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Abstract
Models that effectively mitigate demographic bi-
ases have been explored in two common settings:
either requiring full access to demographic in-
formation in training or omitting demographic
information for legal or privacy reasons. Yet in
practice, data can be collected in stages or com-
posed of different sources, so data access can
be rather flexible, instead of following the two
extremes of complete or a lack of access to demo-
graphic annotations. We investigate the fairness
impact of disclosing more demographic informa-
tion and find that demographic-unaware methods
come at a clear cost to certain fairness metrics in
comparison to demographic-aware methods. We
then empirically show the benefits of a partially-
demographic-aware setup: collecting only a small
number of new samples (0.1% of the full set) with
demographics for an over-parameterized model
can significantly amend this cost (40% gain in
worst-group accuracy). Our findings illustrate
that simple data collection efforts may effectively
close fairness gaps for models trained on data
without demographic information.

1 Introduction
Deep learning models have been widely deployed in vari-
ous real-world applications, yet prior work has found that
these models discriminate along the lines of gender or race
in high-stakes applications like face recognition and health
systems (Buolamwini & Gebru, 2018; Obermeyer et al.,
2019). To prevent the disparate harms of model bias, a
common approach to address bias has been to promote fair-
ness through awareness (Dwork et al., 2012): requiring
demographic information during training to ensure that the
model’s performance toward each demographic group is
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sufficiently high. Given the sensitive nature of collecting
sociodemographic data (Andrus & Villeneuve, 2022; Ma-
son, 2023), the disclosure of this information can impose a
trade-off between the privacy of individuals in the data and
the fairness of the model. Furthermore, in scenarios like
banking services, it can be illegal to collect demographic
information to avoid potential biases from decision-makers
(Ho & Xiang, 2020).

To abide by privacy regulations and concerns, researchers
have proposed demographic-unaware techniques (Ashurst
& Weller, 2023; Lahoti et al., 2020; Liu et al., 2021; Sohoni
et al., 2020), and while these works have shown improved
fairness and robustness compared to traditional empirical
risk minimization, it remains unclear whether these algo-
rithms put forward are as fair as demographic-aware meth-
ods. If this gap remains open, how should we close it? And
in real-world scenarios, how does additional data help?

Prior works consider either complete or a lack of access
to demographic information in the training, yet, in the real
world, industry practitioners often collect more data without
consideration of what additional data they need (Holstein
et al., 2019), making the type and schema of accessible data
flexible and rarely fixed. For instance, a hospital may collect
demographic information after realizing potential fairness
concerns but would be unable to track demographic infor-
mation for past patient data. In another case, a company
may work with a proprietary face dataset where collect-
ing demographic information for these samples is illegal,
while a publicly available dataset may have gender and
race annotations. Therefore, this middle-ground partially-
demographic-aware scenario with access to some demo-
graphic information can be more realistic than the other two
extremes.

We define this middle-ground scenario in two settings: First,
we follow the demographic-scarce regime (Awasthi et al.,
2021) to model cases obtaining unlabeled samples with de-
mographic information from another distribution is easier, or
where tracking the demographic information of existing la-
beled samples is prohibited. Secondly, we use the partially-
annotated group labels setup in Jung et al. (2022) motivated
by the hospital scenario of collecting demographic informa-
tion from the same distribution but continuing to use prior
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data. With two formally defined settings with incomplete
demographic information, we are interested in the following
research questions:

• RQ1: How do state-of-the-art methods without demo-
graphic information compare to those requiring full
demographic information in terms of fairness objec-
tives?

• RQ2: How can existing methods that require demo-
graphic information easily adapt to incomplete demo-
graphic information settings through pseudo-labeling?

• RQ3: What is the marginal fairness gain of collect-
ing more samples with demographic information in
incomplete demographic information setups?

To answer these questions, we implement and evaluate mul-
tiple bias mitigation methods that are demographic-aware,
demographic-unaware, and partially-demographic-aware
to bridge between methods with and without demographic
information. Our contributions include (1) a controlled and
systematic comparison between demographic-aware and
demographic-unaware methods, (2) empirical evidence of
the fairness gap between these two scenarios, and (3) a
demonstration of the benefits of collecting little additional
demographics that substantially improves fairness.

