

000 001 002 003 004 005 006 007 008 009 010 RESOLVING OVERSMOOTHING WITH OPINION DISSENSUS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While graph neural networks (GNNs) have allowed researchers to successfully
 012 apply neural networks to non-Euclidean domains, deep GNNs often exhibit lower
 013 predictive performance than their shallow counterparts. This phenomena has been
 014 attributed in part to oversmoothing, the tendency of node representations to become
 015 increasingly similar with network depth. In this paper we introduce an analogy
 016 between oversmoothing in GNNs and consensus (i.e., perfect agreement) in multi-
 017 agent systems literature. We show that the message passing algorithms of several
 018 GNN models are equivalent to linear opinion dynamics in multi-agent systems,
 019 which have been shown to converge to consensus for all inputs regardless of the
 020 initial state. This new perspective on oversmoothing motivates the use of nonlinear
 021 opinion dynamics as an inductive bias in GNN models. In addition to being more
 022 general than the linear opinion dynamics model, nonlinear opinion dynamics models
 023 can be designed to converge to dissensus for general inputs. Through extensive
 024 experiments we show that our Behavior-inspired message passing (BIMP) neural
 025 network resists oversmoothing beyond 100 time steps and consistently outperforms
 026 existing continuous time GNNs even when amended with oversmoothing mitigation
 027 techniques. We also show several desirable properties including well behaved
 028 gradients and adaptability to homophilic and heterophilic datasets.

029 1 INTRODUCTION

030 A broad class of real-world systems can
 031 be naturally represented using graphs. In
 032 molecules, atoms can be represented by
 033 nodes and atomic bonds can be repre-
 034 sented by edges (Fang et al., 2022); in
 035 animal groups, individuals can be repre-
 036 sented by nodes and their proximity can
 037 be represented by edges (Young et al.,
 038 2013); and in transportation networks, bus
 039 stops can be represented by nodes and pub-
 040 lic transit routes can be represented by
 041 edges (Madamori et al., 2021). Because
 042 of their broad applicability, the classifica-
 043 tion, regression, and generation of graphs
 044 are of strong interest across scientific com-
 045 munities. While MLPs can be adapted to
 046 operate on graph data, graph neural net-
 047 works (GNNs) are specifically designed to respect the graph permutation symmetry (i.e., equivariance
 048 to node relabeling) and can therefore learn generalizable graph representations, where MLPs can not.
 049 GNNs have been widely applied to fields such as recommendation (Ying et al., 2018), molecular
 050 prediction (Wang et al., 2022b), protein design (Jha et al., 2022), and complex physical system
 051 modeling (Pfaff et al., 2020). However, since node representations in GNNs can become increasingly
 052 similar with network depth; a phenomena known as oversmoothing (Li et al., 2018; Oono & Suzuki,
 053 2019; Nt & Maehara, 2019), their performance deteriorates with increased network depth. This
 phenomena is illustrated in Figure 1 where we compare the recurrent application of our model



054 **Figure 1: Oversmoothing in multi-agent trajectory**
 055 **prediction.** **(Left)** Our method predicts well-behaved
 056 trajectories without oversmoothing. **(Right)** GCN-
 057 based GraphODE exhibits oversmoothing, with tra-
 058 jectories converging to similar solutions at longer horizons
 059 (highlighted). ●: initial state, ■: final state.

and GraphODE (Poli et al., 2019) for trajectory prediction. As a consequence of oversmoothing, GraphODE predictions tend toward the same spatial region over time (additional details are provided in Appendix E.1), whereas our predictions do not.

A number of approaches have been proposed to address the issue of oversmoothing, including the use of residual connections (Li et al., 2018; Chen et al., 2020; Liu et al., 2020; Fu et al., 2022), feature normalization (Zhao & Akoglu, 2019; Zhou et al., 2020; 2021), and alternative architectures (Chiang et al., 2019; Abu-El-Haija et al., 2019; Zeng et al., 2019). While many alternative architectures work to incorporate higher-order features (Chien et al., 2020; Chamberlain et al., 2021b; Liu et al., 2024; Li et al., 2024), continuous-depth GNNs instead interpret conventional GNN architectures as discretizations of a continuous process (Poli et al., 2019; Chamberlain et al., 2021a; Eliasof et al., 2021). This interpretation allows for the integration of techniques developed for modeling and analyzing dynamical systems (Thompson & Stewart, 2002; Brunton et al., 2016; Paredes et al., 2024; Richards et al., 2024). For example, GraphCON (Rusch et al., 2022) avoids oversmoothing by enforcing stability conditions on hidden states of coupled and damped oscillator systems; and ACMP (Wang et al., 2022a) avoids oversmoothing by introducing repulsive forces traditionally used to control clustering in particle systems. These are just a few that have shown physical inductive biases can mitigate oversmoothing while maintaining expressivity (Han et al., 2023).

In this paper, we propose a continuous-depth GNN inspired by behavioral interaction in multi-agent systems (MAS), instead of physical processes. First, we introduce an analogy likening node features in a GNN to opinions in an opinion dynamics model, feature aggregation to opinion exchange, and graph outputs to opinion outcomes (Section 3). Using this analogy, we show that oversmoothing will occur in all GNN models with layer-wise aggregation schemes that are equivalent to linear opinion dynamics. (Section 4). With this new understanding of oversmoothing, we leverage the nonlinear opinion dynamics model introduced in Leonard et al. (2024); Bizyaeva et al. (2022) to design a novel continuous-depth GNN that is provably robust to oversmoothing. In addition, we show our GNN has desirable characteristics such as well behaved gradients and adaptability to heterophilic datasets (Section 5). Finally, we empirically validate our Behavior-Inspired Message Passing (BIMP) GNN on several datasets and against competitive baselines (Section 6).

2 RELATED WORK

Oversmoothing in GNNs. Contrary to conventional feed forward networks (Montufar et al., 2014; LeCun et al., 2015), deep discrete GNNs suffer performance degradation from oversmoothing of node features (Li et al., 2018; Oono & Suzuki, 2019; Nt & Maehara, 2019). A number of analyses have been proposed to understand the oversmoothing phenomena. In linear GNNs, the addition of network layers has been shown to increase denoising and mixing effects which lead to oversmoothing (Wu et al., 2022), [the residual connectivity with careful weights initialization can prevent total collapse \(Scholkemper et al., 2024\)](#); GCNs (Kipf & Welling, 2016) learns representations that attempts to counteract an inherently oversmoothing prone network structure (Yang et al., 2020); and in attention based networks like GAT (Veličković et al., 2017) oversmoothing has been shown to occur at an exponential rate due to the ergodicity of infinite matrix products (Wu et al., 2023). Other works, have characterized oversmoothing by energy minimization of gradient flows (Di Giovanni et al., 2022), representational rank collapse (Roth et al., 2024), [theoretical bound on the convergence of energy in term on the Laplacian, weights, and activation functions \(Cai & Wang, 2020\)](#), and exceeding a theoretical limit of smoothing in mean aggregation (Keriven, 2022).

Continuous-depth GNNs. Continuous-depth networks such as NeuralODE (Chen et al., 2018) define the network depth implicitly through the simulation of differential equations. GDE (Poli et al., 2019) leverages this notion to construct continuous-depth GNNs by propagating inputs through continuum of GNN layers governed by an underlying ODE. In order to better control and understand node dynamics, several works focus on leveraging physical inductive biases such as heat diffusion (Chamberlain et al., 2021a), Beltrami flows (Chamberlain et al., 2021b), wave equations (Eliasof et al., 2021), coupled damped oscillators (Rusch et al., 2022), energy source terms (Thorpe et al., 2022), Allen-Cahn reaction diffusion processes (Wang et al., 2022a), blurring-sharpening forces (Choi et al., 2023), oscillator synchronization (Nguyen et al., 2024), and Ricci flow (Chen et al., 2025). These dynamics provide a principled approach to counteract known limitations of discrete GNNs including oversmoothing in deep networks and poor performance on heterophilic graphs (Han et al., 2023).

108 **Opinion dynamics in multi-agent systems.** Opinions can be interpreted as the preferences of
 109 agents in a multi-agent system, and provide a means by which to interpret and predict agent behavior.
 110 Specifically, **consensus dynamics models** (Bullo, 2018; Becchetti et al., 2020) are commonly used in
 111 **multi-agent settings** such as coordinating multi-vehicle movements (Justh & Krishnaprasad, 2005;
 112 Leonard et al., 2010), understanding network systems (Leonard et al., 2007; Ballerini et al., 2008), and
 113 learning on graphs (Zhou et al., 2024). Becchetti et al. (2020) provided an overview of discrete-time
 114 consensus methods and analyzed their convergence time to consensus, computational capabilities,
 115 and robustness to malicious information. However, linear models of opinion formulation can only
 116 model settings where agent opinions converge to consensus (Altafini, 2012; Dandekar et al., 2013).
 117 This short coming is resolved through the use of nonlinear opinion dynamics (Leonard et al., 2024).
 118 The nonlinearity in this model results in bifurcations Golubitsky et al. (2012) allowing opinions to
 119 evolve to dissensus rapidly even under weak input signals (Bizyaeva et al., 2022). Nonlinear opinion
 120 dynamics have been shown to able to model systems such as group decision making (Leonard et al.,
 121 2021; Bizyaeva et al., 2024; Arango et al., 2024); multi-agent control (Leonard et al., 2010; Montes de
 122 Oca et al., 2010); and relational inference (Yang et al., 2024).

