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ABSTRACT

Molecular dynamics simulations are crucial for understanding complex biomolec-
ular systems, but they are often hindered by the high dimensionality of the con-
figurational space. This paper introduces two novel approaches for discovering
effective degrees of freedom (DoF) in molecular dynamics simulations by lever-
aging approximate symmetries of the energy landscape. We present a scalable
symmetry loss function compatible with existing force-field frameworks and a
Hessian-based method efficient for smaller systems. Both approaches enable sys-
tematic exploration of conformational space by connecting structural dynamics to
energy landscape symmetries. Applied to alanine dipeptide, our methods com-
prehensively sample the Ramachandran plot, including shallow minima. Simu-
lations initiated from our DoF-sampled points converge to all important confor-
mations, demonstrating the methods’ effectiveness in navigating complex energy
landscapes. These approaches offer powerful tools for efficient exploration in
molecular simulations, with potential applications in protein folding and drug dis-
covery.

1 INTRODUCTION

Molecular dynamics (MD) is an essential tool for a wide range of applications, including drug dis-
covery, protein folding, and understanding the physics of biological systems at the molecular level
. By simulating the motion of atoms and molecules over time, MD allows researchers to investigate
the structural and functional properties of complex biomolecules and materials. The configuration
space of molecules, however, is extremely high-dimensional, with each atom contributing three de-
grees of freedom (xyz coordinates). Despite this complexity, the physically relevant conformations
of molecules typically occupy a much lower-dimensional subspace. This space corresponds to re-
gions of low free energy, which can be thought of as a negative log-likelihood of the system’s state.
The most likely conformations correspond to the minima of this energy landscape.

Sampling from this low-energy subspace is crucial for understanding the function and stability of
biomolecules, but it presents significant computational challenges due to the vast number of possible
configurations and the presence of energy barriers separating different conformational states. Exist-
ing methods for sampling these low-energy conformations include enhanced sampling techniques
such as metadynamics Laio & Parrinello (2002), umbrella sampling Torrie & Valleau (1977), and
replica exchange molecular dynamics (REMD) Sugita & Okamoto (1999), which aim to overcome
energy barriers and improve exploration of the conformational space. However, these methods often
require careful tuning and can be computationally expensive.

In this work, we present a novel approach for discovering degrees of freedom (DoF) that effectively
move the system along the low-energy manifold, enabling more efficient exploration of relevant
conformations in the molecular landscape. Our key observation is that low-energy DoF (LEDoF)
can be related to approximate symmetries of the energy function. Recent works in machine learning
have made progress in discovering symmetries in data Benton et al. (2020); Dehmamy et al. (2021);
Yang et al. (2023b;a). Our setting is different in that we do not have data, but an energy function,
which can be used to construct a symmetry, loss. This problem was addressed in LieGG Moskalev
et al. (2022), where we discover infinitesimal symmetry generators, i.e. Lie algebra elements.

We find approximate symmetries by considering small transformations of the original DoF and
deriving conditions for the near-invariance of the energy. This process yields a symmetry loss, which
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we then minimize. In the case of small molecules, we show that the problem can be formulated
as finding symmetries of the Hessian. Aside from the optimization approach, we also provide an
analytic solution based on degenerate Hessian eigenspaces.

Our method connects the structural dynamics of molecules to the approximate symmetries of the
energy landscape. This enables a systematic exploration of conformational space that is both com-
putationally efficient and physically insightful. We implement this technique in the study of Alanine
dipeptide and demonstrate how these effective DoFs can correspond to significant chemical features
such as dihedral angles. Hence, these DoFs facilitate targeted exploration and sampling of biolog-
ically relevant conformations. WE show that this method of sampling can significantly reduce the
computational burden associated with high-dimensional MD simulations. It also enhances the abil-
ity to explore areas of the conformational landscape that are difficult to access through conventional
methods.

Our contributions can be summarized as:

1. DoF as Symmetries: We formulate identifying effective DoF (EDoF) as an optimization
problem aiming to discover approximate symmetries of the energy.

2. Symmetry discovery using the Hessian: We derive the relation between symmetry gen-
erators and the Hessian near critical points. We also provide a method to construct symme-
tries from the spectrum of the Hessian.

3. Extraction of internal coordinates for molecules: We show that our method leads to
discovering well-known dihedral angles and several additional EDoF.

4. Effective exploration of Alanine dipeptide landscape: We demonstrate enhanced ca-
pability in sampling diverse conformations, particularly shallow local minima, which are
difficult to sample using existing methods.

2 RELATED WORK

Exploring the multidimensional energy landscape of molecular systems, such as proteins or
molecules, poses significant challenges due to the system’s numerous degrees of freedom, which
make the landscape rugged. Traditional molecular dynamics and Monte Carlo methods often strug-
gle to fully map this landscape, as they tend to become trapped in local minima and fail to capture
rare conformations. This is largely due to the high energy barriers surrounding the minima or the
long timescales required for conformational changes to evolve Bernardi et al. (2015).

Space sampling. Monte Carlo methods are advantageous for sampling configurational space due
to the absence of inherent timescales, but they struggle to capture transitions between conformations
and can become trapped in local minima behind high-energy barriers, leaving some regions of the
energy landscape poorly sampled Heilmann et al. (2020). Umbrella sampling, introduced by Torrie
& Valleau (1977), addresses this by replacing the standard Boltzmann weighting with a biasing
potential, effectively enabling a random walk across energy barriers.