2 Preliminaries

2.1 Setup

Let there be two potentially different distributions P1 and
P2 over X × A × Y where X denotes the feature space,
A denotes the sensitive attribute space, and Y denotes the
target label space. We let the notion of group g be defined
by samples with the same tuple (a, y). We denote the set
of all groups to be G = A × Y . For clarity, in the rest
of the work, we use demographic group to emphasize the
set of samples with respect to A only to distinguish from
g ∈ G. Let ℓ : Θ × X × Y → R be the loss function,
and we consider sensitive attributes a, target labels y and
predictions ŷ in the binary case, although our setup can be
extended to the non-binary case as well.

Below, we define the settings in which demographic infor-
mation is available to varying degrees.

Demographic-aware. Let dataset DA,Y
1 =

{(xi, ai, yi)}Ni=1 be drawn from P1.

Demographic-unaware. Let dataset DY
1 = {(xi, yi)}Ni=1

be drawn from a distribution PY
1 over X × Y where PY

1 is
the marginal distribution of P1.

Partially-demographic-aware.

1. Demographic-Scarce. There exist two datasets DY
1 =

{(xi, yi)}Ni=1 and DA
2 = {(xi, ai)}Mi=1. DY

1 is drawn
from PY

1 over X × Y where PY
1 is the marginal of

a joint distribution P1. DA
2 is drawn from PA

2 over
X ×A where PA

2 is the marginal of P2.

2. Partially-Annotated Group Labels. There exist two
datasets DA,Y

1 = {(xi, ai, yi)}Ni=1 and DY
1 =

{(xi, yi)}Mi=1 where DA,Y
1 is drawn from P1 and DY

1 is
drawn from PY

1 where PY
1 over X ×Y is the marginal

of P1.

2.2 Fairness metric

We define various fairness metrics in order to evaluate mod-
els across demographic groups A.

Equalized Odds (EOD). The notion of equalized odds is
to minimize the differences of false positive rate (FPR) and
false negative rate (FNR) between the demographic groups
with different sensitive attributes (Hardt et al., 2016). A
fair classifier that satisfies equalized odds should satisfy
Equation 1 ∀y ∈ {0, 1}.

P(ŷ = 1|a = 0, y = y) = P(ŷ = 1|a = 1, y = y) (1)

The evaluation metric for EOD is the sum of absolute dif-
ferences of FPR and FNR between the demographic groups.
i.e. EOD =

∣∣P(ŷ = 1|a = 0, y = 0)−P(ŷ = 1|a = 1, y =

0)
∣∣+ ∣∣P(ŷ = 0|a = 0, y = 1)− P(ŷ = 0|a = 1, y = 1)

∣∣
Rawlsian Min-max Fairness (MMF). The idea of Min-
max fairness is to maximize the worst-off group perfor-
mance. Note that the notion of group in MMF is defined
by the tuple g = (a, y). The evaluation metric for MMF is
simply the worst-group accuracy stated in Equation 2:

min
(a,y)∈G

P(ŷ = y|y, a) (2)

3 Experiments

3.1 Methods

We evaluate these demographic-aware methods:

1. Group DRO (Sagawa et al., 2019) assumes the empiri-
cal distribution to be a mix of group distributions and
optimizes for the worst-group distribution loss as

θ̂ := argmin
θ∈Θ

sup
g∈G

E(x,y)∼Pg [ℓ(θ, (x, y))] (3)

2. Last-layer Fairness Finetuning (LastFFT) (Mao et al.,
2023) first trains the model with ERM to learn core
features for the encoder, and re-trains the last-layer
with fairness constraints on a balanced subset.
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We use EOD as the fairness constraint in our experi-
ments with the loss defined as

N∑
i=1

ℓ(θ, (xi, yi)) + α(fpr + fnr) (4)

where

fpr =

∣∣∣∣∣
∑

i pi · (1− yi) · ai∑
i ai

−
∑

i pi · (1− yi) · (1− ai)∑
i(1− ai)

∣∣∣∣∣
fnr =

∣∣∣∣∣
∑

i(1− pi) · yi · ai∑
i ai

−
∑

i(1− pi) · yi · (1− ai)∑
i(1− ai)

∣∣∣∣∣
α is a hyper-parameter allowing the regularization

strength, and pi = P(ŷi = 1).

