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ABSTRACT

While graph neural networks (GNNs) have allowed researchers to successfully
apply neural networks to non-Euclidean domains, deep GNNs often exhibit lower
predictive performance than their shallow counterparts. This phenomena has been
attributed in part to oversmoothing, the tendency of node representations to become
increasingly similar with network depth. In this paper we introduce an analogy
between oversmoothing in GNNs and consensus (i.e., perfect agreement) in multi-
agent systems literature. We show that the message passing algorithms of several
GNN models are equivalent to linear opinion dynamics in multi-agent systems,
which have been shown to converge to consensus for all inputs regardless of the
initial state. This new perspective on oversmoothing motivates the use of nonlinear
opinion dynamics as an inductive bias in GNN models. In addition to being more
general than the linear opinion dynamics model, nonlinear opinion dynamics mod-
els can be designed to converge to dissensus for general inputs. Through extensive
experiments we show that our Behavior-inspired message passing (BIMP) neural
network resists oversmoothing beyond 100 time steps and consistently outperforms
existing continuous time GNNs even when amended with oversmoothing mitiga-
tion techniques. We also show several desirable properties including well behaved
gradients and adaptability to homophilic and heterophilic datasets.

1 INTRODUCTION

Predicted
Ground Truth

Figure 1: Oversmoothing in multi-agent trajectory
prediction. (Left) Our method predicts well-behaved
trajectories without oversmoothing. (Right) GCN-
based GraphODE exhibits oversmoothing, with trajec-
tories converging to similar solutions at longer horizons
(highlighted). ●: initial state, : final state.

A broad class of real-world systems can
be naturally represented using graphs. In
molecules, atoms can be represented by
nodes and atomic bonds can be repre-
sented by edges (Fang et al., 2022); in
animal groups, individuals can be repre-
sented by nodes and their proximity can
be represented by edges (Young et al.,
2013); and in transportation networks, bus
stops can be represented by nodes and pub-
lic transit routes can be represented by
edges (Madamori et al., 2021). Because
of their broad applicability, the classifica-
tion, regression, and generation of graphs
are of strong interest across scientific com-
munities. While MLPs can be adapted to
operate on graph data, graph neural net-
works (GNNs) are specifically designed to respect the graph permutation symmetry (i.e., equivariance
to node relabeling) and can therefore learn generalizable graph representations, where MLPs can not.

GNNs have been widely applied to fields such as recommendation (Ying et al., 2018), molecular
prediction (Wang et al., 2022b), protein design (Jha et al., 2022), and complex physical system
modeling (Pfaff et al., 2020). However, since node representations in GNNs can become increasingly
similar with network depth; a phenomena known as oversmoothing (Li et al., 2018; Oono & Suzuki,
2019; Nt & Maehara, 2019), their performance deteriorates with increased network depth. This
phenomena is illustrated in Figure 1 where we compare the recurrent application of our model
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and GraphODE (Poli et al., 2019) for trajectory prediction. As a consequence of oversmoothing,
GraphODE predictions tend toward the same spatial region over time (additional details are provided
in Appendix E.1), whereas our predictions do not.

A number of approaches have been proposed to address the issue of oversmoothing, including the use
of residual connections (Li et al., 2018; Chen et al., 2020; Liu et al., 2020; Fu et al., 2022), feature
normalization (Zhao & Akoglu, 2019; Zhou et al., 2020; 2021), and alternative architectures (Chiang
et al., 2019; Abu-El-Haija et al., 2019; Zeng et al., 2019). While many alternative architectures
work to incorporate higher-order features (Chien et al., 2020; Chamberlain et al., 2021b; Liu et al.,
2024; Li et al., 2024), continuous-depth GNNs instead interpret conventional GNN architectures
as discretizations of a continuous process (Poli et al., 2019; Chamberlain et al., 2021a; Eliasof
et al., 2021). This interpretation allows for the integration of techniques developed for modeling
and analyzing dynamical systems (Thompson & Stewart, 2002; Brunton et al., 2016; Paredes et al.,
2024; Richards et al., 2024). For example, GraphCON (Rusch et al., 2022) avoids oversmoothing
by enforcing stability conditions on hidden states of coupled and damped oscillator systems; and
ACMP (Wang et al., 2022a) avoids oversmoothing by introducing repulsive forces traditionally used
to control clustering in particle systems. These are just a few that have shown physical inductive
biases can mitigate oversmoothing while maintaining expressivity (Han et al., 2023).

In this paper, we propose a continuous-depth GNN inspired by behavioral interaction in multi-agent
systems (MAS), instead of physical processes. First, we introduce an analogy likening node features
in a GNN to opinions in an opinion dynamics model, feature aggregation to opinion exchange, and
graph outputs to opinion outcomes (Section 3). Using this analogy, we show that oversmoothing will
occur in all GNN models with layer-wise aggregation schemes that are equivalent to linear opinion
dynamics. (Section 4). With this new understanding of oversmoothing, we leverage the nonlinear
opinion dynamics model introduced in Leonard et al. (2024); Bizyaeva et al. (2022) to design a novel
continuous-depth GNN that is provably robust to oversmoothing. In addition, we show our GNN
has desirable characteristics such as well behaved gradients and adaptability to heterophilic datasets
(Section 5). Finally, we empirically validate our Behavior-Inspired Message Passing (BIMP) GNN
on several datasets and against competitive baselines (Section 6).

2 RELATED WORK

Oversmoothing in GNNs. Contrary to conventional feed forward networks (Montufar et al., 2014;
LeCun et al., 2015), deep discrete GNNs suffer performance degradation from oversmoothing
of node features (Li et al., 2018; Oono & Suzuki, 2019; Nt & Maehara, 2019). A number of
analyses have been proposed to understand the oversmoothing phenomena. In linear GNNs, the
addition of network layers has been shown to increase denoising and mixing effects which lead to
oversmoothing (Wu et al., 2022), the residual connectivity with careful weights initialization can
prevent total collapse (Scholkemper et al., 2024); GCNs (Kipf & Welling, 2016) learns representations
that attempts to counteract an inherently oversmoothing prone network structure (Yang et al., 2020);
and in attention based networks like GAT (Veličković et al., 2017) oversmoothing has been show to
occur at an exponential rate due to the ergodicity of infinite matrix products (Wu et al., 2023). Other
works, have characterized oversmoothing by energy minimization of gradient flows (Di Giovanni
et al., 2022), representational rank collapse (Roth et al., 2024), theoretical bound on the convergence
of energy in term on the Laplacian, weights, and activation functions (Cai & Wang, 2020), and
exceeding a theoretical limit of smoothing in mean aggregation (Keriven, 2022).

Continuous-depth GNNs. Continuous-depth networks such as NeuralODE (Chen et al., 2018) define
the network depth implicitly through the simulation of differential equations. GDE (Poli et al., 2019)
leverages this notion to construct continuous-depth GNNs by propagating inputs through continuum of
GNN layers governed by an underlying ODE. In order to better control and understand node dynamics,
several works focuse on leveraging physical inductive biases such as heat diffusion (Chamberlain
et al., 2021a), Beltrami flows (Chamberlain et al., 2021b), wave equations (Eliasof et al., 2021),
coupled damped oscillators (Rusch et al., 2022), energy source terms (Thorpe et al., 2022), Allen-
Cahn reaction diffusion processes (Wang et al., 2022a), blurring-sharpening forces (Choi et al.,
2023), oscillator synchronization (Nguyen et al., 2024), and Ricci flow (Chen et al., 2025). These
dynamics provide a principled approach to counteract known limitations of discrete GNNs including
oversmoothing in deep networks and poor performance on heterophilic graphs (Han et al., 2023).
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Opinion dynamics in multi-agent systems. Opinions can be interpreted as the preferences of
agents in a multi-agent system, and provide a means by which to interpret and predict agent behavior.
Specifically, consensus dynamics models (Bullo, 2018; Becchetti et al., 2020) are commonly used in
multi-agent settings such as coordinating multi-vehicle movements (Justh & Krishnaprasad, 2005;
Leonard et al., 2010), understanding network systems (Leonard et al., 2007; Ballerini et al., 2008), and
learning on graphs (Zhou et al., 2024). Becchetti et al. (2020) provided an overview of discrete-time
consensus methods and analyzed their convergence time to consensus, computational capabilities,
and robustness to malicious information. However, linear models of opinion formulation can only
model settings where agent opinions converge to consensus (Altafini, 2012; Dandekar et al., 2013).
This short coming is resolved through the use of nonlinear opinion dynamics (Leonard et al., 2024).
The nonlinearity in this model results in bifurcations Golubitsky et al. (2012) allowing opinions to
evolve to dissensus rapidly even under weak input signals (Bizyaeva et al., 2022). Nonlinear opinion
dynamics have been shown to able to model systems such as group decision making (Leonard et al.,
2021; Bizyaeva et al., 2024; Arango et al., 2024); multi-agent control (Leonard et al., 2010; Montes de
Oca et al., 2010); and relational inference (Yang et al., 2024).

3 GRAPH NEURAL NETWORKS AND OPINION DYNAMICS

In this section, we introduce our GNN-opinion dynamics (GNN-OD) analogy. We begin with a
review GNNs and opinion dynamics, followed by a brief discussion of bifurcation theory in the
context of the nonlinear opinion dynamics model (Leonard et al., 2024). We then develop an analogy
likening GNNs to opinion dynamics models, and oversmoothing to opinion consensus.

3.1 GRAPH NEURAL NETWORKS AND OVERSMOOTHING

Graph neural networks. Let G = (V, E) be a graph with n = |V| nodes and m = |E| edges, where
an edge eij exists in E if the nodes xi and xj are connected in G. Given an input graph, a graph neural
network (GNN) f : G → Y returns a label (or label set) over edges, nodes, or the entire graph. Of the
existing GNN algorithms, a large subset can be described in the message passing framework (Gilmer
et al., 2017). In this framework, layer-wise transformations are determined by learned message and
update functions. The message function at layer l, M l, and update function at layer l, U l, are of the
form,

ml+1
i =

∑
j∈N (i)

M l
(
xl
i,x

l
j , eij

)
, and xl+1

i = U l
(
xl
i,m

l+1
i

)
, (1)

where xl
i denotes the representation of node i at layer l.

Oversmoothing. In the GNN literature, oversmoothing is defined as the tendency for node features
to become increasingly similar with increasing network depth (Rusch et al., 2023). This phenomena
has been observed in discrete (Wu et al., 2022; Yang et al., 2020; Wu et al., 2023; Keriven, 2022) and
continuous-depth (Chamberlain et al., 2021a; Eliasof et al., 2021; Xhonneux et al., 2020) GNNs, and
correlates with reduced predictive performance. We can measure the degree of oversmoothing using
the Dirichlet energy (Rusch et al., 2023; Cai & Wang, 2020), which is defined at layer l as

E(Xl) =
1

n

∑
xi∈V

∑
xj∈N (xi)

∥xl
i − xl

j∥22, (2)

where Xl = [xl
1, · · · ,xl

n]
T . If the Dirichlet energy tends to zero as l tends to infinity, that is,

lim
l→∞

∥xl
i − xl

j∥22 = 0 for all eij ∈ E , (3)

the network is said to exhibit oversmoothing.

3.2 OPINION DYNAMICS AND OPINION CONSENSUS

Let M = (Ga,Go) be a multi-agent system with a communication graph Ga = (Va, Ea,Aa), and an
option graph Go = (Vo, Eo,Ao). In this system, each of the Na agents has a real-valued opinion on
each of the No options. The adjacency matrix of the communication graph, Aa = [aaik] ∈ RNa×Na ,
defines the communication strength between agents, and the adjacency matrix of the option graph,
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Figure 2: Nonlinear opinion dynamics and dissensus. (Left) The pitchfork bifurcation diagram
illustrates a change in the number and stability of opinion states with the attention parameter u (stable
equilibria are illustrated with a solid line and unstable equilibria are illustrated with a dotted line). In
the diagram, z represents the weighted average of agent opinions, and u∗ represents the bifurcation
point. When the input term b = 0 we have the pitchfork bifurcation (first from left), and when b > 0
we have its unfolding (second from left). (Right) The time evolution of agent opinions under the
nonlinear opinion dynamics model depends on the initial weighted average of agent opinions z, the
attention parameter u, and the weighted average of agent inputs b. Each subfigure corresponds to an
initial condition on the left. In all cases, the initial z is the same. (a) (u < u∗, b = 0). Agent opinions
converge to a neutral consensus (i.e., perfect agreement) which is equivalent to oversmoothing. (b)
(u > u∗, b = 0). Agent opinions converge to dissensus with low variance, z is positive. (c) (u = u∗,
b = 0). Agent opinions converge to a neutral consensus. (d) (u = u∗, b > 0). Agent opinions
converge to dissensus with high variance, z is positive.

Ao = [aojl] ∈ RNo×No , defines how correlated different options are. An opinion dynamics model on
M = (Ga,Go) describes the evolution of agent opinions in time.

