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Figure 1. Dense Motion Captioning (DMC). We present DMC, a task that localizes and generates detailed segment-level captions
with accurate temporal boundaries in 3D human motion sequences. To support this task, we construct CompMo, the first large-scale 3D
motion-language dataset providing dense captions for multiple temporal segments within each motion sequence. Each sequence contains
between 2 and 10 atomic actions, and every action is annotated with precise timestamps and a descriptive caption.

Abstract

Recent advances in 3D human motion and language inte-
gration have primarily focused on text-to-motion generation,
leaving the task of motion understanding relatively unex-
plored. We introduce Dense Motion Captioning, a novel task
that aims to temporally localize and caption actions within
3D human motion sequences. Current datasets fall short in
providing detailed temporal annotations and predominantly
consist of short sequences featuring few actions. To overcome
these limitations, we present the Complex Motion Dataset
(CompMo), the first large-scale dataset featuring richly an-
notated, complex motion sequences with precise temporal
boundaries. Built through a carefully designed data gener-
ation pipeline, CompMo includes 60,000 motion sequences,
each composed of multiple actions ranging from at least two
to ten, accurately annotated with their temporal extents. We
further present DEMO, a model that integrates a large lan-
guage model with a simple motion adapter, trained to generate
dense, temporally grounded captions. Our experiments show
that DEMO substantially outperforms existing methods on
CompMo as well as on adapted benchmarks, establishing a ro-
bust baseline for future research in 3D motion understanding
and captioning.

1. Introduction

Recently, there has been a growing interest in integrating 3D
human motion and language modalities. Most progress in
this area has focused on text-to-motion generation [12, 16,

27, 41, 43, 46], which involves synthesizing 3D human move-
ments from natural language descriptions, and motion edit-
ing [1, 12, 13], where existing motion sequences are modified
according to textual instructions. These tasks have advanced
rapidly, driven by the development of datasets that pair 3D
human motions with language descriptions [10, 21, 30, 31].

In contrast, 3D human motion understanding remains in its
infancy. While some recent works have begun to explore this
direction, most efforts focus on relatively simple tasks such
as motion-to-text retrieval [3, 7, 28] or captioning of short,
isolated motion sequences [11, 16, 43, 52]. Understanding
longer and more complex motion sequences with temporal
precision is crucial for applications that require a detailed
understanding of human activities. For example, by lifting 2D
videos into 3D motion representations and generating tempo-
rally grounded descriptions from this data, we can develop sys-
tems that go beyond traditional video analysis. This approach
allows for a more accurate, body-centric understanding, espe-
cially in situations where subtle nuances of motion are crucial.

Motivated by this, we introduce Dense Motion Captioning
(DMC) as a new task and experimental setting, which involves
detecting all semantically meaningful actions in a motion
sequence, captioning them, and determining their precise start
and end times. Unlike traditional single-motion captioning,
this task involves parsing a continuous stream of motion and
segmenting it into temporally localized action units.

A major limitation of existing benchmarks is their lack
of complex motion sequences as well as precise annotations.
Most available datasets contain only isolated actions or a few
simple actions concatenated together, or suffer from noisy
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annotations, where the descriptions or labels are fragmented
and lack consistency. In our preliminary experiment on
the HumanML3D dataset (see Sec. 3.1), we aim to assess
whether current motion captioning models can maintain
their performance when handling longer motion sequences
containing more than a single action. Our findings indicate a
notable performance drop under these conditions. To address
this limitation, we introduce the Complex Motion Dataset
(CompMo), a large-scale dataset specifically designed for
dense motion captioning. As illustrated in Fig. 1, it features
extended motion clips with multiple actions. Each action is
annotated with a detailed caption and temporal boundaries.
Alongside the dataset, we design Dense Motion Captioning
Model (DEMO), a strong baseline that generates detailed,
temporally aligned captions from long and complex 3D
motion sequences. DEMO is composed of a Large Language
Model (LLM) and a simple motion adapter. It is trained in
two stages: first, to align motion and language modalities, and
second, to finetune the model for dense caption generation.
We evaluate it on CompMo and existing motion-language
datasets repurposed for the DMC setting, establishing the
first comprehensive benchmark for this task.