3. Balanced ERM simply trains the model on the balanced
subset of the full training set detailed in Table 1.

We evaluate these demographic-unaware methods:

1. Just Train Twice (JTT) (Liu et al., 2021) first trains the
model with ERM and up-weights the samples misclas-
sified from the first stage by a factor of λup to train a
re-weighted ERM again in the second stage.

2. Adversarially Reweighted Learning (ARL) (Lahoti
et al., 2020) constructs a learner and adversary pair
where the adversary learns the weight for each sample
to maximize the classification loss while the learner
aims to minimize the loss. Ideally, the adversary as-
signs higher weights to loss in the minority group
(higher loss) to maximize the classification loss as an
up-weighting technique.

We evaluate these partially-demographic-aware methods
incorporating LastFFT via pseudo-labeling of demographic
annotation:

1. Vanilla Group Labeling (VGL) simply uses the pseudo-
labels as ground truth in any task that requires sensitive
attribute information A.

2. Confidence-based Group Labeling (CGL) (Jung et al.,
2022) searches for a confidence threshold with a valida-
tion set to calibrate the confidence rate of the sensitive
attribute predictor. For low-confidence samples, the
pseudo-labels are drawn from the empirical conditional
distribution P(A|Y = y). Otherwise, the predicted
pseudo-labels are used as usual.

However, since we do not perceive any significant difference
between these two in our empirical results, we only present
results with VGL.

3.2 Dataset

We use CelebA (Liu et al., 2015), which consists of 200
thousand images of celebrities, as our primary dataset. We
let Male be the sensitive attribute A = 1 and Blond Hair
be the target label Y = 1. For the out-of-distribution DA

2 in
the Demographic-Scarce scenario, FairFace (Karkkainen
& Joo, 2021) contains 100 thousand face images balanced
across 7 race groups, with gender annotations in the form
{Male,Female}.

Total Male Female
Blond Non Blond Blond Non Blond

Full CelebA 162,770 1,387 66,874 22,880 71,629
D1 81,384 693 33,437 11,440 35,814
D2 81,386 694 33,437 11,440 35,815

Balanced subset 2,772 693 693 693 693

1% of DA
2 812 6 334 114 358

0.1% of DA
2 79 0 33 11 35

DA
FairFace 86744 45986 40758

0.5% of DA
FairFace 433 252 181

Table 1: Frequency by label and gender for CelebA and Fair-
Face dataset splits. The blond hair attribute is not annotated
in FairFace.

To study the scenarios that we are interested in, we ran-
domly split the full training set into two subsets, denoted
as D1,D2. We let D1 be the only dataset with available
target labels Y to fix an equal number of target labels
for every scenario. In Demographic-Scarce setup, we use
(x, y) ∈ DY

1 and (x, a) ∈ DA
2 .1 To consider the distri-

bution shift of P2, we use FairFace as another source of
demographics denoted as DA

FairFace. For demographic-aware
methods, the training is done completely on DA,Y

1 with
the ground-truth demographic information A of all samples
in D1. For demographic-unaware methods, the training is
done on DY

1 without access to the ground-truth A. As for
Partially-Annotated Group Labels setup, we disclose the
ground-truth demographic information for some samples
in D1 such that D1 is partially group-annotated with some
(x, a, y) ∈ DA,Y

1 and (x, y) ∈ DY
1 . Table 1 summarizes the

number of samples in each setup for each group.

Finally, access to a full demographic information validation
set is assumed throughout our experiments in any setup.
This can plausibly be implemented in practice through a
trusted third-party auditor without disclosing individual de-
mographic information to the model producers.

3.3 Model

For all prediction models, we use ResNet50 (He et al., 2016)
from torchvision with ImageNet pre-trained weights initial-

1The superscript indicates the accessibility of A and/or Y for
any set D.
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ization as the backbone. For the pseudo-labeling task, we
use both ResNet50 and a fully connected Linear model as
sensitive attribute predictors. The Linear sensitive attribute
predictor serves as a weaker model to show the impact of
collecting more in-distribution demographic information.

