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ABSTRACT

Vision-language reinforcement learning (RL) has primarily focused on narrow do-
mains (e.g. geometry or chart reasoning). This leaves broader training scenarios
and resources underexplored, limiting the exploration and learning of Vision Lan-
guage Models (VLMs) through RL. We find video games inherently provide rich
visual elements and mechanics that are easy to verify. To fully use the multi-
modal and verifiable reward in video games, we propose Game-RL, constructing
diverse game tasks for RL training to boost VLMs general reasoning ability. To
obtain training data, we propose Code2Logic, a novel approach that adapts game
code to synthesize game reasoning task data, thus obtaining the GameQA dataset
of 30 games and 158 tasks with controllable difficulty gradation. Unexpectedly,
RL training solely on GameQA enables multiple VLMs to achieve performance
improvements across 7 diverse vision-language benchmarks, demonstrating the
value of Game-RL for enhancing VLMs’ general reasoning. Furthermore, this
suggests that video games may serve as valuable scenarios and resources to boost
general reasoning abilities.

1 INTRODUCTION

Vision language models have achieved impressive progress in basic tasks such as image description
and vision question answering. However, they still struggle with diverse and complex tasks that
require multi-step reasoning in real-world scenarios (Lu et al., 2023; Zhang et al., 2024a). One key
reason is that vision-language RL primarily focused on narrow domains, mainly including geometry
(Peng et al., 2024; Zhang et al., 2024c) and chart reasoning (He et al., 2024), as shown in Table 1.
This leaves broader training scenarios underexplored, limiting the exploration and learning of VLMs
through RL(Lu et al., 2023; Liu et al., 2025; Jiang et al., 2024a; Zhao et al., 2024).

We recognize that video games inherently have three advantages: At first, they can provide rich
visual elements and scenes with texts. Second, their mechanics are easy to verify, so we can synthe-
size reliable tasks with verifiable results. Third, their environments are fully controllable and easy to
modify, providing convenience for controlling the difficulty. Althrough existing works found game
is a good arena to evaluate VLMs reasoning ability (Zhang et al., 2024a; Paglieri et al., 2024; Zhang
et al., 2025; Li et al., 2024b), they did not apply training on it. One possible reason is they did not
transform game data into Visual Question and Answer (VQA) format to adapt to training, as shown
in Table 1.

To fully use the multimodal and verifiable rewards in game, we propose Game-RL, construct-
ing game scenarios for RL training to boost VLMs general reasoning ability. Then we propose
Code2Logic, a novel approach adapts game code to synthesize game reasoning task data, as shown
in Figure 1. Code2Logic establishs mapping from game code to reasoning logic. Using Code2Logic,
we have constructed the GameQA, which is a Visual question Answer (VQA) dataset to train and
evaluate the reasoning capabilities of VLMs. GameQA includes 30 games, 158 tasks and 140K
questions with controllable difficulty gradation, covering 4 cognitive categories, as shown in Fig-
ure 2 and Figure 6. Unexpectedly, despite training solely on game tasks, using Group Relative
Policy Optimization (GRPO) (Guo et al., 2025), several SOTA open-source VLMs demonstrated
out of domain generalization, specifically Qwen2.5-VL-7B achieving 2.33% improvement across 7
diverse vision-language benchmarks.

Our main contributions are as follows:

1
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Table 1: Our GameQA dataset extends RL training scenarios for VLMs to the domain of video
games, providing diverse verifiable game tasks along with controllable difficulty. Comparison of
existing visual reasoning datasets. Size means sum of the number of VQA pairs in train set and test
set. Ration. Annot. means has annotated reasoning process. 3D Scene means some games of it are
3D scene. Detailed introduction can be found in Section 6.

Reasoning Related Work Train Game Ration. 3D Adjustable
Domain Set Count Annot. Scene Difficulty

Math

MAVIS (Zhang et al. (2024c)) 4 N/A 4 8 8
MultiMath (Peng et al. (2024)) 4 N/A 4 8 8
Geo170k (Gao et al. (2023)) 4 N/A 4 8 4
MathV360K (Jiang et al. (2024b)) 4 N/A 4 8 4

Game

ING-VP (Zhang et al. (2024a)) 8 6 8 8 4
BALROG (Paglieri et al. (2024)) 8 6 8 8 8
VideoGameBench

8 23 8 4 8(Zhang et al. (2025))
VCbench (Li et al. (2024b)) 8 10 8 8 4
GameQA (Ours) 4 30 4 4 4

• We propose Game-RL, constructing game tasks for RL training to boost VLMs general reasoning
ability. To obtain training data, We propose Code2Logic, a novel approach that adapts game code
to synthesize diverse game reasoning task data.

• Using Code2Logic, we developed the GameQA dataset, which includes 30 games, 158 tasks and
140K questions with controllable difficulty gradation.

• Our experiments show that VLMs fine-tuned solely on GameQA through RL achieve up to 2.33%
improvement across diverse visual reasoning benchmarks, demonstrating both GameQA’s gener-
alizability and the value of Game-RL for enhancing AI general reasoning capabilities.

2 CODE2LOGIC: SYNTHESIZING VERIFIABLE GAME TASK DATA

We propose Code2Logic to synthesize verifiable game reasoning tasks data via adapting game code.
Code2Logic comprises three core steps: game code construction, task template design, and data
engine construction for dataset generation, as shown in Figure 1. Code2Logic establishes a mapping
from game code to reasoning logic.

2.1 GAME CODE CONSTRUCTION

The first step is to construct the code of the target video game. Game code defines the state space
and contains some core functions encoding the transition rules of the game. These functions can be
reused and adapted for data engine construction.

Taking Sokoban as an example, it is simple enough to be easily built with one-line prompt using
LLMs such as Claude 3.5 and GPT-4o. Sokoban game state is only composed of wall, player,
box and target, while action only includes moving in four directions. The prompt used for game
code generation and pseudocode of the game is illustrated in Figure 1 (Step 1). Meanwhile, the
Sokoban move function within Sokoban code can inspire the "State Prediction" questions, such as
"Predict where will player end up after these steps", and this function can be reused for data engine
construction.

2.2 GAME TASK AND QA TEMPLATE DESIGN

The second step is to design game task and question answer templates (QA Template) according to
each video game. Game task designing base on the visual element and action space of video game
generated in the first step. Taking Sokoban as an example, we can design a task about predicting the
position of player after moves according to a game state screen, so we can propose a question and
an answer. The question is "If the player moves left, up, down, down, where is the player?" and the
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Game Code

Task Templates

Data Engine

LLMStep 1: Game Code Construction

Prompt: Create an interactive

Sokoban game.
class Sokoban:

def __init__(self, x, y, ...):
self.player = (x, y)
self.boxes = ...
self.goals = ...
self.walls = ...

def move(self, direction):
new_x, new_y = ...
if (new_x, new_y) in self.walls:

return self.cant_move(...)
if (new_x, new_y) in self.boxes:

return self.push_box(...)
return self.move_player(...)

Step 2: Game Task and QA Template Design

Prompt: Refine man-made Task Template. 

Sokoban code: … 
Question Template:

This is a Sokoban puzzle ... If player moves: <move_seq>,

where will player end up?

Options:  <option_1> ... <option_8>

Answer Template:

Player position: <pos>

Move 1 - <dir>:  Player moves from <pos> to <pos>.

Move 2 - <dir>:  Player moves from <pos> to <pos>.

...  

Final position: <pos>. Choose option <number>.

Step 3: Data Engine Construction

Prompt: Write a program that executes Sokoban code to fill in Task 

template, and output the dataset. Sokoban code: … Task template: …

class DataEngine:
def generate_sokoban_sample(self):

sokoban = Sokoban(...)
moves = self.generate_random_moves()
state_records = [sokoban.move(move) for move in moves]
return QA_template.format(state_records)

Question:

This is a Sokoban puzzle ... If player moves: Left, 

Up, Down, Down, where will player end up?

Options: [1] (1, 1) [2] (1, 2) [3] (1, 3) [4] (2, 1) [5] 

(2, 2) [6] (2, 3) [7] (3, 1) [8] (3, 2)

Analysis:

Player position: (2, 3)

Move 1 - Left:  Player moves 

from (2, 3) to (2, 2). 

Move 2 - Up:  Player moves 

from (2, 2) to (1, 2).

...  

Final position: (2, 2). Choose 

option 5.

1

2

3

4

Final Result: Data Samples Generated 

by Data Engine

Figure 1: Overview of Code2Logic approach. The process involves three main steps: (1) using
LLMs to construct game code. (2) LLM-assisted design of the task templates including question
and analysis templates based on the generated game code. Each task template condenses one type
of reasoning pattern in the game. (3) Using LLMs to construct a data engine that directly reuses the
core game code from the first step, including functions like move. (4) After these main steps, the
data engine is executed to fill in the task templates developed in Step 2 and generate data samples,
as illustrated in the Final Result Section.

answer is "The position of player is (2,2)." Then we can generalize these questions and answers into
a QA Template, as shown in figure 1 (Step 2). Meanwhile, we can fill contents into a QA Template
to get many instances. Detailed QA Templates of Sokoban is provided in Appendix G.1.

In GameQA dataset, each task is defined as a group of samples from the same game that share the
same QA template. We categorize the reasoning tasks into three types, including "Target Percep-
tion Task", "State Prediction Task" and "Strategy Optimization Task", with the detailed descriptions
shown in Appendix E.1.

For a task, we use LLMs to assist the design and refinement of the QA template, an example prompt
for such refinement is illustrated in Figure 1 (Step 2). Additionally, LLMs can also design tasks,
with example prompt shown in Appendix G.2. In summary, designing a QA template is equivalent
to extracting one type of reasoning pattern from the video game code obtained in the first step. The
third step then further instantiates these reasoning task templates into a dataset.

2.3 DATA ENGINE CONSTRUCTION FOR DATA SAMPLES GENERATION

The third step is data engine construction for samples generation. The data engine is a program that,
when executed, automatically generates task instances in batch according to task templates. LLMs
are used to assist in constructing the data engine’s code based on the game code obtained in the first
step. The prompt for guiding LLMs to construct the data engine code is shown in Figure 1 (step 3).
The pseudocode for the data engine is shown in Figure 1 (step 3). Taking Sokoban’s state prediction
task as an example, the data engine program is constructed from four core modules:

• Game environment initialization: This module randomly generates Sokoban environment by
directly reusing the initialization functions from the step 1 game code. Sokoban environment
includes the position of player, boxes, goals and walls.

• Proposing task instance: This module proposes a state prediction task instance by generating a
multi-step random movement sequence.

3
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3D Reconstruction

Game Category: 3D Spatial Perception and Understanding

Introduction: Add cubes (voxels) until the
structure’s front, side, and top views
match the target projections. Every new
cube must touch an existing cube face-to-
face.

[Easy] Q2 (Voxel position identification) :
<Question> Which of the positions contains a
voxel?
<Analysis> Analyze each option: …
<Answer> Option 2. (1,1,1).
[Hard]Q6(Min voxel addition requirement) :
<Question> What is the minimum number of
voxels needed to make it match both target
projections?
<Analysis>
1. Analysis of Current Information: …
2. Analysis of Y-Z Projection (Front View): …
3. Analysis of X-Z Projection (Side View): …
4. Finding Required Positions: …
5. Connectivity Analysis and Completion: …
6. Verifying Optimality: …
Therefore, the minimum number of voxels
needed to complete the reconstruction is 4.
<Answer> 4.

Tangram

Introduction: Fit the pieces back onto the
main board to complete the shape. Pieces
must touch at least one edge, not just a
corner. Some pieces are shown below the
board. Grids with same color belong to
the same piece.
Game Category: Pattern Recognition and Matching

[Easy] Q1 (Main board piece):
<Question> How many pieces are on the
main board?
<Analysis> Pieces currently on the board: …
Piece 2 (orange) around position (5, 4); ...;
There are three pieces on the main board
<Answer> 3.
[Medium] Q4 (Removed piece rotation 
feasibility) :
<Question> Can the removed piece fit back 
into the main board by only rotation? What 
rotation(s) work? Options: … 
<Analysis> Dimension Analysis: 
Hole dimensions: 8x5; Piece dimensions: 8x5. 
Based on dimensions, these rotations 
(clockwise) might work: [0, 180]
Test each rotation: ... 
Summary: Valid rotations found: [0]
<Answer> Option 8. rotate 0 degrees

Sudoku

Game Category: Multi-step Reasoning

Introduction: Fill the empty cells with the
four colors—red, green, blue, magenta,—
so that each row, column, and 2x2
subgrid contains every color exactly once.

[Easy] Q1 (Position color identification) :
<Question> What color is at (3,4)? Options:
A.red, B.green, C.blue, D.magenta
<Analysis> From the image we can see the 
color at Position (3,4) is red.
<Answer> A. red.

[Hard] Q5 (Guided-position color deduction) :
<Question> After determining colors at 
positions (1,4), (2,2), what color should be at 
position (2,4)? Options: A.red, B.green, 
C.blue, D.magenta
<Analysis> Deductive reasoning process:
Step 1: Position (1,4): … So it must be blue.
Step 2: Position (2,2): … So it must be green.
Step 3: Final analysis for position (2,4):…
After previous deductions, possible color 
reduced to: magenta
<Answer> D. magenta.

Sokoban

Game Category: Strategic Planning

Introduction: You control a cartoon
character who pushes brown “X” boxes
onto green “X” targets. Brown tiles are
walls you can’t cross; light-brown tiles are
open floor. Push the box onto a target to
win.

[Medium] Q3 (Player final position) :
<Question> If the player moves: up, right,
down, up, up, where is the player?
<Analysis> Player position: (1,3). 
Move analysis: … Initial position: … Move 1 -
Up: Failed …; Final position: …
<Answer> (1,3).
[Hard] Q6 (Minimum move count) :
<Question> What’s the minimum number of 
moves needed to solve the puzzle? Options: 
[1] 7; [2] 12; [3] 3; [4] 6; [5] 5; [6] 2; ...
<Analysis>  Player position: (1,3) Box position: 
(2,2) Target position: (1,1).
Step by step solution analysis:
Player (1,3) to (2,3)... Player (2,3) to (2,2) (box 
(2,2) to (2,1))... Player(3,2) to (3,1)… Player 
(3,1) to (2,1) (box (2,1) to (1,1)) Total player 
moves: 5. Answer: Option5. 5.
<Answer> Option5. 5.

Figure 2: Four game examples from GameQA: 3D Reconstruction, Tangram, Sudoku, and Sokoban,
each representing distinct cognitive categories. Each game displays two VQA examples consisting
of: (a) current game state visualization, (b) a targeted question, and (c) step-by-step reasoning with
the answer. GameQA transforms complex game-playing tasks into this structured VQA format. See
Appendix J for more VQA examples of some representative games.

• Solving task instance: This module generates a solution using a corresponding algorithm. For
state prediction task, the algorithm simulates each action by reusing the movement logic from
game code of step 1, which handles all aspects of movement including collisions and box pushing.

• QA data construction: This module fill the task templates. The movement sequence will be filled
into Question Template to become a question instance. The state transition trajectory will be filled
into the analysis template to become a analysis instance.

2.4 DATA QUALITY ASSESSMENT AND DATA AUGMENTATION

We implemented manual quality verifications at each step of our method.

Game code verification: We verify the correctness of the game code generated by the models by
manually running the game program. If errors are found, including vision issues in the game display
or code logic errors, they are fed back to the LLM for regeneration. For complex game features that
LLMs cannot generate correctly, we retrieved relevant open-source code and provided it to the LLM.
Games created with external code are shown in Appendix E.4.

Data engine validation: During the data engine development process, LLMs generate an initial
version based on the prompt. This version is then manually tested. If the generated reasoning
questions and answers do not conform to the templates from the second step or contain errors, the
LLM will be instructed to regenerate the data engine.

Data augmentation and filtering: Once the data engine is constructed, data samples can be easily
generated in batch, yet the answer processes often exhibit repetitive patterns. We therefore em-
ployed LLM paraphrasing to perform data augmentation, detailed in Appendix F.3. Additionally,
we applied data filtering to ensure the augmented samples were correct, of appropriate length, and
without excessive textual repetition. Details of our data quality assurance process can be found in

4
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Appendix F.4. Time spent on these main steps for each game in GameQA can be found in Ap-
pendix E.3.

3 THE GAMEQA DATASET

Table 2: GameQA train and test set statis-
tics summary. Full table in Appendix F.1.

Statistic Category Train Set Test Set

Total Games 20 30
In-Domain 20 20
Out-of-Domain 0 10

Total Tasks 102 158
Total Questions 126,760 15,047

Multiple Choice 86,520 10,518
Avg. Choices 7.10 7.05

Fill-in-the-Blank 40,240 4,529
Unique Images 74,620 8,620

The GameQA dataset is a visual-language question an-
swering dataset that transforms game-playing tasks into
a Visual Question Answering (VQA) format, as shown
in Figure 2. GameQA includes 30 games, 158 distinct
tasks and approximately 140K questions in total.

Dataset composition: The dataset has 30 different
games classified into four categories based on the core
abilities required to solve game tasks: "3D Spatial
Perception and Understanding", "Pattern Recognition
and Matching", "Multi-step Reasoning", and "Strategic
Planning", detailed descriptions shown in Appendix F.2.
The criteria on choosing these 30 games are listed in Ap-
pendix E.2. As illustrated in Figure 6, the 30 games are
divided into two sets: 20 In-Domain games for model
training and 10 Out-of-Domain games for testing generalization performance. The Out-of-Domain
set was held out during training.

Dataset question types: To ensure the final answers are verifiable, all questions in the dataset are
either multiple-choice or fill-in-the-blank. The multiple-choice questions typically have 7-8 options,
while the fill-in-the-blank questions require simple answers such as numbers or coordinates, with
detailed statistics shown in Table 2.

Difficulty levels: Each task is assigned with one of three difficulty levels of questions ("QA level").
And data samples are divided into 3 difficulty levels based on image complexity ("Plot Level"),
namely game state or grid size, controlled by code parameters, providing three perception and rea-
soning difficulty levels for the tasks. Examples demonstrating these difficulty levels are in Ap-
pendix J. The training and evaluation result about difficulty are shown in Table 12 and Table 6

4 GAME-RL: RL ON GAME TASKS

4.1 RL ALGORITHM

We use the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our algorithm. We
use the standard formulation from DeepSeek, with the loss function shown below and the hyperpa-
rameters shown in Appendix C.3.2.

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)] 1
G

G∑
i=1

1

|oi|

|oi|∑
t=1{

min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL[πθ||πref]

}
4.2 REWARD DESIGN

LLM as a judge to give reward. Given the high diversity of responses of our dataset, traditional
rule-based judge methods (e.g. text matching) suffer from insufficient accuracy in answer matching.
We chose the quantized version of Qwen2.5-32B-AWQ (Qwen et al., 2025) as an evaluator model
to assist in scoring the generated outputs.

Outcome reward design of RL The reward signal used for training was based solely on the cor-
rectness of the model’s final answer. Both the reference answer and the answer generated by the
policy model are inputted into this evaluator model. The evaluator model then determines whether
the generated answer matches the reference answer. The reward allocation adheres to a strict binary
principle: a reward of 1 is assigned if they match, and a reward of 0 is assigned otherwise.

5
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Table 3: Evaluation results on general vision benchmarks. The percentage of performance improve-
ments compared to the vanilla model is denoted by (↑). Best performance per section is indicated in
bold.

Models Avg.
(↑) MathVista MathVerse MMBench MMMU CharXiv MathVision MMMU-Pro

Baseline

Random 14.84 17.90 12.74 26.37 24.67 0.00 10.03 12.19

Proprietary Multimodal Large Language Models

GPT-4o 56.9 63.8 50.2 86.0 69.1 47.1 30.4 51.9
Claude-3.5-Sonnet 59.5 67.7 56.8 78.5 68.3 60.2 33.3 51.5
Gemini-2.5-Pro 73.1 77.7 65.9 88.3 79.7 62.9 66.0 71.2

Open-Source Multimodal Large Language Models

Qwen2.5-VL-32B 60.70 77.40 60.41 88.13 63.83 47.50 33.80 53.83
Ovis2-34B 57.91 71.50 53.71 88.73 60.91 49.10 35.93 45.48
InternVL2.5-38B 55.62 68.60 48.38 86.93 57.53 41.50 39.40 46.98
LLaVA-OV-72B 49.51 58.60 46.85 83.13 52.74 35.20 33.87 36.18
Qwen2.5-VL-72B 60.95 75.50 56.87 86.80 65.34 48.10 40.60 53.45
InternVL2.5-78B 57.96 70.20 52.34 88.33 61.84 42.70 39.93 50.38

InternVL2.5-8B 45.89 57.50 36.04 81.93 47.96 31.70 28.87 37.25
+ GameQA (GRPO) 47.91 (+2.02) 61.70 37.11 83.87 50.06 32.00 31.93 38.69
InternVL3-8B 54.48 69.10 50.10 86.00 57.88 39.10 35.33 43.84
+ GameQA (GRPO) 55.88 (+1.40) 73.00 50.71 86.20 58.34 39.90 37.93 45.10
Qwen2.5-VL-7B 49.94 66.80 45.08 83.67 49.01 37.70 30.80 36.49
+ GameQA (GRPO) 52.27 (+2.33) 68.20 47.97 83.53 50.53 42.70 33.07 39.89
LLaVA-OV-7B 41.23 55.60 33.05 81.13 41.07 27.10 23.40 27.26
+ GameQA (GRPO) 42.27 (+1.04) 58.20 34.92 82.53 41.31 27.30 23.07 28.58

Table 4: GameQA’s generalization is competitive compared to outstanding geometry visual reason-
ing datasets

Models Avg.
(↑)

Out of Domain Games Avg.
(↑)

General Vision Benchmarks

3D Spatial
Perc. & Under.