In summary, this work makes three main contributions.
First, we introduce DMC, a novel task which aims to generate
sequences of textual descriptions for complex motions,
with temporal boundaries. Second, we present CompMo, a
large-scale dataset specifically curated for this task, featuring
rich annotations that capture diverse and intricate human
motions across multiple scenarios. Finally, we provide
DEMO, a strong baseline model along with comprehensive
experiments, demonstrating the effectiveness of our approach
and fostering future research in this area.

2. Related Work

3D Human Motion-Language Datasets. Recent years have
seen the emergence of datasets designed to advance research
in 3D human motion generation and understanding, partic-
ularly those that pair motion data with natural language de-
scriptions, with the first effort being the KIT-ML dataset [30].
Subsequent efforts [10, 31], significantly scaled the scope of
motion-language datasets through crowdsourced annotation
of 3D motion clips derived from existing mocap sequences,
including AMASS [22] and HumanAct12 [9]. BABEL [31]
annotates motion clips at two abstraction levels: overall se-
quence categories (e.g., “play basketball”) and subsequence
action labels accompanied by durations (e.g., “dribble ball
with left hand”, “run”), while many of which contain “tran-
sition” in-between. In HumanML3D [10], each motion clip
is instead treated as a single semantic unit and described with
three natural language sentences from different annotators.
In contrast, the recent FineMotion [42] re-annotates the same
motion sequences in HumanML3D, but segmenting them at
uniform temporal intervals, irrespective of action semantics.

Each snippet is labeled with fine-grained body-part movement
descriptions (e.g., “raise your hands up to your head”) rather
than action-centric labels or descriptions. MotionX [21] and
its successor MotionX++ [51] shift the emphasis from more
detailed captions toward enriching modalities. MotionX uses
SMPL-X whole body pose annotations, covering body, hands,
and facial expressions, paired with semantic labels. Mo-
tionX++ goes further by adding synchronized RGB video and
audio data alongside pose annotations and textual descrip-
tions. We propose CompMo, focusing on dense 3D human
motion captioning. Rather than short labels like those in BA-
BEL, coarse whole-clip captions like in HumanML3D, or
snippet-level body-part descriptions as in FineMotion, our
dataset provides rich sequence-level natural language de-
scriptions, each annotated with precise temporal timestamps.
CompMo thus establishes a new benchmark for dense mo-
tion captioning and motion-language alignment in 3D human
motion, an area not yet addressed by existing datasets.
Dense Video Captioning. Dense Video Captioning (DVC)
extends standard video captioning by identifying multiple
temporal segments in an untrimmed video and generating
corresponding textual descriptions for each segment [17].
Earlier methods typically followed a two-stage, detect-then-
describe paradigm [17, 39], whereas recent approaches have
shifted towards end-to-end training for improved efficiency
and performance [5, 44, 48]. Effective DVC requires both
accurate temporal localization and semantic correctness, and
evaluation metrics must account for both aspects. To address
this, DVC evaluation typically combines standard captioning
metrics [2, 37] with Intersection over Union (IoU) thresholds.
More recently, SODA [6] has been introduced as a compre-
hensive metric that temporally aligns predicted and reference
captions before computing METEOR-based scores that pe-
nalize redundancy and poor alignment. We propose Dense
Motion Captioning (DMC), bringing this paradigm to the do-
main of 3D human motion understanding, challenging models
to generate temporally precise descriptions of human motion.
Human Motion Understanding. Much of prior work
in human motion research has focused on motion genera-
tion [15, 26, 27, 32, 36], i.e., synthesizing realistic 3D human
movements from text or other modalities. More recently,
the motion-to-text task has also gained attention, with meth-
ods developing unified motion-language models capable of
both generating motion from text and describing input mo-
tion [4, 11, 15, 19, 35, 43, 47, 52]. While these demonstrate
impressive versatility, their accuracy in motion understanding
remains limited, particularly in tasks requiring temporal preci-
sion. This limitation arises because they are not trained to cap-
ture or describe sub-sequences within longer, continuous mo-
tions, which is essential for detailed temporal comprehension.