Throughout the experiments, we observe overfitting to fair-
ness metrics for all methods through a validation set with
full demographic information. Therefore, we select the final
model with the lowest validation fairness violation which
does not overfit depending on the specific fairness constraint
in training.

4 Main Results

4.1 Fairness gap between demographic-aware and
demographic-unaware

We observe that demographic-unaware methods do signif-
icantly worse than demographic-aware methods for both
worst-group accuracy and equalized odds. From Figure 1
and Table 2, the equalized odds gap remains large, while the
worst-group accuracy gap is less significant and partially
closed by JTT at the cost of overall accuracy. From ob-
serving the fairness-accuracy tradeoff differences between
demographic-aware and demographic-unaware methods,
we study how more demographically-annotated data can
bridge this gap in the next section.

Figure 1: Equalized odds and accuracy tradeoff on the stan-
dard test set for demographic-aware and unaware meth-
ods. The more upper-left a method is, the better it is, with
lower equalized odds violation and higher overall accuracy.
LastFFT’s curve comes from a sweep of its different hyper-
parameters α’s and taking the Pareto set of the results.

4.2 Marginal fairness return of new samples with
demographic information

The ResNet50 sensitive attribute predictor converges to a
high accuracy rate with just 0.1% of DA

2 . However, for the
Linear sensitive attribute predictor, with the increase of sam-

ples with demographic information, Figure 2a shows a clear
left-shift of the fairness-accuracy tradeoff curve. Moreover,
comparing Figures 2a and 2b, we see clearer improvement in
the Partially-Annotated Group Labels setup but a less consis-
tent one in the Demographic-Scarce setup. This suggests the
potential bottleneck of pseudo-labels: collecting more sam-
ples (x, a) from a distinct dataset may not provide a more
accurate estimate of A in existing samples (x, y), in spite of
being drawn from the same distribution. On the other hand,
annotating A for existing samples would always provide a
closer-to-ground-truth estimate but can be more costly. This
can be further supported by the out-of-distribution case in
Figure 2c where collecting more demographics from Fair-
Face shows initial improvement but reaches a bottleneck.

Avg Acc Worst-Group Acc EOD Data Scenario

Group DRO 91.40±0.28 78.88±1.17 0.12±0.00 (x, a, y) ∈ DA,Y
1

LastFFTα=2.5 91.49±1.85 86.79±1.38 0.05±0.03 (x, a, y) ∈ DA,Y
1

Balanced ERM 91.87±0.47 82.56±1.34 0.08±0.02 (x, a, y) ∈ DA,Y
1

LastFFTα=10 92.14±1.57 84.87±2.96 0.12±0.03
(x, a, y) ∈ 0.1% DA,Y

1

and (x, y) ∈ 99.9% DY
1

LastFFTα=2.5 92.60±0.91 84.45±3.22 0.14±0.03
(x, a) ∈ 0.1% DA

2

and (x, y) ∈ DY
1

LastFFTα=20 90.78±1.98 85.15±3.16 0.15±0.03
(x, a) ∈ 0.5% DA

FairFace
and (x, y) ∈ DY

1

JTT 89.37±0.38 73.89±1.18 0.33±0.01 (x, y) ∈ DY
1

ARL 91.31±3.61 60.0±15.27 0.36±0.11 (x, y) ∈ DY
1

ERM 95.81±0.13 44.00±6.40 0.44±0.05 (x, y) ∈ DY
1

Table 2: Various fairness metrics of individual methods
across each data scenario with a fixed number of labeled
samples on CelebA2. We select a few LastFFT points on the
fairness-accuracy tradeoff curve to demonstrate how little
additional demographics can provide significant improve-
ment. The pseudo-labeling is done by ResNet50 sensitive
attribute predictor with VGL.

