synthetic text. A sensitive input example is used to prompt an off-the-shelf
large language model (LLM) to produce a similar example. Multiple examples can
be aggregated together to formally satisfy the DP guarantee.
Prior work creates inference batches by sampling sensitive inputs uniformly at
random. We show that uniform sampling degrades the quality of privately generated
text, especially when the sensitive examples concern heterogeneous topics.
We remedy this problem by clustering the input data before selecting inference
batches. Next, we observe that clustering also leads to more similar next-token
predictions across inferences. We use this insight to introduce a new algorithm that
aggregates next token statistics by privately computing medians instead of averages.
This approach leverages the fact that the median has decreased local sensitivity
when next token predictions are similar, allowing us to state a data-dependent and
ex-post DP guarantee about the privacy properties of this algorithm. Finally, we
demonstrate improvements in terms of representativeness metrics (e.g., MAUVE)
as well as downstream task performance. We show that our method produces
high-quality synthetic data, at significantly lower privacy cost, than a previous
state-of-the-art method.

1 INTRODUCTION

One of the many applications for powerful generative AI models is the creation of synthetic data. A
natural approach is to prompt a large language model (LLM) with a rewriting task and a representative
example, asking it produce synthetic analogs that resemble the example. This approach is not privacy-
preserving if the seed example contains sensitive information that could theoretically pass through
into the synthetic outputs.

This limitation is especially problematic if preserving the privacy of the source data was the reason
to generate synthetic data in the first place. Consider a data steward who has access to a collection
of medical records. They must preserve the privacy of the patients who provided the records. At
the same time, they would like to make a privacy-preserving synthetic version of the data public to
improve machine learning methods for making diagnoses.

The literature on differentially private (DP) inference (Dwork & Feldman, 2018; Papernot et al.,
2017; 2018; Wu et al., 2024a; Ginart et al., 2022; Majmudar et al., 2022; Duan et al., 2023; Flemings
et al., 2024a;b) provides a means to generate synthetic data by prompting a pre-trained model, while
ensuring formal privacy guarantees (Hong et al., 2023; Tang et al., 2024; Amin et al., 2024; Gao et al.,
2025). At a high-level, DP inference methods work by prompting an off-the-shelf LLM for multiple
responses, with each one seeded by a sensitive example belonging to a different user. These responses
are then aggregated in some way that satisfies DP. Through this procedure, an aggregated response
does not represent any single seed example, but is a noisy amalgamation of all the seed examples.

In this work, we study the quality of synthetic data produced in this manner. In particular, we are
interested in how the heterogeneity of the seed batch affects the representativeness of synthetic data.

DP requires that an adversary cannot detect any single seed example by observing the aggregated
response. Thus, if data is highly heterogeneous, this presents a problem; by design, the aggregated
response will not be representative of any seed example. In contrast, if all seed examples are highly

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) DP Inference with Homogenous Data

(b) DP Inference with Heterogenous Data

Figure 1: A stylized depiction of synthetic data generation based on DP inference. Left (a and b): An
input corpus sits in some embedding space, and is sampled uniformly at random (points in red) to
form a batch. Middle (a and b): A depiction of an average rewrite for the batch. Right (a and b): A
noise distribution centered around the average rewrite. In (b), the distinct semantic clusters found in
the input dataset collapse.

self-similar, all responses will be similar, and the aggregated response can be representative of all the
seed examples without violating the DP guarantee.

Armed with this observation we note that all state-of-the-art DP inference methods (Tang et al.,
2024; Amin et al., 2024; Gao et al., 2025) batch seed examples uniformly at random, tending to
generate heterogenous batches. We depart from this approach, demonstrating a practical technique for
pre-clustering data while still preserving privacy. We use this clustering to assign similar examples to
the same batch, creating more homogenous inputs for the DP inference algorithm.

Next, we propose a new algorithm for DP inference designed to make better aggregations when the
LLM’s predictions are aligned. We modify the algorithm of Amin et al. (2024), which aggregates
LLM responses on a per-token basis by averaging token logit scores across inferences. Our algorithm
replaces this average with a median. It is well-known in the DP literature that a median operation has
local sensitivity that depends on how well-concentrated its inputs are. We prove a formal guarantee
that holds in the data-dependent (Papernot et al., 2017; 2018) and ex-post (Ligett et al., 2017)
differential privacy setting.

To the best of our knowledge, representativeness metrics like MAUVE (Pillutla et al., 2021) have
not been previously evaluated for data generated via DP inference. Only recently, Amin et al. (2024)
demonstrated generating enough data to begin measuring similarity at a dataset level. However, they
report only accuracy measures on downstream tasks. Indeed, we show that their method fails to
produce representative data as measured by MAUVE.

We conduct experiments on a variety of datasets and report improvement on two metrics: MAUVE
scores computed on the raw synthetic dataset and accuracy of a BERT model trained on synthetic data.
Finally, we incorporate a number of other improvements to further the state-of-the-art MAUVE scores,
demonstrating the effect of other design decisions such as prompts, pre-trained vs. instruction-tuned
generators, and varying the number of examples used when prompting.

2 LIMITATIONS OF UNIFORM BATCHING

As previously discussed, DP inference takes many text inputs (a batch) and attempts to produce a
single output representing an aggregated rewrite for all of the records in the batch. At this level of
abstraction, we can recognize a problem. Batches are ordinarily drawn uniformly at random from the
input corpus. Therefore, the aggregated rewrite targeted by the these algorithms will collapse any of
the variation within the corpus. Consider the visualization in Figure 1, where we think of text data

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Privacy ε Method MAUVE Accuracy

ε =∞
Real data .872.018 .965.001

Baseline (Amin et al., 2024) .130.009 .892.015

Baseline++ (w/ pretrained model & prompt) .460.050 .898.022

+ non-private clustering .650.021 .912.020

Table 1: Clustering improves DP inference results at ε = ∞ on Yelp100k using Gemma 2 2B.
We report mean and std of MAUVE scores against real data (5 seeds), as well Accuracy of a BERT
model trained on synthetic data and evaluated on real data (3 seeds). While Amin et al. (2024)
enables generation of large synthetic corpora with DP inference, quantity begets the question of
representativeness. Baseline demonstrates the limits of existing approaches even when privacy
is not a concern. First, we show direct improvements via switching to the pretrained checkpoint
and incorporating multiple examples into the prompt (Baseline++). On top of these improvements,
cluster-informed batching leads to improvements in representativeness. Here, clustering is
performed non-privately by running k-means on private data, with K = 500.

sitting in some embedding space, and the average response as a simple average within the embedding
space. The distinct semantic clusters in in Figure 1(b) collapse due to the averaging procedure.

2.1 EMPIRICAL DEMONSTRATION

We can demonstrate this claim by evaluating the performance of a DP inference method on a metric
that captures the representativeness of the data generated. While the algorithm of Amin et al. (2024)
is known to produce data that performs well on downstream classification tasks, these results do not
tell us whether the synthetic data distribution represents the initial corpus. For that, we use MAUVE
(Pillutla et al., 2021), a generic comparison measure between text corpora.

In Table 1 we see that DP inference (c.f. Baseline) does not produce representative datasets, even
when pushing the methods to their limit by selecting parameters that offer no formal privacy guarantee
(the ε =∞ regime). We begin our investigation from an improved baseline (Baseline++) obtained
by (1) switching from Gemma 2 2B IT to the PT checkpoint (and necessarily changing the prompt);
and (2) adding more in-context examples; full details are in Section 6.1).1 The individual effects of
each of these improvements can be found in Appendix D.1.

Conceptually, we can remedy the problem of heterogenous batches by first clustering the data, and
then constructing batches by uniformly sampling inputs from within each cluster. For example, one
could alternate between selecting batches from each of the 2 clusters in Figure 1. In Table 1, we
report the MAUVE score of an algorithm (non-private clustering) that aims to do just that. The
algorithm computes embeddings of the input corpus and clusters them using k-means. Batches
are then constructed by first assigning inputs to clusters and feeding inputs with the same cluster
assignment to the algorithm of Amin et al. (2024). While this procedure significantly improves
MAUVE, it does not satisfy the DP guarantee. In the remainder of the paper, we describe: (1) how to
implement this idea in a privacy-preserving manner; and (2) a new DP inference algorithm that takes
advantage of pre-clustered data.