123 3 GRAPH NEURAL NETWORKS AND OPINION DYNAMICS

125 In this section, we introduce our GNN-opinion dynamics (GNN-OD) analogy. We begin with a
 126 review GNNs and opinion dynamics, followed by a brief discussion of bifurcation theory in the
 127 context of the nonlinear opinion dynamics model (Leonard et al., 2024). We then develop an analogy
 128 likening GNNs to opinion dynamics models, and oversmoothing to opinion consensus.

130 3.1 GRAPH NEURAL NETWORKS AND OVERSMOOTHING

132 **Graph neural networks.** Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a graph with $n = |\mathcal{V}|$ nodes and $m = |\mathcal{E}|$ edges, where
 133 an edge e_{ij} exists in \mathcal{E} if the nodes \mathbf{x}_i and \mathbf{x}_j are connected in \mathcal{G} . Given an input graph, a graph neural
 134 network (GNN) $f : \mathcal{G} \rightarrow \mathcal{Y}$ returns a label (or label set) over edges, nodes, or the entire graph. Of the
 135 existing GNN algorithms, a large subset can be described in the message passing framework (Gilmer
 136 et al., 2017). In this framework, layer-wise transformations are determined by learned message and
 137 update functions. The message function at layer l , M^l , and update function at layer l , U^l , are of the
 138 form,

$$139 \mathbf{m}_i^{l+1} = \sum_{j \in \mathcal{N}(i)} M^l(\mathbf{x}_i^l, \mathbf{x}_j^l, \mathbf{e}_{ij}), \quad \text{and} \quad \mathbf{x}_i^{l+1} = U^l(\mathbf{x}_i^l, \mathbf{m}_i^{l+1}), \quad (1)$$

141 where \mathbf{x}_i^l denotes the representation of node i at layer l .

142 **Oversmoothing.** In the GNN literature, oversmoothing is defined as the tendency for node features
 143 to become increasingly similar with increasing network depth (Rusch et al., 2023). This phenomena
 144 has been observed in discrete (Wu et al., 2022; Yang et al., 2020; Wu et al., 2023; Keriven, 2022) and
 145 continuous-depth (Chamberlain et al., 2021a; Eliasof et al., 2021; Xhonneux et al., 2020) GNNs, and
 146 correlates with reduced predictive performance. We can measure the degree of oversmoothing using
 147 the Dirichlet energy (Rusch et al., 2023; Cai & Wang, 2020), which is defined at layer l as

$$149 E(\mathbf{X}^l) = \frac{1}{n} \sum_{\mathbf{x}_i \in \mathcal{V}} \sum_{\mathbf{x}_j \in \mathcal{N}(\mathbf{x}_i)} \|\mathbf{x}_i^l - \mathbf{x}_j^l\|_2^2, \quad (2)$$

152 where $\mathbf{X}^l = [\mathbf{x}_1^l, \dots, \mathbf{x}_n^l]^T$. If the Dirichlet energy tends to zero as l tends to infinity, that is,

$$153 \lim_{l \rightarrow \infty} \|\mathbf{x}_i^l - \mathbf{x}_j^l\|_2^2 = 0 \text{ for all } e_{ij} \in \mathcal{E}, \quad (3)$$

155 the network is said to exhibit oversmoothing.

157 3.2 OPINION DYNAMICS AND OPINION CONSENSUS

159 Let $\mathcal{M} = (\mathcal{G}^a, \mathcal{G}^o)$ be a multi-agent system with a communication graph $\mathcal{G}^a = (\mathcal{V}^a, \mathcal{E}^a, \mathbf{A}^a)$, and an
 160 option graph $\mathcal{G}^o = (\mathcal{V}^o, \mathcal{E}^o, \mathbf{A}^o)$. In this system, each of the N_a agents has a real-valued opinion on
 161 each of the N_o options. The adjacency matrix of the communication graph, $\mathbf{A}^a = [a_{ik}^a] \in \mathbb{R}^{N_a \times N_a}$,
 defines the communication strength between agents, and the adjacency matrix of the option graph,

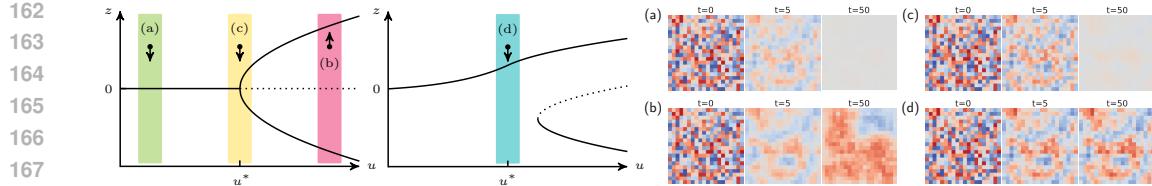


Figure 2: **Nonlinear opinion dynamics and dissensus.** (Left) The pitchfork bifurcation diagram illustrates a change in the number and stability of opinion states with the attention parameter u (stable equilibria are illustrated with a solid line and unstable equilibria are illustrated with a dotted line). In the diagram, z represents the weighted average of agent opinions, and u^* represents the bifurcation point. When the input term $b = 0$ we have the pitchfork bifurcation (first from left), and when $b > 0$ we have its unfolding (second from left). (Right) The time evolution of agent opinions under the nonlinear opinion dynamics model depends on the initial weighted average of agent opinions z , the attention parameter u , and the weighted average of agent inputs b . Each subfigure corresponds to an initial condition on the left. In all cases, the initial z is the same. (a) ($u < u^*, b = 0$). Agent opinions converge to a neutral consensus (i.e., perfect agreement) which is equivalent to oversmoothing. (b) ($u > u^*, b = 0$). Agent opinions converge to dissensus with low variance, z is positive. (c) ($u = u^*, b = 0$). Agent opinions converge to a neutral consensus. (d) ($u = u^*, b > 0$). Agent opinions converge to dissensus with high variance, z is positive.

$\mathbf{A}^o = [a_{jl}^o] \in \mathbb{R}^{N_o \times N_o}$, defines how correlated different options are. An opinion dynamics model on $\mathcal{M} = (\mathcal{G}^a, \mathcal{G}^o)$ describes the evolution of agent opinions in time.

Opinion consensus. Given a multi-agent system $\mathcal{M} = (\mathcal{G}^a, \mathcal{G}^o)$, a question of interest is whether the opinions of agents tend toward consensus (i.e., perfect agreement). The opinions of agents is said to reach consensus if and only if the opinions of all agents tend toward the same value as time tends to infinity (DeGroot, 1974), that is,

$$\lim_{t \rightarrow \infty} \|\mathbf{x}_i(t) - \mathbf{x}_j(t)\|_2^2 = 0, \text{ for all } e_{ij} \in \mathcal{E}. \quad (4)$$

Linear opinion dynamics. The linear opinion dynamics model introduced in DeGroot (1974) describes the discrete-time evolution of agent opinions by,

$$\mathbf{x}_i(t+1) = \sum_{k=1}^{N_a} a_{ik}^a \mathbf{x}_k(t), \quad \sum_{k=1}^{N_a} a_{ik}^a = 1, \quad (5)$$

where $a_{ik}^a \geq 0$ can be interpreted as the influence of agent x_i on agent x_k , and the total influence of any agent sums to one. In this model, the option graph can be understood as uncorrelated, $a_{jl}^o = 0$. The continuous-time analogue of Equation (5) is given by,

$$\dot{\mathbf{x}}_i(t) = -d_i \mathbf{x}_i(t) + \sum_{k=1}^{N_a} a_{ik}^a \mathbf{x}_k(t), \quad (6)$$

where the total influence of agent i is d_i (Leonard et al., 2024). In linear opinion dynamics, consensus is reached for all initial conditions, and the consensus value is independent of the graph structure and linearly dependent on initial conditions (Leonard et al., 2024). The more general case of linear opinion dynamics with time-varying influence (i.e., time-dependent $a_{ik}^a(t)$) can also be shown to converge to consensus (Moreau, 2005; Nedić & Liu, 2017; Fax & Murray, 2004; Blondel et al., 2005). [Becchetti et al. \(2020\)](#) further gives the upper bound of the convergence time to consensus for both the time-dependent and independent a_{ik}^a .