Opinion consensus. Given a multi-agent system M = (Ga,Go), a question of interest is whether the
opinions of agents tend toward consensus (i.e., perfect agreement). The opinions of agents is said to
reach consensus if and only if the opinions of all agents tend toward the same value as time tends to
infinity (DeGroot, 1974), that is,

lim
t→∞

∥xi(t)− xj(t)∥22 = 0, for all eij ∈ E . (4)

Linear opinion dynamics. The linear opinion dynamics model introduced in DeGroot (1974)
describes the discrete-time evolution of agent opinions by,

xi(t+ 1) =

Na∑
k=1

aaikxk(t),

Na∑
k=1

aaik = 1, (5)

where aaik ≥ 0 can be interpreted as the influence of agent xi on agent xk, and the total influence of
any agent sums to one. In this model, the option graph can be understood as uncorrelated, aojl = 0.
The continuous-time analogue of Equation (5) is given by,

ẋi(t) = −dixi(t) +

Na∑
k=1

aaikxk(t), (6)

where the total influence of agent i is di (Leonard et al., 2024). In linear opinion dynamics, consensus
is reached for all initial conditions, and the consensus value is independent of the graph structure
and linearly dependent on initial conditions (Leonard et al., 2024). The more general case of linear
opinion dynamics with time-varying influence (i.e., time-dependent aaik(t)) can also be shown to
converge to consensus (Moreau, 2005; Nedić & Liu, 2017; Fax & Murray, 2004; Blondel et al., 2005).
Becchetti et al. (2020) further gives the upper bound of the convergence time to consensus for both
the time-dependent and independent aaik.

Nonlinear opinion dynamics. The nonlinear opinion dynamics model (Leonard et al., 2024; Bizyaeva
et al., 2022) describes the continuous-time evolution of agent i’s opinion about option j by,

ẋij = −dijxij + S

(
ui

(
αijxij +

Na∑
k=1
k ̸=i

aaikxkj +

No∑
l=1
l ̸=j

aojlxil +

Na∑
k=1
k ̸=i

No∑
l=1
l ̸=j

aaika
o
jlxkj

))
+ bij , (7)

where dij ≥ 0, ui > 0, and αij ≥ 0 are parameters intrinsic to the agent, and aajk, aojl, and bij are
parameters extrinsic to the agent. The intrinsic parameter dij , the damping parameter, describes how
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Table 1: GNN-OD Analogy. We describe our analogy between GNNs and opinion dynamics, relating
graph structures and opinion dynamics, and notions of oversmoothing and opinion consensus.

Graph neural networks Opinion dynamics

Node Agent
Edge Communication link
Node feature dimension Number of agent options
Value of node i feature j Opinion of agent i option j
Oversmoothing Opinion consensus

resistant agent i is to forming an opinion about option j; ui, the attention parameter, represents the
attentiveness of agent i to the opinions of other agents; and αij , the self-reinforcement parameter,
defines how confident agent i is in its opinion on option j. The extrinsic parameter bij , the input
parameter, represents the impact of the environment on the agent i’s opinion about option j, and the
saturating function S is selected so that S (0) = 0, S′ (0) = 1, and S′′′ (0) ̸= 0.

By modeling opinion formation as a nonlinear process, the nonlinear opinion dynamics model can
capture opinion consensus and dissensus, offering greater expressivity compared to the models
surveyed in Becchetti et al. (2020), which converge only to consensus states. The nonlinearity induces
a bifurcation where the number and/or stability of equilibrium solutions changes (see Figure 2
left). Consensus results when all agents select exactly the same equilibrium value, dissensus results
otherwise. A switch from consensus to dissensus can result from a change in the attention parameter
u, this can be seen by comparing the dynamics at point (a) and (b) in Figure 2 (second from right), or
from a change in the input parameter b, this can be seen by comparing the dynamics at point (c) and
(d) in Figure 2 (first from right).

3.3 GRAPH NEURAL NETWORK-OPINION DYNAMICS ANALOGY

As described in Section 3.1 and 3.2, GNNs and opinion dynamics models have several features which
can be understood analogously. The nodes in a GNNs are analogous to the agents in an opinion
dynamics model, the edges between nodes are analogous to communication links between agents,
and layer-wise oversmoothing is analogous to opinion consensus in time (see Equations (3) and (4)).
We summarize our GNN-opinion dynamics (GNN-OD) analogy in Table 1.

4 OVERSMOOTHING AND OPINION CONSENSUS

In this section, we use our analogy to prove oversmoothing in several classes of GNNs, beginning
with linear discrete-depth GNNs and then Laplacian-based continuous-depth GNNs. The utility
of the GNN-OD analogy for understanding oversmoothing motivates its use in the design of new
architectures (Section 5). All proofs are provided in Appendix A.

4.1 LINEAR DISCRETE-DEPTH GNNS

Linear discrete-depth GNNs (e.g., SGC (Wu et al., 2019) and DGC (Wang et al., 2021)) can be
described using layer-wise transformations of the form,

Xl+1 = AXlWl = DÃXlWl = ÃDXlWl, (8)

where adjacency matrix A = DÃ for some right stochastic matrix Ã and diagonal matrix D with
Dii =

∑
j Aij ; and the transformation matrix Wl is layer dependent. We can use our GNN-OD

analogy to show this class of GNNs will exhibit oversmoothing for all inputs, and all input graphs.

Lemma 4.1 (Linear dynamics oversmooth). Any discrete-depth graph neural network with linear
aggregation exhibits oversmoothing.

Previous works that have shown oversmoothing in various subclasses of linear discrete-depth GNNs
include Wu et al. (2022) which proves oversmoothing in convolutional GNNs, and Keriven (2022)
which proves oversmoothing in discrete-depth GNNs with linear mean aggregation , and Scholkemper
et al. (2024) which shows oversmoothing in linearized GNNs without residual connection and proper
initialization.

5
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4.2 LAPLACIAN-BASED CONTINUOUS-DEPTH GNNS

Laplacian dynamics. For a given graph, the graph Laplacian of is defined as L = A−D where A
is the graph adjacency matrix and D is a diagonal matrix with entries Dii =

∑
j Aij . GNNs with

Laplacian dynamics (e.g., GRAND-ℓ (Chamberlain et al., 2021a) and GraphCON-Tran (Rusch et al.,
2022)), can be described using the dynamical equation,

Ẋ(t) = −LX(t). (9)

We can use our GNN-OD analogy to show this class of GNNs will exhibit oversmoothing for all
inputs, and all input graphs.

Lemma 4.2 (Laplacian dynamics oversmooth). Any continuous-depth graph neural network with
Laplacian dynamics exhibits oversmoothing.

Oversmoothing of continuous-depth GNNs with Laplacian dynamics and time-varying adjacency
matrix (e.g., GRAND-nℓ (Chamberlain et al., 2021a)), can be shown by analogy with linear opinion
dynamics models with time-varying influence (see Section 3.2). Oversmoothing in GRAND-ℓ (Cham-
berlain et al., 2021a) was previously shown in Thorpe et al. (2022); Choi et al. (2023). Cai &
Wang (2020) further discussed the bound on the decay rate of Dirichlet energy, quantifying the
oversmoothing behavior in Laplacian dynamics.

Laplacian dynamics with an external input. Continuous-depth GNNs with Laplacian dynamics
and an external input B(t) can be described using the dynamical equation,

Ẋ(t) = −LX(t) +B(t). (10)

Lemma 4.3 (Laplacian dynamics with an external input oversmooth). Any continuous-depth graph
neural network with Laplacian dynamics and an external input will exhibit oversmoothing when the
dynamics are linear.

For works that design B(t) to address oversmoothing in linear models (Thorpe et al., 2022; Choi
et al., 2023), this shows that oversmoothing persists. In order to structurally resolve oversmoothing,
we turn to nonlinear inductive biases with more complicated and controllable stability behavior.

5 BEHAVIOR-INSPIRED MESSAGE PASSING NEURAL NETWORK

In this section, we describe our Behavior-Inspired Message Passing (BIMP) GNN which leverages
nonlinear opinion dynamics as an inductive bias. Nonlinear opinion dynamics is more general than
linear opinion dynamics, and can be designed to converge to dissensus for general inputs. We begin
with model definition, then prove desirable properties like robustness to oversmoothing, well behaved
gradients, and adaptability to homophilic and heterophilic datasets. Proofs are shown in Appendix A.

5.1 MODEL DEFINITION

Let G = (V, E) be an input graph with n nodes, where each node has a din-dimensional feature
representation. BIMP applies a learnable encoder ϕ, decoder ψ, and nonlinear opinion dynamics
model to produce an output. The encoder is defined ϕ : Rdin → RNo , the decoder is defined
ψ : RNo → Rdclass , and our dynamics are defined by the equation,

Ẋ(t) = −dX(t) + tanh
[
u
(
αX(t) +AaX(t) +X(t)Ao⊤ +AaX(t)Ao⊤

)]
+X(0). (11)

In our dynamics, the parameters d and α are hyperparameters, the attention parameter u = d
α+3 , the

initial condition X(0) = ϕ(Xin), and the adjacency matrices of communication and option graphs,
Aa and Ao respectively, are learned. The output of our model is given by Y = ψ(X(T )), where the
terminal time T is a hyperparameter.

5.1.1 THE COMMUNICATION AND OPTION GRAPHS.

The communication and option graphs are designed to allow for theoretical analysis, and reduce
computational expense. For a nonlinear opinion dynamics model of the form,

Ẋ = −dX+ tanh [u(αX+AaX)] +B, (12)

6
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the communication adjacency matrix Aa must have a simple leading eigenvalue to admit analy-
sis (Leonard et al., 2024). BIMP defined in Equation (11) can be written in the form of Equation (12)
by combining the communication and option graphs into a single effective adjacency matrix.

Definition 5.1 (Effective adjacency matrix). Given the adjacency matrices of the communication
and option graphs, Aa and Ao, the effective adjacency matrix Ã is defined,

Ã = (Ao + I)⊗ (Aa + I). (13)

Lemma 5.2. The general form of nonlinear opinion dynamics (Equation (11)) can be written,

ẋ = −dx+ tanh

[
u

(
(α− 1)x+ Ãx

)]
+ b, (14)

where Ã is the effective adjacency matrix, x = vec(X) and b = vec(B).

In order to analyze the behavior of BIMP, the effective adjacency matrix must be constrained to have a
simple leading eigenvalue. We enforce this condition by constraining the learned effective adjacency
matrix to be right stochastic (the leading eigenvalue of right stochastic matrices is λmax = 1).
Learning this matrix directly is computationally prohibitive (the size of the effective adjacency matrix
is RNoNa×NoNa). To relieve computational burden, we instead learn the communication and option
graphs separately. The entries of Aa = [aaik] and Ao = [aojl] are defined using multi-head attention,

aaik = softmax

(
(Wa

Kxi)
⊤Wa

Qxk

dak

)
, aojl = softmax

(
(Wo

Kx⊤
j )

⊤Wo
Qx

⊤
l

dok

)
, (15)

where Wa
K , Wa

Q, Wo
K and Wo

Q are the key and query weight matrices for communication and
option graphs. A useful consequence of this approach is that the leading eigenvalue λãmax of Ã is
constant and does not need to be recomputed during training.

Lemma 5.3. The leading eigenvalue of the effective adjacency matrix Ã is λãmax = 4.

5.2 PARAMETER SELECTION

The attention parameter u. In the nonlinear opinion dynamics model, the attention parameter u
is the bifurcation parameter. Near the bifurcation point u∗ (i.e., the point where the number and/or
stability of solutions change), the model is ultrasensitive to the input B, and agents will quickly form
an opinion (see Figure 2). We design BIMP to be ultrasensitive to the input by setting the value of the
attention parameter u to the bifurcation point of the attention-opinion bifurcation diagram.

Lemma 5.4 (Bifurcation point u∗). The bifurcation point u∗ of the attention-opinion bifurcation
diagram is equal to d/(α−1+λã

max).

From Lemma 5.4 and 5.3, the value of the attention parameter at the bifurcation point is u = d
α+3 .

The input parameter B. In the nonlinear opinion dynamics model, the input parameter B transforms
the bifurcation diagram from a symmetric pitchfork bifurcation to an unfolded pitchfork bifurcation
(see Figure 2). This is a form of selective ultrasensitivity where the directions of ultrasensitivity are
determined by the structure of the communication graph (Bizyaeva et al., 2022; Leonard et al., 2024).

In BIMP with effective adjacency matrix Ã and attention parameter u = d
α+3 , oversmoothing

depends on the choice of input parameter. We select the input parameter B, so that BIMP converges
to an equilibrium for all initial opinions.

Lemma 5.5 (BIMP converges to equilibrium). A BIMP model with a constant input parameter B
converges to an equilibrium.

We can now understand the oversmoothing behavior of BIMP by analyzing its equilibrium behavior.
When the input parameter B is nonzero, BIMP will not exhibit oversmoothing.

Theorem 5.6 (Dissensus in BIMP). BIMP will not exhibit oversmoothing when the input parameter
B is time-independent with unique entries.

7
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Figure 3: Classification accuracy and Dirichlet energy. BIMP is designed to learn node represen-
tations that resist oversmoothing even for very large depths. (Left) We compare the classification
accuracy of BIMP to baseline models for architectures with 1, 2, 4, 8, 16, 32, 64 and 128 timesteps.
Our BIMP model is stable out to 128 timesteps, while baseline performance deteriorates after 32
timesteps. (Right) We compare the Dirichlet energy of node features over a range of network depths.
Contrary to baselines, the Dirichlet energy of BIMP remains stable even at very deep layers.