Pattern Recog.
& Matching

Multi-step
Reasoning

Strategic
Planning

Math
Vista

Math
Verse MMBench MMMU CharXiv Math

Vision MMMU-Pro

Qwen2.5-VL-7B 27.09 23.60 29.20 26.21 29.34 49.94 66.80 45.08 83.67 49.01 37.70 30.80 36.49

+ MAVIS (GRPO) 27.61 26.80 28.25 28.42 26.98 51.53 67.90 46.16 83.62 50.45 39.20 34.98 38.42(+0.52) (+1.59)

+ Multimodal-Open-R1 28.33 24.87 27.86 29.93 30.64 51.86 67.63 48.09 83.78 49.78 40.20 34.89 38.65(GRPO) (+1.24) (+1.92)

+ MultiMath-8K (GRPO) 28.38 28.10 28.45 27.45 29.53 52.81 69.36 47.99 84.13 53.44 40.83 33.92 39.91(+1.29) (+2.87)

+ GameQA (GRPO) 29.87 27.00 28.52 31.49 32.46 52.31 68.70 48.72 83.16 50.21 41.40 34.27 39.74(+2.78) (+2.37)

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

The detailed description of data preparation, training processes, and evaluation method can be found
in Appendix C.

Hyperparamters of GRPO training We rollout 12 samples per questions. The model was trained
for one epoch. The learning rate was 2e-7, with a 5% warm-up. The clipping value ϵ was set to 0.2
and the KL-divergence coefficient β was set to 0.04.

Benchmarks We evaluated the models on a set of vison-language reasoning benchmarks consisting
of our GameQA test set and public general benchmarks.

• GameQA benchmark This test set includes around 500 question-answer pairs for each of 30
games, totaling 15,047 samples.

• General benchmarks We used the MMMU validation set (Yue et al., 2024a) for testing gen-
eral multimodal understanding, and included MMMU-Pro (Yue et al., 2024b), which features 10-
option multiple-choice questions. To assess mathematical reasoning in visual contexts, we used
MathVista (Lu et al., 2024) (testmini, 1,000 samples), MathVerse (Zhang et al., 2024b) (testmini,

6
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Figure 3: Scaling effect of data quantity on general vision benchmarks, of Qwen2.5-VL-7B-Instruct
trained on a total of 20k samples. For every 1000 samples trained, the model is tested on general
vision benchmarks. We divide results into 3 stages and use bin average to show the upward trend
more clearly.

3,940 samples), and MathVision (Wang et al., 2024a) (open subset, 3,040 questions). For general
visual understanding, we adopted MMBench (Liu et al., 2023) (validation set), and for chart-based
reasoning, we used CharXiv (Wang et al., 2024b).

5.2 MAIN RESULTS

By analyzing the models’ performance on in-domain tasks, related out-of-domain game tasks, and
general vision-language benchmarks, we can find that:

Game-only training enhances general reasoning capability of VLMs Training on the GameQA
dataset significantly improved performance on the GameQA test set. Moreover, models trained on
GameQA exhibited strong generalization to unseen games, with accuracy improvements ranging
from 1.16% to 3.82% (Table 5). On broader general vision benchmarks, these models showed
robust generalization, achieving consistent performance gains across all general vision reasoning
tasks. These results suggest that the models successfully learned transferable visual understanding
and reasoning abilities from the GameQA dataset (see Table 3).

GameQA’s out-of-domain generalization is competitive compared to outstanding geometry vi-
sual reasoning datasets To better understand the GameQA dataset’s advantages, we compared it
with the outstanding geometry visual reasoning datasets, include MAVIS (Zhang et al., 2024c),
Multimodal-Open-R1 (lmms lab, 2025) and MultiMath (Peng et al., 2024). MAVIS includes various
geometry and function problems. Multimodal-Open-R1 is a geometry-centered dataset. MultiMath
is a comprehensive and diverse multimodal mathematical dataset. Based on Qwen2.5-VL-7B, we
applied the same GRPO method on 5k GameQA samples, 8k samples from MAVIS, 8k Multimodal-
Open-R1 samples, 8k MultiMath samples respectively, to conduct comparative training. The results
(Table 4) show that despite having fewer training samples (5k vs. 8k) that are also out-of-domain
for geometry and function tasks, the GameQA-trained model is competitive compared to its counter-
parts trained on geometry or function data, where general vision benchmarks would be considered
in-domain. These results suggest that GameQA enables stronger out-of-domain generalization,
even when using less data from a mismatched domain.

5.3 SCALING EFFECT OF GAME SAMPLES ON GENERALIZATION

We trained the Qwen2.5-VL-7B model on a GameQA subset of 20,000 samples from 20 games
using the GRPO method. As shown in Figure 3, the model’s performance score demonstrates a
overall upward trend on 7 general vision benchmarks as the amount of training data increases. This
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Figure 4: The scaling effect of GameQA. As
VLMs are trained on an increasing number of
distinct games, their performance on general vi-
sual benchmarks improves.

13.57%

80.71%

5.71%

No Change Visual Perception 

Worsened

Visual Perception Improved

Question: Which data series maintains the 

highest values relatively throughout the time 

period displayed in the chart?

Correct Answer: observed values Xt

Response Before GRPO:

… 4. **Observed values Xt :** - It does not 

maintain the highest values throughout the 

period.

Response After GRPO:

… - The red dashed line (observed values Xt) starts at a value close to 0.6 and 

gradually decreases over time … maintains the highest values relatively 

throughout the time period.

8.57%

85.00%

6.43%

No Change Text Reasoning 

Worsened

Text Reasoning 

Improved

Figure 5: Impact of GRPO on visual percep-
tion performance on general visual benchmarks.
Two pie charts and one example below illustrate
how performance improves after GRPO.

indicates that scaling up training on GameQA data effectively enhances the VLM’s general
reasoning abilities.

5.4 SCALING EFFECT OF GAME DIVERSITY ON GENERALIZATION

With around 5,000 total training samples, we trained the Qwen2.5-VL-3B on GameQA subsets with
4, 10, and 20 distinct games (Table 7). The results (Figure 4) show a positive correlation between
game diversity and generalization ability. This suggests that scaling game diversity makes bet-
ter generalization, enabling the model to acquire more robust visual understanding and reasoning
abilities.

5.5 QUALITATIVE ANALYSIS

To confirm that GRPO substantially enhances visual perception and text reasoning abilities of mod-
els, we manually analyzed 790 cases randomly sampled from the results of InternVL2.5-8B, con-
taining responses before and after GRPO. The results (Figure 5) confirm that after GRPO, the model
demonstrates improved visual recognition of image elements and performs more precise rea-
soning. More statistics and cases are in Appendix B.2 and B.3.

In addition, our qualitative analysis of model performances across four game categories reveals
common behaviors and challenges, detailed in Appendix I.

5.6 ADVANCED VISION-LANGUAGE MODELS PERFORM NOTABLY WORSE THAN HUMANS ON
THE GAMEQA BENCHMARK

Both leading open-source and proprietary models achieve average accuracy levels considerably
lower than those of human (Table 5). This clear difference highlights the difficulty and high re-
quirements of the GameQA benchmark, requiring not only accurate visual comprehension of game
scenes but also the ability to carry out multi-step logical reasoning. The training and evaluation
result about difficulty are shown in Table 12 and Table 6 Furthermore, our qualitative analysis and
case study in Appendix I reveal that even the most advanced models currently struggle to match
human-level understanding, particularly in tasks demanding deep reasoning. More experiments can
be found in Appendix D.
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Table 5: Evaluation results on GameQA benchmark. In-domain and out-of-domain game category
results are shown. The percentage of performance improvements compared to the vanilla model is
denoted by (↑). Best performance per section is indicated in bold.

Models Avg.
(↑)

In Domain Games Avg.
(↑)

Out of Domain Games

3D Spatial
Perc. & Under.

Pattern Recog.
& Matching

Multi-step
Reasoning

Strategic
Planning

3D Spatial
Perc. & Under.

Pattern Recog.
& Matching

Multi-step
Reasoning

Strategic
Planning

Baselines

Human 84.75 85.18 80.74 84.46 88.62 81.61 79.17 73.81 81.27 92.19
Random 11.90 11.69 12.04 10.24 13.61 9.68 7.11 9.50 11.83 10.27

Proprietary Multimodal Large Language Models

GPT-4o 40.52 32.01 34.81 50.67 44.59 43.81 48.90 36.91 48.58 40.87
Claude-3.5-Sonnet 47.69 37.41 43.16 56.09 54.11 50.34 51.30 43.62 60.42 46.01
Claude-4-Sonnet 46.58 31.12 39.73 66.90 48.57 55.16 45.60 56.58 63.28 55.17
Gemini-2.5-Pro 58.95 46.93 52.79 74.62 61.46 67.60 57.60 77.37 77.62 57.80

Open-Source Multimodal Large Language Models

Ovis2-8B 24.98 19.92 24.43 27.21 28.37 26.99 29.70 20.70 34.14 23.41
InternVL3-9B 26.89 21.86 22.53 32.54 30.65 26.73 25.20 30.38 32.14 19.18
LLaMA3.2-11B-Vision 19.69 19.12 16.48 21.30 21.86 18.04 18.40 14.92 17.73 21.11
Qwen2.5-VL-32B 34.09 28.26 30.99 40.27 36.83 35.97 32.90 33.02 44.03 33.94
Ovis2-34B 34.53 27.92 32.72 39.46 38.03 35.29 35.50 34.20 38.71 32.75
InternVL2.5-38B 30.04 23.39 25.86 36.82 34.08 32.42 30.60 33.96 39.35 25.79
InternVL3-38B 35.23 28.33 31.76 41.89 38.96 38.69 33.30 43.62 50.09 27.75
LLaVA-OV-72B 24.87 19.92 24.88 27.72 26.95 28.32 26.80 23.52 32.87 30.11
Qwen2.5-VL-72B 37.63 29.47 32.85 45.76 42.42 39.22 35.90 37.38 46.86 36.75
InternVL2.5-78B 32.35 27.15 28.84 39.53 33.90 35.30 32.80 37.26 42.41 28.75
InternVL3-78B 38.00 33.15 33.03 46.60 39.20 39.74 34.90 40.70 50.95 32.43

InternVL2.5-8B 22.22 20.39 17.18 25.34 25.97 20.05 20.80 22.45 18.88 18.07
+ GameQA (GRPO) 29.44 (+7.22) 26.74 26.05 29.51 35.44 23.87 (+3.82) 25.00 25.12 24.91 20.45
InternVL3-8B 26.51 22.53 21.91 30.18 31.43 27.64 29.60 27.44 29.62 23.91
+ GameQA (GRPO) 33.09 (+6.58) 27.94 28.52 36.81 39.07 28.80 (+1.16) 29.20 25.31 34.59 26.09
Qwen2.5-VL-7B 25.78 22.58 21.92 25.21 33.40 27.09 23.60 29.20 26.21 29.34
+ GameQA (GRPO) 32.12 (+6.34) 26.80 26.88 33.34 41.45 30.51 (+3.42) 27.10 31.56 31.24 32.13
LLaVA-OV-7B 21.79 18.84 19.69 21.24 27.38 20.39 21.00 20.19 20.13 20.27
+ GameQA (GRPO) 33.49 (+11.70) 29.87 31.10 30.96 42.03 23.34 (+2.95) 27.20 20.05 23.55 22.57

6 RELATED WORK

Multimodal reasoning data construction Currently, the data construction methods are mainly di-
vided into two categories: human expert supervision and automated synthesis. Peng et al. (2024)
and Lu et al. (2021) collect visual reasoning problems from textbooks, Lu et al. (2023) constructs
datasets through labeling by STEM students, but they are limited by the scarcity of high-quality data
sources and the high cost of manual annotation. Lu et al. (2021); He et al. (2024); Gao et al. (2023);
Shi et al. (2024) uses expert models to generate reasoning processes, but the results are limited by
the performance of the expert model. Trinh et al. (2024) and Zhang et al. (2024c) synthesize geo-
metric reasoning data through procedural methods, but these methods are often designed for specific
domains and have high transfer costs. Table 1 provides a comparison of existing vision language
reasoning datasets.

Using game data to enhance VLMs reasoning capabilities Game environments provide well-
defined rules and mechanics that are easy to verify. However, existing work has not fully leveraged
the potential of game environments in visual reasoning data construction. Reed et al. (2022) trains
a general agent by tokenizing game images and action sequences, but it is difficult to generalize
on out-of-domain game tasks and this method relies on expensive expert trajectory data; Paglieri
et al. (2024); Zhang et al. (2024a; 2025); Li et al. (2024b) all established gaming environments for
Vision-Language Models, but these were used exclusively for evaluation purposes. These limitations
indicate that how to effectively use game data to enhance the reasoning ability of visual language
models remains a critical problem that needs to be addressed. Table 1 provides a comparison of
existing game reasoning benchmarks.

7 CONCLUSION

To explore broader training scenarios and resources for vision-language RL, we propose Game-RL
to construct game tasks for VLM’s RL training. We also propose the novel Code2Logic approach
adapting game code to synthesize diverse game reasoning task data, thus obtaining the GameQA
dataset for Game-RL. Multiple VLMs trained through RL solely on GameQA achieved performance
improvements across diverse general vision-language reasoning benchmarks. This not only demon-
strates the value of Game-RL for enhancing VLMs’ general reasoning abilities, but also suggests
that video games may serve as valuable scenarios and resources to boost VLMs’ general reasoning.
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8 STATEMENTS

Ethics Statement. This work adheres to the ICLR Code of Ethics. Our study does not involve hu-
man subjects, sensitive personal information, or private data. All datasets used in experiments were
either synthesized by our proposed Code2Logic pipeline or publicly available benchmark datasets,
and no additional ethical approvals were required. We have carefully considered issues of fairness,
reproducibility, and research integrity. To minimize potential harm, we ensured that the synthe-
sized data contains only game-based, rule-driven reasoning tasks without personal or discriminatory
content.

Reproducibility Statement. We have taken multiple steps to ensure the reproducibility of our re-
sults. Section 3 provides the construction details of the GameQA dataset, including task categories,
difficulty levels, and statistics. Section 2.1 and Appendix E.1 describe the Code2Logic pipeline in
detail, with pseudocode and examples of task templates. Experimental settings, model training de-
tails, and evaluation metrics are reported in Appendix C. In addition, all prompts and augmentation
procedures are provided in Appendix H.
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Figure 6: Overview of the GameQA dataset. The 30 games in GameQA can be classified into
four categories based on the core abilities required to solve game tasks. Appendix F.2 provides
definitions of the four game categories. Games chose as Out-of-Domain are not used for training;
instead, they are used to test the generalization performance after the model has been trained on
In-Domain games.
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Figure 7: The scaling effect of GameQA on unseen out-of-domain games

A LIMITATIONS AND FUTURE WORK

Using reasoning processes to conduct Supervised Fine-Tuning (SFT) has not achieved satisfactory
out-of-domain generalization. Therefore, future work could explore methods to better leverage these
reasoning processes to enhance the model’s general capabilities, such as employing reinforcement
learning based on process supervision. In addition, GameQA currently involves single-turn game
question answering. Future work could focus on developing training and evaluation methods for
multi-turn interactions in gaming scenarios.

B MORE ANALYSIS

B.1 GAMEQA EVALUATION RESULTS BY DIFFICULTY

Table 6: Evaluation results on GameQA benchmark by difficulty. Scores are broken down by
question difficulty (QA Level) and image complexity (Plot Level) within in-domain and out-of-
domain game sets. The percentage of performance improvements compared to the vanilla model is
denoted by (↑). Best performance per section is indicated in bold.

Models Avg.
(↑)

In Domain Games by Difficulty Avg.
(↑)

Out of Domain Games by Difficulty

QA Level Plot Level QA Level Plot Level

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Proprietary Multimodal Large Language Models

GPT-4o 41.56 48.10 40.63 32.95 47.69 38.60 37.80 44.03 55.63 44.45 32.05 54.49 42.98 33.71
Claude-3.5-Sonnet 48.90 59.26 46.07 36.70 55.49 45.97 43.80 50.94 62.80 46.15 43.80 60.58 49.19 42.26
Claude-4-Sonnet 48.80 58.36 50.14 42.23 56.45 48.99 47.81 56.03 66.71 55.91 45.45 62.80 54.31 50.37
Gemini-2.5-Pro 60.62 67.43 62.36 56.21 67.48 62.42 57.72 67.68 74.47 67.56 61.10 74.23 66.43 61.90

Open-Source Multimodal Large Language Models

Ovis2-8B 25.56 33.67 22.80 20.21 28.30 26.12 23.69 27.37 32.41 28.87 20.90 33.96 25.56 22.06
InternVL3-9B 27.45 34.92 24.20 21.15 30.42 26.94 24.43 26.54 30.45 23.23 25.86 34.41 23.93 20.63
LLaMA3.2-11B-Vision 19.67 24.51 18.54 15.96 20.71 20.22 19.16 18.35 19.37 20.32 15.41 20.99 18.14 15.68
Qwen2.5-VL-32B 34.80 41.52 33.43 27.18 38.07 34.93 31.09 36.59 47.99 33.60 28.16 46.87 32.25 29.86
Ovis2-34B 35.32 46.36 31.81 25.11 39.57 34.70 31.70 35.40 46.86 30.02 29.22 42.95 33.76 28.87
InternVL2.5-38B 30.83 40.08 28.21 22.68 35.55 30.36 27.23 32.50 38.80 29.71 28.93 41.52 30.74 24.47
InternVL3-38B 36.07 44.05 31.73 30.60 40.70 36.47 30.20 38.78 50.00 36.14 30.17 49.03 35.62 30.86
LLaVA-OV-72B 25.49 35.50 21.21 17.57 27.81 24.66 23.87 28.98 38.80 23.83 24.20 34.07 27.00 25.46
Qwen2.5-VL-72B 38.58 47.61 36.70 27.38 43.50 37.67 33.43 39.77 52.90 37.90 28.51 49.15 37.13 32.28
InternVL2.5-78B 33.05 41.90 30.58 24.00 36.58 32.30 30.00 35.40 43.96 34.57 27.69 45.22 32.97 27.20
InternVL3-78B 38.64 47.64 35.60 30.47 43.91 37.34 34.57 40.17 52.37 35.84 32.23 50.34 39.36 29.93

InternVL2.5-8B 22.31 27.12 21.98 18.35 24.65 22.66 21.37 19.78 18.36 21.29 19.72 24.52 17.78 16.67
+ GameQA (SFT) 47.33 (+25.02) 56.59 45.36 39.79 53.73 45.50 44.76 26.10 (+6.32) 27.84 21.95 28.39 30.43 27.37 20.07
+ GameQA (GRPO) 29.52 (+7.21) 36.37 26.95 25.90 34.23 28.14 27.91 23.67 (+3.90) 24.41 22.92 23.67 28.44 22.85 19.33

InternVL3-8B 26.85 33.82 26.37 19.79 28.91 28.20 24.90 27.49 32.29 26.62 23.55 32.59 26.46 22.99
+ GameQA (SFT) 51.08 (+24.23) 63.08 47.66 43.22 58.93 48.69 48.74 27.35 (-0.14) 37.56 22.07 22.31 35.38 24.83 21.19
+ GameQA (GRPO) 33.53 (+6.68) 39.73 32.17 28.99 37.16 32.37 32.80 29.14 (+1.65) 34.36 29.41 23.67 34.81 27.31 24.85
Qwen2.5-VL-7B 26.02 36.25 23.11 17.75 28.29 25.69 25.67 27.25 31.87 25.83 24.03 33.73 25.38 22.12
+ GameQA (SFT) 49.23 (+23.21) 60.19 47.47 39.13 55.56 47.65 46.60 30.33 (+3.08) 42.00 25.35 23.55 36.86 29.29 24.29
+ GameQA (GRPO) 32.41 (+6.39) 42.51 30.25 23.96 35.05 32.40 31.79 30.77 (+3.52) 38.68 25.96 27.57 38.17 28.87 24.66
LLaVA-OV-7B 21.65 29.28 19.24 17.67 23.19 22.03 22.20 20.37 22.99 17.04 21.02 24.40 20.31 16.05
+ GameQA (SFT) 46.25 (+24.59) 54.62 46.81 36.70 51.65 44.55 45.03 23.39 (+3.02) 29.56 20.86 19.72 29.35 23.51 16.79
+ GameQA (GRPO) 33.61 (+11.95) 41.41 31.26 29.94 38.83 31.57 33.53 23.32 (+2.94) 30.15 18.25 21.43 28.90 23.51 17.04
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85.00%
6.43%

No Change Text Reasoning 

Worsened

Text Reasoning Improved
Question: Which point indicates birth rate equals death rate?