Nonlinear opinion dynamics. The nonlinear opinion dynamics model (Leonard et al., 2024; Biziava et al., 2022) describes the continuous-time evolution of agent i 's opinion about option j by,

$$\dot{x}_{ij} = -d_{ij} x_{ij} + S \left(u_i \left(\alpha_{ij} x_{ij} + \sum_{\substack{k=1 \\ k \neq i}}^{N_a} a_{ik}^a x_{kj} + \sum_{\substack{l=1 \\ l \neq j}}^{N_o} a_{jl}^o x_{il} + \sum_{\substack{k=1 \\ k \neq i}}^{N_a} \sum_{\substack{l=1 \\ l \neq j}}^{N_o} a_{ik}^a a_{jl}^o x_{kj} \right) \right) + b_{ij}, \quad (7)$$

where $d_{ij} \geq 0$, $u_i > 0$, and $\alpha_{ij} \geq 0$ are parameters intrinsic to the agent, and a_{jk}^a , a_{jl}^o , and b_{ij} are parameters extrinsic to the agent. The intrinsic parameter d_{ij} , the damping parameter, describes how

216 Table 1: **GNN-OD Analogy.** We describe our analogy between GNNs and opinion dynamics, relating
 217 graph structures and opinion dynamics, and notions of oversmoothing and opinion consensus.

219	Graph neural networks	Opinion dynamics
220	Node	Agent
221	Edge	Communication link
222	Node feature dimension	Number of agent options
223	Value of node i feature j	Opinion of agent i option j
224	Oversmoothing	Opinion consensus

225 resistant agent i is to forming an opinion about option j ; u_i , the attention parameter, represents the
 226 attentiveness of agent i to the opinions of other agents; and α_{ij} , the self-reinforcement parameter,
 227 defines how confident agent i is in its opinion on option j . The extrinsic parameter b_{ij} , the input
 228 parameter, represents the impact of the environment on the agent i ’s opinion about option j , and the
 229 saturating function S is selected so that $S(0) = 0$, $S'(0) = 1$, and $S'''(0) \neq 0$.

230 By modeling opinion formation as a nonlinear process, the nonlinear opinion dynamics model can
 231 capture opinion consensus and dissensus, [offering greater expressivity compared to the models](#)
 232 [surveyed in Becchetti et al. \(2020\)](#), which converge only to consensus states. The nonlinearity induces
 233 a bifurcation where the number and/or stability of equilibrium solutions changes (see Figure 2
 234 left). Consensus results when all agents select exactly the same equilibrium value, dissensus results
 235 otherwise. A switch from consensus to dissensus can result from a change in the attention parameter
 236 u , this can be seen by comparing the dynamics at point (a) and (b) in Figure 2 (second from right), or
 237 from a change in the input parameter b , this can be seen by comparing the dynamics at point (c) and
 238 (d) in Figure 2 (first from right).

240 3.3 GRAPH NEURAL NETWORK-OPINION DYNAMICS ANALOGY

241 As described in Section 3.1 and 3.2, GNNs and opinion dynamics models have several features which
 242 can be understood analogously. The nodes in a GNNs are analogous to the agents in an opinion
 243 dynamics model, the edges between nodes are analogous to communication links between agents,
 244 and layer-wise oversmoothing is analogous to opinion consensus in time (see Equations (3) and (4)).
 245 We summarize our GNN-opinion dynamics (GNN-OD) analogy in Table 1.

247 4 OVERSMOOTHING AND OPINION CONSENSUS

249 In this section, we use our analogy to prove oversmoothing in several classes of GNNs, beginning
 250 with linear discrete-depth GNNs and then Laplacian-based continuous-depth GNNs. The utility
 251 of the GNN-OD analogy for understanding oversmoothing motivates its use in the design of new
 252 architectures (Section 5). All proofs are provided in Appendix A.

254 4.1 LINEAR DISCRETE-DEPTH GNNs

255 Linear discrete-depth GNNs (e.g., SGC (Wu et al., 2019) and DGC (Wang et al., 2021)) can be
 256 described using layer-wise transformations of the form,

$$258 \quad \mathbf{X}^{l+1} = \mathbf{A} \mathbf{X}^l \mathbf{W}^l = \mathbf{D} \tilde{\mathbf{A}} \mathbf{X}^l \mathbf{W}^l = \tilde{\mathbf{A}} \mathbf{D} \mathbf{X}^l \mathbf{W}^l, \quad (8)$$

260 where adjacency matrix $\mathbf{A} = \mathbf{D} \tilde{\mathbf{A}}$ for some right stochastic matrix $\tilde{\mathbf{A}}$ and diagonal matrix \mathbf{D} with
 261 $\mathbf{D}_{ii} = \sum_j \mathbf{A}_{ij}$; and the transformation matrix \mathbf{W}^l is layer dependent. We can use our GNN-OD
 262 analogy to show this class of GNNs will exhibit oversmoothing for all inputs, and all input graphs.

263 **Lemma 4.1** (Linear dynamics oversmooth). *Any discrete-depth graph neural network with linear*
 264 *aggregation exhibits oversmoothing.*

266 Previous works that have shown oversmoothing in various subclasses of linear discrete-depth GNNs
 267 include Wu et al. (2022) which proves oversmoothing in convolutional GNNs, and Keriven (2022)
 268 which proves oversmoothing in discrete-depth GNNs with linear mean aggregation, and Scholkemper
 269 et al. (2024) which shows oversmoothing in linearized GNNs without residual connection and proper
 initialization.

270 4.2 LAPLACIAN-BASED CONTINUOUS-DEPTH GNNs
271272 **Laplacian dynamics.** For a given graph, the graph Laplacian of is defined as $\mathbf{L} = \mathbf{A} - \mathbf{D}$ where \mathbf{A}
273 is the graph adjacency matrix and \mathbf{D} is a diagonal matrix with entries $\mathbf{D}_{ii} = \sum_j \mathbf{A}_{ij}$. GNNs with
274 Laplacian dynamics (e.g., GRAND- ℓ (Chamberlain et al., 2021a) and GraphCON-Tran (Rusch et al.,
275 2022)), can be described using the dynamical equation,

276
$$\dot{\mathbf{X}}(t) = -\mathbf{L}\mathbf{X}(t). \quad (9)$$

277

278 We can use our GNN-OD analogy to show this class of GNNs will exhibit oversmoothing for all
279 inputs, and all input graphs.280 **Lemma 4.2** (Laplacian dynamics oversmooth). *Any continuous-depth graph neural network with*
281 *Laplacian dynamics exhibits oversmoothing.*282 Oversmoothing of continuous-depth GNNs with Laplacian dynamics and time-varying adjacency
283 matrix (e.g., GRAND- $n\ell$ (Chamberlain et al., 2021a)), can be shown by analogy with linear opinion
284 dynamics models with time-varying influence (see Section 3.2). Oversmoothing in GRAND- ℓ (Cham-
285 berlain et al., 2021a) was previously shown in Thorpe et al. (2022); Choi et al. (2023). [Cai & Wang \(2020\)](#) further discussed the bound on the decay rate of Dirichlet energy, quantifying the
286 oversmoothing behavior in Laplacian dynamics.287 **Laplacian dynamics with an external input.** Continuous-depth GNNs with Laplacian dynamics
288 and an external input $\mathbf{B}(t)$ can be described using the dynamical equation,
289

290
$$\dot{\mathbf{X}}(t) = -\mathbf{L}\mathbf{X}(t) + \mathbf{B}(t). \quad (10)$$

291

292 **Lemma 4.3** (Laplacian dynamics with an external input oversmooth). *Any continuous-depth graph*
293 *neural network with Laplacian dynamics and an external input will exhibit oversmoothing when the*
294 *dynamics are linear.*295 For works that design $\mathbf{B}(t)$ to address oversmoothing in linear models (Thorpe et al., 2022; Choi
296 et al., 2023), this shows that oversmoothing persists. In order to structurally resolve oversmoothing,
297 we turn to nonlinear inductive biases with more complicated and controllable stability behavior.
298300 5 BEHAVIOR-INSPIRED MESSAGE PASSING NEURAL NETWORK
301302 In this section, we describe our Behavior-Inspired Message Passing (BIMP) GNN which leverages
303 nonlinear opinion dynamics as an inductive bias. Nonlinear opinion dynamics is more general than
304 linear opinion dynamics, and can be designed to converge to dissensus for general inputs. We begin
305 with model definition, then prove desirable properties like robustness to oversmoothing, well behaved
306 gradients, and adaptability to homophilic and heterophilic datasets. Proofs are shown in Appendix A.307 5.1 MODEL DEFINITION
308309 Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be an input graph with n nodes, where each node has a d_{in} -dimensional feature
310 representation. BIMP applies a learnable encoder ϕ , decoder ψ , and nonlinear opinion dynamics
311 model to produce an output. The encoder is defined $\phi : \mathbb{R}^{d_{\text{in}}} \rightarrow \mathbb{R}^{N_o}$, the decoder is defined
312 $\psi : \mathbb{R}^{N_o} \rightarrow \mathbb{R}^{d_{\text{class}}}$, and our dynamics are defined by the equation,