Beyond this, some works explore related but distinct chal-
lenges. BABEL-TAL [34] tackles 3D temporal action local-
ization, which involves recognizing actions performed in a 3D
motion sequence and precisely identifying their start and end
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Figure 2. Single Motion Captioning performance divided by simple and complex motion sequences. We report the single motion
captioning performance of state-of-the-art motion-language models on the simple and complex subsets of HumanML3D [10]’s test set, as
defined in Sec. 3.1.

times, albeit with a fixed set of action class labels. Similarly,
TMR [28] shows the use case of moment retrieval by tempo-
rally localizing BABEL actions within long sequences. This
idea is later extended by UniMotion [18] to frame-level mo-
tion captioning as an initial exploration of dense action recog-
nition. However, UniMotion [18] treats captioning as a re-
trieval problem with a closed vocabulary of action labels, and
they do not provide a quantitative benchmark. In contrast, our
method generates free-form descriptions and outputs segment
timestamps instead of assigning an action label per frame.

3. From Simple to Complex Motions

In this section, we first motivate our study with a preliminary
analysis of the widely used HumanML3D dataset [10]
(Sec. 3.1). We then describe the generation pipeline of our
dataset (Sec. 3.2).

3.1. Can Current Models Understand Complex
Human Motions?

The HumanML3D [10] dataset is widely used to evaluate
human motion understanding models thanks to its diverse
range of motion sequences of varying complexity. In this
study, we investigate whether the complexity of a motion,
specifically, the presence of multiple sub-actions, correlates
with the performance of state-of-the-art motion-language
models. To this end, we partition the mirrored augmented
dataset with 29,228 motions into two disjoint subsets:
simple and complex motions. This partitioning is based
on the number of verbs/adverbs in the ground-truth textual
descriptions, under the assumption that each verb typically
corresponds to a distinct sub-action (e.g., “a person sits down
and crosses their leg, before getting up”). Motions described
with no more than 1 verb are considered simple, while those
with 2 or more are labeled complex. This results in 17,512
complex and 11,716 simple motion instances, of which 2,663
and 1,721 are from the test set, respectively. We evaluate
the performance of several recent models for standard single

Dataset
Dataset

Size
Avg.

Duration (s)
Annotation

Type Timestamps

KIT-ML [30] 3,911 10.33 Sentence ✗
HumanML3D [10] 14,616 7.1 Sentence ✗(mirror) 29,228
BABEL [31] 13,220 12.26 Labels ✓
MotionX [21] 81,084 6.4 Sentence ✗
MotionX++ [51] 120,462 5.4 Sentence ✗
FineMotion [42] 14,616 7.1 Fine Descriptions ✓

CompMo (ours) 60,000 39.88 Dense Captions ✓

Table 1. Overview of CompMo and prior 3D motion-language
datasets. While existing datasets vary in size, annotation type,
and temporal richness, our CompMo is the first large-scale dataset
designed for DMC with accurate timestamps, enabling more
comprehensive modeling of temporally complex motions.

motion captioning, i.e., generating one description without
timestamps, [11, 16, 43, 52] on both subsets.1 Fig. 2 reports
the obtained results in terms of single motion captioning
metrics [11]. In the vast majority of cases, we observe a
considerable drop in performance on the complex subset,
highlighting that current state-of-the-art models tend to
perform better on simpler samples but struggle to accurately
understand and describe longer sequences with multiple sub-
actions. This finding motivates our study, emphasizing the
need for datasets that present greater temporal complexity to
better train and evaluate motion-language models, ultimately
enabling more precise temporal motion understanding.

3.2. CompMo: A Complex Motion Dataset

To address the limitations current models face in handling
temporally complex motions, we introduce the Complex Mo-
tion Dataset (CompMo), a new large-scale dataset specifically
designed to challenge and advance motion-language models.
CompMo is the first dataset explicitly created for 3D dense
motion captioning with precise timestamps, enabling more
effective training and evaluation of models. It features longer
motion sequences, providing more temporally extended

1We exclude models that have not released code at the time of writing.



contexts for dense captioning. On average, each motion in
CompMo is annotated with 37.74 words, compared to 12
and 11.06 words in HumanML3D [10] and BABEL [31].
Compared to existing temporally annotated motion datasets,
CompMo represents a significant increase in both scale and
complexity (see Tab. 1). To support these design goals, we
developed a multi-stage pipeline for dataset construction,
which we describe in detail below.
Atomic Actions Collection. To build a diverse and
high-quality dataset for dense motion captioning, we begin
by collecting simple human motions paired with textual
descriptions. We use HumanML3D [10] as our primary
source, as it provides an extensive collection of motion-text
pairs encompassing a wide range of human motions,
including everyday activities, sports, and artistic movements.
Following our preliminary analysis (Sec. 3.1), we employ the
simple set, treating each element as an atomic action aligned
with its corresponding atomic description.