Correct Answer: E

Response Before GRPO:

… 4. **Point D**: The population size reaches a peak, 

indicating that the birth rate is equal to the death rate, 

resulting in a stable population size.

Response After GRPO:

… 3. **Logistic Growth (Point D)**: Birth rates are still higher than death rates, but the 

growth rate is slowing down.

4. **Stable Population (Points E)**: The population size stabilizes. At this point, birth rates 

equal death rates, resulting in a stable population size.

Text Reasoning Improved

Question: What is the shortest sequence of moves from position (3, 3) 

to position (2, 1)? Options: … [3] Up → Left → Left …

Correct Answer: [3]

Response Before GRPO:

… 3. **Move Left**: From (3, 1), moving left to (3, 0) … 4. **Move 

Right**: From (3, 0), moving right to (3, 1) ... The answer is [2].

Response After GRPO:

1. **Move Up**: From (3, 3) to (2, 3) … to get closer to the target row.

2. **Move Left**: From (2, 3) to (2, 2) … brings the player closer to the target column.

3. **Move Left**: From (2, 2) to (2, 1) ... places the player at the target position (2, 1) … The 

answer is [3].

5.86%79.19%

14.95%

No Change

Text Reasoning 

WorsenedGame QA General Visual Benchmarks

Figure 8: Impact of GRPO on text reasoning performance, with two specific improvement examples.

The fine-grained difficulty gradation in the GameQA dataset enables a more systematic evaluation
of the models. As shown in Table 6, when either QA Level or Plot Level increases, the models’
accuracy scores generally show a noticeable decrease.

B.2 ERROR TYPES ANALYSIS

We manually checked the reasoning process of 650 GameQA cases randomly sampled from
InternVL2.5-8B before and after GRPO to identify the error types. We categorize errors as 3 types:
Visual Perception Error, Text Reasoning Error and both. The results are presented in Figure 10.
Besides, in Figure 8 and Figure9 we supplement to Figure 5 with two examples of text reasoning
improvement and another example of visual reasoning improvement after GRPO training.

B.3 MORE RESULTS AND ANALYSIS ON THE IMPACT OF TRAINING GAME DIVERSITY AND
DATA QUANTITY ON MODEL GENERALIZATION

Game diversity While the model trained on 20 games achieved the highest performance gain on
both unseen out-of-domain games and general visual benchmarks, interestingly, we observed that the
model trained on 4 games (out-of-domain games +1.20%, general +0.66%) slightly outperformed
the one trained on 10 games (out-of-domain games +0.96%, general +0.63%) on both benchmarks.
We speculate that this non-linear improvement may result from cases where a smaller but well-
chosen set of games provides a comparable amount of key generalization signals as a larger set, or
that certain random factors affected the performance of specific game combinations.
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10.94%

85.67%
3.39%

No Change

Visual Perception Improved

Question: What is the correct height relationship 

between the three numbered points?

Correct Answer: 3 < 1 = 2

Response Before GRPO:

Point 1 is lower than Point 2 because the player must 

climb the ladder from Point 1 to reach Point 2 … The 

answer is 1 < 2 = 3.

Response After GRPO:

Cube 3 is lower than cube 1. Cube 1 is at the same 

height as cube 2. Therefore, the correct height 

relationship is: 3 < 1 = 2.

Visual Perception 

Worsened

14.95%

79.19% 5.86%

No Change Text Reasoning 

Worsened

Text Reasoning

Improved

Figure 9: Impact of GRPO on visual reasoning performance on GameQA.

Task instance diversity

We further investigated how the task instance diversity influence model generalization using the
Qwen2.5-VL-3B model. We compared three configurations: (a) 5k samples for 1 epoch, (b) 1k
samples for 5 epochs, and (c) 0.5k samples for 10 epochs, ensuring consistent total training steps
and batch sizes across all settings. On general visual benchmarks, the model trained with 5k samples
for 1 epoch performed best, with a +1.2% improvement (Figure 11). This suggests that scaling
game task instances diversity makes better generalization. Extended data scaling experiment is
in Appendix D.4.

On out-of-domain games in GameQA, unlike on general visual benchmarks, we observed a counter-
intuitive trend: as the number of training samples per epoch decreased and the number of training
epochs increased, the models generalization performance improved, as shown in Figure 7. The
best out-of-domain gain (+2.5%) was achieved by the model trained on 0.5k samples for 10 epochs,
outperforming both the 1k × 5 epochs (+2.2%) and 5k × 1 epoch (+1.8%) configurations. This
suggests that for near-domain tasks closely related to the training games, repeatedly training on a
smaller but diverse dataset may help the model better capture task-specific patterns and nuances,
leading to improved generalization.

C EXPERIMENT DETAILS

C.1 HUMAN AND RANDOM BASELINES

We included two baselines for comparison: human and random.

• Human Baseline: We selected approximately 20 questions from each of the 30 games, result-
ing in 623 questions. These were grouped into 30 sets and assigned to STEM undergraduates
unfamiliar with the games. Each question was presented in a PowerPoint slide (Figure 12) using
python-pptx1, and responses were collected via an online questionnaire.2

• Random Baseline: This represents the lower performance bound, calculated as the expected score
from random guessing on multiple-choice questions, with fill-in-the-blank tasks contributing zero.

1https://python-pptx.readthedocs.io/en/latest/
2https://www.wjx.cn/
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21.00% 37.01%

31.85%

10.14%

Visual Perception Error

Text Reasoning Error

Both Visual and 

Reasoning Error

Correct

Question: How many bishops are on the board?

Correct Answer: 1

Response:

The Bishops are located on the squares e3 and f7. Therefore, the 

answer is 2 bishops.

Question: How many cells have been revealed?

Correct Answer: 12

Response:

We need to count the number of cells that have either numbers or 

are flagged. There are 4 cells with numbers. There are 3 cells 

flagged with "F". Therefore, the number of cells that have been 

revealed is 4 + 3 = 7.

Before GRPO

29.62% 31.51%

30.31%
8.56%

Correct

After GRPO

Figure 10: InternVL2.5-8B error types before and after GRPO show that GRPO increases correct
ratio and reduces visual and reasoning errors. Two cases show the two types of error in detail. Solid
and dash lines connected to two cases means both are before GRPO.
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Figure 11: The scaling effect of GameQA with an increasing number of task instances.
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Figure 12: Two example PowerPoint slides demonstrating how the student participants, during the
human baseline evaluation, took the tests and might write or draw on the slides.

C.2 DATA PREPARATION

C.2.1 SFT DATA PREPARATION

• Game data preparation. First, we used our data engine to generate 5000 task instances from 20
in-domain games, obtaining 100000 samples in total. Then we performed data augmentation, as
shown in Appendix F.3. Finally, we filtered these samples, as shown in Appendix F.4. 40000
samples were selected for SFT.

• Other dataset preparation. We prepared the Geo-Multi dataset for comparing the data qual-
ity. Geo-Multi consists of 40,000 samples, with 20,000 randomly sampled from MultiMath300K
(Peng et al., 2024) and another 20,000 from Geo170K (Gao et al., 2023).

C.2.2 REINFORCEMENT LEARNING DATA PREPARATION

• Game data preparation. We sampled 5000 samples from 20 in-domain games. This sample size
is smaller than that used for SFT to balance performance and computational cost, as the GRPO
training process is relatively resource-intensive.

• Other dataset preparation. We sampled 4k samples from the geometry and function split of
MAVIS (Zhang et al., 2024c), For multimodal-open-r1-8k-verified (lmms lab, 2025), we used all
the samples.

Table 7: Selection of games for the game diversity scaling experiment across four cognitive cate-
gories.

Game Set
3D Spatial

Perception and
Understanding

Pattern Recognition
and Matching

Multi-step
Reasoning

Strategic
Planning

4 Games 3D Reconstruction Tangram Word-Search TicTacToe

10 Games 3D Maze Spider Solitaire Tents,
2D Turing Machine

Sokoban,
Space Invaders

20 Games Rubik’s Cube Freecell, Tetris,
Zuma, Color Hue

Langton’s Ant,
Rhythm Game,

Star Battle

Maze,
Ultra TicTacToe

To investigate the impact of game diversity on model generalization, we constructed subsets of 4, 10,
and the full 20 in-domain training games. The selection process aimed to maintain representation
across our four defined cognitive categories by randomly selecting games from each category to
form the smaller subsets. Table 7 details the specific games included in each experimental set for
this scaling analysis.
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C.3 TRAINING DETAILS

C.3.1 MODELS

We trained four VLMs, InternVL2.5-8B (Chen et al., 2024), InternVL3-8B (Chen et al., 2025),
Qwen2.5-VL-7B (Bai et al., 2025), and LLaVA-OneVision-7B (Li et al., 2024a) on our data.

C.3.2 TRAINING HYPERPARAMETERS

LoRA-based supervised fine-tuning hyperparameters In this setup, Low-Rank Adaptation
(LoRA) Hu et al. (2021) was applied to all linear layers of the language model. We trained the
model for one epoch. The rank was set to 16, with alpha set to 32. The learning rate was 5e-5,
including a 3% warm-up period followed by a constant rate.

GRPO-based reinforcement learning In this setup, we conducted full-parameter fine-tuning of the
language model while freezing the visual encoder and projection layers. We rollout 12 samples per
questions. We trained the model for one epoch. The learning rate was 2e-7, with a 5% warm-up.
The clipping value ϵ was set to 0.2 and the KL-divergence coefficient β was set to 0.04. More
hyperparameters are listed in Table 8.

Table 8: GRPO Hyperparameters. Some hyperparameters are different when training 32B model.

Hyperparameter Value
Learning Rate (non-32B) 2e-7
Learning Rate (32B) 5e-7
Batch Size (non-32B) 3
Batch Size (32B) 16
KL-divergence Coefficient (β) (non-32B) 0.04
KL-divergence Coefficient (β) (32B) 0.001
Number of Generations 12
Temperature 1.0
Top-p 0.85
Top-k 50
Optimizer AdamW
Warm-up Ratio 0.05
Weight Decay 0.1

C.3.3 COMPUTE RESOURCES

LoRA-based supervised fine-tuning For the models in the 7-8 billion parameter range, this LoRA-
based SFT training was conducted on a single A800 GPU and the training duration lasted around 15
hours or less for 40k samples (1 epoch).

GRPO-based reinforcement learning

• 7-8 billion parameter model Training on 5k samples (1 epoch) required approximately 22 hours,
utilizing five A800 GPUs, including resources for the deployment of the evaluator model.

• 3 billion parameter model The training process lasted approximately 18 hours for 5k samples (1
epoch) on four A800 GPUs, also including the evaluator model’s deployment.

GPU usage Training a 7-8 billion parameter model with GRPO-based RL required approximately
22 hours, utilizing five A800 GPUs. This GPU allocation included resources for the deployment of
the evaluator model. For a 3 billion parameter model, the training process lasted approximately 18
hours on four A800 GPUs, with this count also inclusive of the evaluator model’s deployment.
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Table 9: Evaluation results on GameQA benchmark. In-domain and out-of-domain game category
results are shown. The percentage of performance improvements compared to the vanilla model is
denoted by (↑). Best performance per section is indicated in bold.

Models Avg.
(↑)

In Domain Games Avg.
(↑)

Out of Domain Games
3D Spatial

Perc. & Under.
Pattern Recog.

& Matching
Multi-step
Reasoning

Strategic
Planning

3D Spatial
Perc. & Under.

Pattern Recog.
& Matching

Multi-step
Reasoning

Strategic
Planning

InternVL2.5-8B 22.22 20.39 17.18 25.34 25.97 20.05 20.80 22.45 18.88 18.07
+ GameQA (SFT) 46.73 (+24.51) 42.38 45.55 51.56 47.44 25.81 (+5.76) 24.40 24.69 25.90 28.25
+ GameQA (GRPO) 29.44 (+7.21) 26.74 26.05 29.51 35.44 23.87 (+3.82) 25.00 25.12 24.91 20.45

InternVL3-8B 26.51 22.53 21.91 30.18 31.43 27.64 29.60 27.44 29.62 23.91
+ GameQA (SFT) 50.72 (+24.21) 46.91 45.42 55.91 54.63 26.02 (-1.62) 24.20 14.80 32.03 33.05
+ GameQA (GRPO) 33.09 (+6.58) 27.94 28.52 36.81 39.07 28.80 (+1.15) 29.20 25.31 34.59 26.09

Qwen2.5-VL-7B 25.78 22.58 21.92 25.21 33.40 27.09 23.60 29.20 26.21 29.34
+ GameQA (SFT) 48.37 (+22.59) 42.05 42.82 58.66 49.96 29.27 (+2.18) 26.80 21.16 31.79 37.32
+ GameQA (GRPO) 32.12 (+6.34) 26.80 26.88 33.34 41.45 30.51 (+3.42) 27.10 31.56 31.24 32.13

LLaVA-OV-7B 21.79 18.84 19.69 21.24 27.38 20.39 21.00 20.19 20.13 20.27
+ GameQA (SFT) 45.40 (+23.61) 38.50 39.47 54.78 48.84 22.74 (+2.34) 22.00 17.17 25.16 26.63
+ GameQA (GRPO) 33.49 (+11.70) 29.87 31.10 30.96 42.03 23.34 (+2.95) 27.20 20.05 23.55 22.57

C.4 INFERENCE AND EVALUATION

Besides trained models, we also evaluated proprietary large-scale models such as GPT-4o
(20240806) (OpenAI, 2024) and Claude 3.5 Sonnet (20241022) (Anthropic, 2024), and open-source
models that represent the current state of the art, including InternVL3-78B and Qwen2.5-VL-72B.

First, for evaluation on both GameQA and general vision benchmarks, the inference and evaluation
configurations were unified across the original models and our trained models, detailed below.

For inference, the inference temperature parameter is set to 0.2, and the prompt is shown in
Appendix H.3. We evaluated the generated answers using the LLM-as-a-judge approach Zheng
et al. (2023), with Qwen2.5-72B-AWQ acting as the evaluator and the prompt for evaluation shown
in H.4. To improve the reliability of the evaluation results, we introduced a series of engineering
optimizations that ensured consistent and accurate assessments.

Second, We adopted different model evaluation strategies for different types of experiments to bal-
ance efficiency, accuracy, and the reliability of our conclusions. For the main experiments (i.e., the
Main result experiments in the main text and the SFT experiments detailed in Appendix D.1), we
evaluated the model that achieved the best performance on the validation set. The validation set
was created by splitting 1% of the training data, and was used exclusively for model selection. It was
found that the model ultimately used for evaluation (i.e. the one performed best on the validation set)
was generally the final model in the training process. This approach efficiently and directly reflects
the ultimate performance of our methods in practical scenarios, making it suitable for capturing the
significant improvements targeted in the main experiments.

For other experiments, we employed a more rigorous evaluation procedure. During training, we
saved 10 evenly spaced model checkpoints, selected the top three checkpoints based on their val-
idation set performance, and evaluated each on the test set. The final performance metric for
each experimental condition was calculated as the average of these three checkpoints. This strategy
was chosen because the performance differences in these experiments are often subtle and suscepti-
ble to randomness in the training process. Averaging across multiple top checkpoints helps smooth
out training noise, enhances the robustness and sensitivity of the evaluation, and more accurately
reflects the true differences under various experimental settings. Additionally, this method reduces
the impact of chance results, making our experimental conclusions more reliable and representative.

D MORE EXPERIMENTS

D.1 SFT EXPERIMENTS

As described in Appendix C, we performed additional supervised fine-tuning (SFT) experiments on
four models. The results of these experiments are presented in Tables 9 and 10, and we found that:

The GRPO demonstrates an advantage over SFT in out-of-domain generalization, though SFT
yields strong in-domain gains. When evaluating model performance, the effects of SFT and GRPO
training methods showed clear differences across domains. Specifically, SFT training with the
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Table 10: Evaluation results on general vision benchmarks. The percentage of performance improve-
ments compared to the vanilla model is denoted by (↑). Best performance per section is indicated in
bold.

Models Avg.
(↑) MathVista MathVerse MMBench MMMU CharXiv MathVision MMMU-Pro

InternVL2.5-8B 45.89 57.50 36.04 81.93 47.96 31.70 28.87 37.25
+ GameQA (SFT) 45.06 (-0.83) 58.10 35.79 82.87 48.07 31.20 22.80 36.56
+ Geo-Multi (SFT) 43.84(-2.05) 53.60 36.90 82.80 43.17 30.40 27.80 32.22
+ GameQA (GRPO) 47.91 (+2.02) 61.70 37.11 83.87 50.06 32.00 31.93 38.69
InternVL3-8B 54.48 69.10 50.10 86.00 57.88 39.10 35.33 43.84
+ GameQA (SFT) 49.66(-4.82) 63.20 43.30 84.53 53.44 32.90 29.60 40.64
+ Geo-Multi (SFT) 48.52 (-1.42) 62.60 40.96 82.87 48.54 37.80 29.80 37.06
+ GameQA (GRPO) 55.88 (+1.40) 73.00 50.71 86.20 58.34 39.90 37.93 45.10
Qwen2.5-VL-7B 49.94 66.80 45.08 83.67 49.01 37.70 30.80 36.49
+ GameQA (SFT) 47.26 (-2.72) 63.00 37.31 83.07 47.49 38.60 25.73 35.62
+ Geo-Multi (SFT) 48.52 (-1.42) 62.60 40.96 82.87 48.54 37.80 29.80 37.06
+ GameQA (GRPO) 52.27 (+2.33) 68.20 47.97 83.53 50.53 42.70 33.07 39.89
LLaVA-OV-7B 41.23 55.60 33.05 81.13 41.07 27.10 23.40 27.26
+ GameQA (SFT) 35.83 (-5.40) 45.90 25.99 80.27 32.21 20.50 20.47 25.44
+ Geo-Multi (SFT) 40.35 (-0.88) 52.50 31.57 82.40 41.31 25.90 22.60 26.19
+ GameQA (GRPO) 42.27 (+1.04) 58.20 34.92 82.53 41.31 27.30 23.07 28.58

GameQA dataset led to substantial in-domain improvements: the InternVL2.5-8B and Qwen2.5-
VL-7B models improved their average accuracy by 24.51% and 22.59% respectively on a test set
covering 20 games, reaching final scores of 46.73% and 48.37% (Table 9). However, while SFT
excels at improving in-domain performance, it can sometimes lead to performance degradation on
general tasks as seen in 9, a phenomenon known as "catastrophic forgetting". Crucially, for training
sets that belong to the mathematics domain, such as Geo-Multi (see Appendix C.2), models trained
on them can still exhibit a decline in general capabilities. This may reflect the tendency of the SFT
method to overfit the model to specific domain data (Chu et al., 2025).

In contrast, when training on GameQA using the GRPO, models not only successfully avoided
performance degradation on general tasks but also generally achieved performance improvements
across multiple general visual benchmarks (Table 3). A typical example is the Qwen2.5-VL-7B
model, which, after GRPO training, showed enhanced performance on challenging benchmarks
such as MathVista, MathVerse, and CharXiv, reaching a level comparable to larger-scale models
like InternVL2.5-38B.

Pure RL outperforms SFT-then-RL in out-of-domain generalization. To validate our choice of
directly applying RL, we compare our approach to a two-stage SFT-then-RL pipeline on Qwen2.5-
VL-7B. As shown in Table 11, while the two-stage pipeline yields strong performance on in-domain
tasks, it leads to a significant performance drop of -2.5% on general vision benchmarks. This sug-
gests that full-parameter SFT on a narrow, specialized domain like GameQA can cause catastrophic
forgetting. In contrast, pure RL better preserves and enhances out-of-domain generalization capabil-
ities, achieving a +2.33% improvement.