313
$$\dot{\mathbf{X}}(t) = -d\mathbf{X}(t) + \tanh \left[u \left(\alpha \mathbf{X}(t) + \mathbf{A}^a \mathbf{X}(t) + \mathbf{X}(t) \mathbf{A}^o \top + \mathbf{A}^a \mathbf{X}(t) \mathbf{A}^o \top \right) \right] + \mathbf{X}(0). \quad (11)$$

314

315 In our dynamics, the parameters d and α are hyperparameters, the attention parameter $u = \frac{d}{\alpha+3}$, the
316 initial condition $\mathbf{X}(0) = \phi(\mathbf{X}_{\text{in}})$, and the adjacency matrices of communication and option graphs,
317 \mathbf{A}^a and \mathbf{A}^o respectively, are learned. The output of our model is given by $\mathbf{Y} = \psi(\mathbf{X}(T))$, where the
318 terminal time T is a hyperparameter.319 5.1.1 THE COMMUNICATION AND OPTION GRAPHS.
320321 The communication and option graphs are designed to allow for theoretical analysis, and reduce
322 computational expense. For a nonlinear opinion dynamics model of the form,
323

324
$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh [u(\alpha\mathbf{X} + \mathbf{A}^a\mathbf{X})] + \mathbf{B}, \quad (12)$$

324 the communication adjacency matrix \mathbf{A}^a must have a simple leading eigenvalue to admit analysis
 325 (Leonard et al., 2024). BIMP defined in Equation (11) can be written in the form of Equation (12)
 326 by combining the communication and option graphs into a single effective adjacency matrix.
 327

328 **Definition 5.1** (Effective adjacency matrix). Given the adjacency matrices of the communication
 329 and option graphs, \mathbf{A}^a and \mathbf{A}^o , the effective adjacency matrix $\tilde{\mathbf{A}}$ is defined,

$$330 \quad \tilde{\mathbf{A}} = (\mathbf{A}^o + \mathbf{I}) \otimes (\mathbf{A}^a + \mathbf{I}). \quad (13)$$

332 **Lemma 5.2.** *The general form of nonlinear opinion dynamics (Equation (11)) can be written,*

$$334 \quad \dot{\mathbf{x}} = -d\mathbf{x} + \tanh \left[u \left((\alpha - 1)\mathbf{x} + \tilde{\mathbf{A}}\mathbf{x} \right) \right] + \mathbf{b}, \quad (14)$$

336 *where $\tilde{\mathbf{A}}$ is the effective adjacency matrix, $\mathbf{x} = \text{vec}(\mathbf{X})$ and $\mathbf{b} = \text{vec}(\mathbf{B})$.*

338 In order to analyze the behavior of BIMP, the effective adjacency matrix must be constrained to have a
 339 simple leading eigenvalue. We enforce this condition by constraining the learned effective adjacency
 340 matrix to be right stochastic (the leading eigenvalue of right stochastic matrices is $\lambda_{\max} = 1$).
 341 Learning this matrix directly is computationally prohibitive (the size of the effective adjacency matrix
 342 is $\mathbb{R}^{N_o N_a \times N_o N_a}$). To relieve computational burden, we instead learn the communication and option
 343 graphs separately. The entries of $\mathbf{A}^a = [a_{ik}^a]$ and $\mathbf{A}^o = [a_{jl}^o]$ are defined using multi-head attention,

$$344 \quad a_{ik}^a = \text{softmax} \left(\frac{(\mathbf{W}_K^a \mathbf{x}_i)^\top \mathbf{W}_Q^a \mathbf{x}_k}{d_k^a} \right), \quad a_{jl}^o = \text{softmax} \left(\frac{(\mathbf{W}_K^o \mathbf{x}_j)^\top \mathbf{W}_Q^o \mathbf{x}_l}{d_k^o} \right), \quad (15)$$

345 where \mathbf{W}_K^a , \mathbf{W}_Q^a , \mathbf{W}_K^o and \mathbf{W}_Q^o are the key and query weight matrices for communication and
 346 option graphs. A useful consequence of this approach is that the leading eigenvalue $\lambda_{\max}^{\tilde{a}}$ of $\tilde{\mathbf{A}}$ is
 347 constant and does not need to be recomputed during training.

350 **Lemma 5.3.** *The leading eigenvalue of the effective adjacency matrix $\tilde{\mathbf{A}}$ is $\lambda_{\max}^{\tilde{a}} = 4$.*

352 5.2 PARAMETER SELECTION

354 **The attention parameter u .** In the nonlinear opinion dynamics model, the attention parameter u
 355 is the bifurcation parameter. Near the bifurcation point u^* (i.e., the point where the number and/or
 356 stability of solutions change), the model is ultrasensitive to the input \mathbf{B} , and agents will quickly form
 357 an opinion (see Figure 2). We design BIMP to be ultrasensitive to the input by setting the value of the
 358 attention parameter u to the bifurcation point of the attention-opinion bifurcation diagram.

359 **Lemma 5.4 (Bifurcation point u^*).** *The bifurcation point u^* of the attention-opinion bifurcation
 360 diagram is equal to $d/(\alpha - 1 + \lambda_{\max}^{\tilde{a}})$.*

362 From Lemma 5.4 and 5.3, the value of the attention parameter at the bifurcation point is $u = \frac{d}{\alpha + 3}$.

364 **The input parameter \mathbf{B} .** In the nonlinear opinion dynamics model, the input parameter \mathbf{B} transforms
 365 the bifurcation diagram from a symmetric pitchfork bifurcation to an unfolded pitchfork bifurcation
 366 (see Figure 2). This is a form of selective ultrasensitivity where the directions of ultrasensitivity are
 367 determined by the structure of the communication graph (Bizyaeva et al., 2022; Leonard et al., 2024).

368 In BIMP with effective adjacency matrix $\tilde{\mathbf{A}}$ and attention parameter $u = \frac{d}{\alpha + 3}$, oversmoothing
 369 depends on the choice of input parameter. We select the input parameter \mathbf{B} , so that BIMP converges
 370 to an equilibrium for all initial opinions.

371 **Lemma 5.5 (BIMP converges to equilibrium).** *A BIMP model with a constant input parameter \mathbf{B}
 372 converges to an equilibrium.*

374 We can now understand the oversmoothing behavior of BIMP by analyzing its equilibrium behavior.
 375 When the input parameter \mathbf{B} is nonzero, BIMP will not exhibit oversmoothing.

376 **Theorem 5.6 (Dissensus in BIMP).** *BIMP will not exhibit oversmoothing when the input parameter
 377 \mathbf{B} is time-independent with unique entries.*

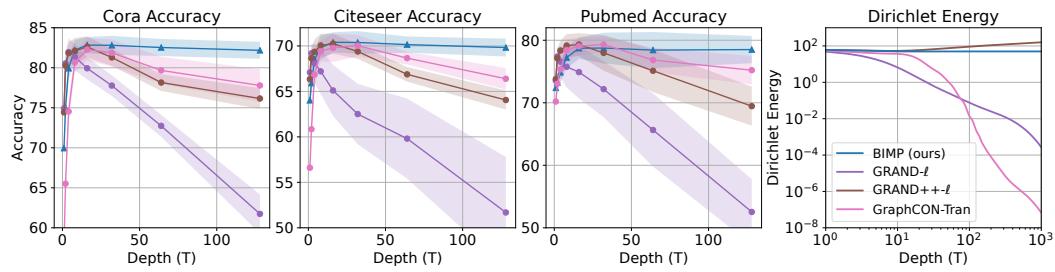


Figure 3: **Classification accuracy and Dirichlet energy.** BIMP is designed to learn node representations that resist oversmoothing even for very large depths. **(Left)** We compare the classification accuracy of BIMP to baseline models for architectures with 1, 2, 4, 8, 16, 32, 64 and 128 timesteps. Our BIMP model is stable out to 128 timesteps, while baseline performance deteriorates after 32 timesteps. **(Right)** We compare the Dirichlet energy of node features over a range of network depths. Contrary to baselines, the Dirichlet energy of BIMP remains stable even at very deep layers.

To ensure \mathbf{B} satisfies the conditions of Theorem 5.6, we set $\mathbf{B} = \mathbf{X}(0)$. GRAND++ (Thorpe et al., 2022), GREAD (Choi et al., 2023) and KuramotoGNN (Nguyen et al., 2024) uses a similar strategy.