Methods such as replica exchange molecular dynamics (REMD) Hansmann & Okamoto (1999);
Sugita & Okamoto (1999) employ molecular dynamics simulations simultaneously on a series of
replica systems with different conditions,e.g. temperature, and randomly exchange the states of any
two replicas with a regular schedule Qi et al. (2018). By utilizing multiple replicas, REMD enables
efficient sampling of the energy landscape and helps overcome high energy barriers. However, the
need for numerous replicas can significantly increase computational demands, making the approach
challenging to implement in practice Rathore et al. (2005); Liu et al. (2005); Wang et al. (2020).

Metadynamics is another approach to improve sampling of the energy landscape of a system by
driving it through collective variables (CV), which represent key coordinates defining the landscape
Laio & Parrinello (2002); Bussi & Laio (2020). In molecular dynamics simulations, Gaussian biases
are periodically added to prevent the system from revisiting previously explored regions, facilitating
the discovery of new minima. In many cases, identifying the appropriate set of collective variables
(CVs) is non-trivial and typically relies on prior knowledge; additionally, managing a large number
of CVs can become inefficient.
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Coarse graining and machine learning methods can also accelerate molecular dynamics simulations,
improving sampling efficiency and expanding accessible phase space Souza et al. (2021); Majewski
et al. (2023); Noé et al. (2020).

Identifying the DoF. Identifying suitable collective variables (CVs) for energy landscape sam-
pling is challenging, often introducing biases and facing issues related to data quality and inter-
pretability. Principal component analysis (PCA) has been employed to define CVs Hori et al. (2009),
effectively capturing broad folding and non-folding features of proteins. However, due to its linear
nature, PCA often fails to represent the intricate and nonlinear structure of protein energy landscapes
Maisuradze et al. (2009). To address these limitations, autoencoders have been used to automatically
learn nonlinear CVs from data Chen & Ferguson (2018), although this approach may yield CVs that
are difficult to interpret physically and dependent on data quality. Support vector machines (SVMs)
Sultan & Pande (2018) have also been applied to classify protein properties from short molecular dy-
namics simulations and to identify CVs. Other machine learning techniques, such as self-supervised
deep neural networks, have been developed to identify slow CVs or reaction coordinates, further
advancing the search for effective descriptors Wehmeyer & Noé (2018).

3 THEORY

This section presents our theoretical framework for discovering effective degrees of freedom (DoF)
in molecular systems, based on identifying approximate symmetries in the energy landscape. We
introduce two approaches: a scalable symmetry loss function compatible with existing force-field
frameworks, and a Hessian-based method effective for smaller systems. Both methods connect
molecular structural dynamics to energy function symmetries, enabling systematic conformational
space exploration. We derive the mathematical foundations of these approaches, showing how they
lead to the discovery of physically meaningful DoF, such as dihedral angles in peptides.

3.1 SYMMETRY AND DOF

While we primarily focus on physical and molecular systems, our approach is general and can be
formulated in broader terms by treating the energy as a loss function. Let E : Z → R represent the
potential energy of a physical system, which, analogous to a loss function, we assume to be smooth
over large regions of the parameter space X , and bounded from below. The parameters z ∈ Z
correspond to the system’s degrees of freedom (DoF). We assume that X is a vector space. In the
context of molecular dynamics (MD), the standard DoF include the 3D positions x⃗i and momenta
p⃗i = midx⃗i/dt = mi

˙⃗xi of all particles i ∈ {1, . . . , n}, where mi denotes the mass of particle i.

Temperature and kinetic energy In this work, we are primarily interested in the static confor-
mations of the system, and thus, we ignore the kinetic energy term in our formulation. By focusing
on the potential energy, we capture the equilibrium properties of molecular systems. While tem-
perature induces thermal fluctuations in real systems, our current approach neglects these effects.
However, these fluctuations could be incorporated in future extensions, particularly when account-
ing for finite-temperature effects and exploring dynamic behavior. Ignoring the kinetic DoF pi, our
parameter space reduces to the space X ⊂ X of positions x = {x⃗i}. Hence, we redefine the energy
to be just the potential energy E : X → R

Lifting DoF to a group Our core idea is to use transformations acting on the degrees of freedom
(DoF) instead of the original DoF, thereby lifting the DoF to a group action on X . While not all
DoF can be lifted in this manner, we demonstrate that this approach enables us to link low-energy
DoF to underlying symmetries of the system. We consider the general linear group GL(X ) acting
on the parameter space X . The translation group can also be included, but since MD potentials are
generally translation invariant, it leads to trivial symmetries, which we are not interested in here.
Starting from a reference point x0 ∈ X , the orbit of GL(X ), defined as Orbit{x = gx0 | g ∈
GL(X )}, generates a manifold of transformed configurations. This manifold effectively describes
the set of configurations related to x0 by symmetry transformations. This allows us to replace x with
transformations g that reach x from x0. By focusing on symmetries that preserve or approximately
preserve the potential energy, we extract DoF that correspond to motion along low-energy directions,
thus providing a natural way to explore the low-energy landscape of the system.
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Group parameters as DoF In order to map g to degrees of freedom, we need a parametriza-
tion for g. Since GL(X ) is a continuous group, we use the Lie algebra and the exponential
map to parametrize g in terms of the Lie algebra basis La ∈ gl(X ), where the Lie algebra
gl(X ) = TidGL(X ) is the tangent space at the identity of GL(X ). In the case of matrix Lie groups
such as GL(X ), the exponential map exp : gl(X ) → GL(X ) can be written in terms of the matrix
exponential. Exponentiating an element in the Lie algebra yields a group element g = exp(θ · L),
where θ is a vector of parameters. In more general cases, where a group element requires a nontriv-
ial path on the group manifold, the transformation may be expressed as a product of exponentials
g =

∏
i exp(θi · L). In both cases, small group elements (i.e. near identity) can be expanded as

g ≈ I+θ ·L+O(θ2), where I is the identity matrix. This formulation allows us to define the group
parameters θ as the new DoF, reparametrizing the system in terms of group transformations that
capture the low-energy dynamics. Next, we define more concretely what we mean by low-energy
dynamics and effective DoF.