Table 11: Comparison of training pipelines on Qwen2.5-VL-7B. SFT is performed on 20k samples,
followed by GRPO on 5k. Performance on general benchmarks is shown as a relative change from
the baseline.

Training Stage In-domain Out-of-domain General Benchmarks
Games Games (Avg. Change)

Baseline (Before SFT) 25.89 26.92 0.0%
SFT 56.21 30.74 -3.9%
SFT-then-RL 58.08 31.96 -2.5%

Pure RL (Our Method) 32.12 30.51 +2.33%
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D.2 TRAINING DATA DIFFICULTY EXPERIMENT

To analyze how reasoning difficulty impacts generalization, we categorized tasks into Easy (55-85%
baseline accuracy), Medium (30-55%), and Hard (5-30%). We trained Qwen2.5-VL-7B on 5k sam-
ples from different difficulty combinations. Table 12 shows that training on a diverse mix of difficul-
ties yields the best generalization. The model trained on ‘Easy+Medium+Hard‘ samples achieves
the highest average score (52.74), outperforming models trained on simpler subsets. This confirms
that the complex reasoning patterns in GameQA are crucial for improving general reasoning.

Table 12: Impact of training data difficulty on generalization. Results are averaged over the top three
checkpoints. The baseline score is 49.94.

Training Data (5k) Average MathVista MathVerse MMBench MMMU CharXiv MathVision MMMU-Pro
Baseline 49.94 66.80 45.08 83.67 49.01 37.70 30.80 36.49
Easy 52.40 67.87 47.93 83.91 51.58 41.77 33.73 40.03
Medium 51.95 67.30 48.10 83.64 50.53 40.83 33.96 39.30
Hard 52.07 67.57 47.53 83.58 51.03 40.97 34.58 39.26
Easy+Medium 52.45 68.60 48.07 83.42 51.30 41.40 34.86 39.49
Easy+Medium+Hard 52.74 68.33 48.68 83.93 52.36 40.73 34.31 40.81

D.3 MODEL SCALE EXPERIMENT

To verify if GameQA’s benefits extend to larger models, we conducted experiments on Qwen2.5-VL-
32B using LoRA. As shown in Table 13, the 32B model demonstrates greater performance gains
than the 7B model under identical LoRA settings across all domains. The average improvement on
general benchmarks is +0.78 for the 32B model compared to +0.68 for the 7B model. This trend
suggests that GameQA is an effective resource for enhancing reasoning in larger-scale VLMs, and
we hypothesize that full-parameter fine-tuning would yield even more substantial gains.

Table 13: Performance gains from GRPO (LoRA, 5k GameQA data) on 7B vs. 32B models. Gains
are shown in parentheses.

Model Training General Vision In-domain Out-of-domain
Benchmarks Games Games

Qwen2.5-VL-7B Baseline 49.94 25.78 27.09
+GameQA (LoRA) 50.62 (+0.68) 30.90 (+5.12) 30.45 (+3.36)

Qwen2.5-VL-32B Baseline 60.18 35.91 35.76
+GameQA (LoRA) 60.96 (+0.78) 43.24 (+7.33) 40.77 (+5.01)

D.4 DATA SCALE EXPERIMENT

We extended our data scaling experiment up to 20k samples. While individual checkpoints exhibit
fluctuations common in RL, a "binned averaging" analysis (Table 14) reveals a clear, monotonic
positive trend. By averaging performance across training stages, we smooth out short-term noise
and observe a stable improvement trajectory. The average performance on general benchmarks
steadily increases from +2.31 in the early stage to +3.02 in the late stage, confirming that model
performance continues to improve with more data from GameQA.

Table 14: Binned averaging analysis of data scaling effect on Qwen2.5-VL-7B. Performance gains
over baseline are shown in parentheses.

Training Stage Sample Range General Vision Benchmarks In-domain Games
Baseline Model 0k 49.94 25.78
Early Stage Training 1k–5k 52.25 (+2.31) 27.68 (+1.90)
Mid Stage Training 6k–15k 52.57 (+2.63) 34.97 (+9.19)
Late Stage Training 16k–20k 52.96 (+3.02) 38.69 (+12.91)
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E APPROACH DETAILS

E.1 TASK CATEGORY

Target Perception Task focuses on visual perception and basic state awareness. State Predic-
tion Task, building directly on the perceptual capacities, needs predictions about state transitions.
Strategy Optimization Task then needs both perceptual and predictive capacities to find optimal
solutions. This progressive structure helps organize reasoning skills from simple to complex.

The conceptual outline for each category, using Sokoban as an example, is as follows:

• Target Perception Task: Queries static information within the game state. For instance, questions
ask about the position or number of boxes, and the answers list the specific positions of each box
by directly inspecting the current state.

• State Prediction Task: Infers state changes following actions. For instance, questions predict the
player’s position after a sequence of moves. Answers are derived by analyzing the initial state,
simulating the execution of each step, recording the resulting state changes, and thus determining
the final player position.

• Strategy Optimization Task: Aims to find optimal solutions. For instance, questions ask for
the shortest path to push a specific box to its designated target. The answer is derived by first
analyzing the initial state to determine the optimal route for moving the box to its target, and then
simulating the execution of this optimal action sequence.

E.2 SELECTION CRITERIA OF 30 GAMES IN GAMEQA

We selected these 30 games based on the following criteria.

• Ability coverage The games need to cover a diverse range of reasoning abilities, including 3D
Spatial Perception and Understanding, Pattern Recognition and Matching, Multi-step Reasoning,
and Strategic Planning.

• Code simplicity The code should be easy to construct, meaning they are simple enough to be
programmed by an LLM, or are open-sourced.

• Static game They should be static or can be transformed into a static state, so that problems can
be solved from a static image.

E.3 TIME SPENT ON THE MAIN STEPS OF CODE2LOGIC FOR EACH GAME

Figure 13 illustrates the estimated time spent on implementing the main steps of the Code2Logic
approach across all the 30 games in the GameQA dataset. The time ranges from a minimum of 4
hours to a maximum of 12 hours, with an average of 7.5 hours per game.

This average time investment is relatively cost-effective and appears highly acceptable, especially
considering that once the code data engine is built, it can generate an unlimited number of data
samples for training and evaluation purposes.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lan
gto

n's
 Ant

Pyra
mid 

Che
ss

TicT
acT

oe
Jew

el2

Klon
dik

e

Life
ga

me

Pacm
an

Free
cel

l

3D
 Reco

nst
ruc

tio
n

Sud
ok

u

2D
 Turi

ng
 M

ach
ine

3D
 M

aze Hue

Mine
sw

eep
er

Rhy
thm

 G
am

e

Sok
ob

an

Spa
ce 

Inv
ad

ers

Star
 Batt

le

Word
 Sear

ch
Zum

a
Maze

Mine
cra

ft

Rub
iks

 Cub
e
Sna

ke

Spid
er 

Soli
tai

re
Ten

ts

Ultra
 TicT

acT
oe

Che
ss 

Ran
ge

r

Tan
gra

m
Tetr

is

Game Name in GameQA Dataset

0

2

4

6

8

10

12

14

Ti
m

e 
C

os
t o

n 
th

e 
M

ai
n 

St
ep

s o
f C

od
e2

Lo
gi

c 
(h

ou
rs

)

6

8

6

10 10

7

10

7

12

4
5

6 6

9
10

9

7

5
4

12

8

6

12

6

10

6 6
5

6

8

Average (7.5 h)

Figure 13: Estimated time (in hours) spent on implementing the main steps of Code2Logic across
different games in the GameQA dataset, with an overall average of 7.5 hours per game.

E.4 GAMES GENERATED USING EXTERNAL OPEN-SOURCE CODE

This section lists the games whose code is generated based on open-source code, as referenced in
Section 2.1.

Spider Solitaire (Open-source code URL: https://github.com/rdasxy/spider_
solitaire)

Based on an original Python implementation of Spider Solitaire, our code reused its core rules and
GUI. And we simplified the game to a single suit (Spades) to reduce complexity, enriched initial
setups through LLM-implemented random deals, and adapted the original game rules into detailed
instructions.

Klondike (Open-source code URL: https://github.com/milorb/klondike)

Based on the original open-source Klondike Solitaire project built on Pygame3, we adapted the
code using an LLM into an automated dataset generation tool. It reused the core game engine and
introduced a method for generating diverse random initializations.

Space Invaders (Open-source code URL: https://github.com/leerob/
space-invaders)

Based on the original Space Invaders game built with Pygame, we utilized its core elements and
visual assets to generate static game scenes. Using an LLM, we converted the dynamic game into
static scene snapshots for dataset generation.

F MORE INFORMATION ABOUT THE GAMEQA DATASET

F.1 THE GAMEQA DATASET STATISTICS

The full GameQA train and test set statistics table is shown in Table 15.

F.2 DEFINITION OF EACH CATEGORY

3D Spatial Perception and Reasoning Game of this type involves the ability to perceive, plan, and
reason in 3D space to complete tasks such as navigation and spatial transformation. For example,
in 3D Reconstruction, the task is to reconstruct the stacking arrangement of 3D cubes from a side
view. Solving this task requires 3D spatial reasoning to establish the relationship between the 2D
view and the 3D view.

3https://www.pygame.org/news
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Table 15: GameQA train and test set statistics
summary. All lengths are calculated by words.

Statistic Category Train Set Test Set

Overall Counts
Total Games 20 30
Total Tasks 102 158
Total Questions 126,760 15,047

Image Statistics
Unique Images 74,620 8,620
Avg. Image Width (px) 511.00 504.10
Avg. Image Height (px) 475.73 468.98

Question Characteristics
Avg. Question Length 275.27 272.43
Avg. Analysis Length 106.85 144.89

- After Augmentation 300.79 -
Multiple Choice Questions 86,520 10,518
Avg. Choices for MCQs 7.10 7.05
Fill-in-the-Blank 40,240 4,529

Pattern Recognition and Matching Game
of this type requires capability on discerning
and matching visual patterns related to object
shapes, colors, combinations, and other regular-
ities. For example, in Tangram, the task is to
identify which piece can fill the empty space.
Solving this task requires recognizing the shape
of void and matching with given pieces.

Multi-step Reasoning Game of this type fea-
tures multi-step reasoning and iteratively apply-
ing rules to reach the solution. For example, in
Sudoku, the task is to infer which color should
fill the empty space to ensure that no colors are
repeated in the same row, column, or 3x3 grid.
The "no repetition" rule needs to be applied re-
peatedly to deduct the correct color of a cell.

Strategic Planning Game of this type requires
planning the optimal solution in optimization
problems. For example, in Sokoban, the task
is to plan the shortest path for pushing a box
from the starting point to the target location.

F.3 DATA AUGMENTATION

To prevent model overfitting to specific reasoning patterns, we employed an LLM-based reason-
ing paraphrase strategy using InternVL2.5-78B. Based on initial experiments showing that visual
input could lead to errors due to the model’s insufficient visual capabilities, we provided it only
with textual informationthe question, original analysis process, and answerto rewrite the analysis.
This approach enriches linguistic style and logical expression diversity while maintaining semantic
consistency.

F.4 DATA QUALITY ASSURANCE

To ensure the high quality and reliability of our synthetic dataset, we implemented a quality assur-
ance process, consisting of four stages:

1. Human Inspection: STEM students inspected initial samples to ensure logical correctness, clar-
ity and completeness of questions, images and reasoning steps.

2. LLMs Check: Fed samples to GPT-4o and Claude-3.5 Sonnet to ensure model comprehensibil-
ity, identifying necessary refinements in the samples.

3. Post-Augmentation Verification: Manually verified reasoning accuracy in a random subset of
augmented data.

4. Automated Data Filtering: Removed samples based on length, high repetition (>70% 4-gram
overlap), or wrong answers, reducing the set from 1̃50k to 126,760.
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G DETAILS ON SOKOBAN TASK SYSTHESIS

G.1 SOKOBAN QA TEMPLATES

Here we provide templates used for generating Sokoban puzzle samples, including the three problem
types: Target Perception, State Prediction, and Strategic Optimization.

Target perception QA template The Target Perception template (Table 16) is used to generate
questions about identifying the current position of game elements.

Table 16: Target perception QA template

"question": "This is a Sokoban puzzle where Cartoon people is player
, green X is target, brown box with X is box to push, brown
tiles are walls, and light brown areas are movable spaces. The
coordinates (x, y) in this puzzle represent the matrix format.
What is the current position of the <object> (row, column)?\
nOptions:\n[1] <option_1>\n[2] <option_2>\n[3] <option_3>\n[4] <
option_4>\n[5] <option_5>\n[6] <option_6>\n[7] <option_7>\n[8] <
option_8>",

"answer": <number>,

"analysis": "Player position: <pos>\nBoxes positions: <pos>\nTarget
positions: <pos>\nThe player is currently at position <pos>.\n\
nSo the answer is <answer>. The option number is <number>.",

State prediction QA template The State Prediction template (Table 17) is used to generate ques-
tions about predicting the final position of the player after a sequence of moves.

Table 17: State prediction QA template

"question": "This is a Sokoban puzzle where Cartoon people is player
, green X is target, brown box with X is box to push, brown
tiles are walls, and light brown areas are movable spaces. The
coordinates (x, y) in this puzzle represent the matrix format.
If the player makes these moves: <mov_seq>, where will player
end up?\n\nOptions:\n[1] <option_1>\n[2] <option_2>\n[3] <
option_3>\n[4] <option_4>\n[5] <option_5>\n[6] <option_6>\n[7] <
option_7>\n[8] <option_8>",

"answer": <number>,
"analysis": "Player position: <pos>\nMove 1 - <dir>: Player moves

from <pos> to <pos>\nMove 2 - <dir>: Player moves from <pos> to
<pos>\n...\nFinal position: <pos>\nThe option number is <number
>",

Strategic optimization QA template The Strategic Optimization template (Table 18) is used to
generate questions about finding the optimal sequence of moves between positions.

G.2 SUPPLEMENTARY PROMPT

As mentioned in Section 2.2. LLMs can not only refine the human-designed templates, but also
design new questions and QA templates with the example prompt provided below. We will conduct
a careful manual review of the quality of tasks generated by the LLM and make selections, even if
we have already prompted to generate diverse and meaningful QA pairs.
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Table 18: Strategic optimization QA template

"question": "This is a Sokoban puzzle where Cartoon people is player
, green X is target, brown box with X is box to push, brown
tiles are walls, and light brown areas are movable spaces. The
coordinates (x, y) in this puzzle represent the matrix format.
Treat the boxes as walls, What is the shortest sequence of moves
for human to move himself from position <pos> to position <pos

>?\n\nOptions:\n[1] <option_1>\n[2] <option_2>\n[3] <option_3>\n
[4] <option_4>\n[5] <option_5>\n[6] <option_6>\n[7] <option_7>\n
[8] <option_8>",

"answer": <answer_number>,

"analysis": "Player position: <pos>\nBoxes positions: <pos>\nTarget
positions: <pos>\nStart position: <pos>\nEnd position: <pos>\
nOptimal move sequence: <mov_seq>\nMove 1 - <dir>: Player moves
from <pos> to <pos>\nMove 2 - <dir>: Player moves from <pos> to
<pos>\n...\nFinal position: <pos>\n\nSo the answer is <answer>.
The option number is <number>.",

Prompt for designing new questions and the corresponding QA templates

Generate Game QA Derivative Templates Based on the provided basic QA template for the
Sokoban game, please design more question-answering template variations. The reference
file already includes three basic template categories:

1. State Prediction - Predict the player’s position after a move.

2. Target Perception - Identify the current positions of game elements.

3. Strategy Optimization - Find the optimal movement path.

Please design 3-5 innovative derivative templates for each category, ensuring the new tem-
plates:

- Maintain consistency with the original JSON format.

- Cover different reasoning difficulties and complexities.

- Test different cognitive and reasoning abilities.

When designing, please follow this reasoning hierarchy:

- Level 1: Target Perception QA - Focus on basic visual recognition and state understanding
(e.g., "Where is the box?").

- Level 2: State Prediction QA - Focus on state changes and transition reasoning (e.g., "After
performing these moves, where will the player be?").

- Level 3: Strategy Optimization QA - Focus on finding the optimal solution (e.g., "What is
the minimum number of moves to push the box to the target?").

For each new template, please provide:

1. Template name and type classification.

2. Complete JSON template structure (including all necessary placeholders).

3. A brief description explaining the specific abilities tested by the template.

4. Placeholder filling examples (how to generate specific question instances).

Please ensure your template designs can generate diverse and meaningful Q&A pairs based
on the game state and maintain consistency with the original template structure.
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H PROMPTS

H.1 DATA AUGMENTATION

Below is the prompt used to perform the LLM-based reasoning paraphrase strategy detailed in Ap-
pendix F.3, with visual information not provided for the model.

Prompt for data augmentation

## Question: {query} (the question generated by the data engine)

## Ground Truth: {response} (the answer with reasoning process generated by the data en-
gine)

Based on the above question and the provided ground truth, the current process of providing
the answer is overly mechanical and simplistic. Please provide detailed reasoning steps based
on the content of the question and the reasoning steps in the Ground Truth. The reasoning
steps should be detailed, logical, and consistent with the Ground Truth.

Additionally, before starting the reasoning, emphasize: "I will carefully analyze the question
and the image and provide detailed reasoning steps." Do not include statements such as "This
matches the provided Ground Truth" or similar expressions in your response.

Please follow the above requirements to provide a detailed analysis, reasoning, and answer.

H.2 TRAINING

System prompt for the model being trained in GRPO

Please carefully observe the image, thoroughly understand the conditions provided in the
question, use logical reasoning to arrive at the result, and reflect on and verify the reasoning
process to ensure the accuracy of the answer. Finally, provide the correct answer.

Prompt for the LLM-based judging module in GRPO

System prompt:
Compare the ground truth with the prediction from AI model and determine if the prediction
is correct. The question is about an image, which we have not given here. You need to
determine whether the model’s prediction is consistent with the ground truth. No points will
be awarded for wrong answers, over answers or under answers. There are times when the
answer may have a different form of expression and some variation is acceptable.

User instruction prompt:
## Ground Truth: The correct answer is {answer}.

(For multiple choice question: The correct option is {answer}: {option_content}.)

## Prediction: {simplified_prediction}

Correctness: (Yes or No)

H.3 INFERENCE

Prompt for inference

{query} Let’s think step by step. Please analyze the question carefully and follow these re-
quirements:

Provide detailed step-by-step reasoning,
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Show all your work and calculations,

End your response with one of these formats:

1. For choice questions: ’The answer is [option]’

2. For other questions: ’The answer is [final answer]’

The final answer line must be on its own line at the very end of your response.

H.4 EVALUATION

Prompt for evaluation

System prompt:
Compare the ground truth with the prediction from AI model and determine if the prediction
is correct.

The question is about an image, which we have not given here. You need to determine whether
the model’s prediction is consistent with the ground truth. No points will be awarded for
wrong answers, over answers or under answers.

The reasoning process in the prediction does not need to be considered too much, you only
need to determine if the final answer is consistent. There are times when the answer may have
a different form of expression and some variation is acceptable.

User instruction prompt:
## Question: {simplified_question}

## Ground Truth: The correct answer is {answer}.

(For multiple-choice question: The correct option is {answer}: {option_content}.)

## Prediction: {simplified_prediction}

You need to determine whether the model’s prediction is consistent with the ground truth.
Output only:

Correctness: (Yes or No)

I CASE STUDY ON MODEL PERFORMANCE ON GAMEQA

We present GPT-4o case studies on different GameQA games below, to showcase deficiencies of
GPT-4o on visual perception and reasoning. Our qualitative analysis of model performance across
four game types reveals common behaviors and challenges.

Question: What is the correct height relationship between the three 

numbered points?

Answer: 1 = 2 < 3

GPT-4o Response: Point 1 is on top of a cube that is one level above the 

blue starting cube.  Point 2 is on the same level as the blue starting cube ... 

Therefore, the height relationship is: 2 < 1 < 3.

Error Analysis: Point 1 is at same height as point 2.

Figure 14: GPT-4o 3D Maze case study

3D Spatial Perception and Understanding Visual language models exhibit significant limitations
in 3D spatial reasoning games and score lowest among the four game categories. For example, in
Figure 14, GPT-4o struggled on ordering green cubes by their height (Z-coordinate), recognizing
cube 1, that is closer to top of the image, as having higher Z-coordinate than cube 2. Moreover,
in Figure 15, GPT-4o failed to identify the position of the only voxel in the image. In Figure 16,
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Question: Goal: Reconstruct a 3D structure by adding voxels to 

match given projections. Position (x,y,z) ranges from 1 to 3, with 

(1,1,1) at front-left-bottom. All voxels must be connected face-to-face. 