5.3 EMERGENT PROPERTIES

Well behaved gradients. The stability of neural network gradients impacts training efficiency and learning outcomes (Rusch et al., 2022; Nguyen et al., 2024; Pascanu et al., 2013; Awasthi et al., 2021; Arroyo et al., 2025). In GNNs, oversmoothing occurs when network gradients vanish (Rusch et al., 2022). In BIMP, we find that the structure of the nonlinear opinion dynamics inductive bias yields bounded gradients that do not vanish exponentially, even for very deep architectures.

Theorem 5.7 (BIMP has well behaved gradients). *BIMP gradients are upper bounded and do not vanish exponentially.*

Model adaptability. In many GNNs, neighborhood aggregation can be interpreted as low-pass filtering (Nt & Maehara, 2019; Bo et al., 2021; Balcilar et al., 2021). A direct consequence is that these same GNNs will perform poorly on heterophilic datasets (i.e., datasets where edges in an input graphs connect dissimilar nodes). To address this issue, previous works have incorporated high-pass filters which have a sharpening effect (Han et al., 2023; Di Giovanni et al., 2022; Choi et al., 2023). In BIMP, we find that the nonlinear opinion dynamics inductive bias can be interpreted as a tunable filter. This becomes clear by writing the BIMP dynamics from Equation (14) in an alternative form,

$$\dot{\mathbf{x}} = -d\mathbf{x} + \tanh \left[u \left((\alpha - 1) \underbrace{(\mathbf{x} - \tilde{\mathbf{A}}\mathbf{x})}_{\text{sharpening}} + \alpha \underbrace{\tilde{\mathbf{A}}\mathbf{x}}_{\text{smoothing}} \right) \right] + \mathbf{b}. \quad (16)$$

In this form, BIMP has a high pass filter when $\alpha > 1$ ($(\mathbf{x} - \tilde{\mathbf{A}}\mathbf{x})$ sharpens the features); and a low-pass filter when $\alpha \leq 1$ ($\tilde{\mathbf{A}}\mathbf{x}$ smooths the feature). By tuning α , BIMP can be adapted to both homophilic and heterophilic datasets.

Greater Expressivity. GNN expressivity is constrained not only by oversmoothing (Oono & Suzuki, 2019; Li et al., 2018; Nt & Maehara, 2019) but also by limitations in model architecture (Xu et al., 2018; Alon & Yahav, 2020). BIMP incorporates nonlinearity and cross-dimensional feature mixing to enhance model expressivity, outperforming existing continuous-depth models (see Section 6).

Theorem 5.8 (Expressive capacity of BIMP). *BIMP can model more diverse node feature representations than approaches whose dynamics are equivalent to linear opinion dynamics.*

6 EMPIRICAL ANALYSIS

In this section, we highlight the robustness of BIMP features to oversmoothing even in very deep architectures; and the classification accuracy of BIMP on homophilic, heterophilic, large graph and long-range graphs datasets.

6.1 PERFORMANCE AT LARGE DEPTHS

Classification accuracy. To understand the impact of depth on classification accuracy, we compare the performance of our BIMP model to GRAND- ℓ (Chamberlain et al., 2021a), GRAND++- ℓ (Thorpe

432 Table 2: **Classification accuracy on homophilic datasets.** Classification accuracy on the Cora,
 433 Citeseer, Pubmed, CoauthorCS, Computers, and Photo datasets are reported. Our BIMP model
 434 outperforms competitive baselines on all datasets. We highlight the **best** and **second best** accuracy.

Dataset	Cora	Citeseer	Pubmed	CoauthorCS	Computers	Photo
BIMP	83.19±1.13	71.09±1.40	80.16±2.03	92.48±0.26	84.73±0.61	92.90±0.44
GRAND- ℓ	82.20±1.45	69.89±1.48	78.19±1.88	90.23±0.91	82.93±0.56	91.93±0.39
GRAND++- ℓ	82.83±1.31	70.26±1.46	78.89±1.96	90.10±0.78	82.79±0.54	91.51±0.41
KuramotoGNN	81.16±1.61	70.40±1.02	78.69±1.91	91.05±0.56	80.06±1.60	92.77±0.42
GraphCON-Tran	82.80±1.34	69.60±1.16	78.85±1.53	90.30±0.74	82.76±0.58	91.78±0.50
GAT	79.76±1.50	67.70±1.63	76.88±2.08	89.51±0.54	81.73±1.89	89.12±1.60
GCN	80.76±2.04	67.54±1.98	77.04±1.78	90.98±0.42	82.02±1.87	90.37±1.38
GraphSAGE	79.37±1.70	67.31±1.63	75.52±2.19	90.62±0.42	76.42±7.60	88.71±2.68

444 et al., 2022), and GraphCON (Rusch et al., 2022) over a range of network depths (hyperparameters
 445 remain fixed across depths). We report classification performance in Figure 3 (left). BIMP performs
 446 comparably to baseline models for shallow depths ($l < 32$) and consistently outperforms all baseline
 447 models at greater depths. Experimental details are provided in Appendix D.1.1. We report additional
 448 comparison against discrete-depth GNNs and baselines amended with various oversmoothing
 449 mitigation techniques, including rewiring, normalization and skip connection, in Appendix D.1.1.

450 **Dirichlet energy.** To understand how oversmoothing evolves with depth, we compare the Dirichlet
 451 energy (see Equation (2)) of our BIMP model to baseline models over 1000 timesteps and plot the
 452 results in Figure 3 (right). The Dirichlet energy of our BIMP model is stable for all timesteps while
 453 the energy of baseline models diverges. Additional experimental details are provided in Appendix
 454 D.1.2. We report additional comparison against discrete-depth GNNs and baselines amended with
 455 various oversmoothing mitigation techniques in Appendix D.1.2.

456 6.2 CLASSIFICATION ACCURACY

457 **Homophilic datasets.** We report the classification performance of our BIMP model and competitive
 458 baselines (GRAND- ℓ , GRAND++- ℓ , KuramotoGNN (Nguyen et al., 2024), GraphCON,
 459 GAT (Veličković et al., 2017), GCN (Kipf & Welling, 2016), and GraphSAGE (Hamilton et al.,
 460 2017)) in Table 2, across 20 random initializations and 100 random train-validation-test splits, on
 461 the full datasets of Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), Pubmed (Namata et al.,
 462 2012), CoauthorCS (Shchur et al., 2018), Computers (Shchur et al., 2018), and Photo (Shchur et al.,
 463 2018). Furthermore, we report the performance of baselines amended with various oversmoothing
 464 mitigation techniques, including rewiring, layer-wise normalization and skip connection, in Table 4,
 465 Appendix D.2.1 and results on the standard Planetoid splits in Table 5. Our BIMP model outperforms
 466 all baseline and amended baseline models on all datasets.

467 **Heterophilic datasets.** We report the classification performance of our BIMP model and competitive
 468 baselines on the three small datasets, Texas, Wisconsin, Cornell (Craven et al., 1998), and three larger
 469 datasets Actor (Pei et al., 2020), Squirrel, Chameleon (Rozemberczki et al., 2021), across 100 random
 470 initializations and 10 standard splits, in Table 6, Appendix D.2.2. Our BIMP model outperforms all
 471 baselines on larger datasets and continuous-depth baselines on smaller datasets.

472 **Large graph.** We report the classification performances on the ogbn-arXiv (Hu et al., 2020) dataset
 473 with 20 random initialization on the standard split in Appendix D.2.3, Table 7, where BIMP outper-
 474 forms baseline models, illustrating its scalability to large graphs.

476 Table 3: **Performance on LRGB benchmark.** We adopt baseline results reported in Gravina et al.
 477 (2025). Our BIMP outperforms all the continuous-depth models and on par with the SOTA result.