4.3 Significant fairness improvement with little
demographics

In the Demographic-Scarce setup with a ResNet50 sensitive
attribute predictor, we observe that by adding only 79 addi-
tional in-distribution unlabeled samples with demographic
information (0.1% of DA

2 ), the partially-demographic-
aware LastFFT method with pseudo-labeling achieves
significant improvement compared to any demographic-
unaware method, as shown in Table 2. The out-of-
distribution case further provides additional promise as ob-
taining demographics from out-of-distribution data may be
easier and less expensive. One configuration of LastFFT
presented in Table 2 substantially outperforms demographic-
unaware methods in any fairness metric with only 433 ad-

2The results for JTT and GroupDRO differ from the original
work because we only use half of the full CelebA training set.
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(a) Partially-Annotated Group Labels setup:
equalized odds and accuracy tradeoff with
additional demographic annotations to train
Linear sensitive attribute predictor.

(b) Demographic-Scarce setup: equalized
odds and accuracy tradeoff with additional
demographic annotations from CelebA to
train a Linear sensitive attribute predictor.

(c) Demographic-Scarce setup with distri-
bution shift: equalized odds and accuracy
tradeoff with additional demographic anno-
tations from FairFace to train a ResNet50
sensitive attribute predictor.

Figure 2: Fairness-accuracy plots for LastFFT configurations in the partially-demographic-aware regime. The Ground Truth
baseline refers to LastFFT trained on complete DA,Y

1 from Figure 1. Balanced ERM is a demographic-aware method as
defined in Section 3.1. Demographic-unaware baselines are located to the right of each subplot and are not included for
visualization purposes.

ditional out-of-distribution unlabeled samples with demo-
graphics (0.5% of DA

FairFace).

5 Discussion

5.1 Implications of demographic imputation

We acknowledge the societal concerns of inferring de-
mographic information in certain situations. Using de-
mographic proxies can be prohibited according to “anti-
classification” principles of U.S. anti-discrimination law
(Ho & Xiang, 2020). Prior work, however, has demonstrated
its necessity to mitigate (much less evaluate) performance
disparities when demographic information is not recorded
(Cheng et al., 2023; Rieke et al., 2022). This tension reflects
ongoing legal debates on the differences between disparate
impact and disparate treatment of individuals (Barocas &
Selbst, 2016; Siegel, 2003). In our work, we aim to under-
stand the most intuitive way of bridging the gap between
demographic-aware and demographic-unaware methods
through pseudo-labeling. We do not encourage the explicit
use of pseudo-labels in training without consideration
of potential harms as a result of group misclassification.
The robust results we observe in Balanced ERM in Table
2 with a small subset of samples inspire the potential use
of pseudo-labeling to construct an approximately balanced
ERM without directly using demographics.

5.2 Limitations and future work

As Gulrajani & Lopez-Paz (2020) highlight, methods may
not generalize to other datasets, so we aim to follow
our same framework for additional datasets to understand

whether the conclusions we draw from this work are con-
sistent. We also examine several well-known fairness meth-
ods but leave evaluations of other methods like contrastive-
learning-based algorithms to future work. While prior
works (Nam et al., 2022; Jung et al., 2022) in the partially-
demographic-aware realm focus on pseudo-labeling, we
hope to incorporate methods that inherently address incom-
plete demographic information without pseudo-labeling.

6 Conclusion
In this work, we first ask whether it suffices to use state-of-
the-art demographic-unaware methods to preserve privacy
in comparison to demographic-aware ones. After finding
empirical evidence of the fairness gap between these two
categories, we are motivated by the flexibility of data col-
lection in the real world and investigate how to close this
gap through access to additional demographic information.
Specifically, how much demographic information do we
need to bridge the gap? For the CelebA task, we find that
the addition of 79 in-distribution samples or 433 out-of-
distribution samples with demographics is sufficient to gain
significant improvement along various fairness metrics com-
pared to demographic-unaware methods. As a result, our
work questions the assumptions that a large amount of demo-
graphic information is necessary to improve group fairness
measures. Finally, we address the ethical concerns in this
work regarding the use of pseudo-labels in Section 5.1. The
goal of this work is to encourage more development of
partially-demographic-aware methods without the use of
pseudo-labels and measure how far we have to go.
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Impact Statement
This work is directly motivated by preventing societal harms
of machine learning models, by considering realistic sce-
narios in which demographic information may not always
be feasible in the data collection step. We note that some
of our methods incorporate training a sensitive attribute
predictor and that this artifact immediately imposes poten-
tial risks of misuse by other users. Thus, we do not store
any pseudo-labels for any sample, and we choose to not
release any trained sensitive attribute predictors. At the
same time, studying the use of pseudo-labels in cases when
demographic information is unobserved allows us to under-
stand how to build safer, fairer machine learning models in
data-restricted settings.
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A Additional Results