New voxels can only be placed adjacent to existing ones. Choose the 

correct sequence from the options below.

Options:

1: Add voxels at positions: [(1, 3, 1), (3, 3, 1)] 

Answer: 1

GPT-4o Response: To solve this puzzle, we need to add voxels to the 

current structure such that the projections match the given Front View 

(Y-Z) and Side View (X-Z).

Let's analyze the projections:

1.Front View (Y-Z Plane):

1. The projection shows a filled cell at (2, 1), indicating there is 

at least one voxel along the line of sight at y=2 and z=1.

2. The projection shows a filled cell at (3, 1), indicating there is 

at least one voxel along the line of sight at y=3 and z=1.

2.Side View (X-Z Plane):

1. The projection shows filled cells at (1, 1), (2, 1), and (3, 1), 

indicating there is at least one voxel along the line of sight at 

x=1, x=2, and x=3, all at z=1.

Given the current structure, we have a voxel at (2, 2, 1). We need to 

add two more voxels to match both projections …

Error Analysis: GPT-4o gives wrong position of the existing voxel.

Figure 15: GPT-4o 3D Reconstruction case study

Question: How many cubes are there in total in the scene?

Answer: 48

GPT-4o Response: The scene shows a cube composed of smaller cubes. By counting the cubes 

along one edge, we can determine the dimensions of the larger cube. There are 5 cubes along 

each edge. Therefore, the total number of smaller cubes in the scene is calculated by cubing the 

number of cubes along one edge: 5 x 5 x 5 = 125. So, there are 125 cubes in total in the scene.

Ground Truth: Looking at the top of it, we know that the length and the width are 4 and 4 

respectively. Besides, we can see that the height is 3. Therefore, the total number of cubes is 4 x 

4 x 3 = 48. The answer is 48.

Error Analysis: GPT-4o counts number of cubes in each edge wrong.

Figure 16: GPT-4o Minecraft case study
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GPT-4o appeared to be unable to count how many cubes are on each edge of the cuboid, which is
generally easy for humans.

Pattern Recognition and Matching In this game category, we find that models faced difficulties in
identifying patterns and locating objects. This was particularly challenging with non-grid layouts or
images without row and column indicators. As seen in Figure 17, GPT-4o has poor performance in
circular Zuma grid, claiming to find 3 pairs of same color marbles, but none is correct. GPT-4o also
meets problems in the card games. In Figure 18, GPT-4o fails to understand "top of a pile" appears
lower in the image. In Figure 19, GPT-4o misreads the rank of the card.

Question: How many marble groups of two or more same-colored marbles are there at the 

up-right side of the frog?

Answer: 0

GPT-4o Response: Starting from the top, the first group in the 'up-right' region is a group 

of two yellow marbles. Moving clockwise, the next group is a group of two blue marbles. 

Continuing further, there is a group of two red marbles … there are a total of 3 groups.

Error Analysis: None of the three groups GPT-4o claims is correct.

Figure 17: GPT-4o Zuma case study. The red rectangle is added to highlight the area referred to in
the question and does not exist in original image.

Question: In this FreeCell game, we have 8 cascade piles at 

sum, and their indexes are [0, 1, 2, 3, 4, 5, 6, 7]. In FreeCell, 

cards can be moved according to specific rules: A card can be 

moved to a free cell if available, stacked in descending order 

alternating colors in cascade piles, or placed in foundation 

piles starting from Ace. Now, find the 3rd card from the top 

of cascade pile 1. Options are as follows:

1.(Diamond, 5) 2.(Club, 1) 3.(Spade, 6) 4.(Heart, 2) 5.(Club, 

4) 6.(Heart, K) 7.(Heart, A) 8.(Spade, 9)

Answer: 3

GPT-4o Response: To find the 3rd card from the top of 

cascade pile 1, we need to look at the cards in that pile. The 

cards in cascade pile 1, from top to bottom, are: 1. 5 of Hearts 

2. 10 of Hearts 3. Ace of Clubs. Therefore, the 3rd card from 

the top of cascade pile 1 is the Ace of Clubs. The correct 

option is: 2. (Club, 1)

Ground Truth: The selected pile1 contains (from top to 

bottom) the following cards: (Spade,5), (Heart,3), (Spade,6), 

(Spade,Q), (Club,A), (Diamond,10), (Heart,5). The 3rd card 

from the top is (Spade, 6).

Error Analysis: GPT-4o does not understand top of a pile 

appears lowest in image.

Figure 18: GPT-4o Freecell case study

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Question: Piles are numbered from left to right 

starting with `0`. Cards in a pile are numbered from 

on-screen top to bottom starting with `0`. Cards can 

be moved to another pile as long as they form a 

descending sequence of the same suit. The cards 

within each waste pile are also numbered starting 

from the bottom card. What will happen if I want to 

move the number 6 card of pile 6 to pile 3? Options:

A. The move will be successful, and the cards will 

be in descending order, following the rules of 

movement. B. The move cannot be made because 

this card is face-down and its value is unknown. C. 

The move cannot be made because …

Answer: A

GPT-4o Response: In the image provided: Waste pile 6 has a visible card, which is a Jack (J) of spades. Waste pile 3 has a visible 

card, which is a King (K) of spades. The number 6 card in pile 6 would be the sixth card from the bottom of the pile. However, in 

the image, pile 6 only has one face-up card, the Jack of spades, and the rest are face-down. Therefore, the sixth card from the 

bottom is not visible and is face-down. Given this information, the correct option is: B. The move cannot be made because this 

card is face-down and its value is unknown.

Ground Truth: Source pile 6 is the 7th pile from the left, and destination pile 3 is the 4th pile from the left. The number 6 card in 

pile 6 is the 7th card, which is Queen of Spade. The top card of pile 3 is King of Spade. So moving the Queen of Spade from pile 6 

to pile 3 will be successful as it forms a valid descending sequence.

Error Analysis: GPT-4o recognizes the visible card in pile 6 incorrectly, and misread the meaning of number 6 card.

Figure 19: GPT-4o Spider Solitaire case study

Question: This is a Minesweeper game. The size of the chessboard is 6x6, 

and there are a total of 8 mines hidden on the board. The numbers on the 

board indicate how many mines are adjacent to that cell, including 

diagonals. Cells marked with "F" (flagged) are identified as potential 

locations of mines based on logical deduction or prior knowledge. 

Question: How many mines are left to be found?

Answer: 6

GPT-4o Response: To determine how many mines are left to be found, we 

need to analyze the board and the flagged cells. 1. Count the flagged cells:

There are three flagged cells on the board: (0,5), (1,0), and (0,0). 2. Total 

mines: The problem states there are a total of 8 mines on the board. Total 

mines = 8  Flagged cells = 3   Mines left to be found = Total mines -

Flagged cells = 8 - 3 = 5

Ground Truth: There are a total of 8 mines hidden on the board. By 

counting the number of F-marked cells (a total of 2), we can determine the 

remaining mines: 6

Error Analysis: GPT-4o incorrectly states (0,0) is flagged.

Figure 20: GPT-4o Minesweeper case study

Multi-step Reasoning Models have substantial deficiencies in multi-step reasoning. When a rule
needs to be applied multiple times recursively, models are prone to repeat the initial application
instead of performing subsequent reasoning steps. In Figure 21, GPT-4o repeats it finds prefixes of
the target word "JUNKMAN" in options 2, 7 and 8, but actually the three options are far from the
word "JUNKMAN". Another common flaw is failure to track game state changes. For example,
in 2D Turing Machine game (Appendix J.3.5), models frequently forgot the symbol on a cell that
had been modified in a previous step, still using the unchanged symbol to deduce the next move. A
similar phenomenon was also observed in Langton’s Ant game (Appendix J.3.3), where the model
might not follow the new color of a certain cell that it had correctly recognized, still following the
original cell color in the input image.

Strategic Planning These games show that models lack certain abilities to find the best strategy.
They lack the human-like insight to prune unpromising choices, and are also unable to conduct
large-scale search or traversal, resulting in poor performance. In the Sokoban game case (Figure 22),
for example, the number of moves needed is 27, a relatively big number. GPT-4o directly states
the answer is 29, without conducting any effective analysis. Irrational mistakes that seems more
unreasonable also exist. As shown in Figure 23, GPT-4o states that after the first step, body of snake
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Question: Find the word “JUNKMAN” in the grid. Where does it start and in which 

direction does it go? Options: …

Answer: Row 7, Column 4, Direction: up

GPT-4o Response: … Option 2: Row 1, Column 2, Direction: down. Starting at (1, 2) = 'J’, 

(2, 2) = 'U', (3, 2) = 'N', (4, 2) = 'K', (5, 2) = 'M', (6, 2) = 'A', (7, 2) = 'N' - This spells 

'JUNKMAN', so this option is correct.

… Option 7: Row 1, Column 2, Direction: diagonal-right-down. Starting at (1, 2) = 'J’, (2, 

3) = 'U', (3, 4) = 'N', (4, 5) = 'K', (5, 6) = 'M', (6, 7) = 'A’ …

Option 8: Row 7, Column 4, Direction: diagonal-left-up - Starting at (7, 4) = 'J' - Diagonal-

left-up: (6, 3) = 'U', (5, 2) = 'N', (4, 1) = 'K’ …

Error Analysis: GPT-4o is hallucinating that the three options listed have letters similar to 

“JUNKMAN”.

Option 2   Option 8     Option 7

Figure 21: GPT-4o Word Search case study. Red rectangles and "Option X" texts are added to
highlight the options and do not exist in original image.

Question: What is the minimum number of moves needed to solve this puzzle?

Answer: 27

GPT-4o Response: To solve this Sokoban puzzle, the player needs to push the box onto 

the target. The player must navigate around the walls and push the box in a way that it 

reaches the target with the minimum number of moves. 

After analyzing the puzzle, the minimum number of moves needed to solve it is 29.

Error Analysis: GPT-4o states an answer without analyzing.

Figure 22: GPT-4o Sokoban case study

includes (0, 3) and new head position is (0, 3), not realizing that this overlap means the snake has hit
its head. This reveals certain deficiencies in models’ fundamental reasoning and spatial imagination
skills.

In addition, it’s worth mentioning that a bit counter-intuitively, models actually face major diffi-
culties in visual perception under various game scenes, as shown in Figure 24, 20, 25 and 26,
constraining their final performances.

Question: This is a Snake game. The yellow block is the head of the snake. 

The blue block is the body of the snake. The red block is the food. The 

coordinates (x, y) in the grid represent the matrix format, where x is the 

row index and y is the column index. The origin (0,0) is in the the upper 

left of the grid. Which will happen if the snake moves like this each step: 

step 1: left … Options: 0: The snake hits the bound of the grid. 1: The 

snake hits its body. 2: The snake reaches the food. 3: Nothing happens.

Answer: 1

GPT-4o Response: To determine what happens when the snake moves 

according to the given steps, let's track the position of the snake's head and 

body through each step:  Initial position: - Head: (0, 4) - Body: (0, 3), (0, 

2), (0, 1), (1, 1), (2, 1), (2, 2), (2, 3), (1, 3), (1, 2) Step 1: Move left - Head 

moves to: (0, 3) New body: (0, 4), (0, 3) … The snake hits the bound of 

the grid.

Ground Truth: At first the snake head(yellow block) is at (0, 4). The 

snake body(blue blocks) is at [(1, 4) …  (2, 1)]. Then it moves like this: 

step 1: move left Before moving, the snake is at [(0, 4) … (2, 1)]. After 

moving left, the snake head will move left directly, which will be at (0, 3). 

Each block of the snake body will move to the position of the block in 

front of it, so the snake body will be at [(0, 4) … (3, 1)]. Now the snake 

hits its body.

Error Analysis: GPT-4o does not correctly identify all cells of the snake 

body, and does not realize the snake hits its body, though it states after step 

1 head moves to (0, 3) and new body includes (0, 3).

Figure 23: GPT-4o Snake case study
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Question: On an 3x3 board, there are 3 levels (0 to 2). At each level k, the x and y 

coordinates range from 0 to 2-k, resulting in (2-k)**2 slots per level. Two players are 

designated as PLAYER_0 and PLAYER_1, with blue balls for PLAYER_0 and red balls 

for PLAYER_1 … What is the status of the ball on Level 1, which has coordinate ([1, 1])? 

Options: 1. PLAYER_0 2. PLAYER_1 3. Empty 4. Index out of bound

Answer: 2

GPT-4o Response: The image shows that there is no ball placed at coordinate (1, 1) on 

Level 1. Therefore, the correct answer is: 4. Index out of bound

Ground Truth: Based on level 1's grid (specifically at coordinate [1, 1]), the ball is red, 

which corresponds to PLAYER_1.

Error Analysis: (1, 1) on Level 1 is marked as red, but GPT-4o reads it as empty, and 

wrongly thinks that empty fits option 4.

Figure 24: GPT-4o Pyramid Chess case study

Question: Which directions are available to move now? Options: A. up B. left C. right D. up, 

down E. left, right F. up, left, right G. down, left, right H. up, down, left, right

Answer: C

GPT-4o Response: Up (0, 1): This is a blue block, so the player cannot move up. Down (2, 

1): This is a white block, so the player can move down. Left (1, 0): This is a blue block, so 

the player cannot move left. Right (1, 2): This is a white block, so the player can move right. 

Therefore, the available directions for the player to move are down and right. The correct 

option is: D. up, down

Ground Truth:

The player is on (1, 1), and for cells adjacent, only (1, 2) is empty. The player can move right. 

Therefore, The option is C.

Error Analysis: GPT-4o incorrectly recognizes (2, 1) as white.

Figure 25: GPT-4o Maze case study

Question: In this game, the board is divided into 9 3*3 squares (called 

Nine-grids). We use (i, j, row, col) to represent the coordinates of a cell: 

(i, j) represents the coordinates of the Nine-grid; (row, col) represents the 

coordinate of the cell within the Nine-grid; i, j, row, col all range from 1 

to 3. Two players take turns placing pieces on the board to mark the cells 

on the board, with the first player using "X" and the second player using 

"O” (this is the same as traditional TicTacToe). After the game starts, the 

first player places a chess piece in any cell in the Nine-grid in the middle 

(i.e., the Nine-grid (2, 2)). How many middle cells in the image are 

marked? Options: 1. 0 2. 1 3. 2 4. 3 5. 4 6. 5 7. 6 8. 7 9. 8 10. 9

Answer: 3

GPT-4o Response:

Top-left grid: (2,2) is unmarked. Top-middle grid: (2,2) is unmarked.

Top-right grid: (2,2) is X (marked). Middle-left grid: (2,2) is X (marked).

Center grid: (2,2) is unmarked. Middle-right grid: (2,2) is unmarked.

Bottom-left grid: (2,2) is O (marked). Bottom-middle grid: (2,2) is 

unmarked. Bottom-right grid: (2,2) is X (marked).

Correct answer: 5. 4

Ground Truth: By analyzing the blocks in the picture, we can see that 

the middle cells of nine-grid (1, 2) (Top-middle) and (3, 1) (Bottom-left) 

are marked, while the rest are empty. So, there are 2 middle cells marked, 

which means the answer is 3.

Error Analysis: GPT-4o misjudges the middle cells of Top-middle, Top-

right, Middle-left, Bottom-right, and Bottom-right.

Figure 26: GPT-4o Ultra Tic-Tac-Toe case study
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J DETAILS ON THE 30 GAMES AND MORE EXAMPLE DATA SAMPLES IN THE
GAMEQA DATASET

A total of 10 games are introduced below in detail, with detailed question information and
specific example QAs provided, while the others 20 games in brief.

Typically, each game provides example images for three Plot Levels (Easy, Medium, Hard) repre-
senting different image complexities, along with their grading criteria. For demonstration purposes
here, the images have been uniformly scaled. Please refer to the dataset repository for the actual rel-
ative sizes and resolutions of the images. The average height and width of the images in our dataset
have been presented in Section 3.

For the 10 games:

1. The specific questions uses these images as visual input.

2. Labels such as "E1", "M2", and "H1" are used to denote specific images. For example, "Q1
(E1)" indicates that the corresponding image for this Q1 question sample is the "E1" image
(i.e., the first image of the "Easy" Plot Level).

3. For each game, its Introduction text is a common component prepended to the beginning
of every associated question.

4. Due to space limitations, we have reasonably simplified the Introduction for some games,
and we have also omitted some content from parts of the analyses. However, most analysis
processes remain detailed and almost all clearly demonstrate the line of reasoning.

J.1 3D SPATIAL PERCEPTION AND UNDERSTANDING

J.1.1 3D RECONSTRUCTION

The game takes place in a 3x3x3 three-dimensional space with randomly initialized small cubes
(voxels). Players reference two target side views (projections) and continue placing voxels in the
3D space to make the structure match these views (not considered in some tasks), with a maximum
limit on placed voxels, all of which must be connected (not placed in midair). Question types include
counting voxels in the current structure, identifying if given coordinates contain a voxel, checking
if the current structure matches the side views, predicting side views after voxel additions, selecting
the addition sequence that results in the structure matching side views, and calculating the minimum
voxels needed to be added from the current structure to meet the two side views. The difficulty (Plot
Level) is primarily determined by the number of voxels in the target three-dimensional structure.

Images and Plot Level division
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Easy Medium Hard
Final voxel count ∈ [3, 5] Final voxel count ∈ [6, 10] Final voxel count ∈ [11, 15]

E1

E2

M1

M2

H1

H2

Question information

QA type QA Level Description
Q1 Target Perception Easy Count voxels in the 3D structure.
Q2 Target Perception Easy From options, select the position containing a voxel.
Q3 Target Perception Medium Select the option describing how the structures projec-

tions match target projections.
Q4 State Prediction Medium Predict projections after adding specified voxels.
Q5 State Prediction Hard Choose the correct voxel addition sequence to match

target projection(s), adhering to game rules.
Q5 Strategy Optimization Hard Calculate the minimum additional voxels required to

match both target projections.

Specific questions and analysis

Introduction: The current structure has some initial voxels, and your goal is to complete it. Game
Rules: 1. Goal: Reconstruct a 3D structure by adding voxels to match given projections.

2. Grid Space: The game is played on a 3x3x3 cube grid.

3. Coordinates: Position (x,y,z) ranges from 1 to 3, with (1,1,1) at front-left-bottom.

4. Position Rule: Each position can contain at most one voxel.

5. Connectivity: All voxels must be connected face-to-face.

6. Voxel Limit: You have a maximum of n additional voxels available.

7. Placement Rule: New voxels can only be placed adjacent to existing ones.

8. Front View (Y-Z): Shows structure when viewed along the negative X-axis direction (front to
back), with Y as horizontal axis and Z as vertical axis. Projection coordinates are in (y,z) format.

9. Side View (X-Z): Shows structure when viewed along the positive Y-axis direction (left to right),
with X as horizontal axis and Z as vertical axis. Projection coordinates are in (x,z) format.
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Q1 (E1): How many voxels are there in the given structure?
Analysis: The structure contains voxels at the following positions: (2,1,1), (2,2,1). By counting

these positions, we can see there are 2 voxels in total. Therefore the answer is 2.

Q2 (M1): Which of the following positions contains a voxel? Choose the correct position from the
options below.
Options: 1: (3,2,2); 2: (3,2,1); 3: (2,3,1); 4: (2,2,3); 5: (2,1,1); 6: (1,3,3)

Analysis: Let’s analyze each option:
Option 1 - Position (3,2,2): This position is empty.
... (omitted)
Option 5 - Position (2,1,1): This position contains a voxel. This is the correct answer.
Option 6 - Position (1,3,3): This position is empty.
Therefore, the correct answer is option 5.

Q3 (H1): How does the voxel structure’s projections match with the target projections?
Choose the correct description from the options below.
Options:
1: Neither Y-Z projection nor X-Z projection matches the target;
2: Only Y-Z projection matches the target; 3: Only X-Z projection matches the target;
4: Both Y-Z and X-Z projections match the target

Analysis: Let’s analyze the projections:
1. Looking along the negative X-axis direction (Front View, using (y,z) coordinates): -
We can see voxels at positions [(2, 1, 2), ... (omitted), (3, 3, 3)], forming a Y-Z projection
of [(1, 1), ... (omitted), (3, 3)] - This matches the target Y-Z projection exactly.
2. Looking along the positive Y-axis direction (Side View, using (x,z) coordinates): - We
can see voxels at positions [(1, 1, 1), ... (omitted), (3, 3, 2)], forming a X-Z projection of
[(1, 1), ... (omitted), (3, 3)] - This matches the target X-Z projection exactly.
Based on the above analysis, both projections match the target. Therefore, the correct
answer is option 4.