Model	Peptides-func (AP \uparrow)	Peptides-struct (MAE \downarrow)
GCN	59.30±0.23	0.3496±0.0013
GIN (Xu et al., 2018)	54.98±0.79	0.3547±0.0045
Transformer+LapPE (Dwivedi & Bresson, 2020)	63.26±1.26	0.2529±0.0016
SAN+LapPE (Kreuzer et al., 2021)	63.84±1.21	0.2683±0.0043
GRAND- ℓ	57.89±0.62	0.3418±0.0015
GraphCON	60.22±0.68	0.2778±0.0018
ADGN (Gravina et al., 2022)	59.75±0.44	0.2874±0.0021
BIMP (ours)	63.62±1.07	0.2629±0.0027

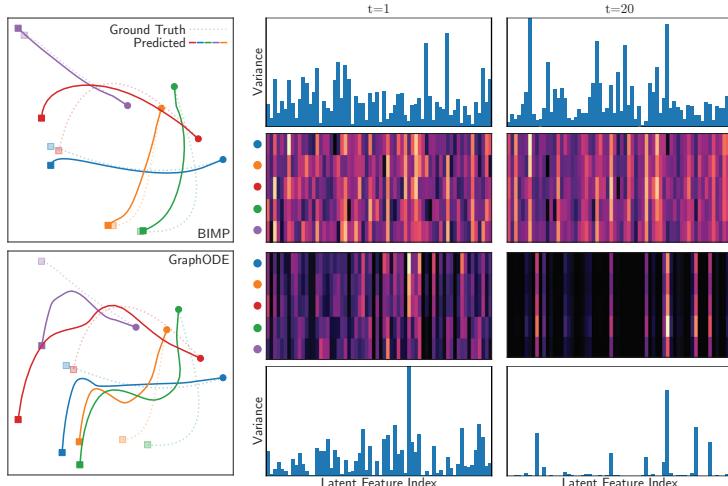


Figure 4: **Oversmoothing in trajectory extrapolation tasks.** We show the latent features at timestep 1 (●) and 20 (■) for both BIMP and GCN-based GraphODE. The latent features from GraphODE converges to a similar solution while BIMP maintains large variability.

Long-range graphs and over-squashing. Oversquashing is another fundamental limitation that restricts long-range information propagation in GNNs (Alon & Yahav, 2020; Topping et al., 2021). We report the prediction results on the datasets Peptides-func and Peptides-struct from Long Range Graph Benchmark (Dwivedi et al., 2022) in Table 3. BIMP outperforms all the continuous-depth models and performs on par with Graphormers which incur higher computational and memory costs, which shows that BIMP empirically mitigating oversquashing. Training detail is in Appendix D.2.4.

6.3 ADDITIONAL EXPERIMENTS

Multi-agent Trajectory Extrapolation. In our motivating experiment (Figure 1), we show that the GCN-based GraphODE tends to collapse trajectories, which degrades predictive accuracy and highlights the critical role of oversmoothing, especially in capturing long-term behavior. In contrast, BIMP avoids trajectory collapse and achieves superior predictive performance. Details and results are presented in Figure 7 and Appendix E.1.

Figure 4 visualizes the latent features predicted by BIMP and GraphODE at the initial ($t = 1$) and final step ($t = 20$). The top and bottom panels show the variance in each latent feature dimension, while the middle two panels display heatmaps of the respective 64-dimensional latent features for 5 balls. In GraphODE, oversmoothing becomes pronounced at $t = 20$, where most dimensions of the latent representation collapse to nearly identical values and variance approaches zero, leading the decoder to produce nearly identical predictions. In contrast, BIMP maintains meaningful discriminability in its latent features at $t = 20$.

Empirical Evaluation. We report the computational complexity of BIMP in Table 11 and Table 12, Appendix E.2, showing that it achieves comparable computational cost than both continuous-depth and discrete-depth baselines. We further ablate the nonlinearity function (Appendix E.3) and the inductive terms (Appendix E.4), observing performance changes that align well with our theoretical analysis. In addition, we conduct a sensitivity analysis to demonstrate that our hyperparameters damping d and self-reinforcement α are generally robust across tasks (Figure 9, Appendix E.5).

7 CONCLUSION

In this paper, we propose an analogy between GNNs and opinion dynamics models, highlighting the equivalence between oversmoothing in GNNs and consensus in opinion dynamics. Through our analogy, we prove that several existing GNN algorithms are equivalent to linear opinion dynamics models which converges to consensus. Motivated by this, we introduce a novel class of continuous-depth GNNs called Behavior-inspired message passing (BIMP) which leverage the nonlinear opinion dynamics inductive bias, improving expressivity and guaranteeing dissensus. Experiments against recent baselines illustrate our model’s competitive performance and robustness to oversmoothing.

Limitations. The nonlinear opinion dynamics inductive bias may introduce training instabilities at larger step sizes when using first order methods. If the step size is larger than $1/d$, each update will lead to a sign change. However, since the d is a hyperparameter this is not a severe limitation.

540 REFERENCES
541

542 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
543 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
544 architectures via sparsified neighborhood mixing. In *international conference on machine learning*,
545 pp. 21–29. PMLR, 2019.

546 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
547 *arXiv preprint arXiv:2006.05205*, 2020.

548 Claudio Altafini. Consensus problems on networks with antagonistic interactions. *IEEE transactions*
549 *on automatic control*, 58(4):935–946, 2012.

550 Marcela Ordorica Arango, Anastasia Bizyaeva, Simon A Levin, and Naomi Ehrich Leonard. Opinion-
551 driven risk perception and reaction in sis epidemics. *arXiv preprint arXiv:2410.12993*, 2024.

552 Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
553 Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
554 smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. *arXiv preprint*
555 *arXiv:2502.10818*, 2025.

556 James Atwood and Don Towsley. Diffusion-convolutional neural networks. *Advances in neural*
557 *information processing systems*, 29, 2016.

558 Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. A convergence analysis of gradient
559 descent on graph neural networks. *Advances in Neural Information Processing Systems*, 34:
560 20385–20397, 2021.

561 Muhammet Balciilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
562 Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
563 *International Conference on Learning Representations*, 2021.

564 Michele Ballerini, Nicola Cabibbo, Raphael Candelier, Andrea Cavagna, Evaristo Cisbani, Irene
565 Giardina, Vivien Lecomte, Alberto Orlandi, Giorgio Parisi, Andrea Procaccini, et al. Interaction
566 ruling animal collective behavior depends on topological rather than metric distance: Evidence
567 from a field study. *Proceedings of the national academy of sciences*, 105(4):1232–1237, 2008.

568 Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dynamics: An overview. *ACM*
569 *SIGACT News*, 51(1):58–104, 2020.

570 Anastasia Bizyaeva, Alessio Franci, and Naomi Ehrich Leonard. Nonlinear opinion dynamics with
571 tunable sensitivity. *IEEE Transactions on Automatic Control*, 68(3):1415–1430, 2022.

572 Anastasia Bizyaeva, Marcela Ordorica Arango, Yunxiu Zhou, Simon Levin, and Naomi Ehrich
573 Leonard. Active risk aversion in sis epidemics on networks. In *2024 American Control Conference*
574 (ACC), pp. 4428–4433. IEEE, 2024.

575 Vincent D Blondel, Julien M Hendrickx, Alex Olshevsky, and John N Tsitsiklis. Convergence in
576 multiagent coordination, consensus, and flocking. In *Proceedings of the 44th IEEE Conference on*
577 *Decision and Control*, pp. 2996–3000. IEEE, 2005.

578 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
579 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
580 pp. 3950–3957, 2021.

581 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In *International*
582 *Conference on Learning Representations*, 2022. URL [https://openreview.net/](https://openreview.net/forum?id=F72ximsx7C1)
583 [forum?id=F72ximsx7C1](https://openreview.net/forum?id=F72ximsx7C1).

584 Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
585 by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of*
586 *sciences*, 113(15):3932–3937, 2016.

587 Francesco Bullo. *Lectures on network systems*, volume 1. CreateSpace, 2018.

594 Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. *arXiv preprint*
595 *arXiv:2006.13318*, 2020.

596

597 Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
598 Emanuele Rossi. Grand: Graph neural diffusion. In *International conference on machine learning*,
599 pp. 1407–1418. PMLR, 2021a.

600 Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen Dong,
601 and Michael Bronstein. Beltrami flow and neural diffusion on graphs. *Advances in Neural*
602 *Information Processing Systems*, 34:1594–1609, 2021b.

603

604 Jialong Chen, Bowen Deng, Chuan Chen, Zibin Zheng, et al. Graph neural ricci flow: Evolving
605 feature from a curvature perspective. In *The Thirteenth International Conference on Learning*
606 *Representations*, 2025.

607

608 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
609 convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR,
610 2020.

611

612 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
613 differential equations. *Advances in neural information processing systems*, 31, 2018.

614

615 Huixuan Chi, Yuying Wang, Qinfen Hao, and Hong Xia. Residual network and embedding usage: New
616 tricks of node classification with graph convolutional networks. *arXiv preprint arXiv:2105.08330*,
617 2021.

618

619 Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
620 efficient algorithm for training deep and large graph convolutional networks. In *Proceedings of the*
621 *25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 257–266,
622 2019.

623

624 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
625 graph neural network. *arXiv preprint arXiv:2006.07988*, 2020.

626

627 Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
628 diffusion networks. In *International Conference on Machine Learning*, pp. 5722–5747. PMLR,
629 2023.

630

631 Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal Nigam, and
632 Seán Slattery. Learning to extract symbolic knowledge from the world wide web. *AAAI/IAAI*, 3
633 (3.6):2, 1998.

634

635 Pranav Dandekar, Ashish Goel, and David T Lee. Biased assimilation, homophily, and the dynamics
636 of polarization. *Proceedings of the National Academy of Sciences*, 110(15):5791–5796, 2013.