3.2 EFFECTIVE DEGREES OF FREEDOM

To motivate our definition of effective degrees of freedom (DoF), we begin by considering the poten-
tial energy E(z) of a molecular system described by a typical force field, such as AMBER Cornell
et al. (1995). The energy landscape comprises quadratic terms representing bond lengths and bond
angles, which can be minimized easily, along with non-linear terms such as Lennard-Jones and
Coulomb forces that dominate at short distances and decay at larger separations (Appendix A).

Once the bond and angle terms have been minimized, the system navigates a restricted subspace
of the full configuration space where bond lengths and angles remain near their equilibrium values.
However, within this subspace, the energy can still vary significantly due to non-linear interactions
between atoms. To describe the relevant motion in this subspace, we seek directions in which the
potential energy changes minimally. These directions correspond to the effective DoF of the system.

Concretely, let x ∈ X be a reference point, corresponding to a configuration where the quadratic
energy terms are minimized. Consider a small perturbation δx, such that the system moves from x to
x′ = x+ δx. The first-order expansion of the energy around x is E(x+ δx) ≈ E(x)+ δx ·∇E(x).
We are interested in directions δx for which δx · ∇E(x) is small, implying minimal change in the
energy. Now, instead of arbitrary perturbations, we focus on transformations generated by elements
of the Lie algebra. Let g ≈ I + ϵL be a small group transformation acting on x, so that x = gx and
the perturbation is δx = Lx. Substituting into the energy expansion, we have

E(gx) ≈ E(x) +Lx · ∇E(x) (1)

We define the effective DoF as the directions in the Lie algebra for which the directional derivative
Lx · ∇E(x) is small. These directions correspond to approximate symmetries of the system, in the
sense that they preserve the energy to first order. Next, we discuss how to learn these DoF.

3.3 SYMMETRY LOSS

To uncover approximate symmetries in the system, we introduce a symmetry loss function that
penalizes deviations in the energy under small transformations. Specifically, for a transformation g
acting on a reference configuration x ∈ X , we seek to minimize the difference in potential energy
before and after the transformation, such that |E(gx) − E(x)| < η for some small threshold η. As
discussed above, we parametrize the group elements as g = exp(θ · L) using the Lie algebra basis
La, making each θa a new DoF. Thus, to identify the DoF we need to find the condition satisfied
by the Lie algebra La. To do so, we consider a small transformations g ≈ I + ϵL, where ϵ is a
small parameter. Substituting this into the energy function and expanding to first order, we obtain
the following condition for L

E(gx) ≈ E(x) + ϵ∇E(x) ·Lx (2)

Thus, the symmetry loss translates to |ϵ∇E(x) ·Lx|. To get a more well-behaved function un-
der gradient-based optimization, we use (ϵ∇E(x) ·Lx)2 instead. The corresponding optimization
objective is to find the Lie algebra element L that minimizes the symmetry loss

Symmetry loss: L(L, x) = (∇E(x) ·Lx)2 (3)
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subject to ∥L∥F ≤ 1, ensuring that L remains within a bounded region of the Lie algebra. This
optimization allows us to identify approximate symmetries that correspond to low-energy directions
in the configuration space, which can then be used to define effective DoF.

This formulation closely parallels the approach used in LieGG Moskalev et al. (2022), where Lie
group generators are learned in a similar fashion to uncover symmetries in learned representations.
By minimizing this symmetry loss, we systematically identify transformations in the Lie algebra
that correspond to low-energy directions in the configuration space, thereby linking approximate
symmetries to the physically meaningful degrees of freedom of the system. However, in problems
such as MD there are important global symmetry considerations, which we discuss next.

3.4 EXCLUDING GLOBAL SYMMETRIES

In MD, the configuration space X is naturally isomorphic to Rn×d, where n is the number of par-
ticles and d is the spatial dimension. For d = 3, the system often has a global SE(3) symmetry,
corresponding to rotations and translations in three-dimensional space. However, we are not inter-
ested in this symmetry, as it represents trivial motions that do not affect the relative configuration of
the particles. Therefore, we restrict the Lie algebra element L to act on the particle indices, while
being invariant under SE(3) transformations.

Given this restriction, the action of L affects only the n-dimensional part of x ∈ Rn×d. The condi-
tion for approximate symmetry, (∇E · Lx)2, can now be written as

SE(3)-invariant loss: L(L, x) =

∑
i,j,µ

∂E

∂xµj
Li

jx
µ
i

2

=
(
Tr

[
(∇E)⊤Lx

])2
(4)

where i, j index the particles, and µ indexes the spatial components. Here, ∇E ∈ Rn×d is the
gradient of the energy with respect to the particle positions, and the matrix product involves L,
which acts on the particle indices, while x is the current configuration of the system. We will be
working with equation 4 instead of equation 3. Additionally, in small molecular systems we can use
another level of simplification using the Hessian, described next.