A.1 Sensitive Attribute Predictor

Figure A.1 provides results on how each sensitive attribute predictor performs for predicting gender on the standard test set
of CelebA. For the in-distribution Demographic-Scarce setup versus Partially-Annotated Group Labels setup, there is no
explicit difference in terms of test accuracy. For the out-of-distribution Demographic-Scarce setup, we see a significant drop
from the in-distribution counterpart with the same model ResNet50.

Figure A.1: Test accuracy of different sensitive attribute predictors on CelebA’s standard test set

A.2 Marginal Min-max Fairness and Accuracy Tradeoff Return of Collecting Demographic Information

(a) Partially-Annotated Group Labels
setup min-max fairness and accuracy
tradeoff with increasing demographics
collected and trained on for a Linear sen-
sitive attribute predictor

(b) Demographic-Scarce setup min-max
fairness and accuracy tradeoff with in-
creasing demographics collected from
CelebA and trained on for a Linear sensi-
tive attribute predictor

(c) Demographic-Scarce setup min-max
fairness and accuracy tradeoff with in-
creasing demographics collected from
FairFace and trained on for a ResNet50
sensitive attribute predictor

Figure A.2
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B Training Details

B.1 Setup

For hyper-parameters search, we use a subset of the full data and less number of epochs to find a good configuration of
hyper-parameters by a grid search. Then, we use the full set depending on the setup and methods with the best configuration.
The compute resources include 2 NVIDIA A100 GPUs.

B.2 Empirical Risk Minimization (Blond Hair)

B.2.1 HYPER-PARAMETERS SEARCH

Hyper-parameter Search range

learning rate [1e-3, 1e-4]
ℓ2 regularization strength [1e-2, 1e-3, 1e-4]

data subset 30%
# of epochs 10
batch size 128

Table B.1: Hyper-parameter grid search range for ERM

B.2.2 HYPER-PARAMETERS AND CONFIGURATION

Learning rate ℓ2 regularization strength Optimizer # of Epochs

1e-4 1e-3 AdamW 10

Table B.2: Hyper-parameters and configuration for ERM

B.3 Empirical Risk Minimization (Male)

B.3.1 HYPER-PARAMETERS SEARCH

Hyper-parameter Search range

learning rate [1e-3, 1e-4]
ℓ2 regularization strength [1e-2, 1e-3, 1e-4]

data subset 30%
# of epoch 10
batch size 128

Table B.3: Hyper-parameter grid search range for ERM

B.3.2 HYPER-PARAMETERS AND CONFIGURATION

Learning rate ℓ2 regularization strength Optimizer # of Epochs

1e-4 1e-3 AdamW 10

Table B.4: Hyper-parameters and configuration for ERM
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B.4 Group DRO

B.4.1 HYPER-PARAMETERS AND CONFIGURATION

For Group DRO, we use the same hyper-parameter configuration as Sagawa et al. (2019) without more search.

Learning rate ℓ2 regularization strength ηq Optimizer # of Epoch

1e-4 0.1 0.01 SGD 50

Table B.5: Hyper-parameters and configuration for Group DRO

B.5 Last-layer Fairness Fine-tuning (Equalized Odds)

B.5.1 HYPER-PARAMETERS SEARCH

In Mao et al. (2023), they use α = 10.0 as the best hyper-parameter for α. However, since we are sweeping through different
α’s to obtain fairness-accuracy tradeoff curves, we use α = 10.0 to search for other hyper-parameters, and then we sweep
through the range of α’s with the best configuration.