To obtain better alignment between motion and text, we
propose two strategies for data collection: i) generated from
scratch, and ii) drawn directly from the simple set. For the
data in i), we use the diffusion-based MDM-SMPL model
proposed in STMC [29] to generate the motions from their
textual descriptions; Then we use TMR [28], a model that
encodes motions and languages into a shared embedding
space, as encoder, to calculate the cosine TMR Similarity
across different modalities, and filter out candidates with
low motion-text alignment. To address motion types that are
poorly generated, we supplement the dataset with samples
from the simple HumanML3D set. The final atomic actions,
accompanied by descriptions, contain 7,503 generated from
scratch and 3,619 drawn from HumanML3D.
Textual Descriptions Composition. Starting from atomic
actions, we perform a temporal composition for atomic
descriptions by randomly sampling 2 to 10 atomics and com-
bining these into coherent sequences. Each sequence is anno-
tated with precise timestamps, formatted as “<mm:ss:ms:
atomic textual description>”. To ensure re-
alistic and varied durations, we condition the length of
each motion segment on its ground-truth duration from
HumanML3D, applying small random perturbations to
introduce variability while preserving temporal plausibility.
Motion Sequences Generation. We then generate human
motion sequences corresponding to the constructed textual
descriptions. Inspired by STMC [29], which applies a
test-time denoising approach for spatio-temporal motion
composition, we also employ the temporal stitching technique
of DiffCollage [49] as well as the body part stitching in
combination with MDM-SMPL provided by [29]. At each
denoising step, we start from the textual description, denoise,
stitch the resulting conditions together both temporally
and across the relevant body parts, and finally generate the
composed motion sequences.
Final Dataset Description. The resulting CompMo

dataset contains 60,000 motion-text pairs with timestamp
annotations. On average, motion sequences last 39.88
seconds, significantly longer than sequences in existing
datasets, reflecting the increased temporal complexity of
CompMo. We partition the dataset into training, validation,
and test sets, corresponding to the 80%/10%/10% of the data,
respectively. Additional details on the generation pipeline
are provided in Sec. ?? of the Appendix.

4. DEMO: Dense Motion Captioning Model
In this section, we first formalize the dense motion captioning
task (Sec. 4.1) then detail our proposed architecture (Sec. 4.2
and Sec. 4.3) and training procedure (Sec. 4.4).

4.1. Problem Formulation

Given a 3D human motion sequence m∈RN×D, where N is
the number of poses and D is the dimensionality of each pose,
Dense Motion Captioning (DMC) consists in generating a
sequence {(ti,ci)}Mi=1, where ti=(si,ei)∈R2 represents the
start and end times of the i-th motion segment, ci is a caption
describing the human motion within that segment, and M
is the number of atomic actions detected. We define the pose
dimensionality as D= J×3, where J is the number of 3D
joints used to represent each pose. Unlike the traditional
single motion captioning task, DMC requires both accurate
temporal localization of atomic motion segments and natural
language generation.

4.2. Method

Our architecture, DEMO, leverages an LLM, finetuned to
autoregressively generate dense, temporally aligned captions
from long and complex 3D motion sequences, as illustrated
in Fig. 3 (left). Let fϕ denote the LLM, parametrized by
ϕ. Since fϕ is originally pretrained only on text and vision
modalities, it cannot directly process motion data. To
address this, we first convert the continuous motion sequence
m ∈ RN×D into a language-compatible embedding space
that can be processed by fϕ, and then use fϕ to generate the
dense motion descriptions.

4.3. Motion Representation

Prior LLM-based approaches represent a continuous motion
by learning a mapping to discrete tokens, e.g., training a vec-
tor quantized variational autoencoder (VQ-VAE) to construct
a motion vocabulary. However, this approach suffers from
two key limitations: (i) inherent information loss caused by
the limited discrete vocabulary [23, 36], and (ii) the need
for an additional, separate training stage for the VQ-VAE. In
contrast, DEMO learns a simple continuous mapping from
motion to language space using a single network. Specifically,
a lightweight motion encoder γ extracts motion features,
which are then adapted into the language domain via a linear
projection W, eliminating intermediate discretization.
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Figure 3. DEMO overview : Given a motion sequence m, our method encodes it with the motion adapter ΦW,γ , which maps it into the
language embedding space of the LLM fϕ. Using the resulting motion embeddings and a textual instruction xinst, the model generates dense
captions with temporal boundaries. Training is conducted in two stages. Here, denotes the subset of parameters being trained.