3 PRELIMINARIES AND NOTATION

Let X be the token vocabulary, i.e., the set of all possible tokens. A token sequence is an element of
X ∗, and a logit vector is an element of RX (one logit per token in the vocabulary). For brevity we
define Z ≡ RX to be the set of all logit vectors. If z ∈ Z then zx ∈ R denotes the component of z
corresponding to token x ∈ X . If x1 and x2 are token sequences then we write x1x2 ∈ X ∗ to denote
their concatenation. A large language model (LLM) is defined by a function logits : X ∗ → Z that

1We find that the pre-trained (PT) checkpoint generates text that more closely matches the style and structure
of the prompt, since that is what pre-training encourages, while the instruction-tuned (IT) checkpoint adds
stylistic flourishes — for example, we observed the IT checkpoint inserting emojis into AGNews headlines.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

maps each token sequence to a logit vector. A dataset D ⊆ X ∗ is a subset of token sequences. A pair
of sets are neighbors if their symmetric difference has size 1, i.e., one set can be formed from the
other by adding or subtracting a single element.

4 IMPROVED ALGORITHM FOR DP INFERENCE

Algorithm 1 is our method for generating private synthetic text. Given a dataset of sensitive seed
texts, the algorithm first partitions the seeds into m batches. For each batch, the algorithm generates
a single synthetic example consisting of n tokens. Each synthetic example x is generated one token
at a time, by first initializing x to be the empty token sequence and then repeatedly executing the
following procedure: (1) generate logits(sx) for each seed s in the batch, and aggregate the logit
vectors into a single logit vector z̄; (2) draw token x from softmax(z̄/τ), the distribution that assigns
probability proportional to exp(z̄y/τ) to each token y; (3) append x to x.

Algorithm 1 Generate private synthetic examples
Given: logits : X ∗ → Z , temperature τ > 0, maximum token sequence length n > 0, batch : X ∗ → [m],
aggregate : 2Z → Z .
Input: Dataset of sensitive seeds D ⊆ X ∗.
Output: Dataset of synthetic examples X ⊆ X ∗.

1: X ← ∅
2: for each i = 1, . . . ,m do
3: Si = {s ∈ D : batch(s) = i}.
4: xi,0 ← Empty token sequence
5: for t = 1, . . . , n do
6: Zi,t ← {logits(sxi,t−1) : s ∈ S}
7: z̄i,t ← aggregate(Zi,t)

8: xi,t ∼ softmax(z̄i,t/τ)

9: Append xi,t to xi,t−1 to form xi,t

10: X ← X ∪ {xi,n}
11: return X

Algorithm 1 is a generalization of conventional non-private LLM inference, as well as the DP inference
method of Amin et al. (2024). The differences between the methods are in their implementations of
the batch() and aggregate() subroutines, which are marked in blue in Algorithm 1. In conventional
inference, batch() assigns each seed to its own unique batch, and aggregate() has no effect. In the
method from Amin et al. (2024), batch() assigns each seed to one of m batches uniformly at random
(typically m is much smaller than the number of seeds), and aggregate() is defined

aggregate(Z) =
1

|Z|
∑
z∈Z

clipc(z) (1)

where clipc(z)i = max{−c, zi −maxj{zj}+ c}. In other words, aggregate() shifts and clips each
logit value so that it lies in the interval [−c, c], and then averages the clipped logit vectors together.
Clipping is key to proving a privacy guarantee, which is based on the observation that the token
sampling procedure is equivalent to the exponential mechanism (McSherry & Talwar, 2007).

4.1 BATCHING BY CLUSTERING

Instead of assigning seeds to batches randomly, in this paper we explore the impact of grouping
similar seeds together. We consider implementations of batch() in Algorithm 1 that have the form

batch(s) = (cluster(s), r) (2)

where cluster() is a cluster assignment function, and r is chosen uniformly at random from [b].
In other words, the seed is first assigned to a cluster, and then within that cluster it is randomly
assigned to one of b batches. The cluster assignment function is implemented using a sentence
embedding model embed(), which maps a given input text into a fixed-dimensional embedding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Clustering Method # Clusters # Clusters (size ≥ 100) Privacy ε V-measure

k-means 500 464 ∞ 1

DP Clustering
9 6 0.1 0.1(Chang & Kamath, 2021)

DP Clustering
2 2 10 0.01(Liebenow et al., 2024)

Public Centers 438 140 0 0.59

Public Centers
100 100 0.1 0.58with Rebalancing

Table 2: Comparing different clustering methods. # Clusters is the number of non-singleton clusters,
Clusters (≥ 100 Samples) is the number of clusters with at least 100 samples. V-measure
(Rosenberg & Hirschberg, 2007) is a metric to compare the quality of each clustering. Higher
V-measure shows more similarity to ground truth (k-means with k = 500). The parameter ε indicates
the privacy cost, with higher values indicating higher privacy cost (see Section 5).

Figure 2: Cluster sizes of different clustering methods for AGNews dataset. a) k-means (k = 500)
which is not private but gives the most balanced clusters. b) DP-clustering (Chang & Kamath, 2021)
(ε = 0.1) which is private but most of the data is assigned to a few clusters. c) Clustering with public
dataset (DBPedia, k = 500), which is private and has more valid clusters but still many clusters have
only a few examples. d) Clustering with public centers and rebalancing (DBPedia, k = 500 and
rebalancing to 100 clusters, ε = 0.1). This method does not have any small clusters.

space Rd. A well-trained sentence embedding model will place similar texts closer together in
this space. Given cluster centers c1, . . . , ck ∈ Rd the cluster assignment function is defined as
cluster(s) = arg mini∈[k] ‖embed(s)− ci‖2. Thus the batching procedure is fully specified by
describing how the cluster centers are selected. We consider the following three methods, each of
which has different privacy implications.

Differentially private centers. We apply state-of-the-art DP clustering methods (Chang & Kamath,
2021; Liebenow et al., 2024) to the seed embeddings to discover the cluster centers. We observe that
these methods often fail to find good cluster centers. Most DP clustering algorithms are designed
for low-dimensional data, since the amount of privacy-preserving noise injected by the algorithms
increases with the dimension, whereas sentence embeddings are typically high-dimensional.

Figure 2(b) shows one of the problems with DP clustering (Chang & Kamath, 2021). Even though the
number of target cluster centers k is set to 500, the algorithm only finds < 10 non-singleton centers,
leading to highly imbalanced clusters.

Public centers. Given the limitations of privately clustering the seeds, we leverage high-quality
public datasets instead. These datasets contain diverse examples, making them useful for clustering.
We applied k-means clustering to the public data, and used the resulting centers to assign cluster
labels to the seeds. Because selecting the cluster centers does not require examining any sensitive
data, it does not incur any privacy cost. However, this approach introduces a new challenge: if the
public data distribution differs significantly from the sensitive data distribution, the resulting clusters
can become highly imbalanced, some with very few examples, and others disproportionately large.
Very small clusters are often unusable, while large clusters may still contain heterogeneous data,
reducing overall utility. Figure 2(c) illustrates the imbalance problem for public cluster centers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Public centers with rebalancing. To address the cluster imbalance issue, we introduce two ad-
ditional steps into the process of selecting cluster centers from public data. After obtaining public
cluster centers, we compute a noisy count of the seeds assigned to each cluster; this step incurs only
a small privacy cost (ε ≈ 0.1). We then select the cluster centers with the k′ highest counts and
re-assign the seeds using only these top-k′ centers. For example, if we had k = 500 centers originally,
we may reduce them to k′ = 100 centers after rebalancing. This refinement ensures more balanced
clusters while preserving quality, as shown in Figure 2(d), improving both efficiency and utility.