3.5 HESSIAN APPROACH FOR SYMMETRY LOSS

Assume that x∗ is a critical point of the energy, meaning that ∇E(x∗) = 0. Let x = x∗ + ϵ, where
ϵ is a small perturbation around x∗. We can Taylor expand ∇E(x) around x∗ to first order

∇E(x) ≈ ∇E(x∗) +H(x∗) · (x− x∗) = H(x∗) · ϵ (5)

Here, H(x∗) is the Hessian matrix at x∗, which has components Hij
µν = ∂2E/∂xµi ∂x

ν
j .

Expectation over Gaussian Perturbations Now, assume that we have many samples x, such that
ϵ is drawn from a Gaussian distribution. We take the expectation of the above expression. First, Note
that the cross-term E

[
Tr

[
HLx∗ϵ

⊤]] = 0, vanishes because E[ϵ] = 0 The second term, involving
ϵ⊤HLϵ, remains. Since ϵ ∼ N (0, σ2I), we have

E[ϵµi ϵ
ν
k] = σ2δikδ

µν (6)

Substituting this expansion into the symmetry loss

E[L(L, x)] = E
[(
Tr

[
ϵ⊤H(x∗)

⊤L(x∗ + ϵ)
])2]

(7)

where H = H(x∗) and we used the symmetry of the Hessian (H⊤ = H). The cross-term in the
square is O(ϵ3) and vanishes because ϵ is normal. Since H and L always appear together and for
ease of notation, let us denote K ≡ HL. For the first term in equation 7, using equation 6 we get
(see Appendix A.1 for all derivations below)

E
[
Tr

[
ϵ⊤Kx∗

]2]
= σ2∥Kx∗∥2 (8)
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The last term, this in equation 7 yields

E
[
Tr

[
ϵ⊤Kϵ

]2]
= σ4

{
2Tr

[
K2

S

]
+Tr [KS ]

2
}

(9)

where KS = (K⊤ +K)/2 is the symmetric part of K. Putting these together, the symmetry loss
in this approximation becomes

Hessian symmetry loss:

E [L(L, x)] ≈ σ2∥Kx∗∥2 + σ4
{
2Tr

[
K2

S

]
+Tr [KS ]

2
}
. (10)

3.6 ANALYTICAL SOLUTIONS TO THE TRACE LOSS IN 1D

We note that there exists a simple analytical ways to minimize each of the two loss terms.

Minimizing O(σ2) term: This can be done as follows:
Proposition 3.1 (L in null space of the Hessian). If L has support only on the approximate null
space of H2 :=

∑
µν H

2
µν then it also minimizes Tr [Kx∗]

2 can be minimized.

Proof. One way Tr [Kx∗]
2
= ∥HLx∗∥2 can be minimized is if L satisfies:

∀µν : HµνL ≈ 0. (11)

This can be achieved by minimizing the sum of squares of all terms in equation 11, which yields

∥HL∥2 = Tr
[
LTH2L

]
, H2 :=

∑
µν

H2
µν . (12)

In turn, Tr
[
LTH2L

]
is minimized if L has support only on the null space of H2.

In practice, we are content with having small but nonzero Tr
[
LTH2L

]
. In this case, L corresponds

to directions in the configuration space along which the energy is approximately flat.

2. Minimizing O(σ4) only: These terms only depend on the symmetric part of K = HL and:
Proposition 3.2 (Anti-symmetric K). IfHL is antisymmetric, the trace loss can also be minimized.
This requires that

HL+L⊤H = 0 ⇒ Tr [KS ] = 0, Tr
[
K2

S

]
= 0

which implies that L generates transformations that preserve the structure of the Hessian. One
solution to this condition is if L itself is antisymmetric L⊤ = −L. In this case, the commutator
between H and L vanishes

[L, H] = 0

This implies that L commutes with H , and therefore defines symmetry directions where the Hessian
is invariant.

If H has a degenerate subspace corresponding to k degenerate eigenvalues, this subspace has an
inherent SO(k) symmetry. Because of this, the Lie algebra elements L ∈ so(k) of this subspace
symmetry satisfy [L, H] = 0. This is a special case of the proposition 3.2. More formally:
Proposition 3.3 (Degenerate subspace solution). let Λ be the diagonalized form of Hµν , with
QΛQ⊤ = Hµν . If Λ has a set of k-fold degenerate eigenvalues λ1 = λ2 = · · · = λk, the corre-
sponding eigenspace forms a k-dimensional subspace of symmetry. The action of L in this subspace
can be viewed as a rotation, and L can be chosen to belong to the Lie algebra of rotations SO(k)
restricted to the degenerate subspace:

L ∈ so(k), L⊤ = −L (13)

The matrix L generates rotations within the degenerate eigenspace, leaving the overall structure of
Hµν invariant.
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In our experiments, because of the global spatial symmetries, instead of looking for degenerate
eigenspaces of for each Hµν , we instead look at the spectrum of the SE(3) invariant matrix H2 in
equation 12, which further unifies the proposed solutions to the σ2 and σ4 terms in the symmetry
loss equation 10. .

This mechanism applies specifically to the case where H2 has degenerate eigenvalues, as it is the
degeneracy that gives rise to the SO(k) symmetry. If the eigenvalues are non-degenerate, such a
rotation within an eigenspace does not apply, and the symmetry must be realized in other ways, such
as by ensuring L lies in the approximate null space of H2 or satisfies an antisymmetry condition.

4 SELECTING OPTIMAL EFFECTIVE DOF

Using the discovery procedure, we get a collection of Lie Algebra Elements corresponding to the
degrees of freedom close to a local minima in the energy landscape. Given a collection of Lie
Algebra elements, we need to find the transformations that help us navigate the free energy landscape
most effectively. There might be multiple small degrees of freedom corresponding to small rotations
of the hydrogen atoms in a free methyl group while some others might lead to rotations around
peptide bonds causing much larger structural changes in the protein.