Q4 (E2): Action: Add 1 voxels at positions: [(2, 2, 1)]
Question: After adding these voxels, what will be the X-Z projection of the new
structure?
Answer Format:
1. Write the answer as a list of three lists: [[row1], [row2], [row3]] 2. Each row should
contain three numbers (0 or 1) 3. Rows are ordered from top to bottom of the projection
4. Numbers in each row are ordered from left to right 5. Use 1 to indicate presence of a
voxel in the projection, 0 for empty space 6. Example format: [[0, 1, 0], [1, 1, 0], [0, 1,
1]]

Analysis: Let’s analyze the projection:
Looking along the positive Y-axis direction (Side View, using (x,z) coordinates):
- We can see voxels at positions [(2, 2, 1)], which in X-Z projection appear at positions
[(2, 1)]. Therefore, the answer is: [[0, 0, 0], [0, 0, 0], [0, 1, 0]]
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Q5 (M2): Which sequence of voxel additions will make the structure match the both target
projections?
Choose the correct sequence from the options below.
Options:
1: Add voxels at positions: [(1, 1, 1), (1, 1, 2), (1, 2, 1), (3, 2, 1)]; ... (omitted)
6: Add voxels at positions: [(1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 2, 3)]; ... (omitted)
8: Add voxels at positions: [(2, 1, 2), (2, 3, 1), (3, 3, 3)]

Analysis: Let’s analyze each option:
Current structure: [(2, 2, 1), (2, 2, 2)]
Option 1: - The added voxels maintain connectivity - Does not match both target
projections - Uses 4 voxels, which is within the limit of 4
... (omitted)
Option 6: - The added voxels maintain connectivity - Matches both target projections -
Uses 4 voxels, which is within the limit of 4
... (omitted)
Option 8: - The added voxels are not all connected to the existing structure - Does not
match both target projections - Uses 3 voxels, which is within the limit of 4
Therefore, the correct answer is option 6.

Q6 (H2): What is the minimum number of voxels needed to add to the current structure to make it
match both target projections?

Analysis: Let’s solve this optimization problem through systematic reasoning:
1. Basic Information: - Current structure: 6 voxels at positions [(1, 1, 1), (1, 1, 2), (2, 1,
1), (2, 1, 2), (3, 1, 1), (3, 2, 1)] - Remaining available voxels: 3
2. Analysis of Y-Z Projection (Front View):
a) Current Y-Z projection: [0, 0, 0] (top) [1, 0, 0] (middle) [1, 1, 0] (bottom)
b) Target Y-Z projection: [1, 1, 0] (top) [1, 1, 0] (middle) [1, 1, 0] (bottom)
c) Candidate positions from Y-Z view: (?, 1, 3), (?, 2, 2), (?, 2, 3) where ? can be any
value from 1 to 3 for x-coordinate
d) Note: At positions where projection already shows 1, we can add more voxels without
affecting the projection. For example, if (2, y0, z0) exists (where y0 and z0 are specific
fixed values), we can add (1, y0, z0) or (3, y0, z0) at the same projection position.
3. Analysis of X-Z Projection (Side View): ... (omitted)
4. Finding Required Positions:
By matching candidates from both projections:
- When (?, y, z) from Y-Z view matches (x, ?, z) from X-Z view, position (x, y, z) can be
filled.
- Example: if we have (?, 2, 3) and (1, ?, 3), then (1, 2, 3) is required
- To ensure connectivity, we can add voxels at positions where projections already show
1
* This strategy is optimal because it doesn’t create new projections
* Use these positions as ’bridges’ to connect required positions Required positions from
projection matching: [(1, 1, 3), (2, 2, 2), (2, 2, 3)]
5. Connectivity Analysis and Completion: ... (omitted)
6. Verifying Optimality: ... (omitted)
Therefore, the minimum number of voxels needed to complete the reconstruction is 3.

J.1.2 3D MAZE

This game involves pathfinding within a three-dimensional maze constructed from unit cubes ar-
ranged in a 3D grid space (voxel-based). Traversal is subject to specific rules: horizontal movement
(along X or Y axes) is permitted between adjacent cubes only if they reside at the same height
(Z-coordinate). Vertical movement (ascending/descending along the Z-axis) is permitted between
vertically aligned cubes (sharing X and Y coordinates) only if a ladder explicitly connects them.
Key locations are color-coded: a blue cube designates the starting position, and a red cube marks
the goal destination. Additionally, green cubes, often labeled with numbers, serve as waypoints,
decision junctions, or specific points of interest referenced in the questions. Question types assess
spatial navigation and path analysis: (1) determining the correct direction of travel required at each
green waypoint to follow a path towards the destination; (2) ordering a set of specified green cubes
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based on their height (Z-coordinate); (3) identifying the sequence of green cubes visited along the
shortest path from the start to the end; (4) reporting the exact sequence in which green cubes are en-
countered when traversing from start to end following a defined path. Path generation often utilizes
concatenation of randomized ’atomic’ path segments (e.g., move +2X, move +2Y, move +2/3Z) to
create a primary route, with branching paths potentially added similarly to introduce choices, aiming
to minimize visual occlusion between path segments.

Images and Plot Level division

Easy Medium
Simple, a single path Complex, side road exists

E1

E2

M1

M2

Question information

QA type QA Level Description
Q1 Target Perception Easy Height Comparison
Q2 State Prediction Medium Sequence Finding
Q3 State Prediction Medium Main Path
Q4 State Prediction Hard Path Finding

Specific questions and analysis

Introduction: Rules: 1. Player can only walk on top of cubes

2. Player can climb ladders if they can reach the cube under the ladder

3. From a ladder, player can reach the top of the last cube with the ladder

4. Blue cube is start position, red cube is goal position

5. Green cubes are numbered points (1, 2, and 3)
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Q1 (E1): What is the correct height relationship between the three numbered points? Use ’<’ for
’lower than’ and ’=’ for ’same height as’.
Options:
1: 2 = 3 < 1 2: 1 < 3 < 2 3: 3 < 1 < 2 4: 1 < 2 = 3
5: 3 < 2 < 1 6: 2 < 1 = 3 7: 1 = 2 = 3 8: 3 < 1 = 2

Analysis: Analyzing the heights of each point:
Comparing points 1 and 2: Found a path from 1 to 2:
* Move left-forward * Move left-forward
- Point 2 is same height as point 1
Comparing points 1 and 3: Found a path from 3 to 1:
* Go up 3 blocks * Go up 3 blocks
- Point 3 is lower than point 1
Comparing points 2 and 3: Found a path from 3 to 2:
* Go up 3 blocks * Go up 3 blocks * Move left-forward * Move left-forward
- Point 3 is lower than point 2
Therefore, the correct height relationship is 3 < 1 = 2, making the answer Option 8.

Q2 (E2): What is the correct sequence of numbered checkpoints when following the path from
start to goal?
Options:
1: Start -> 2 -> 3 -> 1 -> 4 -> Goal; 2: Start -> 2 -> 3 -> 4 -> 1 -> Goal;
3: Start -> 4 -> 3 -> 1 -> 2 -> Goal; 4: Start -> 4 -> 2 -> 3 -> 1 -> Goal;
5: Start -> 3 -> 2 -> 4 -> 1 -> Goal; 6: Start -> 2 -> 4 -> 3 -> 1 -> Goal

Analysis: Following the path from start to goal:
- Step 1: Move right-forward - Step 2: At checkpoint 2 - Step 3: Move up
- Step 4: Move left-forward - Step 5: At checkpoint 3 - Step 6: Move left-forward
- Step 7: Move up - Step 8: At checkpoint 4 - Step 9: Move right-forward
- Step 10: At checkpoint 1 - Step 11: Move right-forward
Therefore, the correct sequence is Start -> 2 -> 3 -> 4 -> 1 -> Goal, making the answer
Option 2.

Q3 (M1): Which numbered blocks are passed through when following the most direct path from
start to goal?
Options:
1: 1, 2; 2: 2, 3; 3: 3; 4: 2; 5: 1; 6: None; 7: 1, 2, 3; 8: 1, 3

Analysis: Following the main path from start to goal:
- Step 1: Move up - Step 3: Move up - Step 4: Move right-forward
- Step 5: Move left-forward - Step 6: Move right-forward - Step 7: Move right-forward
Blocks not on main path: 1, 2. Therefore, the blocks passed through on the main path
are: 3, making the answer Option 3.

Q4 (M2): Which combination of path choices leads to the goal?
Options:
1: 1-right-forward, 2-right-forward, 3-up;
2: 1-left-forward, 2-right-forward, 3-left-forward;
3: 1-left-forward, 2-up, 3-left-forward; 4: 1-left-forward, 2-up, 3-up;
5: 1-left-forward, 2-right-forward, 3-up; 6: 1-right-forward, 2-up, 3-up;
7: 1-right-forward, 2-right-forward, 3-left-forward;
8: 1-right-forward, 2-up, 3-left-forward

Analysis: From the start point, you first meet branch 1, then branch 2, then branch 3, before finally
reaching the goal.
Analyzing each branch point:
- At branch 1, going right-forward leads to branch 2, while going left-forward leads to a
dead end
- At branch 2, going up leads to branch 3, while going right-forward leads to a dead end
- At branch 3, going up leads toward the goal, while going left-forward leads to a dead
end
Therefore, the correct sequence is 1-right-forward, 2-up, 3-up, that is 1-right-forward,
2-up, 3-up, making the answer Option 6.
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J.1.3 RUBIK’S CUBE

This game is based on the classic Rubik’s Cube puzzle. The game interface presents both 3D views
and an unfolded view of the cube. The 3D views display the cube from two different angles: left-
tilted 30 degrees looking down, and right-tilted 30 degrees looking up. The cube features six faces
with distinct colors (yellow, white, orange, red, blue, and green), and players can manipulate the
cube according to standard rotation rules (where F, B, L, R, U, D represent Front, Back, Left, Right,
Upper, and Down faces, with a prime symbol denoting counterclockwise rotation).

Question types, assessing spatial reasoning and pattern recognition, include identifying the color at
a specific position on a face, counting a color’s occurrences on a face, and predicting a position’s
color after a move sequence. Further questions ask for the minimum moves to solve a single face or
the entire cube. The difficulty level (Plot Level) is determined by the number of random moves used
to scramble the cube: 1 move for Easy, 2 moves for Medium, and 3 moves for Hard.

Images and Plot Level division

Easy Medium Hard
1 random move 2 random moves 3 random moves

J.1.4 PYRAMID CHESS

This is a 3D two-player competitive game. Players take turns placing balls on a board, building a
pyramid structure layer by layer. The player whose ball occupies the pyramid’s top wins.

Question types challenge players to assess the board by determining which player’s ball occupies
a given position, the specific state of any board position, and the total count of balls. Additionally,
questions involve predicting the result of a player placing a ball, calculating the minimum number
of moves required to place a ball at a certain position, and identifying a player’s optimal placement
in the current state. Plot Level is determined by the board’s base size, with larger base dimensions
increasing the challenge.

Easy Medium Hard
Level 0 3× 3 Level 0 4× 4 Level 0 5× 5

J.1.5 MINECRAFT

This Minecraft QA generator is designed to produce a series of questions that test 3D perception
and understanding within a simulated "Minecraft" environment. Given the open-ended nature of
Minecraft, the tasks are custom-designed to probe specific cognitive abilities. The generated ques-
tions aim to evaluate how well an agent can interpret and reason about 3D scenes.
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The question set begins by assessing precise 3D perception. Q1 requires recognizing various scener-
ies present in the image, such as different ores, TNT, pumpkins, or environmental features like rivers
and lava. Q2 tests the ability to accurately count the total number of blocks in a given structure.
These foundational perceptual skills are prerequisites for the subsequent three tasks, which demand
reasoning based on both visual input and provided rules. These more complex questions involve
planning: determining the minimum blocks to cross a river (Q3), calculating the blocks needed to
reach a target block at a certain height, possibly using ladders (Q4), and a combined scenario requir-
ing both river crossing and climbing to access a target block, again considering ladders (Q5). Plot
Level is determined by the number of sceneries (Q1), the cuboid size (Q2), the width of the river
(Q3, Q5) and the height of the target block (Q4, Q5).

For Q1

For Q2

For Q3

For Q4

For Q4

For Q5
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J.2 PATTERN RECOGNITION AND MATCHING

J.2.1 COLOR HUE

This game involves reasoning about color gradients within a grid structure. Certain rows and/or
columns within the grid display smooth color transitions. Cells that are intentionally left blank or
empty are visually marked with a gray crosshatch pattern. Color information may be conveyed using
standard color names (e.g., "purple"), derived programmatically from their Hue-Saturation-Value
(HSV) properties.

Question types focus on understanding and interpolating these color gradients: (1) identifying the
specific color present at a given row and column index; (2) determining the starting and ending
colors of a specified gradient row or column; (3) selecting the correct color from a provided set of
options (e.g., six color patches) that should logically fill a designated blank cell (marked with a letter)
based on the surrounding gradient(s). The complexity (’plot level’) scales with the dimensions of
the grid.

Images and Plot Level division

Easy Medium Hard
5× 5 6× 6 8× 8

E M H

Question information

QA type QA Level Description
Q1 Target Perception Easy Color Description
Q2 Target Perception Medium Gradient Pattern
Q3 State Prediction Hard Color Matching

Specific questions and analysis

Introduction: Rules:

1. Each numbered region represents a piece on the board.

2. Pieces are considered adjacent if they share at least one edge.

3. Pieces that only touch at corners are not considered adjacent.

4. Some pieces have been removed and are shown below the main board.
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Q1 (M): What color is the cell at row 1, column 6?
Options:
1: green; 2: white; 3: vivid red; 4: pale bright green; 5: bright cyan; 6: cyan; 7: bright
orange; 8: dark green.

Analysis: The cell at position (1, 6) is pale bright green. So the answer is Option 4.

Q2 (E): What is the gradient pattern in column 5?
Options:
1: transitioning from bright purple to pale dark cyan;
2: transitioning from vivid green to pale bright purple;
3: transitioning from pale bright yellow to vivid dark blue;
4: transitioning from vivid bright blue to pale red;
5: transitioning from yellow to light gray;
6: transitioning from red to pale bright cyan;
7: transitioning from purple to bright red;
8: transitioning from black to pale bright cyan.

Analysis: The column 5 shows a pattern that is transitioning from purple to bright red. So the
answer is Option 7.

Q3 (H): Which color should be put in cell B?
Options: Colors are numbered from 1 to 6 in the palette below.

Analysis: We need to find the correct color for cell B at position (2, 6). Let’s analyze the color
patterns around this cell:
Looking vertically, we see a pattern transitioning from pale bright red to bright yellow.
Let’s look at our color options:
Option 1 is bright yellow; Option 2 is vivid dark purple; Option 3 is pale yellow; Option
4 is vivid bright indigo; Option 5 is yellow; Option 6 is pale bright red. Based on the
pattern, we should use pale bright red (Option 6).

J.2.2 TANGRAM

This game presents a spatial reasoning puzzle inspired by Tangram, involving the manipulation and
fitting of polygonal shapes within a grid. The grid is partitioned into several distinct regions or
"pieces", each identified by a unique integer ID. Cells belonging to a specific piece display that
piece’s ID number; cells not part of any displayed piece are left blank, representing empty space.
One or more pieces are removed from the main board. Questions test pattern recognition and spatial
matching skills across various dimensions: identifying piece area and adjacency, determining correct
rotations to fit removed pieces back into empty spaces, and strategically positioning multiple pieces
to fill available gaps. The puzzle complexity scales with the grid size.

Images and Plot Level division
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Easy Medium Hard
5× 5 Main Board 8× 8 Main Board 9× 9 Main Board

E1

E2

M1

M2

H1

H2

Question information

QA type QA Level Description
Q1 Target Perception Easy Main board piece
Q2 State Prediction Medium Removed piece rotation feasibility
Q3 Target Perception Medium Target piece area calculation
Q4 Target Perception Medium Adjacent piece type count
Q5 State Prediction Hard Piece Placement

Specific questions and analysis

Introduction: Rules:

1. Each numbered region represents a piece on the board.

2. Pieces are considered adjacent if they share at least one edge.

3. Pieces that only touch at corners are not considered adjacent.

4. Some pieces have been removed and are shown below the main board.

Q1 (E1): How many pieces are currently on the main board?
Options: 1: 4 2: 1 3: 0 4: 3 5: 2 6: 5 7: 7 8: 6

Analysis: Let’s analyze the puzzle state:
Pieces currently on the board: Piece 2 (vivid bright orange) around position (3, 3)
Removed pieces: Piece 4; Piece 3; Piece 1
By counting the unique non-zero numbers on the main board, we can see there are 1
pieces remaining. Therefore, the answer is Option 2.
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Q2 (M1): Can the removed piece fit back into the main board by only rotation? If yes, what
rotation(s) would work?
Options: 1: rotate 0 degrees 2: no matter what degrees rotated, it always can fit 3: both
rotate 0 and 180 degrees 4: rotate 90 degrees clockwise 5: can’t put inside (flipped) 6:
rotate 180 degrees 7: rotate 90 degrees by both direction 8: rotate 90 degrees
counterclockwise

Analysis: Let’s analyze how piece 1 can be rotated to fit the hole:
1. Dimension Analysis: - Hole dimensions: 6x6 - Piece dimensions: 6x6
- Based on dimensions, these rotations (clockwise) might work: 0, 90, 180, 270
2. Testing Each Rotation:
0ř rotation: - Failed: First mismatch at row 0, column 1 (mapped to (0,1) of removed
piece and (2,3) of board) - At this position, the hole was empty but the piece was absent
... (omitted: 90ř and 180ř rotation)
270ř rotation: - Success! Piece fits perfectly
3. Summary: - Valid rotations found: 270 - Some rotations work
So, the correct answer is: rotate 90 degrees counterclockwise which is Option 8.

Q3 (M2): Question: What is the area (number of cells) of Piece 1?
Options: 1: 11 2: 12 3: 14 4: 17 5: 18 6: 19 7: 20 8: 21

Analysis: Let’s analyze Piece 1 (vivid blue) row by row:
The piece spans from row 0 to 5 (height of 6):
Row 0: 2 cells from column 0 to 1; ... (omitted)
Adding up all the cells: 2 + 2 + 3 + 4 + 4 + 2 = 17 cells. Therefore, the answer is Option
4.

Q4 (H1): Question: How many different pieces are adjacent to Piece 3?
Options: 1: 5 2: 6 3: 0 4: 2 5: 3 6: 4 7: 7 8: 1

Analysis: Let’s analyze Piece 3 (green):
Piece Boundaries: - Spans rows 3 to 7 (height: 5) - Spans columns 4 to 8 (width: 5)
1. Cell-by-cell examination: Cell (3,7): No adjacent pieces; ... (omitted) Cell (5,4): -
down: Piece 4 (vivid bright red) at (6,4) ... (omitted) Cell (7,8): - down: Piece 4 (vivid
bright red) at (8,8)
2. Adjacent Pieces Summary: - Piece 4 (vivid bright red): 7 contact sides
Total number of unique adjacent pieces: 1. Therefore, the answer is Option 8.

Q5 (H2): Question: At which position should Piece 1 be placed? Each option shows
(top_row,left_col) to (bottom_row,right_col).
Options: 1: (0,3) to (6,6) 2: (0,6) to (6,9) 3: (0,4) to (6,7) 4: (0,5) to (6,8)

Analysis: Let’s analyze the placement of Piece 1 and Piece 4:
1. Hole dimensions: 7x5 2. Piece 1 dimensions: 7x4 3. Piece 4 dimensions: 4x4
We know that if Piece 1 fits, then it must be placed at one of the four corners.
Testing each corner: - upper-left: Attempting to place Piece 1 at (0,5) to (6,8) Failed:
Cell (4,0) on Removed Pieces plot maps to board position (4,5) which isn’t empty -
upper-right: Attempting to place Piece 1 at (0,6) to (6,9) Success! Remaining hole
dimensions: 4x4 Then placing Piece 4 at (0,5) to (3,8) Both pieces fit perfectly! -
bottom-left: Since Piece 1 has the same height as the hole, bottom-left corner is same as
upper-left corner. Skipped. ... (omitted: bottom-right, same as upper-right corner)
Therefore, Piece 1 should be placed at position (0,6) to (6,9) as shown in Option 2.

J.2.3 FREECELL

This scene presents a solitaire card game whose goal is to move all cards to foundation piles, fol-
lowing specific rules. This game is played with a standard deck of 52 cards, arranged in n tableau
columns, four open cells, and four foundation piles. Cards can be moved between tableau columns
according to descending order and alternating colors, while empty tableau spaces can only be filled
by kings. The four open cells act as temporary storage, allowing players to temporarily hold cards
for strategic moves. Complexity is controlled by adjusting the number of tableau columns, testing
the model’s ability to search for a efficient operation list to complete the game.
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Easy Medium Hard
8 cascade piles 6 cascade piles 4 cascade piles

J.2.4 TETRIS

This Tetris-derived game maintains the original objectives while simplifying visuals to highlight core
information. Players arrange falling blocks to eliminate rows by: moving/rotating pieces during
descent until they land at the bottom or on other blocks, clearing complete horizontal rows. The
game ends when blocks reach the grid’s top. The simplified interface shows a white grid with gray
squares representing placed blocks and red squares indicating the current falling piece (with grid
coordinates). While actual games use color-coding for different block batches, this visual distinction
is omitted as irrelevant to gameplay logic. Advanced Tetris variants are excluded.