4.2 MEDIAN AGGREGATION

In addition to improving synthentic data quality, making the batches more homogeneous allows us
to modify Algorithm 1 to yield a tighter privacy analysis. Instead of aggregating the clipped logit
vectors in a batch by taking their average, we compute their component-wise median:

aggregate(Z) = median({clipc(z) : z ∈ Z}), (3)
where median(Z) is the vector in which each component is the median value of the corresponding
components of the vectors in Z. We discuss the usefulness of clipping in Appendix A.

Previous analyses of differentially private inference algorithms for synthetic data generation, such as
in Amin et al. (2024) and Tang et al. (2024), were based on the global sensitivity of the mean, i.e.,
on how much the mean of any set of logit vectors Z can change when a vector is added or removed
from Z. Our privacy analysis (in Section 5) is based on the local sensitivity of the median, i.e., on
how much the component-wise medians of the actual set of logit vectors Z can change when a vector
is added or removed from Z. To see why see the latter sensitivity can be much smaller than the
former, note that if Z contains at least 3 identical vectors, then the local sensitivity of median(Z)
is zero. When a batch of seeds texts are all similar to each other, then the logit vectors of their
next-token distributions will also be similar. Furthermore, they will become increasingly similar
as text generation proceeds, as the next-token distributions will become increasingly dependent on
the generated text, and less dependent on the seed texts (see Figures 5 and 6 in Appendix D.4). We
exploit this similarity to prove a stronger privacy guarantee than previous work (albeit one that is
both data-dependent and output-dependent; see next section).

5 PRIVACY ANALYSIS

5.1 MEAN AGGREGATION PRIVACY GUARANTEE

In the standard definition of approximate differential privacy (Dwork et al., 2006), the upper bound is
expressed in terms of privacy parameters ε and δ.
Definition 1 (Approximate differential privacy). Let A : D → O be an algorithm, ε ≥ 0 and
δ ∈ [0, 1]. Algorithm A satisfies (ε, δ)-differential privacy if for all neighboring datasets D,D′ ∈ D
and X ∈ O

Pr[A(D) = X] ≤ exp(ε) · Pr[A(D′) = X] + δ

We rely on an analysis due to Amin et al. (2024) to obtain a privacy guarantee for the version of
Algorithm 1 that uses mean aggregation.
Theorem 1 (Approximate differential privacy guarantee). Algorithm 1 with aggregate() set as

Eq. (1) satisfies (ε, δ)-differential privacy, where ε = O
(
n
(
c
kb

)2
+ c

kb

√
n log 1

δ

)
.

5.2 MEDIAN AGGREGATION PRIVACY GUARANTEE

In contrast to Definition 1, and following more recent work (Papernot et al., 2017; Ligett et al., 2017;
Papernot et al., 2018; Jordon et al., 2018; Chowdhury et al., 2020; Ginart et al., 2022; Duan et al.,
2023; Flemings et al., 2024a), we also allow ε to depend on both the input and output of the algorithm,
which leads to a data-dependent ex-post guarantee.
Definition 2 (Data-dependent ex-post differential privacy). Let A : D → O be an algorithm. Let
ε : D × O → R≥0. Algorithm A satisfies ε-data-dependent ex-post differential privacy if for all
neighboring datasets D,D′ ∈ D and X ∈ O

exp(−ε(D,X)) · Pr[A(D′) = X] ≤ Pr[A(D) = X] ≤ exp(ε(D,X)) · Pr[A(D′) = X]

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Definition 2 reduces Definition 1 with δ = 0 if we require the ε function to be a constant function. In
that special case, the privacy guarantee is a property of the algorithm itself, and holds for worst-case
input and output.

Towards a more-refined understanding of privacy risk. Definition 2 offers the possibility of a
privacy guarantee that is more refined than the worst case, reflecting the fact that certain inputs and
outputs have lower privacy risk than others. This materializes in DP inference when we consider that
not all tokens pose the same privacy risk: grammar and stop words such as “of”, “the”, “:”, “and”
– will be predicted regardless of the private data, hence we should not account the same privacy
cost for releasing them as all other tokens. The same holds for tokens produced near the end of an
example; these depend more on already-generated output and less on private data. Our data-dependent
accounting indeed captures this behaviour: data-dependent ε’s drop significantly deeper into the
generation (Figure 5).

In any case, the semantic meaning of the privacy guarantee is the same as in the standard definition
of differential privacy: it quantifies the ability of an adversary to distinguish a small change in the
input to the algorithm by only examining its output. Note that in Definition 2, the ε value itself is not
necessarily private (or ‘sanitized’), but this feature is common in related work (Papernot et al., 2017;
Jordon et al., 2018; Duan et al., 2023).

For the version of Algorithm 1 that uses median aggregation, we prove a novel privacy guarantee.

Theorem 2 (Data-dependent ex-post differential privacy guarantee). Algorithm 1 with aggregate()
set as Eq. (3) satisfies ε-data-dependent ex-post differential privacy, where ε(D,X) =
maxi∈[m]

∑n
t=1 γ(Zi,t, xi,t), and the per-token privacy cost function γ is defined in Appendix B.

A formal definition of the function γ in Theorem 2 is given in Appendix B, and here we offer some
intuition for why it quantifies the privacy cost of Algorithm 1. For a set of logit vectors Z, let Z(x)

be the values in the xth component of each of the vectors. These are the logit scores corresponding
to token x. If we sort the logit scores in Z(x) in ascending order, then the median is the middle
value, and the values that are adjacent to the median define what we call the median gap. When the
adjacent values are far from the median, the median gap is large, and otherwise it is small. The size
of the median gap determines the local sensitivity of the median, since adding or removing a value
from Z(x) can cause the median to shift to one of the adjacent values. The function γ(Z, x) is an
increasing function of the median gap of Z(x), and so higher median gaps lead to higher privacy cost.

Empirical privacy tests. We supplement our theoretical analysis of our median aggregation algo-
rithm with empirical privacy tests in Appendix D.5. This includes: a reconstruction test to see if our
method memorizes private examples; and an empirical privacy audit to check for violations of our
theoretical guarantee. In both cases, we do not find any evidence of privacy violations.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Models. We use the pre-trained (PT) and instruction-tuned (IT) variants Gemma 2 2B models
(Gemma Team, 2024) as the generator for all experiments. Note the variants necessitate using
different prompts, which we give in E.4. All tasks use the same generic prompt template.

Datasets. Our algorithms utilize a public dataset in addition to the target private dataset we aim to
synthesize. For private datasets in our experiments: we use AGNews, Yelp, and NYT Topics; all of
which are equipped with a multi-class classification task. We use DBPedia as our sole public dataset
for computing public clusters used in all experiments. We chose this dataset since it is based on
Wikipedia, which (a) contains a wide variety of topics and therefore is a good candidate for universal
clusters; and (b) reflects the kind of public data permissible for use in real deployments. For further
details on all datasets used, see Appendix E.

Evaluation. We evaluate all methods on two metrics. (1) BERT Accuracy: we train a BERT
model on synthetic data and report its final accuracy on a held-out set consisting of real data. To

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Dataset Method Privacy ε Clusters MAUVE Accuracy