Hyper-parameter Search range

learning rate [1e-3, 1e-4, 1e-5]
ℓ2 regularization strength [1e-1, 1e-2, 1e-3, 1e-4]

α 10.0
data subset balanced subset
# of epochs 50

# of pre-training epochs 1
batch size 128

Table B.6: Hyper-parameter grid search range for Last-layer Fairness Fine-tuning
w.r.t. Equalized Odds

B.5.2 HYPER-PARAMETERS AND CONFIGURATION

Learning rate ℓ2 regularization strength α Optimizer # of Epochs

1e-3 1e-4 [0.0, 0.1, 0.2, 0.5, 1.0, 5.0, 10.0] AdamW 50

Table B.7: Hyper-parameters and configuration for Last-layer Fairness Fine-tuning w.r.t. Equalized
Odds

B.5.3 CONSTRUCTION OF BALANCED SUBSET

In the second stage of LastFFT, a balanced subset is required for fine-tuning. However, in partially-demographic-aware
setup, a true balanced subset is not accessible. Therefore, we use pseudo-labels â to construct an approximately balanced
subset. The construction is by taking k samples from each proxy group ĝ = (â, y) where k is the size of the smallest proxy
group such that the resulting set consisting of 4k samples in total.

B.6 Just Train Twice

B.6.1 HYPER-PARAMETERS SEARCH

We do a hyper-parameter search for λup because our setup consists of half of the samples with target labels. We find that the
optimal λup in our setup is exactly half of the optimal λup found in Liu et al. (2021).
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Hyper-parameter Search range

λup [10, 25, 50]

learning rate 1e-5
ℓ2 regularization strength 1e-1

data subset 100%
# of epochs 30

# of pre-training epochs 1
batch size 128

gradient accumulation step 4

Table B.8: Hyper-parameter grid search range for Just Train Twice

B.6.2 HYPER-PARAMETERS AND CONFIGURATION

Learning rate ℓ2 regularization strength λup Optimizer Epoch

1e-5 1e-1 25 SGD 50

Table B.9: Hyper-parameters and configuration for Just Train Twice

B.7 Adversarially Reweighted Learning (ARL)

B.7.1 HYPER-PARAMETERS SEARCH

We include the adversary architecture in the hyper-parameter search. We use the gradient accumulation technique to average
the gradients of a larger batch after observing the instability of training ARL.

Hyper-parameter Search range

learner learning rate [1e-2, 1e-3, 1e-4]
adversary learning rate [1e-2, 1e-3, 1e-4]
ℓ2 regularization strength [1e-1, 1e-2]

adversary architecture [shared encoder linear, separate encoder, linear]

gradient accumulation step 16
data subset 50%
# of epochs 30

# of pre-training epochs 1
learning rate (pre-training) 1e-4

ℓ2 regularization strength (pre-training) 1e-1
batch size 64

Table B.10: Hyper-parameter grid search range for Adversarially Reweighted Learning

B.7.2 HYPER-PARAMETERS AND CONFIGURATION

Learning rate Adversary learning rate ℓ2 regularization strength Adversary Optimizer Epoch

1e-2 1e-2 shared encoder linear 1e-1 AdamW 50

Table B.11: Hyper-parameters and configuration for Adversarially Reweighted Learning
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B.7.3 LEARNER-ADVERSARY ARCHITECTURE

While Lahoti et al. (2020) propose ARL as a flexible framework, the implementation for deep neural networks remains unclear.
Let Z be the embedding after the feature extractor, hθ1 be the feature extractor of ResNet50, and cθ2 be the classification
layer. Let fϕ be the adversary in the ARL framework. We experiment with three learner-adversary architectures. Shared
encoder linear refers to the one shown in Figure B.1 where the adversary is a linear layer taking the concatenation of
embeddings and target label as the input. We find this to be the best-performing learner-adversary architecture. For separate
encoder architecture, the learner and adversary each have their encoders where the adversary takes the image as the input
and the gradients of adversary weights update the adversary encoder as well. Finally, linear refers to a single fully connected
layer on the raw image of size 3× 224× 224 flattened.

Figure B.1: ARL shared encoder architecture
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