637

638 Morris H DeGroot. Reaching a consensus. *Journal of the American Statistical association*, 69(345):
639 118–121, 1974.

640

641 Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich, and
642 Michael M Bronstein. Understanding convolution on graphs via energies. *arXiv preprint*
643 *arXiv:2206.10991*, 2022.

644

645 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
646 *arXiv preprint arXiv:2012.09699*, 2020.

647

648 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
649 and Dominique Beaini. Long range graph benchmark. *Advances in Neural Information Processing*
650 *Systems*, 35:22326–22340, 2022.

651

652 Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph neural
653 networks motivated by partial differential equations. *Advances in neural information processing*
654 *systems*, 34:3836–3849, 2021.

648 Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang,
 649 Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation learning for property
 650 prediction. *Nature Machine Intelligence*, 4(2):127–134, 2022.

651

652 J Alexander Fax and Richard M Murray. Information flow and cooperative control of vehicle
 653 formations. *IEEE transactions on automatic control*, 49(9):1465–1476, 2004.

654

655 Guoji Fu, Peilin Zhao, and Yatao Bian. p -laplacian based graph neural networks. In *International
 656 conference on machine learning*, pp. 6878–6917. PMLR, 2022.

657

658 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 659 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 1263–1272. PMLR, 2017.

660

661 Martin Golubitsky, Ian Stewart, and David G Schaeffer. *Singularities and Groups in Bifurcation
 Theory: Volume II*, volume 69. Springer Science & Business Media, 2012.

662

663 Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture
 664 for deep graph networks. *arXiv preprint arXiv:2210.09789*, 2022.

665

666 Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schönlieb.
 667 On oversquashing in graph neural networks through the lens of dynamical systems. In *Proceedings
 668 of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 16906–16914, 2025.

669

670 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 Advances in neural information processing systems, 30, 2017.

671

672 Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
 673 networks: Neural diffusion and beyond. *arXiv preprint arXiv:2310.10121*, 2023.

674

675 Morris W Hirsch. Systems of differential equations that are competitive or cooperative ii: Convergence
 676 almost everywhere. *SIAM Journal on Mathematical Analysis*, 16(3):423–439, 1985.

677

678 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 679 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 neural information processing systems*, 33:22118–22133, 2020.

680

681 Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
 682 sampled partial observations. *Advances in Neural Information Processing Systems*, 33:16177–
 16187, 2020.

683

684 Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein–protein interaction using graph
 685 neural networks. *Scientific Reports*, 12(1):8360, 2022.

686

687 Eric W Justh and PS Krishnaprasad. Natural frames and interacting particles in three dimensions. In
 Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2841–2846. IEEE, 2005.

688

689 Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
 690 *Advances in Neural Information Processing Systems*, 35:2268–2281, 2022.

691

692 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 693 *arXiv preprint arXiv:1609.02907*, 2016.

694

695 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
 696 A global transformer on large-scale graphs. In *International Conference on Machine Learning*, pp.
 17375–17390. PMLR, 2023.

697

698 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 699 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing
 700 Systems*, 34:21618–21629, 2021.

701 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 2015.

702 Naomi E Leonard, Derek A Paley, Russ E Davis, David M Fratantoni, Francois Lekien, and Fumin
 703 Zhang. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field
 704 experiment in monterey bay. *Journal of Field Robotics*, 27(6):718–740, 2010.

705 Naomi Ehrich Leonard, Derek A Paley, Francois Lekien, Rodolphe Sepulchre, David M Fratantoni,
 706 and Russ E Davis. Collective motion, sensor networks, and ocean sampling. *Proceedings of the
 707 IEEE*, 95(1):48–74, 2007.

708 Naomi Ehrich Leonard, Keena Lipsitz, Anastasia Bizyaeva, Alessio Franci, and Yphtach Lelkes. The
 709 nonlinear feedback dynamics of asymmetric political polarization. *Proceedings of the National
 710 Academy of Sciences*, 118(50):e2102149118, 2021.

711 Naomi Ehrich Leonard, Anastasia Bizyaeva, and Alessio Franci. Fast and flexible multiagent
 712 decision-making. *Annual Review of Control, Robotics, and Autonomous Systems*, 7, 2024.

713 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 714 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 715 volume 32, 2018.

716 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
 717 Finding global homophily in graph neural networks when meeting heterophily. In *International
 718 conference on machine learning*, pp. 13242–13256. PMLR, 2022.

719 Yibo Li, Xiao Wang, Hongrui Liu, and Chuan Shi. A generalized neural diffusion framework
 720 on graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 721 8707–8715, 2024.

722 Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
 723 A research platform for distributed model selection and training. *arXiv preprint arXiv:1807.05118*,
 724 2018.

725 Cong Liu, David Ruhe, Floor Eijkelboom, and Patrick Forré. Clifford group equivariant simplicial
 726 message passing networks. *arXiv preprint arXiv:2402.10011*, 2024.

727 Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In *Proceedings
 728 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 729 338–348, 2020.

730 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 731 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in neural
 732 information processing systems*, 35:1362–1375, 2022.

733 Oluwashina Madamori, Esther Max-Onakpoya, Gregory D Erhardt, and Corey E Baker. A latency-
 734 defined edge node placement scheme for opportunistic smart cities. In *2021 IEEE International
 735 Conference on Pervasive Computing and Communications Workshops and other Affiliated Events
 736 (PerCom Workshops)*, pp. 142–147. IEEE, 2021.

737 Jan R Magnus and Heinz Neudecker. *Matrix differential calculus with applications in statistics and
 738 econometrics*. John Wiley & Sons, 2019.

739 Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
 740 recommendations on styles and substitutes. In *Proceedings of the 38th international ACM SIGIR
 741 conference on research and development in information retrieval*, pp. 43–52, 2015.

742 Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
 743 construction of internet portals with machine learning. *Information Retrieval*, 3:127–163, 2000.

744 Marco A Montes de Oca, Eliseo Ferrante, Nithin Mathews, Mauro Birattari, and Marco Dorigo.
 745 Opinion dynamics for decentralized decision-making in a robot swarm. In *Swarm Intelligence:
 746 7th International Conference, ANTS 2010, Brussels, Belgium, September 8-10, 2010. Proceedings*
 747 7, pp. 251–262. Springer, 2010.

748 Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
 749 regions of deep neural networks. *Advances in neural information processing systems*, 27, 2014.

756 L. Moreau. Stability of multiagent systems with time-dependent communication links. *IEEE*
 757 *Transactions on Automatic Control*, 50(2):169–182, 2005. doi: 10.1109/TAC.2004.841888.
 758

759 Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
 760 for collective classification. In *10th international workshop on mining and learning with graphs*,
 761 volume 8, pp. 1, 2012.

762 Angelia Nedić and Ji Liu. On convergence rate of weighted-averaging dynamics for consensus
 763 problems. *IEEE Transactions on Automatic Control*, 62(2):766–781, 2017. doi: 10.1109/TAC.
 764 2016.2572004.

765 Tuan Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura, and Tan Minh Nguyen.
 766 From coupled oscillators to graph neural networks: Reducing over-smoothing via a kuramoto
 767 model-based approach. In *International Conference on Artificial Intelligence and Statistics*, pp.
 768 2710–2718. PMLR, 2024.

770 Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
 771 *arXiv preprint arXiv:1905.09550*, 2019.

772 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 773 classification. *arXiv preprint arXiv:1905.10947*, 2019.

775 Juan A Paredes, Yulong Yang, and Dennis S Bernstein. Output-only identification of self-excited
 776 systems using discrete-time lur'e models with application to a gas-turbine combustor. *International*
 777 *Journal of Control*, 97(2):187–212, 2024.

778 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
 779 networks. In *International conference on machine learning*, pp. 1310–1318. Pmlr, 2013.

781 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 782 graph convolutional networks. *arXiv preprint arXiv:2002.05287*, 2020.

783 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 784 simulation with graph networks. In *International conference on learning representations*, 2020.

786 Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
 787 Park. Graph neural ordinary differential equations. *arXiv preprint arXiv:1911.07532*, 2019.

788 Riley J Richards, Yulong Yang, Juan A Paredes, and Dennis S Bernstein. Output-only identification
 789 of lur'e systems with hysteretic feedback nonlinearities. In *2024 American Control Conference*
 790 (ACC), pp. 2891–2896. IEEE, 2024.

792 Andreas Roth, Franka Bause, Nils M Kriege, and Thomas Liebig. Preventing representational rank
 793 collapse in mpnns by splitting the computational graph. *arXiv preprint arXiv:2409.11504*, 2024.

794 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal*
 795 *of Complex Networks*, 9(2):cnab014, 2021.

797 T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
 798 Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pp. 18888–
 799 18909. PMLR, 2022.