AGNews

Real data ∞ - .872.032 .938.001

Mean Baseline (Amin et al., 2024) 10 4 .156.024 .704.009

Mean Baseline++ 10 4 .633.022 .851.015

Mean Clustered 9.90 + 0.1 60 .692.029 .855.012

Median Clustered 2.40∗ + 0.1 60 .713.027 .868.002

Mean Baseline 3 4 .141.016 .701.016

Mean Baseline++ 3 4 .622.024 .833.006

Mean Clustered 2.90 + 0.1 60 .687.034 .846.002

Median Clustered 1.22∗ + 0.1 60 .688.046 .860.004

Yelp

Real data ∞ - .874.012 .975.000

Mean Baseline (Amin et al., 2024) 10 2 .136.014 .915.006

Mean Baseline++ 10 2 .415.031 .899.014

Mean Clustered 9.90 + 0.1 60 .449.021 .906.014

Median Clustered 2.21∗ + 0.1 60 .460.019 .912.009

Mean Baseline 3 2 .136.012 .880.014

Mean Baseline++ 3 2 .391.054 .907.007

Mean Clustered 2.90 + 0.1 60 .436.032 .904.015

Median Clustered 1.38∗ + 0.1 60 .451.038 .904.014

NYT Topic

Real data ∞ - .863.009 .919.001

Mean Baseline (Amin et al., 2024) 10 8 .151.013 .668.024

Mean Baseline++ 10 8 .613.045 .776.008

Mean Clustered 9.90 + 0.1 80 .716.038 .796.001

Median Clustered 5.04∗ + 0.1 80 .681.043 .797.001

Mean Baseline 3 8 .155.018 .668.026

Mean Baseline++ 3 8 .637.055 .782.007

Mean Clustered 2.90 + 0.1 80 .665.017 .788.002

Median Clustered 1.72∗ + 0.1 80 .659.053 .780.006

Table 3: Performance of our methods compared to Mean Baseline (the algorithm of Amin et al.
(2024)). We report the mean and std of MAUVE against real data (5 seeds) and downstream accuracy
of a BERT model trained on the synthetic data (3 seeds). Our improved baseline (Mean Baseline++)
shows sharp increases in MAUVE across all settings, as well as classification accuracy on AGNews
and NYT Topic. On top of this stronger baseline, gains from clustering stack, and lead to consistent
and direct improvements to MAUVE across all settings. For results employing clustering, we report
the privacy cost of inference as well as the ε = 0.1 cost of cluster rebalancing. Median Clustered
achieves better or comparable quality when compute-and-output-token-matched. (*) denotes an ε
value calculated using our ex-post data-dependent DP analysis.

compute BERT accuracy, we split the synthetic data into a synthetic train and validation set for model
selection, and applying the best checkpoint on real data. (2) MAUVE Score: this metric which
ranges from 0 to 1, measures the distributional similarity between the real and synthetic data. A higher
score indicates better alignment, therefore, higher-quality synthetic data. We compute MAUVE with
Gecko embeddings (Lee et al., 2024), using 1K samples from both sets.

Baselines. We implement the method of Amin et al. (2024) as a baseline, which only differs
algorithmically in batching, and that the aggregated sampling logits is obtained via the mean only.
Other DP inference synthetic data approaches in the literature (Tang et al., 2024; Gao et al., 2025)
focus on generating few-shot examples for prompting, and have not demonstrated the ability to
generate enough data (≥2k examples) to compute MAUVE or finetune BERT. Mean Baseline is the
setup described in Amin et al. (2024), using an IT model and prompt, 1 example per context, and
within-label batching. Mean Baseline++ uses 2 examples in-context and switches to a pre-trained
checkpoint and prompt; ablations that decompose the effect of these changes can be found in D.1).
Due to computational constraints, we tuned hyperparameters on AGNews and fixed them for the
other datasets. For all experiments, we use a sampling temperature of 1.5. We use 64 parallel contexts
for ε = 10 and 256 parallel contexts for ε = 3 experiments.

Privacy budget. We report results for two settings: ε = 3 and ε = 10. For mean aggregation, we
set the approximate differential parameter δ = (dataset_size)−1.1. The privacy budget includes
the total ε used for both clustering and generation. For mean aggregation, we report unconditional ε.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

For median aggregation, we match the number of tokens generated and batch size (thereby matching
output quantity and compute requirements), and report the resultant data-dependent ex-post ε.

Clustering and batching. We start with 1000 clusters produced from DBPedia, and perform DP
rebalancing as described in Section 4.1 to target 60 clusters for Yelp and AGNews, and 80 clusters
for NYT Topics (10 clusters for each of the 8 labels). For implementation reasons, we subdivide each
cluster into fixed-sized batches, rather than random-sized batches as in Eq. (2).

6.2 RESULTS

Table 3 summarizes our main results on all three datasets. We demonstrate that public-cluster-
informed batching as a drop-in replacement for naive batching improves over the baseline – that
is, simply adjusting the input batching to the algorithm and changing no other algorithmic details
leads to significant improvements in representativeness. The same is the case for switching to the
pretrained model, demonstrating stacking improvement. Furthermore, we show that our newly
introduced median aggregation algorithm can achieve quality comparable or surpassing that of the
mean algorithm, while admitting a tight, ex-post data-dependent DP analysis. We also remark that the
privacy guarantee we give for the median algorithm is maximum over all batches. In Appendix D.4,
we plot the distribution of per-batch privacy costs (many batches are <50% of the stated guarantee).
Designing algorithms to take advantage of this property is an interesting avenue for future work.

7 RELATED WORK

Differentially private synthetic data. Prior work on generating synthetic data with differential
privacy guarantees can be broadly categorized into three categories:

A) Training-based methods finetune language models on private data using differentially private
stochastic gradient descent (Yue et al., 2023; Mattern et al., 2022; Carranza et al., 2024; Kurakin
et al., 2023; Wang et al., 2024). After training, the model is used to generate synthetic data. More
recent studies (Wu et al., 2024a; Tan et al., 2025; Tran & Xiong, 2024) leverage the abundance of
public data by first finetuning the model on public datasets before applying differentially private
finetuning on the private data.

B) API-based methods generate synthetic data using only model APIs (Xie et al., 2024; Yu et al.,
2024; Wu et al., 2024b; Lin et al., 2024; 2025). They query the LLM with private examples and ask it
to select the closest matching samples from a non-private dataset. They iteratively refine the output to
ensure that it is similar to the private data.

C) Inference-based methods leverage private prediction (Dwork & Feldman, 2018), which ensures
the privacy of model outputs (i.e., predictions). A widely used approach to achieve this is privacy
amplification by subsampling and private aggregation (Nissim et al., 2007). When this methodology
is applied to LLMs, the model generates the next token for each subset of private data, and the
predictions are then privately aggregated to produce the final output (Hong et al., 2023; Amin et al.,
2024; Tang et al., 2024; Gao et al., 2025).

Differentially private clustering. Early foundational work on differentially private clustering (Wang
et al., 2015; Su et al., 2016; Feldman et al., 2009; Nissim et al., 2016) established strong theoretical
bounds for private clustering. Subsequent works have improved the practical aspects, focusing on
balancing utility, efficiency, and privacy. The most common approach (Balcan et al., 2017; Chaturvedi
et al., 2020; Cohen-Addad et al., 2022) is to project the data into a lower dimension to reduce the
additive error while preserving the relative distance, and then try to efficiently find good centers.

8 CONCLUSION

We have proposed a novel differentially private inference method for generating private synthetic
data. Our method uses a clustering algorithm to group the input data into batches of similar examples,
and leverages the resulting data homogeneity to generate high-quality synthetic data at significantly
lower privacy cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kareem Amin, Alex Bie, Weiwei Kong, Alexey Kurakin, Natalia Ponomareva, Umar Syed, Andreas
Terzis, and Sergei Vassilvitskii. Private prediction for large-scale synthetic text generation. In
Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pp. 7244–7262. Association for Computational Linguistics, 2024.

Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang Zhang. Differ-
entially private clustering in high-dimensional euclidean spaces. In International Conference on
Machine Learning, pp. 322–331. PMLR, 2017.

Aldo Carranza, Rezsa Farahani, Natalia Ponomareva, Alexey Kurakin, Matthew Jagielski, and Milad
Nasr. Synthetic query generation for privacy-preserving deep retrieval systems using differentially
private language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3920–3930, Mexico
City, Mexico, June 2024. Association for Computational Linguistics.

Karan Chadha, Matthew Jagielski, Nicolas Papernot, Christopher A. Choquette-Choo, and Milad
Nasr. Auditing private prediction. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24, 2024.

Alisa Chang and Pritish Kamath. Practical differentially private
clustering, 2021. URL https://research.google/blog/
practical-differentially-private-clustering.

Anamay Chaturvedi, Huy Nguyen, and Eric Xu. Differentially private k-means clustering via
exponential mechanism and max cover. arXiv preprint arXiv:2009.01220, 2020.

Amrita Roy Chowdhury, Theodoros Rekatsinas, and Somesh Jha. Data-dependent differentially
private parameter learning for directed graphical models. In International Conference on Machine
Learning, pp. 1939–1951. PMLR, 2020.

Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Andres Munoz Medina,
David Saulpic, Chris Schwiegelshohn, and Sergei Vassilvitskii. Scalable differentially private
clustering via hierarchically separated trees. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 221–230, 2022.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic
parrots: Differentially private prompt learning for large language models. Advances in Neural
Information Processing Systems, 36:76852–76871, 2023.

Cynthia Dwork and Vitaly Feldman. Privacy-preserving prediction. In Conference On Learning
Theory, pp. 1693–1702. PMLR, 2018.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual international conference on the
theory and applications of cryptographic techniques, pp. 486–503. Springer, 2006.

Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pp. 361–370, 2009.

James Flemings, Meisam Razaviyayn, and Murali Annavaram. Adaptively private next-token
prediction of large language models. arXiv preprint arXiv:2410.02016, 2024a.

James Flemings, Meisam Razaviyayn, and Murali Annavaram. Differentially private next-token
prediction of large language models. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 4390–4404, Mexico City, Mexico, June 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.247. URL https://aclanthology.org/
2024.naacl-long.247/.

10

https://research.google/blog/practical-differentially-private-clustering
https://research.google/blog/practical-differentially-private-clustering
https://aclanthology.org/2024.naacl-long.247/
https://aclanthology.org/2024.naacl-long.247/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fengyu Gao, Ruida Zhou, Tianhao Wang, Cong Shen, and Jing Yang. Data-adaptive differentially pri-
vate prompt synthesis for in-context learning. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=sVNfWhtaJC.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024.

Antonio Ginart, Laurens van der Maaten, James Zou, and Chuan Guo. Submix: Practical private
prediction for large-scale language models. arXiv preprint arXiv:2201.00971, 2022.

Junyuan Hong, Jiachen T Wang, Chenhui Zhang, Zhangheng Li, Bo Li, and Zhangyang Wang.
Dp-opt: Make large language model your privacy-preserving prompt engineer. arXiv preprint
arXiv:2312.03724, 2023.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In International conference on learning representations, 2018.

Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas Terzis. Harnessing
large-language models to generate private synthetic text. arXiv preprint arXiv:2306.01684, 2023.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik Duddu, Gustavo Hernández
Ábrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Prateek Jain, Siddhartha Reddy Jonnalagadda,
Ming-Wei Chang, and Iftekhar Naim. Gecko: Versatile text embeddings distilled from large
language models. CoRR, abs/2403.20327, 2024. doi: 10.48550/ARXIV.2403.20327.

Johannes Liebenow, Yara Schütt, Tanya Braun, Marcel Gehrke, Florian Thaeter, and Esfandiar
Mohammadi. Dpm: Clustering sensitive data through separation, 2024. URL https://arxiv.
org/abs/2307.02969.

Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Steven Z Wu. Accuracy first: Selecting a
differential privacy level for accuracy constrained erm. Advances in Neural Information Processing
Systems, 30, 2017.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model apis 1: Images. arXiv preprint arXiv:2305.15560,
2023.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially pri-
vate synthetic data via foundation model APIs 1: Images. In The Twelfth International Conference
on Learning Representations, 2024.

Zinan Lin, Tadas Baltrusaitis, and Sergey Yekhanin. Differentially private synthetic data via apis 3:
Using simulators instead of foundation model. arXiv preprint arXiv:2502.05505, 2025.

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami Smaili, Rahul Gupta, and
Richard Zemel. Differentially private decoding in large language models. In
NAACL 2022 Second Workshop on Trustworthy Natural Language Processing
(TrustNLP), 2022. URL https://www.amazon.science/publications/
differentially-private-decoding-in-large-language-models.

Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schoelkopf, and Mrinmaya Sachan.
Differentially private language models for secure data sharing. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 4860–4873, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.323.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75–84, 2007.

11

https://openreview.net/forum?id=sVNfWhtaJC
https://arxiv.org/abs/2307.02969
https://arxiv.org/abs/2307.02969
https://www.amazon.science/publications/differentially-private-decoding-in-large-language-models
https://www.amazon.science/publications/differentially-private-decoding-in-large-language-models

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Locating a small cluster privately. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp.
413–427, 2016.

Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. In International
Conference on Learning Representations, 2017.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Ulfar Erlings-
son. Scalable private learning with pate. In International Conference on Learning Representations,
2018.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
divergence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external cluster
evaluation measure. In Proceedings of the 2007 joint conference on empirical methods in natural
language processing and computational natural language learning (EMNLP-CoNLL), pp. 410–420,
2007.

Aryan Singh. Nyt articles: 2.1m+ (2000-present), 2021. URL https://www.kaggle.com/
datasets/aryansingh0909/nyt-articles-21m-2000-present.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means
clustering. In Proceedings of the sixth ACM conference on data and application security and
privacy, pp. 26–37, 2016.

Bowen Tan, Zheng Xu, Eric Xing, Zhiting Hu, and Shanshan Wu. Synthesizing privacy-preserving
text data via finetuning without finetuning billion-scale llms. arXiv preprint arXiv:2503.12347,
2025.

Xinyu Tang, Richard Shin, Huseyin A. Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

Toan V Tran and Li Xiong. Differentially private tabular data synthesis using large language models.
arXiv preprint arXiv:2406.01457, 2024.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962v2, 2019.

Wenhao Wang, Xiaoyu Liang, Rui Ye, Jingyi Chai, Siheng Chen, and Yanfeng Wang. Knowledgesg:
Privacy-preserving synthetic text generation with knowledge distillation from server. arXiv preprint
arXiv:2410.05725, 2024.

Yining Wang, Yu-Xiang Wang, and Aarti Singh. Differentially private subspace clustering. Advances
in Neural Information Processing Systems, 28, 2015.

Shanshan Wu, Zheng Xu, Yanxiang Zhang, Yuanbo Zhang, and Daniel Ramage. Prompt public
large language models to synthesize data for private on-device applications. arXiv preprint
arXiv:2404.04360, 2024a.

Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Prateek Mittal. Privacy-preserving in-context
learning for large language models. In The Twelfth International Conference on Learning Repre-
sentations, 2024b.

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Haotian
Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin. Differentially private synthetic
data via foundation model APIs 2: Text. In ICLR 2024 Workshop on Secure and Trustworthy Large
Language Models, 2024.

12

https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present
https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Da Yu, Peter Kairouz, Sewoong Oh, and Zheng Xu. Privacy-preserving instructions for aligning large
language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
57480–57506. PMLR, 21–27 Jul 2024.

Xiang Yue, Huseyin Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
David Levitan, and Robert Sim. Synthetic text generation with differential privacy: A simple and
practical recipe. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1321–1342, Toronto, Canada, July 2023. doi: 10.18653/v1/2023.acl-long.74.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USEFULNESS OF CLIPPING FOR MEDIAN AGGREGATION

Given a logit vector z, clipc shifts each component by the same quantity so that maxj zj becomes
c. Any score below −c is then clipped to −c. This operation bounds the range of possible values in
z to [−c, c] and does not complicate the privacy analysis since it operates locally on each z. While
medians are invariant to certain types of shifts, it is important to note that clipc applies a different
shift to each z, while median aggregates across vectors. As a result, clipc plays an important role in
lowering the local sensitivity of the data. As a very simple example, consider a situation where all
inferences are exactly aligned on the next-token distribution. Even if this alignment occurs, there
is no reason that the logit scores would be aligned since the softmax operator is scale invariant. In
contrast, the clipping operator forces alignment, while preserving the head of the distribution. In
this example, the logit score for the most-likely next token will be mapped to c, driving the local
sensitivity for this token down to zero.

B PROOF OF THEOREM 2

Definition 3 (Left-median, median and right-median). Let Z ⊆ Z be a set of logit vectors. Let
left-median(Z), median(Z), right-median(Z) ∈ Z be logit vectors, where the component of each
vector corresponding to token x is defined in terms of the multiset Z(x) = {zx : z ∈ Z} ⊆ R as
follows:

• If |Z(x)| is even, and a and b are the middle values in Z(x) (when all of the values are sorted),
then left-median(Z)x = a, median(Z)x = (a+ b)/2 and right-median(Z)x = c.