In this section, we want to solve the problem of finding the most effective DOF’s given a collection
of symmetries. The effective-ness of a symmetry corresponds to the magnitude of change in struc-
ture that results from using the symmetry. In order to optimize for effectiveness we quantify it as
the generators that lead to the largest perturbation in energy at very small noise levels. Using the
result from equation 8 as a proxy of the magnitude of structural change, we can solve the following
optimization problem to get the most effective DoFs:

L(a) :=

nL∑
i=1

aiLi, Find a∗ := argmax
a∈RK ,∥a∥2=1

∥HL(a)x∗∥2 (14)

where nL = k(k−1)/2 is the dimensions of the Lie algebra so(k) in a degenerate subspace H(x∗),
and x∗ is a local minima. Solving this quadratic equation in nL variables we can get the top most
effective DoFs from our collection.

For the optimization version of the problem, we see that as mentioned before the Lie algebra gen-
erators are discovered at high noise levels by minimizing the symmetry loss over the samples. In
order to find the most effective degrees of freedom, we try to maximize the symmetry loss function
at low noise levels in order to remove any vibrational DoFs.

Given m values of ϵj ∼ N (0, σeffI
n×d) where σeff is smaller than σ used for discovery. Then

a∗ := argmax
a∈RK ,∥a∥2=1

m∑
j=1

Tr
[
∇E(x∗ + ϵj)

⊤L(a)ϵj
]2

(15)

where m is the number samples x = x∗ + ϵi. We apply this methodology to finding effective DoF
in Alanine dipeptide, as described next.

5 EXPERIMENTS

We apply our method for finding effective degrees of freedom on Alanine Dipeptide. In the case
of alanine-dipeptide, the two most effective degrees of freedom are known to be the ϕ and ψ dihe-
dral angles over the peptide bonds. Our goal is to re-discover these degrees of freedom from the
forcefield without using any prior knowledge about the importance of the peptide bonds. We start
all our experiments at the β-sheet conformation for Alanine Dipepetide and compare the discovered
conformers and the explored regions of the space wrt the conformers discovered from running long
simulations. For each experiment we provide the labelled conformers discovered in the simulation
and also a density plot highlighting the areas of the Ramachandran plot covered by our simulations.

As the conformers of alanine dipeptide as well as the ramachandran plot change with the ambient
medium, we consider two MD setting: 1) Alanine Dipepetide in Vacuum where we only use the
amber forcefield (amber99sbnmr) corresponding to interactions within the molecule and 2) Alanine

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

150 100 50 0 50 100 150

150

100

50

0

50

100

150
Starting Point
C5C5

C7ax

C7eq

C5C5

(a) Long Simulation

150 100 50 0 50 100 150

150

100

50

0

50

100

150
Starting Point
C5

C7ax

C7eq

(b) Direct Optim

150 100 50 0 50 100 150

150

100

50

0

50

100

150
Starting Point
C5

C7ax

C7eq

(c) Full Hessian

150 100 50 0 50 100 150

150

100

50

0

50

100

150
Starting Point
C5

C7eq

C7ax

(d) Slow Hessian

150 100 50 0 50 100 150

150

100

50

0

50

100

150
Starting Point
C5

C7ax

C7eq

(e) Degen Hessian

Figure 1: Ramachandran plot for alanine dipeptide in vacuum based on the a) long (500 ns) simu-
lation starting at β alanine dipeptide, b) direct otimization based approach, c) analytically solving
the full σ4 term in equation 3 d) slow subspace of H2 e) fast degenerate subspace of H2. The blue
and red grid lines on the plots refer to the grid traced by transforming β alanine using the two most
effective DOF discovered by our algorithms.

Dipeptide in Water where we use the molecule forcefield (amber99sbnmr) along with the amber
forcefield for the solvent (amber99 obc) modelled as implicit.

For our baseline we run two long openMM simulations (one with water and one without any solvent)
for 500ns at 300K with friction coefficient of 1ps−1 and step size of 2fs amounting to 2.5e8 steps.
We use the amber forcefields in both the last step of our method and the baseline simulations in
order to maintain consistency. For each of the settings considered, we provide results from all three
approaches considered in this paper:

1. Hessian-based approach solving equation 12 using the Eigenvectors of the H2 matrix. This
yields multiple solutions: one corresponding to each slow subspace and one for each de-
generate subspace spanned by the eigenvectors of H2. We only present the solution from
the slow subspace and from the biggest degenerate subspace.

2. Solving the Symmetry Loss equation corresponding to the σ4 term in equation 3 without
making any additional simplifications for discovering the symmetries.

3. Directly solving the optimization version of the Symmetry loss that does not require Hes-
sian computation and only uses molecule positions sampled by perturbing the molecule
around a local minima with varying levels of Gaussian noise. While the Hessian-based
methods do not easily generalize to the setting with a stochastic solvent force, the opti-
mization version is also used to solve the system with the implicit solvent model. We
discuss the results for both settings : optimization method using just intra-molecular forces
and optimization method including solvent forcefield.

In the experiments presented in this section, we use the two most effective symmetry directions
generated by our method to conduct a grid search over the combination of the symmetries. We use a
grid of 31× 31 points to form the starting points for running openmm simulations. For each starting
point on the grid formed by our method, we start an openmm simulation by calling the minimize
function on the atom positions and then running a 2ps (1000 steps) simulation using the exact same
parameters as used for the baseline simulation.