Questions cover: 1) Empty squares in a specified row 2) Identifying the current red block’s shape 3)
Timestamps until the falling block lands after given moves 4) Maximum eliminable rows from the
current block’s optimal placement.

Easy Medium Hard
8× 8 12× 12 16× 16

J.2.5 ZUMA

This game is a classic marble-shooting puzzle game where players control a frog that shoots colored
marbles toward a chain of rolling marbles on a track. The objective is to clear all marbles before they
reach the black hole at the end. Players must create groups of three or more same-colored marbles,
which will disappear from the track. The frog’s marbles travel in a straight line until they hit marbles
already in their path.

The game tests spatial reasoning, color recognition, and strategic planning through various question
types: identifying the color of the next marble to be shot, counting marbles of specific colors, de-
termining the number of same-colored marble groups in certain directions, predicting which marble
will be hit at specific angles, analyzing the outcome of shots, and evaluating optimal elimination
strategies. Plot difficulty levels are determined by track length and marble count.
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Easy Medium Hard
Short track with a few marbles Medium-length track with

more marbles
Long track with many marbles

J.2.6 SPIDER SOLITAIRE

The game is based on Microsoft’s classic Spider Solitaire, with the original four suits simplified
to just one suit. The objective of the game is to move all 13 cards of the same suit, arranged in
descending order from King to Ace, from the waste piles to the foundation piles. The cards in the
waste piles must be arranged in descending order. The foundation piles serve as the final destination
for complete sequences. The game screen includes several waste piles, a stock pile, and foundation
piles, with each pile containing several stacked cards. Some cards are face down, indicating that
their rank is unknown, while others are face up, revealing their rank. The dataset includes tasks
such as identifying the card on top of a pile, moving cards from the waste piles, and determining the
optimal move. The dataset is divided into three difficulty levels based on the number of waste piles.

Easy Medium Hard
8 waste piles 9 waste piles 10 waste piles

J.2.7 JEWEL2

Jewel2 is a grid-based strategic puzzle game. It is inspired by Microsoft’s classic game Bejeweled 2,
with certain modifications made to the original game. The game board is square-shaped and consists
of five basic elements and seven special elements. The basic elements are five gems of the same
shape but different colors, while the special elements are seven gems with different shapes from
the basic ones, designed to test the model’s pattern recognition ability. The main objective of the
game is to eliminate elements by forming horizontal or vertical lines of three or more identical items.
Successfully eliminating elements increases your score and clears space for new elements to appear.
The game tasks include recognizing elements on the board, executing elimination operations, and
maximizing the score. Plot Level is determined by the size of the board
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Easy Medium Hard
4× 4 5× 5 6× 6

J.2.8 KLONDIKE

This Klondike Solitaire-based strategy game challenges players to analyze card layouts and apply
rules for optimal decisions. It uses a standard interface with Stock, Waste, Foundation, and Tableau
piles. The goal is to move all 52 cards, by suit and in ascending order (Ace to King), to the four
Foundation Piles. Key mechanics include building Tableau piles down in alternating colors and
descending order, building Foundations up, and strategically moving cards to reveal face-down ones,
utilize the Waste Pile, and advance cards to Foundations.

Questions, generated from the current card layout, cover diverse Klondike decision-making and
analysis scenarios. Types include identifying valid moves, determining the most effective move
strategy (e.g., one that reveals a card or helps build Foundations), and analyzing for deadlocks.
Players must apply logical reasoning based on on-screen card information and Klondike rules to
select correct answers. Difficulty is dynamically set by the number of face-up cards.

Easy Medium Hard
#face-up cards ≤ 19 #face-up cards∈ [20, 23] #face-up cards ≥ 24
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J.3 MULTI-STEP REASONING

J.3.1 STAR BATTLE

This scene presents a 2D n Œ n matrix which are divided into n regions. Each region has a specified
color and is connective. The goal is to place stars in the matrix to make sure each row, col, region
has only one star and the stars must not be adjacent to each other on rows, columns and diagonals.
Complexity is controlled by adjusting the matrix size, testing the model’s ability to reason according
to the known rules.

Images and Plot Level division

Easy Medium Hard
5× 5 (5 colors) 6× 6 (6 colors) 8× 8 (8 colors)

E1

E2

M1

M2

H1

H2

Question information

QA type QA Level Description
Q1 Target Perception Easy Identify the cell belonging to the given region
Q2 Target Perception Easy Identify the cell belonging to the given region and contain-

ing a star
Q3 State Prediction Medium Identify the cell where a star can be placed
Q4 State Prediction Hard Find the position of the final star needed to complete the

puzzle

Specific questions and analysis

Introduction:

We have a 5*5 grid. The grid is divided into 5 regions. Cells with the same color belong to the same
region.

Colors: Region0 (light pink), Region1 (powder blue), Region2 (light green), Region3 (peach), Re-
gion4 (red), Region5 (yellow), Region6 (cyan), Region7 (orange).
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In the image, a star is represented by a black dot. If a cell has been placed a star, a black dot will
be shown on this cell. We should place the star in this Star Battle Puzzle according to the following
rules:

Each row must contain exactly 1 star(s). Each column must contain 1 star(s). Each region must
contain exactly 1 star(s). Stars cannot be adjacent to each other, including diagonally.

The cells in the grid are labeled with row and column numbers starting from 0. The top-left corner
of the grid is (0, 0). (x,y) means a cell at row x and column y. Now we have placed some stars in the
grid.

Q1 (E2): The region with index 1 is represented by the color powder blue in the grid. Given the
current state, which cell in the following options belong to region 1?
Options:
1. (2, 3); 2. (0, 2); 3. (3, 4); 4. (3, 1);
5. (2, 2); 6. (3, 2); 7. (2, 1); 8. (1, 0)

Analysis: The region with index 1 is represented by the color powder blue in the grid. In this
puzzle, we need to identify which cell in the following options belongs to this region.
The region 1 contains the following cells: (0, 0), (0, 1), (0, 2), (1, 1), (1, 2). So (0, 2)
belongs to region 1. The answer is Option 2.

Q2 (E2): In the current puzzle state, region 1 is associated with color powder blue. Please identify
which of the following cells in this region that contains a star?
Options:
1. (1, 1); 2. (2, 0); 3. (0, 1); 4. (0, 0);
5. (0, 2); 6. (4, 4); 7. (1, 2); 8. (1, 4)

Analysis: In this task, we need to find all the stars in the region with index 1. The region with
index 1 corresponds to the color powder blue. This region contains the following cells:
(0, 0), (0, 1), (0, 2), (1, 1), (1, 2). Note that a star is represented by a black dot. Now
scan the cells of the region 1 on the image. The cell with a black dot is: (0, 1). So the
answer is Option 3.

Q3 (M1): Now we have placed some stars in the grid. Based on the current puzzle state, which of
the following cells can a star be placed in?
Options:
1. (4, 2); 2. (5, 3); 3. (1, 1); 4. (2, 2);
5. (1, 0); 6. (3, 4); 7. (3, 3); 8. (4, 0)

Analysis: Cell (3, 3) cannot hold a star because: It is adjacent to a star, so it cannot hold a star.
Cell (4, 2) cannot hold a star because: It is adjacent to a star, so it cannot hold a star.
Besides, this cell is in region 2, which already contains one star, so it cannot hold a star.
Cell (1, 0) cannot hold a star because: It is not adjacent to any star. However, this cell is
in region 3, which already contains one star, so it cannot hold a star. Cell (2, 2) cannot
hold a star because: It is adjacent to a star, so it cannot hold a star. Cell (5, 3) cannot
hold a star because: It is not adjacent to any star. This cell is in region 1, which contains
no stars. However, Column 3 has already been placed a star. Therefore, it cannot hold a
star. Cell (1, 1) cannot hold a star because: It is not adjacent to any star. However, this
cell is in region 3, which already contains one star, so it cannot hold a star. Cell (3, 4)
cannot hold a star because: It is not adjacent to any star. This cell is in region 0, which
contains no stars. However, Row 3 has already been placed a star. Therefore, it cannot
hold a star. Cell (4, 0) can hold a star because: It is not adjacent to any star. This cell is
in region 4, which contains no stars. Both row 4 and column 0 now have no stars. Thus,
the correct answer is Option 8.
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Q4 (H1): Now the puzzle has only one star left to be placed. The left star should be placed in
which cell?

Analysis: **Step-by-step reasoning to solve the puzzle:**
1. **Preplaced stars and their positions:**
- The following stars are already placed: Row 1, Column 0, Row 2, Column 3, Row 3,
Column 7, Row 4, Column 5, Row 5, Column 1, Row 6, Column 4, Row 7, Column 6.
- These positions fulfill the requirement of placing one star per row, column, and region.
2. **Identify rows and columns with and without stars:**
- **Rows with stars:** Row 1, Row 2, Row 3, Row 4, Row 5, Row 6, Row 7.
- **Rows without stars:** Row 0.
- **Columns with stars:** Column 0, Column 1, Column 3, Column 4, Column 5,
Column 6, Column 7.
- **Columns without stars:** Column 2.
3. **Determine remaining valid cell:**
- The final star must be placed in a row and column that are both missing stars.
- Based on the information above, the row without a star is Row 0 and the column
without a star is Column 2.
- The only available intersection is cell (0, 2), which satisfies the row and column
constraints.
4. **Region check:**
- The preplaced stars occupy the following regions: 0, 1, 2, 3, 4, 5, 6.
- The remaining region that requires a star is: Region 7.
5. **Final validation:**
- The cell (0, 2) belongs to the remaining region without a star. - Placing the star here
satisfies all row, column, region, and adjacency constraints.
Thus, the final star must be placed at **Row 0, Column 2**.

J.3.2 SUDOKU

Sudoku is a puzzle that requires filling a grid such that each row, column, and subgrid contains
all digits from 1 to 9 without repetition.Our Sudoku-like puzzle game can be adapted to serve as a
multi-modal dataset by replacing the numbers 1-9 with nine different colors. In this game, players
are provided with a grid, where each row, column, and subgrid must contain all nine colors without
repetition.

The types of questions in the game are as follows: 1.The color of a specific cell. 2.The number of
cells of a certain color on the board.3.The number of rows, columns, or blocks with more blank cells
than a specified number.4.The number of possible color options for a specific cell under the current
board conditions.5.The color for a third cell after two other cells are filled with specific colors. The
difficulty level of the game is determined by the size of the grid and the number of filled cells.

Images and Plot Level division
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Easy Medium Hard
4× 4 9× 9, most cells filled 9× 9, fewer cells filled

E1

E2

M1

M2

H1

H2

Question information

QA type QA Level Description
Q1 Target Perception Easy Position color identification
Q2 Target Perception Easy Color occurrence count
Q3 Target Perception Medium Sparse unit count
Q4 State Prediction Medium Valid color candidated inference
Q5 State Prediction Hard Guided-position color deduction

Specific questions and analysis

Q1 (E1): What color is at position (2,1) (note that on the board the position (2,1) has already been
filled with a certain color)? Choose from the following options: A.red, B.green, C.blue,
D.magenta

Analysis: From the image, we can see the color at Position (2,1) is red.
So the answer is A.

Q2 (M1): How many times does aqua appear on the board?
Analysis: Color aqua appears at: (1,1), (2,9), (3,6), (4,7), (5,3), (6,4), (7,8), (8,2), (9,5), total 9

times.
So the answer is 9.
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Q3 (E2): How many columns have more than 1 empty cell?
Analysis: Col analysis:

col 1 has 3 empty cells in positions 1, 2, 3;
col 2 has 2 empty cells in positions 1, 4;
col 3 has 1 empty cells in positions 2;
col 4 has 2 empty cells in positions 1, 4.
In total, 3 col(s) have more than 1 empty cell.
So the answer is 3.

Q4 (H1): How many colors can be filled in position (7,1)? Infer based on the current situation
focusing only on the colour of the position.

Analysis: Constraint anlysis for position (7,1):
Existing colors in row: purple, aqua, forest green, gray, yellow, red, green
Existing colors in column: blue, aqua, purple, red, green, yellow, forest green, purple
Existing colors in box: purple, aqua, green, yellow, gray, blue
Therefore, possible colors are: magenta. So the answer is 1.

Q5 (H2): After determining colors at positions (2,1), (2,5), what color should be at position (2,4)?
Choose from following options: A.red, B.green, C.blue, D.magenta, E.yellow, F.aqua,
G.gray, H.purple, I.forest green

Analysis: Deductive reasoning process:
Step 1: Position (2,1): Existing colors in the row: green, aqua, gray, purple, blue, red.
Existing colors in the column: purple, blue, aqua, gray, yellow, magenta. Existing colors
in the 3x3 box: purple, gray, magenta, green, aqua, yellow, blue
Therefore, the only possible color for this position is forest green.
Step 2: ... Therefore, the only possible color for this position is magenta.
Final analysis for position (2,4): ... After previous deductions, possible color reduced to:
yellow
So the answer is E.

J.3.3 LANGTON’S ANT

This game simulates the behavior of Langton’s Ant in a cellular automaton. The ant is represented
by a red arrow indicating its initial position and direction. It moves on a randomly generated grid
composed of black and white squares, following a fixed set of rules: If the ant is on a black square,
it turns 90 degrees to the right, flips the square to white, and moves forward one step; if the ant is on
a white square, it turns 90 degrees to the left, flips the square to black, and moves forward one step.

There are three types of questions in the game: 1. Identify the ant’s initial position and direction.
2. Predict the ant’s position and direction after a given number of steps. 3. Given a specific square,
infer how many times its color has changed after the ant has moved a certain number of steps.

The difficulty of the game is determined by the question type and the size of the grid: the three
question types increase in complexity respectively, and the grid size defines the level of difficultyn
= 5 indicates an easy level, while n = 13 indicates a hard level.

Images and Plot Level division
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Easy Medium Hard
5× 5 9× 9 13× 13

E M H

Question information

QA type QA Level Description
Q1 Target Perception Easy Identify the current position and direction of the ant.
Q2 State Prediction Medium Predict the ant’s position and direction after several steps.
Q3 State Prediction Hard Count how many times a specific cell changes its color.

Specific questions and analysis

Introduction:

In Langton’s Ant, we have a grid where each cell is either white or black. A red arrow represents an
ant, showing its current position and direction. The ant follows these simple rules:

1. If the ant is on a white cell, it turns right 90 degrees, changes the cell to black, and moves forward
one step

2. If the ant is on a black cell, it turns left 90 degrees, changes the cell to white, and moves forward
one step

3. If the ant would move off the grid, it wraps around to the opposite side (using modulo with grid
size)
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Q1 (E): What is the current position and direction of the ant in the image?
Answer using one of the following options with its corresponding letter:
A: Position (1, 3), facing up; B: Position (0, 4), facing left
C: Position (2, 3), facing down; D: Position (4, 3), facing up
E: Position (4, 3), facing down; F: Position (0, 0), facing up
G: Position (0, 0), facing right; H: Position (4, 3), facing right

Analysis: Step-by-step analysis:
1. Look at the red arrow in the image which represents the ant. 2. The arrow’s position
indicates the ant is at coordinates (0, 0). 3. The arrow’s direction shows the ant is facing
right.
Therefore, the ant’s current position is (0, 0) and it’s facing right. The answer is G.

Q2 (E): After 6 steps, what will be the ant’s position and direction?
Answer using one of the following options with its corresponding letter:
A: Position (2, 0), facing down; B: Position (2, 3), facing right
C: Position (0, 0), facing right; D: Position (4, 1), facing right
E: Position (4, 4), facing up; F: Position (0, 3), facing down
G: Position (2, 1), facing left; H: Position (4, 4), facing left

Analysis: Initial state: The ant is at (0, 0) facing right.
Let’s follow the ant’s movement step by step:
- Step 1: Ant is on a white cell at (0, 0), facing right. It turns right, changes the cell to
black, moves forward to (1, 0), now facing down.
- Step 2: Ant is on a white cell at (1, 0), facing down. It turns right, changes the cell to
black, moves forward to (1, 4), now facing left.
- Step 3: Ant is on a white cell at (1, 4), facing left. It turns right, changes the cell to
black, moves forward to (0, 4), now facing up.
- Step 4: Ant is on a white cell at (0, 4), facing up. It turns right, changes the cell to
black, moves forward to (0, 0), now facing right.
- Step 5: Ant is on a black cell at (0, 0), facing right. It turns left, changes the cell to
white, moves forward to (4, 0), now facing up.
- Step 6: Ant is on a white cell at (4, 0), facing up. It turns right, changes the cell to
black, moves forward to (4, 1), now facing right.
Final state: The ant is at (4, 1) facing right. The answer is D.

Q3 (E): After 12 steps, how many times did the cell at position (0, 0) change its color? Answer
with a number.

Analysis: Initial state: The ant is at (0, 0) facing right. Target cell (0, 0) starts as white.
Let’s follow the ant’s movement step by step:
- Step 1: Ant is on a white cell at (0, 0), facing right. It turns right, changes the cell to
black, moves forward to (1, 0), now facing down. Target cell (0, 0) is visited and
changes from white to black (change #1).
- Step 2: Ant is on a white cell at (1, 0), facing down. It turns right, changes the cell to
black, moves forward to (1, 4), now facing left. Target cell (0, 0) remains black.
- Step 3: Ant is on a white cell at (1, 4), facing left. It turns right, changes the cell to
black, moves forward to (0, 4), now facing up. ...
Step 4: Ant is on a white cell at (0, 4), facing up. It turns right, changes the cell to black,
moves forward to (0, 0), now facing right. ...
Step 5: Ant is on a black cell at (0, 0), facing right. It turns left, changes the cell to
white, moves forward to (4, 0), now facing up. Target cell (0, 0) changes from black to
white (change #2).
- Step 6: Ant is on a white cell at (4, 0), facing up. It turns right, changes the cell to
black, moves forward to (4, 1), now facing right. ...
- Step 7: Ant is on a white cell at (4, 1), facing right. It turns right, changes the cell to
black, moves forward to (0, 1), now facing down. ...
... (Omitted: Step 8-11. Ant continues moving, flipping cells, but (0, 0) remains white.)
- Step 12: Ant is on a white cell at (0, 1), facing down. It turns right, changes the cell to
black, moves forward to (0, 0), now facing left. Target cell (0, 0) remains white.
Final state: The ant is at (0, 0) facing left. Target cell (0, 0) changed color 2 times. The
answer is 2.
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J.3.4 WORD SEARCH

This game is a visual search task based on the classic Word Search puzzle paradigm. It features a
grid where each cell contains a single letter. Target words are embedded within this grid, oriented
horizontally, vertically, or diagonally (spanning eight possible directions).

Question types assess visual parsing and pattern recognition within the grid, including: (1) identi-
fying the letter located at a specific row and column index; (2) counting the total occurrences of a
given letter across the entire grid; (3) determining the direction (out of eight possibilities) in which
a specified word extends, given its starting cell coordinates; and (4) locating both the starting cell
coordinates and the correct direction for a given target word within the grid. The complexity (’plot
level’) is influenced by the grid size.

Easy Medium Hard
5× 5 7× 7 8× 8

J.3.5 2D TURING MACHINE

This game presents a simulation of a two-dimensional Turing machine. The state of the machine’s
tape, represented as a grid, is visualized using distinct colors for different symbols within each cell.
The initial position of the read/write head is indicated visually, typically by a black dot, and is also
specified in the accompanying text description. The core task requires simulating the step-by-step
operation of the defined Turing machine. Question types focus on tracking the machine’s execution,
including: (1) determining the head’s coordinates after a specified number of steps; (2) identifying
the symbol (color) under the head after a specified number of steps; (3) describing the sequence of
symbol changes within a particular cell over a given number of steps; and (4) identifying the step
number at which the machine first enters a specific state. The complexity ("Plot Level") of the task
is primarily determined by the dimensions of the grid.

Easy Medium Hard
3× 3 4× 4 5× 5

J.3.6 TENTS

Tents is a logic puzzle played on a grid with predefined tree positions and row/column tent counts.
The objective is to place tents adjacent to trees while following these rules: each cell holds either a
tree, a tent, or remains empty; the number of tents matches the number of trees; every tent must be
horizontally or vertically adjacent to at least one tree; no two tents can be adjacent in any direction
(including diagonally); and row/column tent totals must match the given numbers.
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Questions involve analyzing partially filled grids, such as determining the current number of tents in
a row, remaining tents to place, identifying tree locations among given positions, available spots for
new tents without immediate rule violations, and selecting rule-compliant tent placements. Puzzle
difficulty scales with grid size.