• If |Z(x)| is odd, and a, b and c are the middle values in Z(x) (when all of the values are
sorted), then left-median(Z)x = a, median(Z)x = b, right-median(Z)x = c.

Note that since Z(x) is a multiset, it may contain repeated values, and therefore for any token x it can
happen that any of the consecutive values above are equal.

The quantities in Definition 4 below depend on τ > 0, but we have dropped this dependence from the
notation to reduce clutter.

Definition 4 (Per-token privacy cost function). For any set of logit vectors Z ⊆ Z and token x ∈ X
let

α(Z, x) = exp((z̄x − z̄rightx)/τ) ·
∑
y exp(z̄lefty /τ)∑
y exp(z̄y/τ)

β(Z, x) = exp((z̄x − z̄leftx)/τ) ·
∑
y exp(z̄righty /τ)∑
y exp(z̄y/τ)

γ(Z, x) = max

{
log

1

α(Z, x)
, log β(Z, x)

}
where z̄left = left-median(Z), z̄ = median(Z) and z̄right = right-median(Z).

Lemma 1. Let Z,Z ′ ⊆ Z be neighboring sets of logit vectors. For each token x ∈ X we have

left-median(Z)x ≤ median(Z ′)x ≤ right-median(Z)x

Proof. Adding or removing a value from a multiset either leaves the median of the multiset unchanged,
or shifts the median to the next higher or next lower value.

Lemma 2. In Algorithm 1, suppose that batch Si is replaced by neighboring batch S′i. For all t ≥ 1,
token x ∈ X and token sequence x ∈ X t−1

α(Zi,t, x) ≤ Pr[xi,t = x | xi,t−1 = x]

Pr[x′i,t = x | x′i,t−1 = x]
≤ β(Zi,t, x)

where x′i,t = (x′i,1, . . . , x
′
i,t) is the token sequence generated when processing batch S′i.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Let z̄ = median(Zi,t), Z ′ = {clipc(logits(sx)) : s ∈ S′i} and z̄′ = median(Z ′). We have

Pr[xi,t = x | xi,t−1 = x] =
exp(z̄x/τ)∑
y exp(z̄y/τ)

=
exp(z̄′x/τ)∑
y exp(z̄y/τ)

· exp((z̄x − z̄′x)/τ)

=
exp(z̄′x/τ)∑
y exp(z̄′y/τ)

· exp((z̄x − z̄′x)/τ) ·
∑
y exp(z̄′y/τ)∑
y exp(z̄y/τ)

= Pr[x′i,t = x | x′i,t−1 = x] · exp((z̄x − z̄′x)/τ) ·
∑
y exp(z̄′y/τ)∑
y exp(z̄y/τ)

(4)

Continuing from above

Eq. (4) ≥ Pr[x′i,t = x | x′i,t−1 = x] · exp((z̄x − z̄rightx)/τ) ·
∑
y exp(z̄lefty /τ)∑
y exp(z̄y/τ)

∵ Lemma 1

= Pr[x′i,t = x | x′i,t−1 = x] · α(Zi,t, x)

and

Eq. (4) ≤ Pr[x′i,t = x | x′i,t−1 = x] · exp((z̄x − z̄leftx)/τ) ·
∑
y exp(z̄righty /τ)∑
y exp(z̄y/τ)

∵ Lemma 1

= Pr[x′i,t = x | x′i,t−1 = x] · β(Zi,t, x)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let D,D′ ∈ D be neighboring datasets. For each seed, we can condition
on a fixed value for the random integer r selected in Eq. (2), since it is chosen independently of
the dataset. Since the batch() function assigns each seed to one batch, there exists a single batch
that differs by one seed when Algorithm 1 is run on input dataset D instead of D′. Let Si and
S′i be these neighboring batches. Let xi,1, . . . , xi,n and x′i,1, . . . , x

′
i,t be the sequences of tokens

generated when processing Si and S′i, respectively. For each t ∈ [n] let xi,t = (xi,1, . . . , xi,t)
and x′i,t = (x′i,1, . . . , x

′
i,n) denote the first t tokens of xi,n and x′i,n, respectively. Also fix a token

sequence yn = (y1, . . . , yn) ∈ Xn, and for each t ∈ [n] let yt = (y1, . . . , yt) denote the first t
tokens of yn. We have

Pr[xi,n = yn]

Pr[x′i,n = yn]
=

Pr[xi,1 = y1]

Pr[x′i,1 = y1]
· Pr[xi,2 = y2 | xi,1 = y1]

Pr[x′i,2 = y2 | x′i,1 = y1]
· · · Pr[xi,n = yn | xi,n−1 = yn−1]

Pr[x′i,n = yn | x′i,n−1 = yn−1]

Taking logarithm of both sides and applying Lemma 2 we have
n∑
t=1

logα(Zi,t, xi,t) ≤ log
Pr[xi,n = yn]

Pr[x′i,n = yn]
≤

n∑
t=1

log β(Zi,t, xi,t)

which proves the theorem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C RELATED WORK CONTINUED

Clustering in training-based methods. As explained before training-based techniques involve
fine-tuning a generative model on the private dataset using the DP-SGD algorithm. The fine-tuned
model is then used to generate synthetic samples. A significant challenge with this approach is the
potential for a distributional mismatch between the synthetic and real data.

Yu et al. (2024) first highlighted this distributional problem and proposed a solution utilizing a
DP-histogram to obtain a more representative understanding of the contents of the private data.
Their work demonstrated that filtering or resampling of the generated synthetic data, guided by the
histogram information, could substantially improve the quality of the resulting dataset.

Subsequently, Tan et al. (2025) addressed the inherent limitations of a standalone DP-histogram,
which may provide insufficient information about the private data. They proposed leveraging public
datasets to improve the generation process. Specifically, their approach incorporates a sophisticated
universal topic model, built on a large-scale public corpus (Wikipedia), alongside the dp fine-tuned
generative model. The topic model is used to derive a differentially private topic histogram of
the private data, which captures high-level distributional information. During the data generation
phase, this topic histogram is employed to ensure that synthetic data is produced in proportion to the
observed topic distribution in the private data.

Comparison with our work. It is notable that while both Yu et al. (2024); Tan et al. (2025)
employ histogram information of the private data and Tan et al. (2025) utilizes public data to inform
its the generative model, their fundamental objective and application differ substantially from the
methodology proposed in this paper.

The aforementioned works use clustering/topic modeling to guide the generative model (e.g., via
resampling or proportional generation) to mitigate the distributional mismatch between the real and
synthetic data. The topic model in Tan et al. (2025), for instance, captures semantic, high-level topical
information that is crucial for improving the quality of training-based synthetic data generation.

First of all our proposed method is based on DP inference rather than DP-SGD training. Furthermore,
our method utilizes clustering with public centroids for a distinct purpose: to group highly similar
private data instances. Following this clustering step, the only information we retain is the cluster
similarity of the private samples; the semantic topic or high-level content of the clusters remains
unknown. This grouping of similar records is sufficient for our approach and represents a fundamental
distinction from prior work that uses distributional information to help the generative process.

D EXPERIMENTS CONTINUED

D.1 IMPROVED BASELINE

Our experiments begin by improving over the baseline in Amin et al. (2024). Baseline++ includes
two modifications: switching from an instruction-tuned model to a pre-trained model, and including
more examples in-context. Both changes improve the representativeness of the generated data. We
break down the individual effects of these modifications.

Dataset Privacy ε Checkpoint # Examples MAUVE

AGNews ∞
IT 1 .152.007

IT 2 .218.012

PT 1 .559.023

PT 2 .640.046

Yelp ∞
IT 1 .130.009

IT 2 .203.024

PT 1 .385.015

PT 2 .460.050

Table 4: Effect on MAUVE from varying the number of in-context examples, and model checkpoint.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 ABLATION ON THE NUMBER OF CLUSTERS

We present additional results on the influence of the number of clusters, in the setting of Table 1.
Note that Table 1 only reports the (Yelp, 500 clusters) result.

Yelp Agnews
Clusters MAUVE Clusters MAUVE

2 .460.050 1 .484.023

200 .663.031 4 .640.046

500 .650.021 500 .778.014

Table 5: MAUVE scores for different numbers of clusters on the Yelp and AGNews datasets.