5.1 EXPERIMENTS IN VACUUM

When modelling Alanine dipeptide in vacuum, we only consider the inter-molecular forces between
the atoms. For this setting, we see that almost all the Hessian-based methods recover all the major
conformations of alanine dipeptide with relatively short simulation times. Although the optimization
based approach models the problem with the fewest assumptions, we see that it sometimes has
poorer performance due to the higher variance stemming from its stochastic nature. As the Lie
algebra generators considered in our problem span a Rn2

space, we need at least O(n2) point to
avoid overfitting. For our experiments, we use 5n2 samples for discovery and 5n2 samples for
finding the most effective degrees of freedom. Using larger values of ϵ can give us more information
about long-range symmetries but this also increase the stochasticity causing very high variance in
the estimates.
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Figure 2: Closest Structure to the conformers of Alanine Dipeptide Discovered by our method for
simulations in Vacuum. The blank space correspond to undiscovered conformers. We only consider
a structure to be a conformer candidate if it is stable and it’s ϕ and ψ dihedral angles are close to
that of the corresponding conformer.
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Figure 3: Ramachandran plot for alanine dipeptide in water based on the a) long (500 ns) openMM
simulation with implicit solvent starting at β alanine dipeptide, b) direct optimization based ap-
proach over the molecular forcefield, c) analytically solving the full σ4 term in equation 3 d) slow
subspace of H2 e) fast degenerate subspace of H2 f) direct optimization based approach over the
solvent and the molecular forcefield . The blue and red grid lines on the plots refer to the grid traced
by transforming β alanine using the two most effective DOF discovered by our algorithms.
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Figure 4: Closest Structure to the conformers of Alanine Dipeptide Discovered by our method for
simulations in Water. For water finding conformers in water, we require our discovered symmetries
to generalize as the Hessian computation does not directly work for solvent-like forces. Only the
algorithm in the last column uses the solvent force field to calculate the DoFs.

5.2 EXPERIMENTS WITH SOLVENT

Alanine Dipeptide has different stable conformers in water which shows that the knowledge of the
solvent force is very important in order to model the symmetries. However, we see that the degrees
of freedom still remain invariant across the two case. So, we use our the DOFs discovered in the
vacuum to also navigate the free energy landscape in the presence of solvent.

Moreover, we also see that although the Hessian-based approached do not easily transfer over to the
solvent scenario, the optimization based approach can be easily generalized to any description of a
forcefield. So, we also incorporate the implicit solvent forcefield in the optimization based approach
to find symmetries over the combined forcefields. As seen from the results above, almost all the
approaches proposed discover the major conformers of alanine dipeptide under both the settings.
Another important fact that we want to highlight is that discovered DOFs are general enough to
allow us to find the conformers is settings with forcefields slightly different from the ones they were
learnt on.

Discussion about the time advantage For both the Hessian-based approached, we see that we
are able to fully recover the main conformations of alanine dipeptide while also sampling other
saddle points or unstable conformations. Although our method uses the openmm simulation in the
final step, we only need a fraction of the total steps required by openmm to find all conformations.
Furthermore our methods does not need to be run sequentially as the simulations for all the grid
points can be run simultaneously. Thus, in principle, the effective time required for simulating our
method could be 105× less than the time required to get the same results using openmm simulations.
The major bottleneck for our approach is the Hessian computation which scales quadratically with
the size of the system and does not easily generalize to stochastic forcefields. While the optimization
method overcomes the second challenge in principle we find it to be less stable than the Hessian-
based approach in practice. As for the quadratic cost of our method, it inherently comes from
modelling the pairwise interactions between the particles and it can be pruned to be almost linear by
using cut-offs parameters for intra-atom interactions. We plan to explore this further in future work.
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A AMBER FORCE-FIELD

We implement a simplified force-field with implicit solvent (i.e. water molecules are not modeled
and appear as hydrogen-bonding and hydrophobicity terms. In protein folding our energy function
consists of five potential energies for: bond lengthEbond, bond anglesEangle, Van der WaalsEvdW ,
hydrophobic Ehp and hydrogen bonding EH Ceci et al. (2007).

Protein Folding with Classical MD Using AMBER Force Field We incorporate the AMBER
force field, known for its accurate representation of molecular interactions, particularly in proteins.
This force field is implemented using the parameters from OpenMM Eastman et al. (2017), and it
comprehensively models the following interactions:

• Bond lengths Ebond and bond angles Eangle

• Torsional angles Etorsion

• Non-bonded interactions including van der Waals EvdW and electrostatic Eelec forces

We utilize the functional forms and parameters specified in the AMBER force field:

Ebond =
∑
bonds

kbond(r − r0)
2 Eangle =

∑
angles

kangle(θ − θ0)
2 (16)

Etorsion =
∑

torsions

Vn [1 + cos(nω − γ)] EvdW =
∑
i<j

Aij

r12ij
− Bij

r6ij
(17)

Eelec =
∑
i<j

qiqj
4πϵ0ϵrrij

(18)

Here, r and θ represent the bond lengths and angles, respectively, with r0 and θ0 as their equilibrium
values. The torsional term Etorsion includes a sum over all torsion angles ω, with periodicity n,
amplitude Vn, and phase γ. The Lennard-Jones potential in EvdW is characterized by parameters
Aij and Bij , and Eelec is calculated using the Coulombic potential with partial charges qi, qj and
the relative permittivity ϵr.

In this simulation, we exclude the modeling of solvent effects entirely, focusing solely on the pro-
tein in vacuum. This approach simplifies the computational model while emphasizing the direct
interactions within the protein.