To ensure B satisfies the conditions of Theorem 5.6, we set B = X(0). GRAND++ (Thorpe et al.,
2022), GREAD (Choi et al., 2023) and KuramotoGNN (Nguyen et al., 2024) uses a similar strategy.

5.3 EMERGENT PROPERTIES

Well behaved gradients. The stability of neural network gradients impacts training efficiency and
learning outcomes (Rusch et al., 2022; Nguyen et al., 2024; Pascanu et al., 2013; Awasthi et al., 2021;
Arroyo et al., 2025). In GNNs, oversmoothing occurs when network gradients vanish (Rusch et al.,
2022). In BIMP, we find that the structure of the nonlinear opinion dynamics inductive bias yields
bounded gradients that do not vanish exponentially, even for very deep architectures.

Theorem 5.7 (BIMP has well behaved gradients). BIMP gradients are upper bounded and do not
vanish exponentially.

Model adaptability. In many GNNs, neighborhood aggregation can be interpreted as low-pass
filtering (Nt & Maehara, 2019; Bo et al., 2021; Balcilar et al., 2021). A direct consequence is that
these same GNNs will perform poorly on heterophilic datasets (i.e., datasets where edges in an input
graphs connect dissimilar nodes). To address this issue, previous works have incorporated high-pass
filters which have a sharpening effect (Han et al., 2023; Di Giovanni et al., 2022; Choi et al., 2023).
In BIMP, we find that the nonlinear opinion dynamics inductive bias can be interpreted as a tunable
filter. This becomes clear by writing the BIMP dynamics from Equation (14) in an alternative form,

ẋ = −dx+ tanh
[
u
(
(α− 1) (x− Ãx)︸ ︷︷ ︸

sharpening

+α Ãx︸︷︷︸
smoothing

)]
+ b. (16)

In this form, BIMP has a high pass filter when α > 1 ((x− Ãx) sharpens the features); and a
low-pass filter when α ≤ 1 (Ãx smooths the feature). By tuning α, BIMP can be adapted to both
homophilic and heterophilic datasets.

Greater Expressivity. GNN expressivity is constrained not only by oversmoothing (Oono & Suzuki,
2019; Li et al., 2018; Nt & Maehara, 2019) but also by limitations in model architecture (Xu et al.,
2018; Alon & Yahav, 2020). BIMP incorporates nonlinearity and cross-dimensional feature mixing
to enhance model expressivity, outperforming existing continuous-depth models (see Section 6).

Theorem 5.8 (Expressive capacity of BIMP). BIMP can model more diverse node feature represen-
tations than approaches whose dynamics are equivalent to linear opinion dynamics.

6 EMPIRICAL ANALYSIS

In this section, we highlight the robustness of BIMP features to oversmoothing even in very deep
architectures; and the classification accuracy of BIMP on homophilic, heterophilic, large graph and
long-range graphs datasets.

6.1 PERFORMANCE AT LARGE DEPTHS

Classification accuracy. To understand the impact of depth on classification accuracy, we compare
the performance of our BIMP model to GRAND-ℓ (Chamberlain et al., 2021a), GRAND++-ℓ (Thorpe

8
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Table 2: Classification accuracy on homophilic datasets. Classification accuracy on the Cora,
Citeseer, Pubmed, CoauthorCS, Computers, and Photo datasets are reported. Our BIMP model
outperforms competitive baselines on all datasets. We highlight the best and second best accuracy.

Dataset Cora Citeseer Pubmed CoauthorCS Computers Photo

BIMP 83.19±1.13 71.09±1.40 80.16±2.03 92.48±0.26 84.73±0.61 92.90±0.44
GRAND-ℓ 82.20±1.45 69.89±1.48 78.19±1.88 90.23±0.91 82.93±0.56 91.93±0.39
GRAND++-ℓ 82.83±1.31 70.26±1.46 78.89±1.96 90.10±0.78 82.79±0.54 91.51±0.41
KuramotoGNN 81.16±1.61 70.40±1.02 78.69±1.91 91.05±0.56 80.06±1.60 92.77±0.42
GraphCON-Tran 82.80±1.34 69.60±1.16 78.85±1.53 90.30±0.74 82.76±0.58 91.78±0.50
GAT 79.76±1.50 67.70±1.63 76.88±2.08 89.51±0.54 81.73±1.89 89.12±1.60
GCN 80.76±2.04 67.54±1.98 77.04±1.78 90.98±0.42 82.02±1.87 90.37±1.38
GraphSAGE 79.37±1.70 67.31±1.63 75.52±2.19 90.62±0.42 76.42±7.60 88.71±2.68

et al., 2022), and GraphCON (Rusch et al., 2022) over a range of network depths (hyperparameters
remain fixed across depths). We report classification performance in Figure 3 (left). BIMP performs
comparably to baseline models for shallow depths (l < 32) and consistently outperforms all baseline
models at greater depths. Experimental details are provided in Appendix D.1.1. We report addi-
tional comparison against discrete-depth GNNs and baselines amended with various oversmoothing
mitigation techniques, including rewiring, normalization and skip connection, in Appendix D.1.1.

Dirichlet energy. To understand how oversmoothing evolves with depth, we compare the Dirichlet
energy (see Equation (2)) of our BIMP model to baseline models over 1000 timesteps and plot the
results in Figure 3 (right). The Dirichlet energy of our BIMP model is stable for all timesteps while
the energy of baseline models diverges. Additional experimental details are provided in Appendix
D.1.2. We report additional comparison against discrete-depth GNNs and baselines amended with
various oversmoothing mitigation techniques in Appendix D.1.2.

6.2 CLASSIFICATION ACCURACY

Homophilic datasets. We report the classification performance of our BIMP model and com-
petitive baselines (GRAND-l, GRAND++-ℓ, KuramotoGNN (Nguyen et al., 2024), GraphCON,
GAT (Veličković et al., 2017), GCN (Kipf & Welling, 2016), and GraphSAGE (Hamilton et al.,
2017)) in Table 2, across 20 random initializations and 100 random train–validation–test splits, on
the full datasets of Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), Pubmed (Namata et al.,
2012), CoauthorCS (Shchur et al., 2018), Computers (Shchur et al., 2018), and Photo (Shchur et al.,
2018). Furthermore, we report the performance of baselines amended with various oversmoothing
mitigation techniques, including rewiring, layer-wise normalization and skip connection, in Table 4,
Appendix D.2.1 and results on the standard Planetoid splits in Table 5. Our BIMP model outperforms
all baseline and amended baseline models on all datasets.

Heterophilic datasets. We report the classification performance of our BIMP model and competitive
baselines on the three small datasets, Texas, Wisconsin, Cornell (Craven et al., 1998), and three larger
datasets Actor (Pei et al., 2020), Squirrel, Chameleon (Rozemberczki et al., 2021), across 100 random
initializations and 10 standard splits, in Table 6, Appendix D.2.2. Our BIMP model outperforms all
baselines on larger datasets and continuous-depth baselines on smaller datasets.

Large graph. We report the classification performances on the ogbn-arXiv (Hu et al., 2020) dataset
with 20 random initialization on the standard split in Appendix D.2.3, Table 7, where BIMP outper-
forms baseline models, illustrating its scalability to large graphs.

Table 3: Performance on LRGB benchmark. We adopt baseline results reported in Gravina et al.
(2025). Our BIMP outperforms all the continuous-depth models and on par with the SOTA result.

Model Peptides-func (AP ↑) Peptides-struct (MAE ↓)
GCN 59.30±0.23 0.3496±0.0013
GIN (Xu et al., 2018) 54.98±0.79 0.3547±0.0045
Transformer+LapPE (Dwivedi & Bresson, 2020) 63.26±1.26 0.2529±0.0016
SAN+LapPE (Kreuzer et al., 2021) 63.84±1.21 0.2683±0.0043
GRAND-ℓ 57.89±0.62 0.3418±0.0015
GraphCON 60.22±0.68 0.2778±0.0018
ADGN (Gravina et al., 2022) 59.75±0.44 0.2874±0.0021
BIMP (ours) 63.62±1.07 0.2629±0.0027
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Figure 4: Oversmoothing in trajectory extrapolation tasks. We show the latent features at timestep
1 (●) and 20 ( ) for both BIMP and GCN-based GraphODE. The latent features from GraphODE
converges to a similar solution while BIMP maintains large variability.

Long-range graphs and over-squashing. Oversquashing is another fundamental limitation that
restricts long-range information propagation in GNNs (Alon & Yahav, 2020; Topping et al., 2021).
We report the prediction results on the datasets Peptides-func and Peptides-struct from Long Range
Graph Benchmark (Dwivedi et al., 2022) in Table 3. BIMP outperforms all the continuous-depth
models and performs on par with Graphormers which incur higher computational and memory costs,
which shows that BIMP empirically mitigating oversquashing. Training detail is in Appendix D.2.4.

6.3 ADDITIONAL EXPERIMENTS

Multi-agent Trajectory Extrapolation. In our motivating experiment (Figure 1), we show that
the GCN-based GraphODE tends to collapse trajectories, which degrades predictive accuracy and
highlights the critical role of oversmoothing, especially in capturing long-term behavior. In contrast,
BIMP avoids trajectory collapse and achieves superior predictive performance. Details and results
are presented in Figure 7 and Appendix E.1.

Figure 4 visualizes the latent features predicted by BIMP and GraphODE at the initial (t = 1) and final
step (t = 20). The top and bottom panels show the variance in each latent feature dimension, while
the middle two panels display heatmaps of the respective 64-dimensional latent features for 5 balls.
In GraphODE, oversmoothing becomes pronounced at t = 20, where most dimensions of the latent
representation collapse to nearly identical values and variance approaches zero, leading the decoder
to produce nearly identical predictions. In contrast, BIMP maintains meaningful discriminability in
its latent features at t = 20.

Empirical Evaluation. We report the computational complexity of BIMP in Table 11 and Table 12,
Appendix E.2, showing that it achieves comparable computational cost than both continuous-depth
and discrete-depth baselines. We further ablate the nonlinearity function (Appendix E.3) and the
inductive terms (Appendix E.4), observing performance changes that align well with our theoretical
analysis. In addition, we conduct a sensitivity analysis to demonstrate that our hyperparameters
damping d and self-reinforcement α are generally robust across tasks (Figure 9, Appendix E.5).

7 CONCLUSION

In this paper, we propose an analogy between GNNs and opinion dynamics models, highlighting
the equivalence between oversmoothing in GNNs and consensus in opinion dynamics. Through our
analogy, we prove that several existing GNN algorithms are equivalent to linear opinion dynamics
models which converges to consensus. Motivated by this, we introduce a novel class of continuous-
depth GNNs called Behavior-inspired message passing (BIMP) which leverage the nonlinear opinion
dynamics inductive bias, improving expressivity and guaranteeing dissensus. Experiments against
recent baselines illustrate our model’s competitive performance and robustness to oversmoothing.

Limitations. The nonlinear opinion dynamics inductive bias may introduce training instabilities at
larger step sizes when using first order methods. If the step size is larger than 1/d, each update will
lead to a sign change. However, since the d is a hyperparameter this is not a severe limitation.
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A PROOFS

A.1 OVERSMOOTHING AND OPINION CONSENSUS

A.1.1 LEMMA 4.1: LINEAR DYNAMICS OVERSMOOTH

Any discrete-depth graph neural network with linear aggregation exhibits oversmoothing.

Proof. Without loss of generality, we consider the case where A is right stochastic. In this case, we
can write the output of the L-th layer,

XL = AXL−1WL = A(L)X0W0 · · ·WL. (17)

where A(n) denotes the n-th power of matrix A.

By our GNN-OD analogy, the quantity A(L)X0 tends toward consensus for all initial conditions.
Since this cannot be changed by a linear transformation (e.g., the product W0 · · ·WL), XL will also
tend toward consensus. Since oversmoothing is analogous to opinion consensus, any discrete-time
GNN with linear aggregation will exhibit oversmoothing for all inputs.

A.1.2 LEMMA 4.2: LAPLACIAN DYNAMICS OVERSMOOTH

Any continuous-depth graph neural network with Laplacian dynamics exhibits oversmoothing.

Proof. Any GNN with Laplacian dynamics can be expressed in the form,

Ẋ(t) = −DX(t) +AX(t). (18)

In this form, it is clear that the dynamics are equivalent to linear opinion dynamics (see Equation (6)).
Since in a linear opinion dynamics model consensus is reached for all initial conditions, a GNN with
Laplacian dynamics will also exhibit oversmoothing for all inputs.

A.1.3 LEMMA 4.3: LAPLACIAN DYNAMICS WITH AN EXTERNAL INPUT OVERSMOOTH

Any continuous-depth graph neural network with Laplacian dynamics and an external input will
exhibit oversmoothing when the dynamics are linear.