D.3 INFLUENCE OF EMBEDDINGS

An important choice for our experiments is the embedding used when evaluating MAUVE. We re-run
our experiments on the Yelp dataset switching from Gecko (Lee et al., 2024) to GPT2-large (Radford
et al., 2019). The ordering of results in Table 3 is largely preserved.

Dataset Method Privacy ε Gecko MAUVE GPT2 MAUVE

Yelp

Real data ∞ .874.012 .960.001

Mean Baseline (Amin et al., 2024) 10 .136.014 .075.010

Mean Baseline++ 10 .415.031 .555.054

Mean Clustered 9.90 + 0.1 .449.021 .580.024

Median Clustered 2.21∗ + 0.1 .460.019 .601.023

Mean Baseline 3 .136.012 .083.010

Mean Baseline++ 3 .391.054 .568.025

Mean Clustered 2.90 + 0.1 .436.032 .623.029

Median Clustered 1.38∗ + 0.1 .451.038 .581.029

Table 6: MAUVE scores on Yelp dataset using Gecko and GPT2 embeddings. An asterisk (*) next
to an ε value for the Median Clustered method indicates that it was calculated using our ex-post
data-dependent DP analysis from Section 5.

D.4 MEDIAN MECHANISM PRIVACY COST

Unlike unconditional, worst-case ε that admits uniform per-token privacy costs, the median mecha-
nism’s privacy cost differs batch-by-batch and also position-by-position. The figures below plot these
privacy costs.

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Batch

0

5

10

15

20

25

30

35

40

Co
un

t

Distribution of Batch 's
median = 1.41
.75 = 1.63
max = 2.40

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

Empirical CDF of Batch 's
median = 1.41
.75 = 1.63
max = 2.40

Figure 3: We plot the distribution of per-batch ε costs of the median mechanism on AGNews. The
maximum over all batches obtains ε = 2.40, which is the privacy guarantee we report in Table 3 via
Theorem 2. Most batches have substantially smaller privacy cost.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Batch

0

20

40

60

80

100

120

140
Co

un
t

Distribution of Batch 's
median = 2.18
.75 = 2.45
max = 5.04

1 2 3 4 5
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

Empirical CDF of Batch 's
median = 2.18
.75 = 2.45
max = 5.04

Figure 4: We plot the distribution of per-batch ε costs of the median mechanism on NYT Topic. The
maximum over all batches obtains ε = 5.04, which is the privacy guarantee we report in Table 3 via
Theorem 2. In this case, our accounting suffers particularly from the long right tail of per-batch
privacy costs.

0 20 40 60 80 100 120
Token position

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

 in
cr

em
en

t

Per-token (mean ± 2SE)
mean increment
±2 SE

Figure 5: We plot the average per-token ε costs of the median mechanism on AGNews (ε = 2.40).
Consensus builds throughout generation, decreasing the privacy cost.

0 50 100 150 200 250
Token position

0.000

0.002

0.004

0.006

0.008

 in
cr

em
en

t

Per-token (mean ± 2SE)
mean increment
±2 SE

Figure 6: We plot the average per-token ε costs of the median mechanism on Yelp (ε = 2.21).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.5 EMPIRICAL PRIVACY TESTS

It is natural to consider the practical privacy ramifications of the relaxed privacy definition given in
Definition 2. To investigate this, we supplement our theoretical analysis with empirical privacy tests.

We conduct two empirical privacy tests: (1) a reconstruction test, where we run our method on a
dataset consisting of secret keys and measure the fraction of them emitted as synthetic data (comparing
against a control: the fraction emitted belonging to an unseen, holdout set); and (2) a privacy audit
on the median mechanism that yields an empirical lower bound of the epsilon. Both tests do not
demonstrate evidence of privacy violations.

D.5.1 RECONSTRUCTION TEST

Setup. We form a dataset of 50k unique 5-digit strings, each one randomly selected from
["00000", ... "99999"]), creating entries that take the form "My 5-digit key is
00000." We randomly select half (25k) as source data input to our DP inference algorithm and
reserve the other half (25k) as holdout data. A gap in the number of exact matches in the synthetic
data for source and holdout is evidence of memorization.

We run the median algorithm with the exact same hyperparameters as in Table 3, and obtain an
ex-post, data-dependent guarantee. To strengthen the reconstruction test, we prefill the generated
output with the prefix "My 5-digit key is " and generate only the numbers afterward.

Reconstruction rates are comparable to random data. In Table 7, we see that source data is
not more likely to be emitted than unseen holdout data, suggesting no evidence of memorization.
Furthermore, notice that in this setup, drawing a random set of 5-digit numbers and treating that as the
synthetic-data-under-test would yield source and holdout overlap rates of 25% which is comparable
to these results. Finally, we also run the same test for unconditional ε = 3 mean and observe the
same result as our data-dependent ε = 2.29 median.

Method Privacy ε Synthetic count % Source overlap (count) % Holdout overlap (count)
Median 2.29* 7685 25.5% (1958) 25.8% (1979)
Mean 3 8268 24.8% (2051) 25.2% (2087)

Table 7: Results of the reconstruction test. (*) denotes data-dependent ε. Both the mean run with
unconditional ε = 3 and the median run with data-dependent ε = 2.29 demonstrate that generated
synthetic data’s overlap with input source data does not significantly differ from overlap with holdout
data that is unseen by the method.

D.5.2 EMPIRICAL AUDIT OF THE MEDIAN MECHANISM

To address concerns regarding possible gaps between the implemented method and the analyzed
algorithm, we conducted an empirical privacy audit on the median method. We found no violations
of stated ε upper bounds.

Data-dependent epsilon calculation is already empirical. We remark that the nature of our data-
dependent calculation of epsilon (Theorem 2) is highly similar to running an empirical privacy audit.
Rather than the usual paradigm in unconditional DP of (1) writing down an algorithm, (2) proving
an ε guarantee; and (3) trusting the algorithm to be correctly implemented; in the ex-post data
dependent regime, we (1) implement the algorithm without stating any privacy guarantees a priori;
and then (2) directly measure the privacy cost by examining the sampling distributions produced by
the algorithm (akin to how privacy audits are done for private prediction (Chadha et al., 2024). Hence
an additional privacy audit does not introduce a qualitatively new safeguard in this setting, compared
to unconditional DP.

The gap remaining in the ε upper bound in our analysis is that it makes the worst-case assumption
that the adversary can craft prefixes that would optimally shift the median: both coordinate-wise and
for each time step, to ensure maximal possible divergence.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Setup. For our empirical audit, we generate text from a batch, and compute the empirical privacy
loss for an adversary that can remove any single context from the batch up-front. This mirrors the
realistic counterfactual for a user that wants to assess the change in probability of the outcome given
that they removed their example. To compute the privacy loss for removing a given example, we
simply compute the sampling distribution at all time steps with or without the single example, and
compute the gap in log probability of the output sequence. Taking the maximum over all examples
over the batch yields the result of our empirical audit.

Results. We audit the clustered median algorithm that reports an epsilon of 2.40 in Table 3. Recall
also that our privacy analysis uses parallel composition, so the reported 2.40 refers to the batch with
the highest privacy cost (see Figure 3 for the full distribution). In Table 8, we present the results
of auditing one batch from each of the 4 label categories in AGNews. Indeed, we do not find any
evidence that our theoretical upper bounds are violated.

Label of batch Data-dependent ε (upper bound) Empirical ε (lower bound)
World 1.41 0.47
Sports 1.96 0.66
Business 1.37 0.53
Science/Technology 1.21 0.57

Table 8: Comparison of theoretical upper bounds and empirical lower bounds for the data-dependent
ε for various data batches. No evidence of violating bounds from the analysis.

D.6 COMPARISONS TO PRIVATE EVOLUTION

While we focus on improved methods for private inference, it is important to note that private
evolution techniques (Lin et al., 2023; Xie et al., 2024) offer a different approach to generating private
synthetic data without fine-tuning a model.