The overall energy of the system is then given by:

L(X) = Ebond + Eangle + Etorsion + EvdW + Eelec (19)

A.1 HESSIAN SYMMETRY LOSS

Substituting this expansion into the symmetry loss

E[L(L, x)] = E
[(
Tr

[
ϵ⊤H(x∗)

⊤L(x∗ + ϵ)
])2]

= E
[
Tr

[
ϵ⊤HLx∗

]2
+ 2Tr

[
ϵ⊤HLx∗

]
Tr

[
ϵ⊤HLϵ

]
+Tr

[
ϵ⊤HLϵ

]2]
(20)

where H = H(x∗) and we used the symmetry of the Hessian (H⊤ = H). For the second term we
have

E
[
Tr

[
ϵ⊤HLx∗

]
Tr

[
ϵ⊤HLϵ

]]
= 0 (vanishes due to E[ϵ3] = 0) (21)

Since H and L always appear together and for ease of notation, let us denote K ≡ HL. For the
first term in equation 20, using equation 6 we get

E
[
Tr

[
ϵ⊤Kx∗

]2]
=

∑
i,j,µ,ν

E
[
ϵµi ϵ

ν
j

]
(Kx∗)

i
µ(Kx∗)

j
ν (22)

= σ2
∑
i,µ

(Kx∗)
i
µ(Kx∗)

i
µ = σ2∥Kx∗∥2 (23)
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The last term, this in equation 20 yields

E
[
Tr

[
ϵ⊤Kϵ

]2]
=

∑
i,j,k,l,µ,ν,ρ,λ

Kij
µνK

kl
ρλE

[
ϵµi ϵ

ν
j ϵ

ρ
kϵ

λ
l

]
(24)

= σ4
∑

i,j,µ,ν

{
Kij

µν

[
Kij

µν +Kji
νµ

]
+Kii

µµK
jj
νν

}
(25)

= σ4
{
Tr

[
K

(
K⊤ +K

)]
+Tr [K]

2
}

= σ4

{
1

2
Tr

[(
K⊤ +K

)2]
+Tr [K]

2

}
(26)

Defining the symmetric part KS = (K⊤ +K)/2, we have

E
[
Tr

[
ϵ⊤Kϵ

]2]
= σ4

{
2Tr

[
K2

S

]
+Tr [KS ]

2
}

(27)

where we used the fact that Tr [K] = Tr [KS ]. Putting these together, the symmetry loss in this
approximation becomes

Hessian symmetry loss:

E [L(L, x)] ≈ σ2∥Kx∗∥2 + σ4
{
2Tr

[
K2

S

]
+Tr [KS ]

2
}
. (28)

Now, note that since K ≡ HL the components are Kij
µν =

∑
kH

ik
µνL

j
k. Let us define the trace

over spatial indices, µ, ν, and the node (particle) indices i, j as follows

Trs [H]
ij ≡

∑
µ

Hij
µµ, Trn [H]µν ≡

∑
i

Hii
µν (29)

For the trace terms we have

Tr [K] =
∑
i,µ

Kii
µµ =

∑
iµ

Hik
µµL

i
k = Trn [Trs [H]L]

Tr
[
KK⊤] = ∑

ijµµ

(
Kij

µν

)2
=

∑
iµ

Hik
µνL

j
kH

il
µνL

j
l = Trn

[
L⊤Trs

[
H2

]
L
]

Tr
[
K2

]
=

∑
ijµµ

(
Kij

µν

)2
=

∑
iµ

Hik
µνL

j
kH

jl
νµL

i
l = Trs [Trn [HLHL]] (30)

This provides a relationship between the Hessian, the Lie algebra element L, and the effective DoF
defined by L, allowing us to identify approximate symmetries by minimizing this loss. Note that
the above still approximately holds even x∗ is not a critical point, but some point where the gradient
is small, meaning |∇E(x∗)| < η for some small η.

B DERIVATIONS

B.1 HESSIAN SYMMETRY LOSS

For the first term in equation 7, using equation 6 we get

E
[
Tr

[
ϵ⊤HLx∗

]2]
=

∑
i,j,µ,ν

E
[
ϵµi ϵ

ν
j

]
(HLx∗)

i
µ(HLx∗)

j
ν (31)

= σ2
∑
i,µ

(HLx∗)
i
µ(HLx∗)

i
µ = ∥HLx∗∥2 (32)

Finally, the last term in equation 7 yields

E
[
Tr

[
ϵ⊤HLϵ

]2]
=

∑
i,j,k,l,µ,ν,ρ,λ

(HL)ijµν(HL)klρλE
[
ϵµi ϵ

ν
j ϵ

ρ
kϵ

λ
l

]
(33)

= σ4
∑

i,j,µ,ν

{
(HL)ijµν

[
(HL)ijµν + (HL)jiνµ

]
+ (HL)iiµµ(HL)jjνν

}
(34)
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B.2 ANALYTICAL SOLUTIONS TO THE TRACE LOSS IN 1D

We can make this term vanish by finding L that satisfies

if: L⊤H +HL = 0 ⇒ Tr
[
K2

S

]
= 0. (35)

A special case of this is when L is anti-symmetric, L = −L⊤. This amounts to L generating a
rotation in the particle space. In this case, equation 35 becomes [H,L] = 0, meaning if a rotation
commutes with H , it yields Tr

[
K2

S

]
= 0. Note that H has both particle ij and spatial indices µν.