Proof. We prove Lemma 4.3 by demonstrating potential oversmoothing behavior in two popular
methods: GRAND++ℓ Thorpe et al. (2022) (in Lemma A.1), GREAD-F and GREAD-FB* Choi et al.
(2023) (in Lemma A.2). The insight that the stability of linear dynamics is sensitive to the external
input can be generalized to the analysis of other Laplacian dynamics with an external input.

Lemma A.1 (Oversmoothing in GRAND++-ℓ). GRAND++-ℓ exhibits oversmoothing.
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Proof. In GRAND++-ℓ, the layer-wise transformations is of the form,

Ẋ = −LX+B, (19)

where B is the fixed source term that depends on the initial state X(0). Defining the right eigenvector
matrix T = [v1,v2, ...,vNa

] and left eigenvector matrix T−1 = [w1,w2, ...,wNa
]⊤ for the graph

Laplacian L, we perform change of coordinates Y = [y1,y2, ...,yNa
]⊤ = T−1X such that

TẎ = −LTY +B. (20)

Decompose L by its right eigenvectors such that L = TΛT−1, Equation (20) further simplifies as

TẎ = −TΛT−1TY +B = −TΛY +B. (21)

Multiplying both sides with T−1 yields

Ẏ = −ΛY +T−1B. (22)

Since the eigenvalue matrix Λ is diagonal, Equation (22) can be decoupled into

ẏ⊤
i = −λiy⊤

i +w⊤
i B, (23)

where λi is the i-th eigenvalue of Λ. Consider the case of λi > 0, the solution to the ODE becomes

y⊤
i (t) =

bi

λi
+ c⊤i e

−λit, (24)

where bi = w⊤
i B and ci are constant vectors. Consider the case where λ0 = 0, the term −λiy⊤

i in
Equation (23) becomes 0, hence the solution to the ODE becomes

y⊤
0 (t) = b0t+ c⊤0 . (25)

where b0 = w⊤
0 B and c0 are constant vectors. The solution in the original coordinate frame becomes

X(t) =
∑
λi>0

vi

(
bi

λi
+ c⊤i e

−λit

)
+ v0(b0t+ c⊤0 ), (26)

where λi and vi denote the positive eigenvalues and corresponding Eigenvectors of L; bi = w⊤
i B,

where wi are the left eigenvectors of L. Particularly, v0 is an all-ones vector, i.e., v0 = [1, 1, .., 1]⊤,
b0 = w⊤

0 B, and c0, ci are constant vectors. As t → ∞, the exponential terms c⊤i e
−λit decays

to zero and Equation (26) tends towards a linear system dominated by v0. Moreover, for large
timescales, the difference in node features is relatively small resulting in reduced discriminability
(another form of oversmoothing), and poorer network performance.

Lemma A.2 (Oversmoothing in GREAD-F and GREAD-FB*). GREAD-F and GREAD-FB∗

exhibits oversmoothing.

Proof. GREAD-F. In GREAD-F, the layer-wise transformations is of the form,

Ẋ = −LX+X⊙ (1−X), (27)

where ⊙ denotes the Hadamard product. For Laplacian L, there exist a constant C > 0 such that

|[LX]i| ≤ C|Xi|, (28)

where C depends on the maximum degree and largest edge weights and Xi denotes the i-th row of
X. Equation (27) can therefore be rewritten as

Ẋi = −[LX]i +Xi(1−Xi) ≤ C|Xi|+Xi −X2
i . (29)

Notably, when Xi < −C, the RHS of Equation (29) is strictly smaller than zero. Since the dominant
term X2

i grows quadratically, the solution diverges to infinity

lim
t→∞

Xi(t) = −∞ for all i. (30)
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Therefore, as long as the maximum of X is smaller than some negative threshold −C, the entire
system becomes monotonically decreasing, eliminating the possibility of equilibrium or steady-state
convergence. While node values may diverge at different rates, the components with the fastest decay
rate dominates the overall behavior. The remaining components which decays more slowly becomes
negligible in relative magnitude. Therefore, all node features collapse and oversmoothing occurs.

GREAD-FB∗. In GREAD-FB∗, the layer-wise transformations is of the form,

Ẋ = −αLX+ β(LX+X), (31)

where α, β are trainable parameters to (de-)emphasize each term. As the external input is a linear
transformation, the dynamics can be rewritten as

Ẋ =

(
(β − α)L+ βI

)
︸ ︷︷ ︸

L̃

X. (32)

Given the property of linear opinion dynamics, when α > β > 0, the eigenvalue of L̃ exists in range
[2∆(β − α), β], where ∆ is the maximum graph degree. In particular, the smallest eigenvalue of L,
which is zero, maps to the largest eigenvalue of λL̃ = β. This guarantees a global stable equilibrium
cannot exist as at least one mode grows exponentially with rate β.

Meanwhile, as t→ ∞, the remaining components associated with smaller eigenvalues either increases
slowly or decays to zero (depends on the sign of the eigenvalue), and thus becoming negligible in
relative magnitude. Consequently, all node features are asymptotically dominated by the leading
eigenvector, which is [1, · · · , 1]⊤. This leads to a collapse in feature diversity and oversmoothing
occurs.

A.2 BEHAVIOR-INSPIRED MESSAGE PASSING NEURAL NETWORK

A.2.1 LEMMA 5.2

The general form of nonlinear opinion dynamics (Equation (11)),

Ẋ(t) = −dX(t) + tanh
[
u
(
αX(t) +AaX(t) +X(t)Ao⊤ +AaX(t)Ao⊤

)]
+X(0),

can be written,

ẋ = −dx+ tanh

[
u

(
(α− 1)x+ Ãx

)]
+ b, (33)

where Ã is the effective adjacency matrix, x = vec(X) and b = vec(B).

Proof. We first rewrite Equation (11) as

Ẋ = −dX+ tanh
[
u
(
(α− 1)X+ (Aa + I)X(Ao⊤ + I)

)]
+B. (34)

From here, we can write the matrix product ABC with A ∈ Rm×m, B ∈ Rm×n and C ∈ Rn×n,
as ABC = vec−1

[(
C⊤ ⊗A

)
vec(B)

]
, where vec denotes the vectorization operator Magnus &

Neudecker (2019). This yields the following form

Ẋ = −dX+ tanh
[
u
(
(α− 1)X+ vec-1(Ã vec(X)

)]
+B, (35)

where Ã = (Ao + I)⊗ (Aa + I) follows from Definition 5.1. Vectorizing both sides of yields

ẋ = −dx+ tanh
[
u
(
(α− 1)x+ Ãx

)]
+ b, (36)

where x = vec(X), and b = vec(B). We obtain the general nonlinear opinion dynamics in the form
of Equation (12). By vectorizing X, each agent opinion on an option is treated as an individual agent-
like entity, thereby reducing the original dynamics to the form where options are uncorrelated.
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A.2.2 LEMMA 5.3

The leading eigenvalue of the effective adjacency matrix Ã is λãmax = 4.

Proof. Since both the communication adjacency matrix Aa and the belief adjacency matrix Ao

are right stochastic, their leading eigenvalues are equal to one (i.e., λamax = λomax = 1). Since
Ã = (Ao+I)⊗ (Aa+I), its leading eigenvalue is equal to λãmax = (λamax+1)(λomax+1) = 4.

A.2.3 LEMMA 5.4: BIFURCATION POINT u∗

The bifurcation point u∗ of the attention-opinion bifurcation diagram is equal to d/(α−1+λã
max).

Proof. The bifurcation point of the attention-opinion bifurcation diagram, i.e., the point where the
number and/or stability of the solutions change, occurs when the input parameter B is equal to zero.

Following Leonard et al. (2024), we use a linear analysis to determine the bifurcation point of the
attention-opinion bifurcation diagram. The linearization of the nonlinear opinion dynamics model
(Equation (36)) is given by ω̇ = J(xe)ω, where J(xe) is the Jacobian evaluated at the equilibrium
xe, and ω = x− xe. At the equilibrium xe = 0, the Jacobian is given by

J = (−d+ u(α− 1))I+ uÃ. (37)

The eigenvalue of the Jacobian determines the equilibrium stability. Denoting the eigenvalue of Ã,
λã, the eigenvalue of the Jacobian can be expressed,

λ′ = −d+ u(α− 1) + uλã. (38)

The bifurcation point of the attention-opinion bifurcation diagram occurs when the dominant eigen-
value of the Jacobian is zero, reaching the upper bound for stability of the equilibrium xe. As
u continues to increases and the dominant eigenvalue becomes positive, the equilibrium xe be-
come unstable and a bifurcation emerges. Solving for the critical value of the attention yields
u∗ = d/(α−1+λã

max).

A.2.4 LEMMA 5.5: BIMP CONVERGES TO EQUILIBRIUM

A BIMP model with time-independent input parameter B, converges to an equilibrium.

Proof. Due to the monotonicity of our BIMP model, the opinions are guaranteed to converge to an
equilibrium. Without loss of generality, consider the case where the graph is undirected and the
system has only one option (i.e., Ao = 0 with no interrelationship between options),

Ẋ = −dX+ tanh

[
u(AaX+ αX)

]
+B. (39)

Let p be an permutation matrix that re-index our system into block diagonal form

Âa = PAaP⊤ =


A11 0 0 0
0 A22 0 0
...

...
. . . 0

0 0 . . . Ann

 , X̂ = PX =


X1

X2

...
Xn

 , B̂ = PB =


B1

B2

...
Bn

 ,
(40)

where Ann are irreducible blocks or zero matrices. Considering p is an orthonormal vector, Aa and
X can be expressed as

Aa = P⊤ÂaP, X = P⊤X̂, B = P⊤B̂. (41)

Substituting Aa and X with Âa and X̂ respectively in Equation (39) yields

P⊤ ˙̂
X = −dP⊤X̂+ tanh

[
u(P⊤ÂaPP⊤X̂+ αP⊤X̂)

]
+P⊤B̂, (42)
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= P⊤(−dX̂) +P⊤ tanh

[
u(ÂaX̂+ αX̂)

]
+P⊤B̂, (43)

and multiplying P on both sides

˙̂
X = −dX̂+ tanh

[
u(ÂaX̂+ αX̂)

]
+ B̂. (44)

Leveraging the block diagonal form, Equation (44) can be decoupled into

Ẋm = −dXm + tanh

[
u(AmmXm + αXm)

]
+Bm. (45)

where the convergence of each subsystem Ẋm = fm(Xm), 1 ≤ m ≤ n can be examined individually.
The Jacobian of subsystem Ẋm = fm(Xm) is defined as

Jm(Xm) =
∂fm(Xm)

∂Xm
= −dI+1vec

(
sech2 (u(AmmXm + αXm))

)⊤

◦ [u((Amm ⊗ I) + αI)] ,

(46)
where I is the identity matrix, 1 the all-ones vector and vec is the vectorization. ◦ is Hadamard
product. Each subsystem and their associated Jacobian satisfies

• Cooperative. Since sech ∈ (0, 1], Amm are positive matrices (as it is the output of a
softmax function) and α ≥ 0, Jm(Xm) is a Metzler matrix in which all the off-diagonal
elements are non-negative. This implies that Jm(Xm) is cooperative and the subsystem
Ẋm = fm(Xm) is monotone Hirsch (1985).

• Irreducible. As Amm is constructed to be irreducible, ((Amm⊗I)+αI) remains irreducible
and hence the Jacobian Jm(Xm) is irreducible.

• Compact closure. The existence of the damping term d in subsystem Ẋm = fm(Xm)
ensure the forward orbit has compact closure (i.e., bounded).

If the Jacobian for a continuous dynamical system ẋ = f(x, t) is cooperative and irreducible, then it
approaches the equilibrium for almost every point x whose forward orbit has compact closure Hirsch
(1985). Since the Jacobian Jm(Xm) for each subsystem Ẋm = fm(Xm) satisfies this condition,
almost every state Xm approaches the equilibrium set. Therefore the dynamical system defined
in Equation (39) converges to an equilibrium set. As all trajectories tend towards the equilibrium
solution, analyzing the equilibrium behavior is sufficient to understand the underlying dynamics of
our BIMP model.

If there are more than one option in the system (i.e, Ao ̸= [0]), the vectorized system defined in
Equation (36) can be shown analogously to converge to its equilibrium set.

A.2.5 THEOREM 5.6: DISSENSUS IN BIMP

BIMP will not exhibit oversmoothing when the input parameter B is time-independent with unique
entries.

Proof. Without loss of generality, consider the case where the graph is undirected and the system has
only one option (i.e., Ao = 0). By Definition 5.1, the effective adjacency matrix becomes

Ã = 1⊗ (Aa + I) = Aa + I. (47)

Consider that x = [x1, x2, ..., xNa ]
⊤, we can decouple the dynamical equation of xi from Equation

(36) such that
ẋi = −dxi + tanh(u(α̃xi + ãix)) + bi, (48)

where ãi is the i-th row of Ã and bi is the i-th element of b. Assume x converges to consensus such
that x1 = x2 = . . . = xNa

= x̄. For any pair xm and xn,m ̸= n with corresponding input bm ̸= bn,
their dynamical equations are

ẋm = −dxm + tanh(u(α̃xm + ãmx)) + bm, (49)
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ẋn = −dxn + tanh(u(α̃xn + ãnx)) + bn. (50)

We observe that

−dxm = −dxn = −dx̄, (51)
−α̃xm = −α̃xn = −α̃x̄, (52)

and
ãmx = ãnx = 2x̄, (53)

due to ãm and ãn being right stochastic. However, since bm ̸= bn, the right hand side of Equation
(49) and Equation (50) cannot be 0 at the same time. Therefore, by contradiction, consensus cannot
be the equilibrium for BIMP if bm ̸= bn. If b has unique elements, the equilibrium of the system
forms dissensus and avoids oversmoothing.