Easy Medium Hard
7× 7 10× 10 13× 13

J.3.7 RHYTHM GAME

This is a rhythm game featuring dynamic falling blocks. Players are tasked with selecting a column
to place their finger and clicking on the operation blocks that fall to the first row of the selected
column to score points. Alternatively, players may choose not to click any column, which will not
affect the falling of the blocks. The blocks in the game are divided into three types: Click blocks,
Reverse blocks, and Snake blocks, each with different scores and click effects, prompting players to
make choices while playing to get the highest score.

Questions will be asked based on the current game situation, involving issues such as block type
identification, grid ratio calculation, and score calculation. Players need to reason and answer based
on the information on the screen in the game. In addition, the game difficulty is divided into three
levels according to the complexity of the scene, including Easy (15Œ4), Medium (15Œ6), and Hard
(20Œ6).

Easy Medium Hard
15× 4 15× 6 20× 6

J.3.8 LIFEGAME

This is a cellular automaton simulation on an nŒn 2D grid, where cells are either "alive" (black
squares) or "dead" (white/empty squares) and evolve over generations. A cell’s next state is de-
termined by its current state and its eight neighbors: a dead cell with exactly three live neighbors
becomes alive (simulating reproduction); an alive cell dies with fewer than two (simulating under-
population) or more than three live neighbors (simulating overpopulation), but survives with two or
three.
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Game tasks involve counting current alive cells, predicting alive cells after one iteration, determining
a specific cell’s state change over N iterations, and calculating iterations for a given region to reach
a stable state (static or oscillating). The "Plot Level" (difficulty) is determined by the grid size, with
larger grids indicating higher difficulty.

Easy Medium Hard
3× 3 4× 4 5× 5

J.3.9 MINESWEEPER

The game is inspired by Microsoft’s classic game Minesweeper. The objective is to reveal all cells
that do not contain mines while correctly flagging the mines. If a player accidentally reveals a cell
containing a mine, the game ends immediately. The Minesweeper game board consists of cells
marked with numbers (indicating the number of mines in the surrounding 3x3 grid), white revealed
cells, gray hidden cells, flagged cells (marked with the letter "F"), and cells containing mines, which
are unknown to the player. The game tasks include determining the status of cells, inferring the
locations of mines, predicting the outcome of actions, and deciding on optimal reveal strategies.
The difficulty levels are determined by the board size, with 4x4 being easy, 5x5 being medium, and
6x6 being hard. The board size and the number of mines change based on the difficulty level.

Easy Medium Hard
4× 4 5× 5 6× 6
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J.4 STRATEGIC PLANNING

J.4.1 SOKOBAN

This game is based on the classic Sokoban puzzle game. The game scene consists of a grid-based
area featuring a player (represented by a black humanoid figure), boxes (brown squares with X tex-
ture), target points (green X marks), walls (brick-textured barriers), and movable areas (light brown
floor). Players can move in four directions (up, down, left, right), push boxes forward, but cannot
pull boxes or move through walls. The objective is to push all boxes onto target points. Question
types evaluate spatial planning and logical reasoning: (1) predicting the player’s final position after
a sequence of moves; (2) predicting a box’s final position after a sequence of movements; (3) de-
termining the minimum number of moves required to solve the puzzle; (4) identifying the current
position of the player; (5) calculating the Manhattan distance between a box and its target point;
and (6) finding the optimal sequence of moves to reach a specific position. The game difficulty is
determined by the board size.

Problem information

QA type QA Level Description
Q1 Target Perception Easy Identify the current position of the player on the board
Q2 Target Perception Easy Calculate the Manhattan distance between a box and

its target
Q3 State Prediction Medium Given a sequence of player moves, predict the final

position of the player
Q4 State Prediction Medium Given a sequence of moves, predict the final position

of the box
Q5 Strategy Optimization Hard Find the optimal sequence of moves to reach a specific

position
Q6 Strategy Optimization Hard Determine the minimum number of moves needed to

solve the puzzle

Images and Plot Level division

Easy Medium Hard
5× 5 8× 8 12× 12

E M H

Specific questions and analysis

Introduction: This is a Sokoban puzzle where cartoon person is player, green X is target, brown
box with X is box to push, brown tiles are walls, and light brown areas are movable spaces.The
coordinates (x, y) in this puzzle represent the matrix format.
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Q1 (M): What is the current position of the player (row, column)?
Options:
[1] (6, 4) [2] (1, 4) [3] (3, 4) [4] (1, 5)
[5] (4, 3) [6] (4, 1) [7] (5, 1) [8] (6, 3)

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) The player is
currently at position (1, 5). So the answer is (1, 5). The option number is 4.

Q2 (M): What is the Manhattan distance between the box and the target?
Options:
[1] 15 [2] 16 [3] 6 [4] 2
[5] 12 [6] 1 [7] 14 [8] 5

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) Box position:
(4, 3) Target position: (5, 2) Manhattan distance = |4 - 5| + |3 - 2| = 2. So the answer is 2.
The option number is 4.

Q3 (E): If the player makes these moves: Up Down Left Up Down Left Left Up, where will
player end up?
Options:
[1] (6, 5) [2] (1, 6) [3] (6, 6) [4] (2, 3)
[5] (2, 6) [6] (1, 2) [7] (5, 2) [8] (2, 5)

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) Move
sequence analysis: Initial position: (1, 5) Move 1 - Up: Failed - Wall in the way (Player
stays at (1, 5)) Move 2 - Down: Player moves from (1, 5) to (2, 5) Move 3 - Left: Player
moves from (2, 5) to (2, 4) Move 4 - Up: Player moves from (2, 4) to (1, 4) Move 5 -
Down: Player moves from (1, 4) to (2, 4) Move 6 - Left: Player moves from (2, 4) to (2,
3) Move 7 - Left: Player moves from (2, 3) to (2, 2) Move 8 - Up: Player moves from (2,
2) to (1, 2) Final position: (1, 2). So the answer is (1, 2). The option number is 6.

Q4 (M): Treat boxes as objects that can move by themselves, and treat people as floor (movable
areas). After the moves up, right, down, up, left, right, up, left, where will the box that
started at position (4, 3) end up?
Options:
[1] (2, 3) [2] (3, 6) [3] (3, 1) [4] (1, 5)
[5] (6, 2) [6] (4, 6) [7] (3, 5) [8] (6, 4)

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) Move
sequence: Move up: Box moved from (4, 3) to (3, 3) Move right: Box moved from (3, 3)
to (3, 4) Move down: Box moved from (3, 4) to (4, 4) Move up: Box moved from (4, 4)
to (3, 4) Move left: Box moved from (3, 4) to (3, 3) Move right: Box moved from (3, 3)
to (3, 4) Move up: Box moved from (3, 4) to (2, 4) Move left: Box moved from (2, 4) to
(2, 3) Box moves from (4, 3) to (2, 3). So the answer is (2, 3). The option number is 1.

Q5 (M): Treat the boxes as walls. What is the shortest sequence of moves for human to move
himself from position (1, 5) to position (1, 6)?
Options:
[1] Down [2] Left [3] Down Right Down [4] Right
[5] Right Down Left [6] Down Right Left
[7] Down Left Up [8] Left Down

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) Start position:
(1, 5) End position: (1, 6) Optimal move sequence: Right. So the answer is Right. The
option number is 4.
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Q6 (M): What is the minimum number of moves needed to solve this puzzle?
Options:
[1] 5 [2] 15 [3] 10 [4] 7
[5] 11 [6] 9 [7] 6 [8] 8

Analysis: - Player position: (1, 5) - Boxes positions: (4, 3) - Target positions: (5, 2) Solution
analysis: Step-by-step solution: Player moves from (1, 5) to (2, 5) Player moves from (2,
5) to (3, 5) Player moves from (3, 5) to (3, 4) Player moves from (3, 4) to (3, 3) Player
moves from (3, 3) to (4, 3) (box moves from (4, 3) to (5, 3)) Player moves from (4, 3) to
(4, 4) Player moves from (4, 4) to (5, 4) Player moves from (5, 4) to (5, 3) (box moves
from (5, 3) to (5, 2) Total player moves: 8. So the answer is 8. The option number is 8.

J.4.2 MAZE

This project focuses on generating question-and-answer datasets for a grid-based maze game. In
this game, a player, represented by a red circle, must navigate a path of white blocks to reach a
green goal block, while avoiding blue obstacle blocks. Movement is restricted to the four cardinal
directions. The generated questions are designed to evaluate a range of cognitive abilities, primarily
centered on spatial reasoning and pathfinding. These include tasks such as identifying the current
locations of game elements, determining permissible moves, predicting the outcomes of specific
actions, and deducing optimal routes to the goal. The complexity of the mazes and the associated
questions scales, with mazes offered in Small, Medium, and Large sizes, and individual questions
categorized by difficulty.

Images and Plot Level division

Easy Medium Hard
9× 9 11× 11 13× 13

E M H

Problem information

QA type QA Level Description
Q1 Target Perception Easy Ask the position of player
Q2 Target Perception Easy Ask the position of goal within the maze
Q3 Target Perception Easy Ask the available directions to move are currently
Q4 State Prediction Medium The position after moving
Q5 Strategy Optimization Hard Find the path to the goal
Q6 Strategy Optimization Hard Count how many turns it takes to reach the finish

Specific questions and analysis

Introduction:

1. This is a maze mini-game. The player needs to navigate around obstacles to reach the destination
and achieve victory.

2. The red circle represents the player, the green block is the goal and the blue blocks are obstacles.
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3. The player can only move within the white blocks.

4. The coordinates are given in the format (row, col), where row represents the vertical position and
col represents the horizontal position.

Q1 (E): Which of the following are the coordinates of the player?
Options:
A. (4, 6); B. (5, 5); C. (3, 5); D. (4, 4); E. (4, 5)

Analysis: Take a look at the game screen, the red circle represents the player. The coordinates of
player are (4, 5), so the right option is E.

Q2 (E): Which of the following are the coordinates of the goal?
Optoins:
A. (7, 7); B. (7, 8); C. (6, 7); D. (7, 6); E. (8, 7)

Analysis: Take a look at the game screen, the green block represents the goal. The coordinates of
goal are (7, 7), so the right option is A.

Q3 (E): Which directions are available to move now?
Options:
A. up; B. down; C. up, down; D. up, right;
E. left, right; F. up, down, right;
G. down, left, right; H. up, down, left, right

Analysis: The player is on (4, 5), and (3, 5) (5, 5) is empty. The player can move up, down.
Therefore, the option is C.

Q4 (E): What are the coordinates of player after moving down?
Options:
A. (4, 6)
B. (5, 5)
C. (3, 5)
D. (4, 4)
E. (4, 5)

Analysis: Observe the screen, the position of player is (4,5). After moving down, the player is in
(5, 5). Therefore, the right option is B.

Q5 (E): Which sequence of movements will allow the player to reach the destination?
Options:
A. left, left, left, right, right, left
B. down, right, right, down, down
C. down, down, left, up, right, down
D. up, up, up, right, up, down
E. left, down, left, right, down, left

Analysis: Lets figure out the path to the goal step by step: Step 1. Go down, from (4, 5) to (5, 5).
Step 2. Go right, from (5, 5) to (5, 6). Step 3. Go right, from (5, 6) to (5, 7). Step 4. Go
down, from (5, 7) to (6, 7). Step 5. Go down, from (6, 7) to (7, 7). Achieved the goal!
Therefore, the right sequence of movements are: down, right, right, down, down. The
right option is B.

Q6 (E): Find the path to the finish and count the number of turns it takes to get there. Provide
one number.

Analysis: First, lets figure out the path to the goal step by step: Step 1. Go down, from (4, 5) to (5,
5). Step 2. Go right, from (5, 5) to (5, 6). Step 3. Go right, from (5, 6) to (5, 7). Step 4.
Go down, from (5, 7) to (6, 7). Step 5. Go down, from (6, 7) to (7, 7). Achieved the
goal! Therefore, the path is: (4, 5), (5, 5), (5, 6), (5, 7), (6, 7), (7, 7).
Then, let’s count the number of turns step by step: Step 2. Turn detected: from down to
right. Step 3. No turn detected. Step 4. Turn detected: from right to down. Step 5. No
turn detected.
In summary, the total number of turns is 2.

65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

J.4.3 TICTACTOE

This game is derived from the classic Tic-Tac-Toe game, featuring a 3Œ3 grid area with two players
represented by red and blue grid markers respectively. The objective is to create a straight line
of three same-colored markers either horizontally, vertically, or diagonally to win. Question types
include: (1) determining the color of specific grid cells, (2) identifying the optimal move for the
current player, and (3) predicting the opponent’s best response after a given move. The difficulty
scales across three levels based on scenario complexity, where higher difficulty requires evaluating
progressively more decision-making conditions to answer the same question types, systematically
testing the model’s strategic reasoning and conditional judgment capabilities.

Images and Plot Level division

Easy Medium Hard

E M H

Question information

QA type QA Level Description
Q1 Target Perception Easy Questions about the current state of a specific block of

the board.
Q2 Strategy Optimization Medium Questions about the optimal strategy to take a move of

the current player of the board.
Q3 Strategy Optimization Hard Questions about the outcome to take a specific move

of the current player of the board, and the optimal
strategy to take a move of the opponent player after
the specific move.

Specific questions and analysis

Introduction:

Tic-Tac-Toe is a classic two-player game played on a 3x3 grid, (row, col) from (0, 0) to (2, 2).
Players take turns marking a space in the grid, one using **O** (the red block) and the other using
**X** (the blue block). In each game, player **O** starts first. The objective is to be the first
to get three of your marks in a row (horizontally, vertically, or diagonally). If all nine squares are
filled without either player achieving this, the game ends in a draw. Notice: the current player to
make a move should be inferred from the number of pieces for each players on the board. When
inferring the optimal move, if optimal move can be inferred by some rules, choose the optimal move.
Otherwise, choose the first move. (The order of choices is (0, 0), (0, 1), (0, 2), (1, 0), ..., (2, 2),
choose the first move that is not occupied)
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Q1 (E): Question: What is the color of the block at (0, 0)?
Options: A. red; B. blue; C. white

Analysis: The current board is [[’O’, ’O’, ’X’], [’X’, ’X’, ’O’], [’ ’, ’O’, ’X’]]. The block at (0, 0)
is "O", and the color matching "O" is red, so the block at (0, 0) is red. The answer is A.

Q2 (M): What is the optimal move for the current player? If no move exists, choose the answer
"None".
Options: A. None; B. (0, 0); C. (0, 1); D. (0, 2); E. (1, 0); F. (1, 1); G. (1, 2); H. (2, 0) or
(2, 1) or (2, 2)

Analysis: The current board is [[’ ’, ’O’, ’ ’], [’ ’, ’ ’, ’ ’], [’ ’, ’X’, ’O’]]. Since the player "O"
plays first in each game, if the count of "O" is the same as "X", the current player is "O".
Otherwise, the current player is "X". The count of "O" is 2 and the count of "X" is 1, so
the player now is X. Current player is X, opponent is O. Must block opponent O’s
potential double threat on Row 0 and Top-left to bottom-right diagonal, so player X
should choose position (0, 0). The answer is B.

Q3 (H): If the current player moves to (0, 2), will this move be successful? If not, choose the
answer "None". If successful, will the current player win immediately? If yes, choose
the answer "None". Otherwise, what is the opponent’s optimal move following this step?
Options: A. None; B. (0, 0); C. (0, 1); D. (0, 2); E. (1, 0); F. (1, 1); G. (1, 2); H. (2, 0) or
(2, 1) or (2, 2)

Analysis: Yes, this move will be successful. The current board is [[’ ’, ’ ’, ’ ’], [’ ’, ’X’, ’O’], [’ ’, ’
’, ’ ’]]. Since the player "O" plays first in each game, if the count of "O" is the same as
"X", the current player is "O". Otherwise, the current player is "X". The count of "O" is
1 and the count of "X" is 1, so the player now is O. Since the current player O moves to
(0, 2), the current player won’t win immediately. After that, current player is X,
opponent is O. Must block opponent O’s winning threat on Column 2, so player X
should choose position (2, 2). The answer is H.

J.4.4 ULTRA TICTACTOE

Ultra TicTacToe is an advanced variant of TicTacToe played on a 3x3 grid of 3x3 subgrids (Nine-
grids). Players alternate placing "X" (first player) and "O" (second player) markers using a four-
coordinate system (i,j,row,col), where (i,j) denotes the subgrid position and (row,col) specifies the
cell within that subgrid. The initial move must be made in the central Nine-grid (2,2), with sub-
sequent moves constrained to the subgrid determined by the opponent’s previous move position.
Scoring occurs when three identical markers form a line within any subgrid (each such line counts
as 1 point). The game concludes when all nine central cells of the subgrids are occupied. Ques-
tion types involve analyzing board states (identifying marker ownership at coordinates), calculating
available move options, quantifying marked cells, evaluating scoring patterns within subgrids, and
determining optimal strategic placements. Game complexity tiers are defined by move count ranges:
Easy (10-34 steps), Medium (35-59 steps), and Hard (60-81 steps).

Easy Medium Hard
10-34 steps 35-59 steps 60-81 steps
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J.4.5 SPACE INVADERS

Adapted from the classic arcade game, Space Invaders is a simplified space warfare game. Players
control a ship at a grid’s bottom, moving it by column to fire lasers upward. Lasers destroy the
nearest alien invader in that column (different colors worth 10, 20, or 30 points), earning points and
potentially exposing others. Collectively moving enemies add dynamic challenge. The game uses
visually intuitive images for ship and aliens instead of text symbols.

Players analyze game scene images to answer questions covering: game state perception (e.g., en-
emy counts by location or color); single-shot outcome prediction (points from current or post-move
shots); effects of consecutive shots in dynamic scenarios; and strategic planning for maximum points.
These questions range from simple recognition to complex reasoning. Three difficulty levels are
based on scene complexity; higher levels feature larger grids with more numerous and complexly
arranged enemies, demanding greater player skill.

Easy Medium Hard

J.4.6 SNAKE

This game is derived from the classic game Snake, which involves a square white grid scene with
coordinates, with snakes and food represented by colored squares. The snake head is represented by
a yellow square, the snake body by blue squares, and the food by a red square. Each step the snake
can move in four directions: up and down, left and right. The game ends if the snake head hits the
bound of the grid or its own body.

The questions include 1. The coordinate of the snake head. 2. The coordinate of the food. 3. The
length of the snake. 4. Which will happen until this process ends if following a specific sequence of
moves (hitting its own body, hitting the wall, reaching the food, or nothing happens)? 5. The length
of the shortest path to reach the food. Plot Level is determined by the grid size.

Easy Medium Hard
5× 5 10× 10 15× 15

J.4.7 CHESS RANGER

Chess ranger is derived from chess. The game presents a problem with an 8Œ8 chessboard image
containing 6 pieces, where the possible types of pieces are King, Queen, Rook, Bishop, Knight, and
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Pawn. The goal of the game is to use the movement and capture rules of chess pieces to ensure that
only one piece remains on the board at the end.

The types of questions in the game are as follows:1.The number of pieces of a certain type on
the board.2.The identity of the piece located in a specific square on the board.3.The location of a
particular type of piece on the board.4.The required number of steps to solve the current chessboard
configuration.5.The moves that can solve the puzzle among several possible options. The difficulty
level of the game is determined by the number of pieces on the board: 4, 5, 6 pieces corresponding
to easy, medium and hard.

Easy Medium Hard
4 pieces 5 pieces 6 pieces

J.4.8 PACMAN

The game is inspired by the classic maze game Pac-Man, with the original four ghosts simplified
to just two ghosts. The objective of the game is for Pac-Man to eat as many beans as possible
while avoiding being caught by the ghosts. The game scene includes Pac-Man, beans, walls, and
ghosts (Pinky and Blinky), with Pac-Man, Pinky, and Blinky represented by special images. The
beans are represented as small yellow circles, and the walls are dark blue squares. Pac-Man, Pinky,
and Blinky cannot move through walls. The dataset includes tasks such as determining Pac-Man’s
current position and direction, counting the number of beans in a specific area, predicting the paths of
the ghosts, forecasting the outcome of Pac-Man’s movements, and analyzing strategies to maximize
the score while avoiding ghosts. The dataset is divided into three difficulty levels based on grid size:
Easy (16x16), Medium (18x18), and Hard (20x20).

Easy Medium Hard
16× 16 18× 18 18× 18
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