Since the motion sequences in CompMo can last up to 10
times the duration of those in HumanML3D, this necessitates
a scalable and efficient strategy for encoding long sequences.
Processing the entire motion at once is computationally
expensive and often unnecessary, as generating detailed
descriptions for short motion segments typically depends
only on their immediate temporal context rather than the full
sequence.

To address this, we partition the input motion se-
quence into a series of fixed-size, overlapping windows
{m(i) ∈ RW×D}Ki=1, extracted with a stride S < W .
Each window m(i) corresponds to a sub-sequence of the
full motion m and is processed independently to capture
temporally localized motion patterns. The window is first
flattened, added with positional embeddings, and then passed
through the motion adapter defined as:

Φγ,W(m(i))=W·γ(m(i)), (1)

where the adapter projects the motion features into the lan-
guage embedding space of fϕ.

4.4. Training Strategy
We train DEMO to autoregressively generate motion captions
given a 3D motion sequence and a textual instruction. Given
an input motion sequence m and instruction prompt xinst

as input, the generation process is modeled as:

p(y |m,xinst)=

L∏
i=1

pθ(yi|m,xinst,y<i), (2)

where y = {y1, ... , yL} is the output caption of length L,
p(·) is the model’s probability distribution over tokens, and
y<i denotes the previously generated tokens up to position

i−1. The parameter set θ includes all trainable components
of the model. During training, we optimize the model by
maximizing the log-likelihood of the target caption, using
the cross-entropy loss:

L=−
L∑

i−1

logpθ(yi |m,xinst,y<i). (3)

As illustrated in Fig. 3, the motion adapter Φγ,W and the
LLM fϕ are trained in a two-stage process: first, a motion-
language alignment stage to align motion features with the
language model’s embedding space, followed by a dense cap-
tion instruction tuning stage to enable precise and temporally
grounded caption generation. While the training objective
remains the same as in Eq. (3) in both stages, what differs are
the instruction prompts xinst, target outputs y, input motion
data m, and the subsets of parameters in θ optimized during
training. These stages are described in detail below.
Stage 1: Pretraining for Motion-Language Alignment.
In this stage, we focus on aligning the motion modality
with the language space by training only the motion adapter,
i.e., θ = Φγ,W on paired motion-text data. To achieve
this alignment, we use the HumanML3D [10], where each
motion m consists of a single motion sequence, and y is
the paired ground truth annotation, without timestamps.
The instruction prompt xinst is designed as shown in Fig. 3
(center), providing only the overall motion duration.
Stage 2: Dense Captioning Instruction Tuning. In this
stage, we instruct the model to generate temporally grounded
captions, explicitly including action boundaries and their
corresponding timestamps. We use CompMo, where each
motion m is a longer, complex sequence, and the target
output y is a sequence of captions paired with their annotated
temporal intervals. The instruction prompt xinst is adapted



accordingly to guide the model in producing temporally
localized descriptions, as illustrated in Fig. 3 (right). To
enable efficient finetuning, we apply LoRA [14] to the
language model fϕ, while jointly finetuning the pretrained
motion adapter along with LoRA. Thus, the set of trainable
parameters in this stage is θ= {Φγ,W,fLoRA}. This stage
equips the model with the ability to generate fine-grained,
time-aware descriptions of complex motions.