If there are more than one option in the system (i.e, Ao ̸= 0), formation of dissensus is still possible
since Ao is also right stochastic.

A.2.6 THEOREM 5.7: BIMP HAS WELL BEHAVED GRADIENTS

BIMP gradients are upper bounded and do not vanish exponentially.

Proof. For simplicity, consider the forward Euler method for integration of the dynamics defined by
Equation (11) such that

Xt = Xt−1 +∆tẊt−1, (54)

X0 = ϕ(Xin) = WXin, (55)

where ∆t is the numerical integration step size, Xt ∈ RNa×No are the features at time t ∈
[∆t, 2∆t, . . . ,M∆t], and Xin ∈ RNa×f are the input features. For the simplicity, we assume
a linear encoder ϕ parameterized by learnable weights W. Similar to existing continuous depth
GNNs, the total steps of ODE integrations M is interpreted as the number of layers of a model.
Consider a node classification task using BIMP subject to mean squared error loss

L(W) =
1

2NaNo

Na∑
i=1

No∑
j=1

(xMij − x̂ij)
2, (56)

where xMij is an element of the learned features XM at layer M and x̂ij is an element of the ground
truth X̂. Consider all intermediate layers where t ∈ [∆t, 2∆t, . . . ,M∆t], the gradient descent
equation can be constructed as

∂L
∂W

=
∂L
∂XM

∂XM

∂X1

∂X1

∂X0

∂X0

∂W
, (57)

where
∂XM

∂X1
=

M∏
t=2

∂Xt

∂Xt−1
. (58)

With increasing depth (i.e, M → ∞), this repeated multiplication leads to gradient exploding
(vanishing) when the components ∂Xt

/∂Xt−1 > I (∂Xt
/∂Xt−1 < I). The BIMP model provides

an upper and lower bound on gradients in Lemma A.3 and A.4 to guarantee exploding or vanish
gradients cannot occur.

Lemma A.3. BIMP gradients are upper bounded when the step-size ∆t≪ 1 and damping term
d < 1/∆t.

Proof. Consider integrating BIMP with the forward Euler scheme defined in Equation (54) and (55)
with fixed hyper parameters α̃ = α− 1 and u = d/α̃+4,

Xt = Xt−1 +∆t

(
−dXt−1 + tanh

[
u

(
α̃Xt−1 +

(
Aa + I

)
Xt−1

(
Ao⊤ + I

))]
+X0

)
(59)
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= (1− d∆t)Xt−1 +∆t tanh

[
u

(
α̃Xt−1 +

(
Aa + I

)
Xt−1

(
Ao⊤ + I

))]
+∆tX0, (60)

with initial feature embedding
X0 = ϕ

(
Xin

)
= XinW. (61)

Vectorizing Equation (60) and (61) yields

xt = (1− d∆t)xt−1 +∆t tanh

[
u

(
α̃I+ Ã

)
xt−1

]
+∆tx0, (62)

x0 = W̃xin, (63)

where Ã = (Ao+I)⊗(Aa+I), W̃ = W⊤⊗INa
, and xt = [xt1, x

t
2, . . . , x

t
Na×No

]⊤. Reformulating
gradient calculation in Equation (57) subject to loss function defined in Equation (56) with respect to
the vectorized variables gives

∂L
∂W̃

=
∂L
∂xM

∂xM

∂x1

∂x1

∂x0

∂x0

∂W̃
, (64)

∂xM

∂x1
=

M∏
t=2

∂xt

∂xt−1
, (65)

where the upper bound for
∥∥∥∂xM

∂x1

∥∥∥
∞

,
∥∥ ∂L
∂xM

∥∥
∞,
∥∥∥∂x1

∂x0

∥∥∥
∞

and
∥∥∥ ∂x0

∂W̃

∥∥∥
∞

can be found individually
and are summarized in Equation (78), (84), (86), and (87) respectively.

Consider the first term
∥∥∥∂xM

∂x1

∥∥∥
∞

and recalling that

∂xM

∂x1
=

M∏
t=2

∂xt

∂xt−1
. (66)

By inspecting each term ∂xt

∂xt−1 , it follows that

∂xt

∂xt−1
= (1− d∆t)I+∆t1

[
sech2

(
u(α̃I+ Ã)xt−1

)]⊤
◦
(
u(α̃I+ Ã)

)
, (67)

where 1
[
sech2

(
u(α̃I+ Ã)xt−1

)]⊤
represents a matrix repeating the vector

sech2
(
u(α̃I+ Ã)xt−1

)
along the row dimension. ◦ is the Hadamard product. As sech(·) ∈ (0, 1],

we can leverage the triangle identity to obtain an upper bound∥∥∥∥ ∂xt

∂xt−1

∥∥∥∥
∞

≤
∥∥∥(1− d∆t)I+ u∆t(α̃I+ Ã)

∥∥∥
∞

(68)

≤ ∥(1− d∆t)I∥∞ + u∆t ∥α̃∥∞ + u∆t
∥∥∥Ã∥∥∥

∞
. (69)

Since u = d/α+3, α̃ = α− 1, d > 0, α ≥ 0, it follows that

u∆t ∥α̃∥∞ =
d

α+ 3
∆t ∥α− 1∥ < d∆t. (70)

Since Ã = (Ao + I)⊗ (Aa + I) from Definition 5.1 and given that Aa and Ao are right stochastic,
it follows that ∥∥∥Ã∥∥∥

∞
< 4. (71)

Therefore, Equation (69) can be further bounded by Equation (70) and (71) as∥∥∥∥ ∂xt

∂xt−1

∥∥∥∥
∞

≤ ∥(1− d∆t)I∥∞ + d∆t+ 4u∆t, (72)

< (1− d∆t) + d∆t+ 4u∆t, (73)
< 1 + 4u∆t. (74)
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Since we assume ∆t≪ 1, it follows that

(1 + 4u∆t)
M−1

= 1 + 4(M − 1)u∆t+O(∆t2), (75)
≈ 1 + 4(M − 1)u∆t, (76)
< 1 + 4Mu∆t. (77)

Finally, the term is upper bounded as∥∥∥∥∂xM

∂x1

∥∥∥∥
∞

≤ 1 + 4Mu∆t. (78)

Consider the second term
∥∥ ∂L
∂xM

∥∥
∞

∂L
∂xM

=
1

NaNo
diag(xM − x̂), (79)

where diag(xM − x̂) is a diagonal matrix with vector entry xM − x̂ on the diagonal and x̂ = vec(X̂).
Taking the absolute value of Equation (62) and recalling tanh(·) ∈ (−1, 1), it follows that

|xMi | ≤ (1− d∆t)|xM−1
i |+ (1 + |x0i |)∆t. (80)

Therefore, recursively it can be shown that

|xMi | ≤ (1− d∆t)M |x0i |+

(
M−1∑
p=0

(1− d∆t)p

)
(1 + |x0i |)∆t, (81)

≤ |x0i |+M(1 + |x0i |)∆t. (82)

Taking ∞-norm of Equation (79) yields∥∥∥∥ ∂L
∂xM

∥∥∥∥
∞

≤ 1

NaNo
(∥xM∥∞ + ∥x̂∥∞). (83)

Substituting Equation (82) into Equation (83) result in the upper bound∥∥∥∥ ∂L
∂xM

∥∥∥∥
∞

≤ 1

NaNo

(
M∆t+ (1 +M∆t)∥x0∥∞ + ∥x̂∥∞

)
. (84)

Consider the third term
∥∥∥∂x1

∂x0

∥∥∥
∞

. Since the input term x0 contributes to the differential defined in
Equation (60), it follows that the upper bound can be derived as

∂x1

∂x0
=

(
1− (d− 1)∆t

)
I+∆t1

[
sech2

(
u(α̃I+ Ã)x0

)]⊤
◦
(
u(α̃I+ Ã)

)
, (85)∥∥∥∥∂x1

∂x0

∥∥∥∥
∞
< 1 + (4u+ 1)∆t. (86)

Consider the fourth term
∥∥∥ ∂x0

∂W̃

∥∥∥
∞

, the upper bound can be defined as∥∥∥∥ ∂x0

∂W̃

∥∥∥∥
∞

= ∥xin∥∞ . (87)

Combining Equation (78), (84), (86), and (87), it follows that the upper bound for gradient calcula-
tions of BIMP is∥∥∥∥ ∂L∂W̃

∥∥∥∥
∞
<

1

NaNo

(
M∆t+(1+M∆t)∥x0∥∞+∥x̂∥∞

)(
1+4Mu∆t

)(
1+(4u+1)∆t

)
∥xin∥∞ .

(88)
By designing hyperparameters

β =M∆t, (89)
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γ = (1 + 4Mu∆t) (1 + (4u+ 1)∆t) , (90)

the upper bound defined in Equation (88) can be simplified as∥∥∥∥ ∂L∂W̃
∥∥∥∥
∞
<

1

NaNo

(
β + (1 + β)∥x0∥∞ + ∥x̂∥∞

)
γ ∥xin∥∞ . (91)

Consider that W and W̃ have the same elements, ∥ ∂L
∂W∥∞ = ∥ ∂L

∂W̃
∥∞ and therefore∥∥∥∥ ∂L∂W

∥∥∥∥
∞
<

1

NaNo

(
β + (1 + β)∥x0∥∞ + ∥x̂∥∞

)
γ ∥xin∥∞ . (92)

which indicates that the gradients are upper bounded regardless of network depth and avoids exploding
gradients.

Lemma A.4. BIMP gradients will not vanish exponentially when the step-size ∆t ≪ 1 and the
damping term d < 1/∆t.

Proof. From Equation (57), the terms ∂XM

∂X1 , ∂X1

∂X0 , ∂L
∂XM , and ∂X0

∂W can be individually reformulated
as a recursive summation operation and are summarized in Equation (93), (95), (99), and (100)
respectively.

Consider the term ∂XM

∂X1 , which can be expressed as

∂Xt

∂Xt−1
= I+∆tEt−1, (93)

where

Et−1 = −dI+ 1
[
sech2

(
u(α̃Xt−1 + (Aa + I)Xt−1(Ao⊤ + I)

)]⊤
◦ u
[
α̃I+

(
I⊗ (Ao + I)

)(
(Aa + I)⊗ I

)]
. (94)

Consider the term ∂X1

∂X0 , which can be reformulated as

∂X1

∂X0
= I+∆tE0, (95)

where

E0 = (1− d)I+ 1vec
(
sech2

(
u(α̃Xt−1 + (Aa + I)Xt−1(Ao⊤ + I)

))⊤

◦ u
[
α̃I+

(
I⊗ (Ao + I)

)(
(Aa + I)⊗ I

)]
. (96)

Combining the previous two terms, it follows that

∂XM

∂X0
=

(
I+∆tEM−1

)(
I+∆tEM−2

)
...

(
I+∆tE0

)
, (97)

= In +∆t

(
E0 +

M−1∑
t=1

Et

)
+O(∆t2). (98)

Consider the term ∂L
∂XM

∂L
∂XM

=
1

NaNo
diag(XM − X̂), (99)

where diag(XM − X̂) is a diagonal matrix with vector entry vec
(
XM − X̂

)
on the diagonal.
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Consider the term ∂X0

∂W

∂X0

∂W
= Xin ⊗ I. (100)

Therefore, combining Equation (98), (99) and (100) yields

∂L
∂W

=
∂L
∂XM

[
I+∆t

(
E0 +

M∑
i=1

Ei

)
+O(∆t2)

]
∂X0

∂W
, (101)

which reformulates the gradient calculation into a recursive sum. This implies that the gradients will
not vanish exponentially, but the gradients may still become very small.

B OTHER PROOFS

We provide additional Lemmas to provide deeper insight into the theoretical properties of our BIMP
model.

Lemma B.1 (Expressive capacity of BIMP). BIMP can model more diverse node feature represen-
tations than approaches whose dynamics are equivalent to linear opinion dynamics.

Proof. Nonlinear systems can exhibit more complex behavior, such as multiple equilibria and
bifurcations, than linear systems. Also, many continuous-depth GNNs Chamberlain et al. (2021a);
Thorpe et al. (2022); Choi et al. (2023); Nguyen et al. (2024) lack a feature mixing mechanism. In
contrast, BIMP introduces the option graph Go to enable feature mixing across dimensions, modeling
more complex information exchange.

To highlight the contributions of the intrinsic nonlinearity and the option graph Go, we compare BIMP
with linear opinion dynamics as a representative baseline: linear opinion dynamics is a first-order
approximation of BIMP without correlated options Ao = 0.