The exact commutation condition is

∀(µ, ν), if: [L, Hµν ] = 0 ⇒ Tr
[
K2

S

]
= 0. (36)

. We can find even more explicit solutions to the commutation relation. On simple solution to
[H,L] = 0 can be found whenH has a degenerate subspace, meaning when two or more eigenvalues
are the same. In this subspace, H is proportional to identity. Therefore, any L that has only support
on a degenerate subspace commutes with H . In our experiments, because of the global spatial
symmetries, instead of looking for degenerate eigenspaces of for each Hµν , we instead look at the
spectrum of the SE(3) invariant matrix H ≡

∑
µ ν[HH

T ]µν .

We are interested in solving the trace loss:

LHess(x) = σ2 |tr(H(x)L)|

where H ≡
∑

µHµµ is the spatially traced Hessian and L is the Lie algebra element defining the
transformation.

We propose different ways to satisfy the trace loss analytically:

Now let’s consider potential additional ways to satisfy the trace condition analytically:
Proposition B.1. If L is a block matrix with specific structure that aligns with the eigenbasis of
H , we can also minimize the loss. Specifically, if we diagonalize H as H = QΛQ⊤, where Λ is
diagonal, then by choosing L such that it aligns with this eigenbasis, we can ensure that:

Tr [HL] = Tr
[
QΛQ⊤L

]
If L is aligned such that it only has support in the eigenspaces corresponding to small eigenvalues
of Λ, the trace can be minimized. This approach effectively identifies directions in which the Hessian
has minimal influence.

Proposition B.2. Another possible solution is if L has a low-rank structure, particularly if it is a
rank-one or rank-two matrix. In this case, even if H has high rank, the product HL will still result
in a matrix of low rank, potentially minimizing the trace loss:

Tr [HL] =
∑
i

λiv
⊤
i Lvi

where vi are the eigenvectors of H and λi are the corresponding eigenvalues. If L is chosen to have
support in directions orthogonal to the eigenvectors corresponding to large eigenvalues, the trace
loss can be reduced.

In the case where H has degenerate eigenvalues, an additional symmetry arises. Specifically, if
H has a degenerate subspace corresponding to k degenerate eigenvalues, this subspace has an in-
herent SO(k) symmetry. In such cases, we can choose L to be a generator of rotations within the
degenerate subspace, exploiting the symmetry. More formally:
Proposition B.3. let Λ be the diagonalized form of H , with QΛQ⊤ = H . If Λ has a set of k-fold
degenerate eigenvalues λ1 = λ2 = · · · = λk, the corresponding eigenspace forms a k-dimensional
subspace of symmetry. The action of L in this subspace can be viewed as a rotation, and L can be
chosen to belong to the Lie algebra of SO(k), the group of rotations in k dimensions.

In this case, L takes the form of an antisymmetric matrix restricted to the degenerate subspace:

L ∈ so(k), L⊤ = −L
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The matrix L generates rotations within the degenerate eigenspace, leaving the overall structure of
H invariant. This rotation symmetry, arising due to the degeneracy of the eigenvalues, ensures that
the trace loss tr(HL) vanishes. Thus, the commutator condition:

[L,H] = 0

is naturally satisfied within this degenerate subspace. The presence of degenerate eigenvalues gives
rise to this additional symmetry, and L can be chosen as one of the canonical generators of SO(k).

This mechanism applies specifically to the case where H has degenerate eigenvalues, as it is the
degeneracy that gives rise to the SO(k) symmetry. If the eigenvalues are non-degenerate, such a
rotation within an eigenspace does not apply, and the symmetry must be realized in other ways, such
as by ensuring L lies in the approximate null space of H or satisfies an antisymmetry condition.

C FURTHER EXPERIMENTAL RESULTS
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Figure 5: Ramachandran plot for alanine dipeptide in Vacuum based on the a) long (500 ns) openMM
simulation with implicit solvent starting at β alanine dipeptide, b) direct optimization based ap-
proach over the molecular forcefield, c) analytically solving the full σ4 term in equation 3 d) slow
subspace of H2 e) fast degenerate subspace of H2 f) direct optimization based approach over the
solvent and the molecular forcefield . The blue and red grid lines on the plots refer to the grid traced
by transforming β alanine using the two most effective DOF discovered by our algorithms. Addi-
tionally the scatter plot gives the values of the potential energy (in presence of solvent) at the points
sampled using the corresponding method.
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Figure 6: Ramachandran plot for alanine dipeptide in water based on the a) long (500 ns) openMM
simulation with implicit solvent starting at β alanine dipeptide, b) direct optimization based ap-
proach over the molecular forcefield, c) analytically solving the full σ4 term in equation 3 d) slow
subspace of H2 e) fast degenerate subspace of H2 f) direct optimization based approach over the
solvent and the molecular forcefield . The blue and red grid lines on the plots refer to the grid traced
by transforming β alanine using the two most effective DOF discovered by our algorithms. Addi-
tionally the scatter plot gives the values of the potential energy (in presence of solvent) at the points
sampled using the corresponding method.
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Figure 7: The gridlines and conformers found for three independent runs (row 1, row 2 and row 3)
using the direct optimization method with ε1 = 0.1 and ε2 = 0.01. a) give the results in vacuum b)
gives the results where the simulation is conducted with solvent but the initial trajectory is derived
without solvent and c) where the simulation is conducted in solvent and the initial optimization
problem is also solved using the solvent forcefield.
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Figure 8: The gridlines and conformers found for three independent runs (row 1, row 2 and row 3)
using the direct optimization method with ε1 = 0.5 and ε2 = 0.01. a) give the results in vacuum b)
gives the results where the simulation is conducted with solvent but the initial trajectory is derived
without solvent and c) where the simulation is conducted in solvent and the initial optimization
problem is also solved using the solvent forcefield.
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