5. Experiments

Datasets and Settings. We conduct DMC experiments on
two datasets: our proposed CompMo, and the intersection
of HumanML3D [10] and BABEL [31], following the setup
introduced in UniMotion [18]. CompMo comprises 60,000
motion sequences paired with dense captions, divided into
48,000/12,000 for training/testing. The dataset adopted
from [18], here denoted with H3D ∩ BABEL, is constructed
from the overlapping subset of HumanML3D and BABEL,
and consists of 7,056/1,325 motion sequences paired with
frame-level annotations for training/testing. Additionally,
we use HumanML3D for the first stage of our training. We
adopt the train+val split of the mirrored augmented dataset,
including 23384+1460 motion sequences, each annotated
with three descriptions. During training, we randomly sample
one of the associated annotations at each step.
Metrics. We quantify DMC performance using dense cap-
tioning accuracy, temporal localization accuracy, and motion-
caption alignment. For dense captioning, we follow dense
video captioning literature [11, 17, 38, 44], computing cap-
tioning metrics: CIDEr [37], METEOR [2], ROUGE_L [20],
BLEU [25], over matched prediction-reference pairs within
the IoU thresholds of {0.3,0.5,0.7,0.9}, reporting the average
results on the matched pairs. We also use SODA [6] with two
different linguistic metrics, METEOR [2] and BertScore [50]
(corresponding to SODA and SODA(B) in Tab. 2), for overall
caption evaluation. For temporal localization, we follow [38],
using a greedy algorithm to select the best matching with the
highest IoU, then computing the mean IoU for all matched
pairs to get the overall tIoU and F1 score. For motion-caption
alignment, following prior work on image and video caption-
ing [17, 45], we measure the cross-modal distance between
motion sequences and their generated captions. Specifically,
we calculate the cosine similarity between motions and texts
in the joint embedding space of TMR [28]. To further assess
the sequential alignment, we adopt the CAR [7] score, a recent
work that improves the motion-text retrieval by introducing
negative samples generated through event-sequence shuffling,
encouraging the model to achieve better temporal alignment,
where we retrieve motions given a set of shuffled and gener-
ated event sequence captions from the test set with 32 samples.
Implementation Details. We use 3D joint representations
with J = 22 joints. We set the window size and stride to
W =16, S =8. Our fϕ is initialized with LLaMA-3.1-8B-

Instruct [8], while γ is an MLP. Training takes approximately
3.5 hours on 2 NVIDIA RTX 6000 Ada GPUs. Additional im-
plementation details are provided in Sec. ?? of the Appendix.

5.1. Comparative Results
Quantitative Results. To the best of our knowledge,
dense motion captioning is a novel task that has not been
systematically addressed and evaluated in prior work. For
comparison, we adapt UniMotion [18] as a baseline for our
evaluations. While UniMotion does not produce dense cap-
tions, we aggregate its frame-level predictions into temporal
segments for fair comparison. Tab. 2 reports quantitative
results for both our proposed DEMO and UniMotion trained
and tested on the CompMo and H3D ∩ BABEL datasets,
where UniMotion previously provided only qualitative
examples. DEMO outperforms UniMotion, particularly on
the more challenging CompMo. It achieves better temporal
localization performance on both datasets, with +34.1/3.9%
improvements in tIoU, and shows substantial gains in dense
captioning quality, i.e., +13.2/5.1% on SODA metrics. This
performance gap can be attributed to fundamental differences
in methodology: UniMotion predicts CLIP embeddings for
frame-level text descriptions and retrieves captions from a
pre-computed vocabulary using a K-nearest neighbor search.
This pipeline requires prior knowledge of the dataset’s action
labels. Moreover, when the vocabulary of potential action
descriptions is large (CompMo contains 11,085 atomic
actions compared to 6,133 in H3D ∩ BABEL), this approach
is limited by the effectiveness of the retrieval process.
Additionally, because UniMotion relies on CLIP, it is
subject to CLIP’s token limit of 77 tokens per text input [24].
This limitation truncates longer descriptions, significantly
hindering performance on more detailed captions. In contrast,
DEMO directly generates captions in an open-ended manner,
avoiding these constraints. As a result, on CompMo, which
features longer and more semantically rich descriptions com-
pared to H3D ∩ BABEL, DEMO outperforms UniMotion,
particularly on dense captioning metrics.
Qualitative Results. Fig. 4 presents a qualitative comparison
between DEMO and UniMotion on the challenging CompMo.
The results indicate that DEMO generates more accurate
segments of action boundaries and produces captions that
align better with the ground-truth annotations in style. For
example, it often divides motion sequences into the correct
number of atomic actions, with only occasional omissions
(e.g., missing one step in the top example). Furthermore, it
accurately captions the depicted actions in most instances,
while UniMotion’s frame-level captions often contain noise
and fail to accurately describe the actions. Interestingly, in
some cases, the generated descriptions differ from the ground
truth in wording but still convey an equivalent meaning (e.g.,
generating “kicks with their right leg four times while their
hands are in front of their face” instead of “doing karate
kicks” in the bottom example). More results can be found