When attention parameter u = 1, input parameter B = 0, and uncorrelated options Ao = 0, the
BIMP model has dynamics of the form

Ẋ = −dX+ tanh (αX+AaX) . (102)

When X = 0, Ẋ = 0, so X = 0 is an equilibrium of the system. The first-order approximation of
our model dynamics about this equilibrium is given by

Ẋ = (Aa − cI)X, c = d− α. (103)

When c = 1, this equation reduces to,

Ẋ = (Aa − I)X, (104)

which is of the same form as linear opinion dynamics in Equation (6). Since linear opinion dynamics
has the same form as the first-order approximation of BIMP, we say BIMP has greater expressive
capacity.

Lemma B.2 (Expressive capacity of BIMP can degrade). The BIMP model reduces to a linear
system when the attention parameter u is either very small or very large.

Proof. The degeneration to a linear model occurs under two settings: (1) when u is very small and the
nonlinear term evaluates to 0; (2) or when u is very large such that the hyperbolic tangent saturates,
and therefore the nonlinear term evaluates to ±1.

To avoid both degenerate cases, we set the attention parameter u at the bifurcation point. Beyond the
reasoning provided in Section 5.2, this lemma offers an additional perspective that placing u at the
bifurcation point ensures that BIMP operates within the nonlinear regime of Equation (11), thereby
preserving its expressive capacity.
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Lemma B.3 (Reduced order representation of BIMP). When the input parameter B is equal to
zero, the dynamics of BIMP can be approximated by the dynamics of the reduced one-dimensional
dynamical equation.

ẏ = −d y + tanh [u(α+ 3)y] , (105)

where y = ⟨x,wmax⟩ ∈ R, and wmax is the left dominant eigenvector of Ã.

Proof. Leveraging the Lyapunov-Schimit reduction, the BIMP dynamics can be projected onto a
one-dimensional critical subspace Leonard et al. (2024). The BIMP dynamics in Equation (12) can
be vectorized following Lemma 5.2 as

ẋ = −dx+ tanh
[
u
(
(α− 1)x+ Ãx

)]
+ b, (106)

where x = vec(X), and b = vec(B). Defining the right eigenvector matrix T = [v1,v2, . . . ,vNa
]

and the left eigenvector matrix T−1 = [w1,w2, . . . ,wNa ]
⊤ of Ã, Equation (106) can be expressed

in the new coordinates x = Ty as

Tẏ = −dTẏ + tanh

[
u

(
(α− 1)Ty + ÃTy

)]
. (107)

Multiplying T−1 on both sides gives

ẏ = −dẏ +T−1 tanh

[
u

(
(α− 1)Ty + ÃTy

)]
. (108)

Consider that c tanh(x) ≈ tanh(cx) for small |x|, Equation (108) can be approximated by

ẏ = −dẏ + tanh

[
u

(
(α− 1)y +T−1ÃTy

)]
. (109)

Defining Λ as the diagonal matrix of eigenvalues of Ã, Equation (109) can be further simplified by
decomposing Ã = TΛT−1

ẏ = −dẏ + tanh

[
u

(
(α− 1)y +Λy

)]
. (110)

Equation (110) approximates the dynamics of Equation (106) around x = 0. By observing that
x = y1v1 + y2v2 + . . . + yNavNa , we can further restrict the dynamics of BIMP to the critical
subspace Ker(J) = vmax = v1 through setting y2 = y3 = . . . = yNa = 0. As such, Equation (110)
simplifies into

ẏ1 = −dẏ1 + tanh [u((α− 1)y1 + λ1y1)] . (111)
Substituting λ1 = λãmax = 4 from Proposition 5.3 and simplifying y1 as y gives

ẏ = −dẏ + tanh [u(α+ 3y)] , (112)
which we define as the one-dimensional critical subspace for our model. The remaining eigenvectors
vi make up the regular subspace as their eigenvalues are smaller than 0. Systems on the regular
subspace vanishes quickly and does not contribute to the long-term behavior (i.e, convergence to
equilibrium). It is therefore sufficient to focus on the critical subspace to understand the dynamics of
the equilibrium as the regular subspace decays quickly.

Lemma B.4 (Formation of consensus in BIMP). BIMP exhibits oversmoothing when the input
parameter B is equal to zero.

Proof. For x in the neighborhood of the equilibrium x = 0, the Equation (105) in Lemma B.3 is
isomorphic to

ẏ = (u(α+ 3)− d)y − u(α+ 3)y3. (113)
At the bifurcation point u = d

α+3 , Equation (113) has unique equilibrium y = 0.

This corresponds to an equilibrium solution of x = 0 in the original system (Equation (36)) which
means that X = 0 and all agents form neutral opinions for all options. Since the opinions of all
agents have converged, the system has reached consensus (i.e., exhibits oversmoothing).

This lemma indicates that BIMP requires an appropriately chosen input term B to avoid converging
to consensus, as discussed in Theorem 5.6.
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C DATASETS

C.1 HOMOPHILIC DATASETS

Table 2 in Section 6.2 performs semi-supervised node classification task on the Cora McCallum et al.
(2000), Citeseer Sen et al. (2008), Pubmed Namata et al. (2012), CoauthorCS Shchur et al. (2018) and
Amazon Computers and Photo McAuley et al. (2015) homophilic datasets. Recent continuous-depth
models such as GRAND-ℓ and KuramotoGNN make use of the largest connected component (LCC)
of the datasets, which discards smaller subgraphs. However, Wu et al. (2022) theoretically analyzes
that, for dense graphs, the number of GNN layers required to trigger oversmoothing decreases as
the graph size shrinks. This creates a trade-off between avoiding smaller components to oversmooth
and building deep enough models for expressivity. Instead, since our BIMP is designed to mitigate
oversmoothing across all parts of graphs, we retain the full graph and show that BIMP maintains
stable performance.

Cora. The Cora dataset contains a citation graph where 2708 computer science publications are
connected by 5278 citation edges. Each publication has an 1433-dimensional bag-of-words vector de-
rived from a paper keyword dictionary. Publications are classified into one of 7 classes corresponding
to their primary research area.

Citeseer. The Citeseer dataset contains a citation graph where 3312 computer science publications
are connected by 4552 citation edges. Each publication has a 3703-dimensional bag-of-words
vector derived from a paper keyword dictionary. Publications are classified into one of 6 classes
corresponding to their primary research area.

Pubmed. The Pubmed dataset contains a citation graph where 19717 biomedical publications are
connected by 44324 citation edges. Each publication is represented by a 500-dimensional TF/IDF
weighted word vector derived from a paper keyword dictionary. Publications are classified into one
of 3 classes corresponding to their primary research area.

CoauthorCS. The CoauthorCS dataset is one segment of the Coauthor Graph datasets that contains a
co-authorship graph that consist of 18333 authors and connected by 81894 co-authorship edges. Each
author is represented by a 6805-dimensional bag-of-words feature vector derived from their paper
keywords. Authors are classified into one of 15 classes corresponding to their primary research area.

Amazon Computers. The Amazon Computers dataset, denoted as Computers in our paper, contains
a co-purchase graph where 13381 computer products are connected by 81894 edges. The edges
indicate that two products are frequently bought. Each product is represented by a 767-dimensional
bag-of-words feature vector derived from their product reviews. Products are classified into one of 10
classes corresponding to their product categories.

Amazon Photo. The Amazon Photo dataset, denoted as Photo in our paper, contains a co-purchase
graph where 7487 photo products are connected by 119043 edges. The edges indicate that two
products are frequently bought. Each product is represented by a 745-dimensional bag-of-words
feature vector derived from their product reviews. Products are classified into one of 8 classes
corresponding to their product categories.

C.2 HETEROPHILIC DATASETS

Table 6 in Section 6.2 performs semi-supervised node classification task on the Texas, Wisconsin,
and Cornell heterophilic datasets from the CMU WebKB Craven et al. (1998) project.

Texas. The Texas dataset contains a webpage graph where 183 web pages are connected by 325
hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
content.

Wisconsin. The Wisconsin dataset contains a webpage graph where 251 web pages are connected by
512 hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
content.
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Cornell. The Cornell dataset contains a webpage graph where 183 web pages are connected by
298 hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
content.

Squirrel. The Squirrel dataset contains a Wikipedia page-page network on squirrels where 5201
pages are connected by 217073 edges. Each webpage has a 2089-dimensional bag-of-words vector
derived from the contents of the webpage. Nodes are classified into one of 5 classes in term of the
number of the average monthly traffic of the web page.

Chameleon. The Chameleon dataset contains a Wikipedia page-page network on chameleon where
2277 pages are connected by 36101 edges. Each webpage has a 2325-dimensional bag-of-words
vector derived from the contents of the webpage. Nodes are classified into one of 5 classes in term of
the number of the average monthly traffic of the web page.

Actor. The Actor dataset contains the actor-only induced subgraph of the film-director-actor-writer
network where 7600 actors are connected by 30019 co-occurrence on Wikipedia. Each webpage
has a 932-dimensional bag-of-words vector derived from the contents of the webpage. Nodes are
classified into one of 5 classes in term of words of actor’s Wikipedia page.

C.3 LARGE GRAPHS

Table 7 in Appendix D.2.3 performs semi-supervised node classification task on the ogbn-arXiv Hu
et al. (2020) dataset. The ogbn-arXiv dataset consists of a single graph with 169,343 nodes and
1,166,243 edges where each node represents an arxiv paper, and edges represent citation relationships.
We train each model in a semi-supervised way, and compute the training loss over 90,941 of the
169,343 nodes. We use 29,799 of the remaining nodes for validation, and the final 48,603 nodes for
testing.

D EXPERIMENT DETAILS

D.1 PERFORMANCE AT LARGE DEPTHS

D.1.1 CLASSIFICATION ACCURACY

Experiment 6.1: Classification accuracy evaluates the classification performance of BIMP and
continuous-depth baselines at different depths of T = {1, 2, 4, 8, 16, 32, 64, 128} with 100 splits and
10 random seeds. We use the classification accuracy as a measure of the robustness to deep layers of
BIMP and baseline methods.

Figure 3 show the comparison of classification accuracy of BIMP and select continuous baseline
methods. Figure 5 show the comparison of classification accuracy of BIMP and additional baselines
and oversmoothing mitigation techniques, including pairnorm (Zhao & Akoglu, 2019) (denoted
-pairnorm) and differentiable group normalization (Zhou et al., 2020) (denoted -group). Specially, in
differentiable group normalization, we have the skip-connection as suggested in their paper.

Since adaptive step-size methods like Dormand–Prince (Dopri5) can result in inconsistent numbers
of integration steps, we implement the Euler method with fixed step size ∆t = 1 for fair comparison.
Notably, BIMP outperforms GRAND++-ℓ at significant depths, even though GRAND++-ℓ only
supports Dormand–Prince (Dopri5).

Some baselines incorporate an additional learnable weight to scale the differential equation. For
instance, in GRAND-ℓ, the implementation was modified as ẋ = α[(A − I)x + βx(0)], where α
acts as a time-scaling factor. To eliminate its influence and ensure consistency, we set α = 1 across
all methods.

For each method, we use the fine-tuned parameters provided by each baseline and fix the set of
hyperparameters across all depths. For all experiments, we run 100 train/valid/test splits for each
dataset with 10 random seeds for each split.
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Figure 5: Classification accuracy. BIMP is designed to learn node representations that resist
oversmoothing even for very large depths. We compare the classification accuracy of BIMP to
baseline models for architectures with 1, 2, 4, 8, 16, 32, 64 and 128 timesteps. Our BIMP model and
its variants are stable out to 128 timesteps, while baseline performance deteriorates after 32 timesteps.
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Figure 6: Dirichlet energy. BIMP is designed to learn node representations that resist oversmoothing
even for very large depths. We compare the Dirichlet energy of node features over a range of network
depths. The Dirichlet energy of BIMP remains stable even at very deep layers, while the energy of
baseline modes does not.

D.1.2 DIRICHLET ENERGY

Experiment 6.1: Dirichlet energy illustrates the dynamics of the Dirichlet energy in BIMP and
baseline methods, which indicates the similarity between the learned features. We randomly generate
an undirected graph with 10 nodes each with 2-dimensional features sampled from U [0, 1]. We
randomly initialize the models with the same seed and the node features are propagated forward
through 1000 layers.

Figure 3 show the comparison of Dirichlet energy of BIMP and select continuous baseline meth-
ods. Figure 6 show the comparison of Dirichlet energy of BIMP and additional baselines and
oversmoothing mitigation techniques.
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D.2 CLASSIFICATION ACCURACY

D.2.1 CLASSIFICATION ACCURACY ON HOMOPHILIC DATASET

We demonstrate improved classification performance compared to GRAND-ℓ, GRAND++-ℓ, Ku-
ramotoGNN, GraphCON, GAT, GCN and GraphSAGE. Additionally, we consider oversmoothing
mitigation techniques of pairnorm Zhao & Akoglu (2019) (denoted -pairnorm) and differentiable
group normalization Zhou et al. (2020) (denoted -group) and training methods of adaptive attention
(denoted -aa) and rewiring with graph diffusion convolution Atwood & Towsley (2016) (denoted
-rw). Classification performance on random splits is reported in Table 4, and performance on standard
splits is reported in Table 5, where BIMP constantly outperforms baseline methods.