Private evolution methods like Aug-PE (Xie et al., 2024) are much more sensitive to prompt design,
since the synthetic data is generated from the prompt alone. For example, when generating a synthetic
version of the Yelp dataset, the prompt used by Xie et al. (2024) includes the rating and the category of
the review to be generated. The rating is from 1 to 5, and the category represents whether the review
corresponds to a restaurant or hotel, etc. Furthermore, seed data is generated with side knowledge of
possible further subcategories of reviews, such as the type of restaurant and the food it serves. On
the other hand, private inference methods use private data directly to generate synthetic data, and
therefore are able to use a trivial prompt (“Generate an example like this: ...”) that does not require
side knowledge about the private data.

To show how much private evolution methods can depend on prompt quality, we applied Aug-PE
to the Gemma 2 2b model and the YELP-POLARITY dataset, which contains 500K reviews and
binary review labels. We included only the review label in the prompt, but not the category of the
review. After 10 epochs, the synthetic text was mostly meaningless or not in English, and had very
low downstream accuracy and MAUVE score.

E EXPERIMENTAL DETAILS

E.1 EVALUATION HYPERPARAMETERS

MAUVE. The absolute value of MAUVE scores can vary due to the precise implementation details,
however the relative rankings it assigns to datasets is robust (Pillutla et al., 2021). We follow
the original implementation2 closely, as well as report all hyperparameters used: 768-dim Gecko
embeddings (Lee et al., 2024), n = 1000 texts per set, n/10 = 100 clusters (as recommended),
k-means iteration limit of 500, 5 k-means initializations, PCA target explained variance of 0.9,
MAUVE scaling factor of 5, and 32 MAUVE divergence curve discretization points.

2See https://github.com/krishnap25/mauve/blob/main/src/mauve/compute_
mauve.py

20

https://github.com/krishnap25/mauve/blob/main/src/mauve/compute_mauve.py
https://github.com/krishnap25/mauve/blob/main/src/mauve/compute_mauve.py

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

BERT. We compute BERT accuracy on a synthetic dataset by first partitioning it into a synthetic
validation and synthetic train component, then running a hyperparameter sweep for BERT training,
and finally selecting the checkpoint with best synthetic validation accuracy, and then finally reporting
the accuracy of the selected checkpoint on real held-out data.

The fraction of validation data is 0.1. We fix a batch size of 200, and train for roughly 500 steps by
setting epochs = math.ceil((batch_size * steps)/train_set_size). We use
Adam, and search over 5 learning rates [1e-6, 3e-6, 1e-5, 3e-5, 1e-4] × 2 settings for weight decay
[0.0, 5e-4]. In each run, we employ early stopping: stopping after 4 epochs with no improvement in
synthetic validation accuracy and returning the best checkpoint so far, in terms of synthetic validation
accuracy.

E.2 METHOD HYPERPARAMETERS

Setting Model Examples k Batch size Output tokens Temp. Clip c
Baseline IT 1 64 1000 1.5 9

Baseline++ PT 2 64 1000 1.5 9
+ non-private clustering PT 2 64 1000 1.5 9

Table 9: Hyperparameters for Yelp100k at ε =∞ results presented in Table 1. k refers to the number
of examples in each context; c is the clipping parameter in Equation 3.

Setting ε Model Examples k Batch size Output tokens Temp. Clip c
Mean Baseline 10 IT 1 64 373/337/355 1.5 9

Mean Baseline++ 10 PT 2 64 373/337/355 1.5 9
Mean Clustered 9.9 PT 2 64 367/331/349 1.5 9
Median Clustered - PT 2 64 367/331/349 1.5 6

Mean Baseline 3 IT 1 256 733/642/686 1.5 9

Mean Baseline++ 3 PT 2 256 733/642/686 1.5 9
Mean Clustered 2.9 PT 2 256 689/604/645 1.5 9
Median Clustered - PT 2 256 689/604/645 1.5 6

Table 10: Hyperparameters for ε = 3 and ε = 10 results presented in Table 3. The same hyperpa-
rameters are used across all datasets; except per-batch Output tokens which depends on input dataset
size to target the same ε; we report results for AGNews/Yelp/NYT Topic respectively. k refers to the
number of examples in each context; c is the clipping parameter in Equation. 3.

E.3 DATASETS AND MODELS

Table 11 summarizes all the datasets and models used our experiments.

E.4 PROMPTS

PT and IT Gemma variants necessitate changes prompt changes. We use the same templates across
all datasets. We stop generation when the model outputs its respective end token: "```" for PT,
"<end_of_turn>" for IT.

For clarity of exposition, we show the prompts when we use two examples per context, but the same
template is generalizes to k prompts per context (including k = 1 used in our experiments). The

3https://huggingface.co/datasets/fancyzhx/dbpedia_14
4https://huggingface.co/datasets/fancyzhx/ag_news
5https://huggingface.co/datasets/fancyzhx/yelp_polarity
6https://huggingface.co/datasets/dstefa/New_York_Times_Topics
7https://huggingface.co/google/gemma-2-2b-it
8https://huggingface.co/google/gemma-2-2b
9https://huggingface.co/google/bert_uncased_L-10_H-256_A-4

21

https://huggingface.co/datasets/fancyzhx/dbpedia_14
https://huggingface.co/datasets/fancyzhx/ag_news
https://huggingface.co/datasets/fancyzhx/yelp_polarity
https://huggingface.co/datasets/dstefa/New_York_Times_Topics
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-2-2b
https://huggingface.co/google/bert_uncased_L-10_H-256_A-4

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Dataset ntrain Description Usage Source

DBPedia 560,000 14-category Wikipedia article topic Public clusters (Zhang et al., 2015)3

AGNews 108,000 4-way news topic classification Synthesis target (Zhang et al., 2015)4

Yelp Polarity 504,000 2-way review sentiment classification Synthesis target (Zhang et al., 2015)5

NYT Topics 230,400 8-way news topic classification Synthesis target (Singh, 2021)6

(a) Overview of datasets used. For synthesis targets, ntrain is 10% smaller than reported elsewhere as we
split off that amount to use for validation.

Model Usage Source

Gecko Generation; embeddings for clustering (Lee et al., 2024)
Gemma 2 2B IT Generation; DP Inference (Gemma Team, 2024)7

Gemma 2 2B PT (Gemma Team, 2024)8

BERT-Base 12/768 110M Evaluation; downstream finetuning (Turc et al., 2019)9

Gecko Evaluation; embeddings for MAUVE (Lee et al., 2024)

(b) Overview of models used in experiments.

Table 11: Datasets and models used in our experiments. The Gecko embedding model is used
for clustering, as well as for computing MAUVE. Gemma 2 2B IT/PT are used for synthetic data
generation. We finetune BERT using synthetic data to evaluate how useful synthetic data is for
improving accuracy on real data.

field label is in natural language (e.g. Positive or Negative for Yelp Polarity); and recall
that batches are constructed so that that all examples in a batch share a label.

E.4.1 PT PROMPT TEMPLATE

```
{label}
{example1}
```

```
{label}
{example2}
```

```

E.4.2 IT PROMPT TEMPLATE

<start_of_turn>user
Here are texts with Label: {label}.

Text: {example1}

Text: {example2}

Please give another one. No formatting or explanations.<end_of_turn>
<start_of_turn>model
Text:

22


	Introduction
	Limitations of Uniform Batching
	Empirical demonstration

	Preliminaries and notation
	Improved algorithm for DP inference
	Batching by clustering
	Median aggregation

	Privacy analysis
	Mean aggregation privacy guarantee
	Median aggregation privacy guarantee

	Experiments
	Experiment setup
	Results

	Related work
	Conclusion
	Usefulness of clipping for median aggregation
	Proof of Theorem 2
	Related work continued
	Experiments continued
	Improved Baseline
	Ablation on the number of clusters
	Influence of Embeddings
	Median mechanism privacy cost
	Empirical privacy tests
	Reconstruction test
	Empirical audit of the median mechanism

	Comparisons to Private Evolution

	Experimental details
	Evaluation hyperparameters
	Method hyperparameters
	Datasets and models
	Prompts
	PT prompt template
	IT prompt template