Method Dataset Dense Captioning ↑ Localization ↑ T-M Similarity ↑
SODA SODA(B) CIDEr METEOR ROUGE_L BLEU@1 BLEU@4 tIoU % F1 % TMR CAR

UniMotion [18] CompMo 0.6099 12.8090 1.0082 0.4266 0.8479 0.7793 0.0000 36.14 4.00 0.4930 0.3487
DEMO CompMo 17.8473 64.4003 134.4424 16.4085 24.0469 23.8980 11.0024 77.94 58.21 0.6832 0.8027

UniMotion [18] H3D ∩ BABEL 5.7141 30.4658 6.7170 5.0826 5.8060 5.1651 0.4375 49.95 22.23 0.6428 0.8473
DEMO H3D ∩ BABEL 7.9194 25.9654 7.8090 5.7625 6.2919 5.6936 0.1318 51.56 16.40 0.6052 0.8204

Table 2. Comparison on Dense Motion Captioning. We compare the performance of DEMO on the proposed CompMo and on
H3D ∩ BABEL . We measure dense captioning, temporal localization, and motion-caption alignment accuracy. Best results are highlighted.

Method Dense Captioning ↑ Localization ↑ T-M Similarity ↑
SODA SODA(B) CIDEr METEOR ROUGE_L BLEU@1 BLEU@4 tIoU % F1 % TMR CAR

Dataset Generation
Concat GT 1.9910 41.5498 8.2427 1.9572 4.0158 4.2401 0.0428 61.45 27.52 0.5414 0.4505
Smooth GT 1.9561 41.5586 8.1089 1.8835 3.9398 4.1223 0.0230 61.08 26.74 0.5306 0.4977
Denoise only from random 12.1643 62.4457 80.9095 11.9174 18.2653 18.3024 5.1632 77.92 57.32 0.5680 0.7895
Denoise only from GT 13.3860 55.2276 94.7040 12.7457 17.5265 17.7187 7.6551 69.89 43.00 0.5754 0.7987
CompMo 17.8473 64.4003 134.4424 16.4085 24.0469 23.8980 11.0024 77.94 58.21 0.6832 0.8027

Training Stages
Stage 2 1.6521 28.4648 4.5059 1.2444 2.0972 2.3754 0.0362 49.45 14.28 0.6056 0.5987
Stage 1+2 17.8473 64.4003 134.4424 16.4085 24.0469 23.8980 11.0024 77.94 58.21 0.6832 0.8027

Motion Representation
VQ-VAE 2.3398 43.3563 7.6868 2.0440 3.4973 3.6243 0.0778 60.76 26.60 0.5881 0.6282
ΦW,γ 17.8473 64.4003 134.4424 16.4085 24.0469 23.8980 11.0024 77.94 58.21 0.6832 0.8027

Table 3. Ablation Study. We assess the contribution of different components by ablating variations in dataset generation (data-level), as
well as training stages and motion representation (model-level). The grey-highlighted configuration corresponds to the one used in our
final model and full data pipeline.

in the provided supplementary video.

5.2. Ablation Study

In this section, we examine the key factors that influence
the DMC performance. We first study the impact of our
dataset generation strategy, followed by an evaluation of
our training strategy. Finally, we investigate how different
motion representations affect the results. Additional details
are provided in Sec. ?? of the Appendix.
Dataset Generation. To evaluate the effectiveness of our pro-
posed data generation strategy , we ablate different compo-
nents of the pipeline and train our DEMO on the resulting vari-
ant datasets. To evaluate the role of atomic actions collection
strategies in Sec. 3.2, we compare two modes: (i) solely gener-
ated from scratch (denoise only from random); and (ii) solely
drawn from HumanML3D (denoise only from GT); then
resample and denoise for sequences composition based on
these two atomic actions. To examine the role of denoising in
generating and composing motion sequences, we also create
data by directly concatenating HumanML3D motions without
denoising (concat GT), and apply a smoothed version using
Slerp interpolation [33] (smooth GT). As shown in Tab. 3 ,
the proposed mixture-denoising strategy consistently yields
superior performance, demonstrating that it produces
higher-quality datasets for training the DMC model.
Training Strategy. To assess the impact of our proposed
two-stage training strategy in Sec. 4.4, we ablate the
motion-language alignment stage and finetune the LLM

directly on CompMo (stage 2 only). In this setting, the
LLM is adapted with LoRA, while the motion adapter
is randomly initialized and trained from scratch together
with the LLM. As we reported in Tab. 3 , the full pipeline
(stage 1+2)significantly improves the results in both
temporal localization (+20.8% tIoU) and dense captioning
accuracy (+12.1% SODA), underscoring the importance of
motion-language alignment prior to LLM finetuning.