Table 4: Classification accuracy on homophilic datasets. Classification accuracies on the Cora,
Citeseer, Pubmed, CoauthorCS, Computers, and Photo datasets are reported, where BIMP outper-
forms competitive baselines. Results are averaged over 20 random initializations and 100 random
train–validation–test splits.

Dataset Cora Citeseer Pubmed CoauthorCS Computers Photo

BIMP 83.19±1.13 71.09±1.40 80.16±2.03 92.48±0.26 84.73±0.61 92.90±0.44
BIMP-aa 82.96±1.31 70.43±0.80 80.35±0.99 91.82±0.37 84.72±0.45 92.27±0.36
BIMP-aa-rw 82.59±1.06 70.51±1.37 78.56±1.12 91.97±0.37 84.76±0.23 92.92±0.19
GRAND-ℓ 82.20±1.45 69.89±1.48 78.19±1.88 90.23±0.91 82.93±0.56 91.93±0.39
GRAND-aa 82.59±0.28 70.21±1.21 78.39±1.95 91.44±0.42 83.09±1.71 92.50±0.53
GRAND-aa-rw 82.86±1.47 70.95±1.13 78.56±1.13 91.52±0.31 83.47±0.51 92.64±0.24
GRAND++-ℓ 82.83±1.31 70.26±1.46 78.89±1.96 90.10±0.78 82.79±0.54 91.51±0.41
GRAND++-aa 80.14±0.93 69.94±1.45 78.50±1.28 85.65±1.30 84.00±0.47 91.86±0.52
GRAND++-aa-rw 81.91±1.39 69.41±0.95 79.44±1.06 86.23±0.80 83.35±0.63 92.50±0.22
KuramotoGNN 81.16±1.61 70.40±1.02 78.69±1.91 91.05±0.56 80.06±1.60 92.77±0.42
GraphCON-Tran 82.80±1.34 69.60±1.16 78.85±1.53 90.30±0.74 82.76±0.58 91.78±0.50

GAT 79.76±1.50 67.70±1.63 76.88±2.08 89.51±0.54 81.73±1.89 89.12±1.60
GCN 80.76±2.04 67.54±1.98 77.04±1.78 90.98±0.42 82.02±1.87 90.37±1.38
GCN-pairnorm 79.55±1.21 66.93±0.94 76.14±0.63 90.63±0.69 81.88±2.73 86.93±1.35
GCN-group 80.48±1.40 66.99±1.97 77.53±0.97 90.97±0.54 81.97±0.75 89.84±0.71
GraphSAGE 79.37±1.70 67.31±1.63 75.52±2.19 90.62±0.42 76.42±7.60 88.71±2.68

Table 5: Classification accuracy on Planetoid datasets. We report the classification accuracies on
the Cora, Citeseer and Pubmed, using 20 different initializations on the Planetoid train-val-test splits,
where BIMP outperforms competitive baselines.

Dataset Cora Citeseer Pubmed

BIMP 83.45±0.61 72.52±0.28 80.18±0.63
BIMP-aa 82.81±0.62 71.73±1.18 80.53±0.82
BIMP-aa-rw 82.23±0.72 72.21±0.77 79.52±0.28

GRAND-ℓ 83.60±0.56 71.29±0.74 79.76±0.28
GRAND++-ℓ 83.31±0.74 71.84±0.57 79.23±0.69
KuramotoGNN 83.26±1.13 71.31±0.62 79.79±0.49
GraphCON-Tran 82.42±0.60 71.56±1.09 79.92±0.61

GAT 80.49±0.74 65.55±0.76 77.70±0.35
GCN 81.89±0.63 66.26±0.56 77.64±0.50
GCN-pairnorm 79.85±1.33 66.25±1.54 76.28±0.36
GCN-group 81.13±0.04 67.60±1.02 77.87±0.49
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D.2.2 CLASSIFICATION ACCURACY ON HETEROPHILIC DATASET

We demonstrate overall improved classification performance compared to GRAND-ℓ, GRAND++-ℓ,
KuramotoGNN, GraphCON, GAT, GCN, and GraphSAGE, as well as superior performance on
larger datasets compared to heterophily-specific methods such as ACM-GNN (Luan et al., 2022)
and GloGNN (Li et al., 2022). Additionally, we consider oversmoothing mitigation techniques of
pairnorm (denoted -pairnorm) and differentiable group normalization (denoted -group) and training
methods of adaptive attention (denoted -aa) and rewiring with graph diffusion convolution (denoted
-rw). Classification performance is reported in Table 6.

Table 6: Classification accuracy on heterophilic datasets. Classification accuracies on theree small
datasets, Texas, Wisconsin, and Cornell, and three larger datasets, Actor, Squirrel, Chameleon, are
reported, where BIMP outperforms competitive baselines, especially for the larger datasets. Results
are averaged over 100 random initializations and 10 standard splits. We adopt some baseline results
reported in the GloGNN paper, marked with †.

Dataset Cornell Texas Wisconsin Actor Squirrel Chameleon
Homophily level 0.30 0.11 0.21 0.22 0.22 0.23

BIMP 77.13±3.38 82.16±4.06 86.57±4.33 37.46±1.24 58.22±1.16 69.72±1.81
BIMP-aa 76.95±4.71 82.25±6.49 86.27±4.36 37.52±1.08 58.17±1.12 69.79±1.77
BIMP-aa-rw 77.46±4.80 82.43±6.76 86.22±4.34 36.78±0.65 55.18±1.67 69.10±1.98

GRAND-ℓ 70.00±6.22 74.59±5.43 82.75±3.90 36.68±1.25 41.11±1.70 55.61±1.97
GRAND++-ℓ 70.30±8.50 76.14±5.77 83.09±2.83 34.28±1.98 34.68±1.60 50.44±1.77
KuramotoGNN 76.02 ±2.77 81.81±4.36 85.09±4.42 35.67±1.28 36.22±1.76 50.63±2.00
GraphCON-GCN 74.05±3.24 80.54±4.49 84.79±2.51 35.69±1.04 31.53±1.46 41.18±1.53

GloGNN 83.35±4.42 81.30±6.28 85.57±4.36 37.26±1.57 57.48±1.63 69.68±2.55
ACM-GNN 91.95±4.32 90.41±4.16 92.94±3.99 37.32±1.37 56.83±1.99 67.69±2.21

GAT 42.16±7.07 57.84±5.82 49.61±4.21 27.44±0.89† 40.72±1.55† 60.26±2.50†

GCN 41.35±4.69 57.03±5.98 48.43±5.75 27.32±1.10† 53.43±2.01† 64.82±2.24†

D.2.3 EXPERIMENT ON LARGE GRAPH

We demonstrate improved classification performance compared to GRAND-ℓ, GRAND++-ℓ, Kuramo-
toGNN, GraphCON, GCN, GAT and GraphSAGE on ogbn-arXiv dataset, where BIMP outperforms
all continuous-depth baseline methods.

Table 7: Classification accuracy on ogbn-arXiv dataset. Our BIMP model outperforms GRAND-ℓ,
GRAND++-ℓ, KuramotoGNN, GraphCON, GCN, GAT and GraphSAGE on the ogbn-arXiv dataset,
using 20 random initialization on the standard split.

Dataset ogbn-arXiv number of parameters

BIMP 71.04±0.94 128,159
GRAND-ℓ 70.19±0.43 98,964
GRAND++-ℓ 67.61±0.34 320,791
KuramotoGNN 66.96±0.25 160,719
GraphCON-Tran 67.13±0.41 99,290
GCN 61.66±0.32 200,967
GAT 69.86±0.59 435,733
GraphSAGE 66.51±0.26 401,671

D.2.4 LONG-RANG GRAPHS EXPERIMENT.

We demonstrate improved prediction performance compared to GCN, GIN, Transformer+LapPE,
SAN+LapPE, GRAND-ℓ, GraphCON and ADGN on Peptides-func and Peptides-struc datasets,
where BIMP outperforms all continuous-depth baseline methods and on par with the SOTA results
(Table 3).
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Following the experiment design in Gravina et al. (2025), we evaluated our BIMP model with 3
different seeds, and baseline results are taken directly from Gravina et al. (2025).

According to the result, Graphormers with Laplacian positional encoding (denoted as LapPE) achieve
slightly better performance than our BIMP. However, LapPE requires a preprocessing step. For
the Peptides-struct dataset, this preprocessing amounts to 1m 14s on an NVIDIA A100 with four
AMD Milan 74133 CPU cores Dwivedi et al. (2022). In addition, BIMP requires only ∼111K
parameters, which is substantially smaller than Graphormer’s ∼500K, highlighting the efficiency of
our architecture.

D.2.5 HOMOPHILIC DATASET HYPERPARAMETERS

We search the hyperparameters using Ray Tune Liaw et al. (2018) with 1000 random trials for each
dataset and final values are shown in Table 8. Experiments were run with 100 random splits and each
split trained on 20 seeds.

Table 8: Hyperparameter for homophilic dataset. The hyperparameters for homophilic datasets in
Section 6.2 is reported.

Dataset Cora Citeseer Pubmed CoauthorCS Computers Photo

Opinion Dim. 80 128 128 16 128 64
Epoch 100 250 600 250 100 100
Learning Rate 0.0178 0.0034 0.0210 0.0018 0.0035 0.0056
Optimizer AdaMax AdaMax AdaMax RMSProp Adam Adam
Weight Decay 0.0078 0.1 0.0020 0.0047 0.0077 0.0047
Dropout 0.1353 0.3339 0.0932 0.6858 0.0873 0.4650
Input Dropout 0.4172 0.5586 0.6106 0.5275 0.5973 0.4290
Attention Head 4 2 1 4 4 4
Attention Dim. 16 8 16 8 64 64
Attention Type Scaled Dot Exp. Kernel Cosine Sim. Scaled Dot Scaled Dot Pearson
NODE Adjoint False False True True True True
Adjoint Method n/a n/a Euler dopri5 dopri5 dopri5
Adjoint Step Size n/a n/a 1 1 1 1
Integral Method dopri5 dopri5 dopri5 dopri5 dopri5 dopri5
Linear Encoder True True False True True False
Linear Decoder True True True True True True
Step Size 1 1 1 1 1 1
Time (T ) 12.2695 6.6067 9.7257 4.0393 3.2490 2.0281
Damping (d) 0.8952 1.0970 0.6908 0.1925 1.0269 1.0230
Self-reinforce (α) 1 1 1 1 1 1

D.2.6 HETEROPHILIC DATASET HYPERPARAMETERS

We search the hyperparameters using Ray Tune with 200 random trials for each dataset and final
values are shown in Table 9. Experiments were run with 10 standardized splits and each split trained
on 100 seeds.

E ADDITIONAL EXPERIMENTS

E.1 MULTI-AGENT TRAJECTORY EXTRAPOLATION

In the motivating experiment (Figure 1), we observe that GCN-based GraphODE (Poli et al., 2019)
tends to collapse trajectories, thereby degrading predictive accuracy and underscoring the critical
role of oversmoothing. Here, we provide the detail of the experiment setup, model architecture and
additional results of both GraphODE and BIMP.
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Table 9: Hyperparameter for heterophilic dataset. The hyperparameters for heterophilic datasets
in Section 6.2 is reported.

Dataset Texas Wisconsin Cornell

Opinion Dim. 256 32 32
Epoch 200 100 100
Learning Rate 0.0178 0.0178 0.0218
Optimizer AdaMax AdaMax AdaMax
Weight Decay 0.0078 0.0091 0.0478
Dropout 0.6531 0.2528 0.2030
Input Dropout 0.0052 0.0042 0.0417
Attention Head 8 4 4
Attention Dim. 32 16 16
Attention Type Scaled Dot Scaled Dot Scaled Dot
NODE Adjoint False False False
Integral Method dopri5 dopri5 dopri5
Linear Encoder False False False
Linear Decoder True False False
Step Size 1 1 1
Time (T ) 0.01 0.01 0.01
Damping (d) 0.0086 0.0075 0.0195
Self-reinforce (α) 2 2 1.5

E.1.1 EXPERIMENT SETUP

We evaluate BIMP and the GCN-based GraphODE on extrapolating the dynamics of a synthetic
mass–spring system, where 2D particles are randomly connected by springs with connection proba-
bility 1

2 . Each edge is binary (0/1), indicating the presence or absence of a spring. The node features
are the position xi and velocity vi of agent i. The system dynamics are governed by

ẋi = vi, v̇i = −
∑

j∈N (i)

kij(xi − xj) (114)

where kij is the interaction strength between agent i and j.

Starting from the initial states, the models are required to recursively extrapolate the next 19 steps.
Both BIMP and GraphODE are trained by minimizing the mean squared error between the predicted
and ground-truth particle states across these 19 steps. For evaluation, we deploy the trained models
on the test set to recursively predict the next 19 steps, and plot the predicted trajectories separately.

E.1.2 MODEL ARCHITECTURE

Inspired by Poli et al. (2019); Huang et al. (2020), we design both GraphODE and BIMP using an
encoder–processor–decoder architecture. The encoder ϕ maps the initial state xi(t0) into the latent
space as zi(t0), after which an ODE function g predicts latent trajectories starting from the encoded
initial states. Finally, a decoder ψ reconstructs the predicted dynamics xi(t) at any timestamp t. The
architecture can be summarized as

zi(t0) = ϕ(xi(t0)), (115)

zi(t) = zi(t0) +

∫ t

t0

g
(
zi(t),G

)
dt, (116)

xi(t) = ψ(zi(t)). (117)

where G is the graph. In GraphODE, g is implemented as a two-layer GCN, while in BIMP, g is
instantiated as our nonlinear opinion dynamics model (Equation 11). We employ the Euler method for
numerical integration. Notably, since g is recursively applied during latent trajectory prediction, this
process is equivalent to stacking many layers, which makes the model susceptible to oversmoothing
in the latent space.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Ground Truth BIMP Prediction GraphODE Prediction

Ground Truth BIMP Prediction GraphODE Prediction

Ground Truth BIMP Prediction GraphODE Prediction

Figure 7: Mass–spring trajectory extrapolation. Each row presents trajectories predicted by BIMP
(middle) and GraphODE (right), with the ground-truth trajectories shown in the left column for
reference. We observe that, over time, predictions of GraphODE collapse to the same position,
deviating from the ground truth trajectories.

E.1.3 ADDITIONAL RESULTS

We present three additional prediction examples in Figure 7. Over time, GraphODE predictions
collapse toward the same region, deviating dramatically from the ground-truth trajectories. In contrast,
BIMP remains robust to oversmoothing, maintains well-separated trajectories, and achieves superior
prediction accuracy. Furthermore, we quantify the predict performance by MSE and mean average
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percentage error (MAPE) in Table 10, computing the error at each prediction time step. BIMP
consistently outperforms GraphODE across different steps.

Table 10: Accuracy across predicted trajectories. We report the MSE and mean absolute percentage
error (MAPE) on the mass-spring trajectory predicting task, averaged over 1000 synthetic trajectories.
BIMP consistently outperforms GraphODE across different predict steps.

Steps 2 4 8 14 20

MSE
BIMP (ours) 0.0015±0.0010 0.0019±0.0009 0.0083±0.0045 0.0235±0.0152 0.0331±0.0242
GraphODE 0.0081±0.0043 0.0082±0.0049 0.0217±0.0123 0.0873±0.0482 0.2379±0.1128

MAPE
BIMP (ours) 27.51%±4.98% 38.04%±12.81% 57.54%±26.15% 94.22%±46.64% 144.60%±51.52%
GraphODE 70.01%±16.8% 129.55%±69.01% 123.84%±78.50% 356.08%±107.20% 610.97%±260.51%

E.2 COMPUTATIONAL COMPLEXITY

BIMP’s space complexity is higher than other baselines as its increase in expressive capacity comes
from the introducing of an additional option adjacency matrix Ao. Specially, we compare the space
complexity of BIMP with that of GRAND-ℓ. The complexity of BIMP is O(mNo + N2

o ), where
m is the number of edges, Na is the number of nodes, and No is the number of options. The space
complexity of GRAND-ℓ is O(mNo). Given that the number of options is generally smaller than
the number of agents, No remains relatively small compared to the number of edge m, resulting
acceptable computational overhead.

Additionally, BIMP introduces a nonlinearity through the saturation function tanh(·), which increases
computational cost. However, considering this function operates element-wise, it is more efficient
than other nonlinear dynamical processes, such as KuramotoGNN. To illustrate this difference, we
compare the average run time of our model against baseline models in Table 11. We note that BIMP
has comparable run time performance to linear baselines models such as GRAND++-ℓ.

We record the running time for BIMP and other 4 popular continuous-depth GNNs, GRAND-ℓ,
GRAND++-ℓ, GraphCON-Tran and KuramotoGNN on Cora and Citeseer dataset. We train each
model 100 times with with a fixed number of epoch (100 for Cora and 250 for Citeseer) using fine
tuned hyperparameters. The average training time listed in Table 11 demonstrates, in contrast to other
nonlinear methods like KuramotoGNN, BIMP maintains a training time comparable to other linear
continuous-depth baselines.

To compare against competitive non-ODE baselines, we report the running time for BIMP and
GCN-residual (Chi et al., 2021), GATv2 (Brody et al., 2022) and GOAT (Kong et al., 2023) on the
ogbn-arXiv dataset. Each model is trained 10 times for 100 epochs using fine tuned hyperparameters.
The average running time and memory usage reported in Table 12 demonstrates, in contrast to other
transformer based method like GOAT, BIMP maintains a training time comparable to other non-ODE
baselines and requires the least amount of memory.

All experiments reported in the paper was conducted on work stations with an Intel Xeon Gold 5220R
24 core CPU, an Nvidia A6000 GPUs, and 256GB of RAM.

Table 11: Comparable running time with ODE based methods. The average running time (in
seconds) for each fine-tuned method tested on the Cora dataset for 100 epochs and the Citeseer
dataset for 250 epochs. Our BIMP model exhibits a modest increase in running time.

Dataset BIMP (ours) GRAND-ℓ GRAND++-ℓ GraphCON-Tran KuramotoGNN

Cora 14.33 11.97 14.06 12.86 201.32
Citeseer 42.38 31.34 41.47 15.84 252.73

E.3 CHOICE OF NONLINEARITY IN NOD MODULE

To understand how the choice of nonlinearity in our Nonlinear Opinion Dynamics (NOD) module
impacts performance, we experiment with a suite of alternative nonlinearities (softsign, arctan,
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Table 12: Comparable running time with non-ODE based methods. The average running time
(in seconds) and memory usage for each fine-tuned method tested on the ogbn-arXiv dataset for 100
epochs. Numbers in parentheses indicate the additional time for the positional encoding preprocessing.
Our BIMP model exhibits a modest increase in running time and requires the least memory.

BIMP
(ours) GCN-residual GATv2 GOAT

Running time (s) 114.15 37.43 77.81 3601.13 (75.96)
Memory usage (MB) 1465 4628 6975 3210

sigmoid, ReLu and GELU) and linearity (linear). Softsign and arctan satisfy the nonlinearity
constraint in the NOD definition (i.e., S(0) = 0, S′(0) = 1, S′′(0) ̸= 0), but sigmoid, ReLu and
GELU do not. Specifically, sigmoid does not pass through the origin, ReLu is not differentiable, and
GELU does not satisfy S′(0) = 1. Linear refers to the BIMP model without any nonlinearity. We
find that using nonlinearities that meet the NOD criteria effectively prevent oversmoothing, while the
others do not. We report the classification accuracy of our BIMP model with alternative nonlinearities
in the NOD module in Table 13.

For better understanding, we also visualize the Dirichlet energy of node features over a range of
network depths, given different choices of nonlinearity. The result is shown in Figure 8 (left).
We observe the BIMPs without satisfying saturation functions make the Dirichlet energy explode
significantly, while the BIMPs with reasonable saturation functions stabilize the Dirichlet energy.

Table 13: Nonlinear opinion dynamics nonlinearity ablation. Classification accuracy of our BIMP
model on the Cora dataset using various nonlinearities.

Layer tanh softsign arctan sigmoid ReLu GELU linear

1 69.96±1.45 63.25±1.73 64.05±1.58 60.36±1.39 64.17±1.72 62.45±1.57 77.52±1.44
2 75.00±1.50 68.34±2.03 72.62±2.40 63.20±1.63 67.21±2.18 67.06±2.25 81.92±0.85
4 79.93±1.41 72.37±1.50 76.91±1.82 65.54±1.80 73.16±1.44 72.40±1.60 82.08±1.34
8 82.21±1.26 77.05±1.67 79.84±1.05 63.91±2.13 77.76±1.47 77.56±1.49 81.24±1.48
16 82.83±1.12 79.88±1.82 81.81±1.54 29.55±1.80 81.32±0.96 81.47±0.63 80.45±1.43
32 82.81±1.19 81.45±1.48 82.48±1.81 29.92±1.22 82.51±1.51 27.99±4.22 79.99±1.21
64 82.53±1.07 81.14±1.65 82.94±0.73 30.72±1.02 76.56±3.88 29.64±1.82 76.74±1.86
128 82.18±1.06 81.71±1.37 81.26±1.93 29.37±2.77 71.18±7.09 26.27±4.89 75.44±0.89

Table 14: Inductive bias ablation. Classification accuracy of our BIMP model on the Cora dataset.

Layer BIMP w/o damping term w/o input w/o attention mechanism w/o right-stochastic

1 69.96±1.45 67.83±1.55 74.25±1.25 72.21±2.18 72.96±0.86
2 75.00±1.50 74.00±1.25 79.40±1.77 78.09±1.17 79.17±1.62
4 79.93±1.41 78.53±1.46 81.74±1.32 80.22±1.95 81.32±1.49
8 82.21±1.26 78.38±0.98 81.32±1.07 81.31±2.24 82.03±0.98
16 82.83±1.12 79.62±1.37 81.24±1.64 81.85±1.20 82.71±1.22
32 82.81±1.19 79.12±1.15 79.94±0.82 81.45±1.13 82.32±1.32
64 82.53±1.07 78.95±1.62 77.71±0.82 81.28±1.37 80.44±1.40
128 82.18±1.06 76.60± 2.27 74.10±0.92 81.04±1.15 71.17±5.37

E.4 INDUCTIVE BIAS ABLATION

We ablate the proposed nonlinear opinion dynamics inductive bias by removing the input B, damping
term d, attention mechanism, and the constraint for a right stochastic matrix. We report the classifica-
tion accuracy of our BIMP model with an ablated NOD module on the Cora dataset with 1, 2, 4, 8,
16, 32, 64 and 128 timesteps in Table 14.
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Figure 8: Dirichlet energy in Ablation study. Dirichlet Energy evolution of our BIMP model on
the synthetic undirected graph. The Dirichlet energy of BIMPs remains stable if they satisfy our
theoretical analysis, while the energy of others does not.

BIMP without the input term exhibits oversmoothing, which matches the analysis from Lemma 5.5
and Figure 2 (c), where the weighted sum of the opinion converges to 0 under no input.

BIMP without the damping term also exhibits oversmoothing. Without the damping term our
formulation does not satisfy the condition of compact closure (Appendix A.2.4) required to prove
Lemma 5.5.

BIMP without an attention mechanism but maintaining the right stochastic adjacency matrix yields re-
sults that do not suffer from oversmoothing, since the right stochastic property means Lemma 5.4 still
holds. The model however loses expressive capacity and therefore lower classification performance.

BIMP without the right stochastic constraint on the effective adjacency matrix also exhibits over-
smoothing. Without the right stochastic constraint, our formulation does not respect the assumptions
of Lemma 5.4, and we lose the ability to control the position of the attention parameter and therefore
lose the guarantee for oversmoothing characteristics.

For better understanding, we also visualize the Dirichlet energy of node features over a range of
network depths, ablating the nonlinear inductive bias. The result is shown in Figure 8 (right). We
observe the BIMPs conflicting our proposed lemmas make the Dirichlet energy diverge with depth,
while the BIMPs align with the lemmas stabilize the Dirichlet energy.

To summarize, given the two ablation studies in Appendix E.3 and Appendix E.4, we identify the
consistent among Dirichlet energy, classification accuracy and our theoretical analysis.

E.5 PARAMETER SENSITIVITY ANALYSIS

Since the bifurcation-controlled parameter is determined as u = d
α+3 , governs the emergence of

dissensus behavior, ensuring its robustness across different tasks is crucial.

We vary both the damping d and the self-reinforcement α over the range [0, 5] with a step size of
0.5. For each (d, α) pair, we measure the resulting classification accuracy while keeping all other
hyperparameters fixed at their fine-tuned values. Each configuration is evaluated over 10 random
seeds to ensure statistical reliability. The result is shown in Figure 9.

Recall that our opinion dynamics system is given by

Ẋ = −dX+ tanh

(
d

α+ 3

(
(α− 1)X+ ÃX

))
+B. (118)

The classification accuracy deteriorates dramatically when the damping term is set to 0, corresponding
to a pure encoder-decoder model where intermediate opinion exchange disappears.
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(a) Cora dataset.
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(b) Pubmed dataset.
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(c) Chameleon dataset.
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(d) Squirrel dataset.

Figure 9: Sensitivity analysis. The sensitivity map for the attention terms u = d
α+3 is shown

for both homophilic (Cora and Pubmed) and heterophilic (Chameleon and Squirrel) datasets. The
classification accuracy deteriorates dramatically when the damping term is set to 0, which corresponds
to a encoder-decoder model where intermediate opinion exchange disappears. The classification
accuracy drops slightly at the edges when combinations of d and α reduces the effct of the nonlinear
term.

We also observe a slight drop in classification accuracy near the upper-left and lower-right regions of
the parameter grid. At the upper-left edge, the attention factor d

α+3 is extremely small, leading the
nonlinear term tanh(·) becomes negligible, and the system effectively collapses to a linear system
with limited expressive capacity. A similar phenomenon occurs at the lower-right edge, where the
large damping d dominates the dynamics. In both cases, the magnitude of the nonlinear component is
significantly reduced, leading to a slight degradation in accuracy.

Beyond the highlighted regions, there also exists a broad range of damping d and self-reinforcement
α values yield performance that consistently surpasses baselines.
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