Motion Representation. Prior LLM-based methods [11,
16, 40, 43] adopt VQ-VAE to discretize motion into token se-
quences, which introduces an additional training stage and re-
stricts input motions to short sequences (i.e., up to 200 poses).
Building on our prior discussion of motion representation
in Sec. 4.3, we conduct an ablation study comparing our
continuous motion encoding (ΦW,γ) to the conventional
VQ-VAE tokenizer (VQ-VAE). For this experiment, we sub-
stitute our motion adapter ΦW,γ with a VQ-VAE pretrained
on HumanML3D [10]. This approach encodes motions
into discrete token indices, which are then mapped back to
their corresponding continuous feature vectors from the VQ-
VAE’s codebook before being passed to the LLM for further
processing. We then train the model through the subsequent
two stages: motion-language alignment on HumanML3D,
followed by dense-caption instruction tuning on CompMo.
The results in Tab. 3 show that the VQ-VAE-based model

significantly underperforms ours, particularly on captioning
metrics, highlighting the challenges posed by its limited
discrete vocabulary in capturing the complexity of CompMo.
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adjusts something on the ground
picks something up off the ground with his right hand
walks backwards, his hands down by his side
jumps in place four times 
takes one large step to their right
walks to his left then to his right and then to his lefts again
walks quickly five steps forward
swimming the free style stroke
walks briskly in counter-clockwise circles

DEMO
side-steps quickly, like a basketball shuffle – first to the right and then to the left
adjusts something on the ground
picks an object up off the floor with their left hand
walks backwards after a second or two
takes a large step diagonally with their left leg
takes a couple steps to the left then a couple steps to the right and back to the left 
again
steps back two steps and lowers to a crouch position
swimming on his back slowly
walks in a counter-clockwise circle and return to his original position

UniMotion
moving in a right angle triangular 

path
turn on flashlight

…
…
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GT
squats very slightly
acting like a gorilla
throwing something with his right hand
thinking in a crouched over position
balances on the right leg
moves his left leg up
running forward at a fast pace
walks in a circle towards their right
walks forward at a speedy pace
doing karate kicks

DEMO
shakes shoulders fast
acting like a human dinosaur
throws something with his right arm
crouched with knees bent and arms bent
kicks their left foot
runs forward and then to the left
walks in a circle in a clockwise direction
kicks with their right leg 4 times while their hands are in front of their face

…

UniMotion
moving in a right angle triangular path
smooth out object on the wall
turn on flashlight

…
…

Figure 4. Qualitative Results. We show two motion sequence examples from the CompMo dataset, along with the ground truth annotations
(GT) and the dense captions predicted by our DEMO and UniMotion. For each sequence, the top rows show the temporal intervals of the
input motion divided according to the GT and the two model predictions, with the corresponding captions listed below. Predicted captions
that align with the GT are highlighted in the same color and connected with arrows to indicate the alignment.

6. Conclusion

In this work, we propose the novel task of dense motion
captioning, broadening the scope of 3D human motion
understanding. To address the scarcity of suitable datasets
for this task, we further introduce CompMo, a large-scale
dataset of 3D long human motion sequences, annotated with
temporal sequences of actions and timestamps. By enabling
models to generate detailed motion descriptions from 3D
data, this task supports the development of systems that can
better understand human movement, e.g., moving beyond
raw RGB video analysis to a more precise understanding
of motion itself, by lifting 2D videos into 3D human motion
representations and interpreting the underlying actions.

While CompMo currently focuses on temporal compo-
sition of movements, future work could extend this to spatio-
temporal composition and understanding. Moreover, it does

not enforce any constraints on the temporal arrangement of ac-
tions, enabling the generation of random sequences. However,
this can lead to incoherent compositions, for example abruptly
switching from swimming to playing basketball without a
plausible transition, since modeling causal relationships be-
tween actions is outside the scope of this work. A promising
direction for further dataset improvements is to incorporate
realistic long-term behaviors, such as multiple sub-actions
related to basketball or other complex, structured human mo-
tions. This could enable models to caption motion sequences
that more faithfully emulate natural human movement.
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