800 T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
 801 graph neural networks. *arXiv preprint arXiv:2303.10993*, 2023.

803 Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T Schaub. Residual connections and
 804 normalization can provably prevent oversmoothing in gnns. *arXiv preprint arXiv:2406.02997*,
 805 2024.

806 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 807 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

809 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 810 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.

810 John Michael Tutil Thompson and H Bruce Stewart. *Nonlinear dynamics and chaos*. John Wiley &
 811 Sons, 2002.

812

813 Matthew Thorpe, Tan Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher, and
 814 Bao Wang. Grand++: Graph neural diffusion with a source term. *ICLR*, 2022.

815

816 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 817 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *arXiv preprint*
 818 *arXiv:2111.14522*, 2021.

819

820 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 821 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

822

823 Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in
 824 linear graph convolutional networks. *Advances in Neural Information Processing Systems*, 34:
 5758–5769, 2021.

825

826 Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. Acmp: Allen-cahn message passing
 827 for graph neural networks with particle phase transition. *arXiv preprint arXiv:2206.05437*, 2022a.

828

829 Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
 830 learning of representations via graph neural networks. *Nature Machine Intelligence*, 4(3):279–287,
 2022b.

831

832 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
 833 plifying graph convolutional networks. In *International conference on machine learning*, pp.
 6861–6871. Pmlr, 2019.

834

835 Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of
 836 oversmoothing in graph neural networks. *arXiv preprint arXiv:2212.10701*, 2022.

837

838 Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
 839 based graph neural networks. *Advances in Neural Information Processing Systems*, 36:35084–
 840 35106, 2023.

841

842 Louis-Pascal Khonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In *International
 conference on machine learning*, pp. 10432–10441. PMLR, 2020.

843

844 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 845 networks? *arXiv preprint arXiv:1810.00826*, 2018.

846

847 Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
 848 over-smoothing in deep gcns. *arXiv preprint arXiv:2003.13663*, 2020.

849

850 Yulong Yang, Bowen Feng, Keqin Wang, Naomi Leonard, Adji Bousso Dieng, and Christine
 851 Allen-Blanchette. Behavior-inspired neural networks for relational inference. *arXiv preprint*
 852 *arXiv:2406.14746*, 2024.

853

854 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 855 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the
 856 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983,
 857 2018.

858

859 George F Young, Luca Scardovi, Andrea Cavagna, Irene Giardina, and Naomi E Leonard. Starling
 860 flock networks manage uncertainty in consensus at low cost. *PLoS computational biology*, 9(1):
 861 e1002894, 2013.

862

863 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
 864 saint: Graph sampling based inductive learning method. *arXiv preprint arXiv:1907.04931*, 2019.

865

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. *arXiv preprint*
 866 *arXiv:1909.12223*, 2019.

864 Bingxin Zhou, Outongyi Lv, Jing Wang, Xiang Xiao, and Weishu Zhao. Odnet: Opinion dynamics-
 865 inspired neural message passing for graphs and hypergraphs. *Transactions on Machine Learning*
 866 *Research*, 2024.

868 Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
 869 graph neural networks with differentiable group normalization. *Advances in neural information*
 870 *processing systems*, 33:4917–4928, 2020.

871 Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
 872 Understanding and resolving performance degradation in deep graph convolutional networks. In
 873 *Proceedings of the 30th ACM international conference on information & knowledge management*,
 874 pp. 2728–2737, 2021.

877 A PROOFS

879 A.1 OVERSMOOTHING AND OPINION CONSENSUS

881 A.1.1 LEMMA 4.1: LINEAR DYNAMICS OVERSMOOTH

883 *Any discrete-depth graph neural network with linear aggregation exhibits oversmoothing.*

885 *Proof.* Without loss of generality, we consider the case where \mathbf{A} is right stochastic. In this case, we
 886 can write the output of the L -th layer,

$$887 \quad \mathbf{X}^L = \mathbf{A}\mathbf{X}^{L-1}\mathbf{W}^L = \mathbf{A}^{(L)}\mathbf{X}^0\mathbf{W}^0 \cdots \mathbf{W}^L. \quad (17)$$

889 where $\mathbf{A}^{(n)}$ denotes the n -th power of matrix \mathbf{A} .

891 By our GNN-OD analogy, the quantity $\mathbf{A}^{(L)}\mathbf{X}^0$ tends toward consensus for all initial conditions.
 892 Since this cannot be changed by a linear transformation (e.g., the product $\mathbf{W}^0 \cdots \mathbf{W}^L$), \mathbf{X}^L will also
 893 tend toward consensus. Since oversmoothing is analogous to opinion consensus, any discrete-time
 894 GNN with linear aggregation will exhibit oversmoothing for all inputs. \square

895 A.1.2 LEMMA 4.2: LAPLACIAN DYNAMICS OVERSMOOTH

897 *Any continuous-depth graph neural network with Laplacian dynamics exhibits oversmoothing.*

900 *Proof.* Any GNN with Laplacian dynamics can be expressed in the form,

$$902 \quad \dot{\mathbf{X}}(t) = -\mathbf{D}\mathbf{X}(t) + \mathbf{A}\mathbf{X}(t). \quad (18)$$

903 In this form, it is clear that the dynamics are equivalent to linear opinion dynamics (see Equation (6)).
 904 Since in a linear opinion dynamics model consensus is reached for all initial conditions, a GNN with
 905 Laplacian dynamics will also exhibit oversmoothing for all inputs. \square

907 A.1.3 LEMMA 4.3: LAPLACIAN DYNAMICS WITH AN EXTERNAL INPUT OVERSMOOTH

909 *Any continuous-depth graph neural network with Laplacian dynamics and an external input will
 910 exhibit oversmoothing when the dynamics are linear.*

912 *Proof.* We prove Lemma 4.3 by demonstrating potential oversmoothing behavior in two popular
 913 methods: GRAND++- ℓ Thorpe et al. (2022) (in Lemma A.1), GREAD-F and GREAD-FB* Choi et al.
 914 (2023) (in Lemma A.2). The insight that the stability of linear dynamics is sensitive to the external
 915 input can be generalized to the analysis of other Laplacian dynamics with an external input. \square

917 **Lemma A.1** (Oversmoothing in GRAND++- ℓ). *GRAND++- ℓ exhibits oversmoothing.*

918 *Proof.* In GRAND++- ℓ , the layer-wise transformations is of the form,
 919

$$\dot{\mathbf{X}} = -\mathbf{LX} + \mathbf{B}, \quad (19)$$

920 where \mathbf{B} is the fixed source term that depends on the initial state $\mathbf{X}(0)$. Defining the right eigenvector
 921 matrix $\mathbf{T} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{N_a}]$ and left eigenvector matrix $\mathbf{T}^{-1} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{N_a}]^\top$ for the graph
 922 Laplacian \mathbf{L} , we perform change of coordinates $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{N_a}]^\top = \mathbf{T}^{-1}\mathbf{X}$ such that
 923

$$\dot{\mathbf{TY}} = -\mathbf{LTY} + \mathbf{B}. \quad (20)$$

924 Decompose \mathbf{L} by its right eigenvectors such that $\mathbf{L} = \mathbf{T}\Lambda\mathbf{T}^{-1}$, Equation (20) further simplifies as
 925

$$\dot{\mathbf{TY}} = -\mathbf{T}\Lambda\mathbf{T}^{-1}\mathbf{TY} + \mathbf{B} = -\mathbf{T}\Lambda\mathbf{Y} + \mathbf{B}. \quad (21)$$

926 Multiplying both sides with \mathbf{T}^{-1} yields
 927

$$\dot{\mathbf{Y}} = -\Lambda\mathbf{Y} + \mathbf{T}^{-1}\mathbf{B}. \quad (22)$$

928 Since the eigenvalue matrix Λ is diagonal, Equation (22) can be decoupled into
 929

$$\dot{\mathbf{y}}_i^\top = -\lambda_i \mathbf{y}_i^\top + \mathbf{w}_i^\top \mathbf{B}, \quad (23)$$

930 where λ_i is the i -th eigenvalue of Λ . Consider the case of $\lambda_i > 0$, the solution to the ODE becomes
 931

$$\mathbf{y}_i^\top(t) = \frac{\mathbf{b}_i}{\lambda_i} + \mathbf{c}_i^\top e^{-\lambda_i t}, \quad (24)$$

932 where $\mathbf{b}_i = \mathbf{w}_i^\top \mathbf{B}$ and \mathbf{c}_i are constant vectors. Consider the case where $\lambda_0 = 0$, the term $-\lambda_i \mathbf{y}_i^\top$ in
 933 Equation (23) becomes $\mathbf{0}$, hence the solution to the ODE becomes
 934

$$\mathbf{y}_0^\top(t) = \mathbf{b}_0 t + \mathbf{c}_0^\top. \quad (25)$$

935 where $\mathbf{b}_0 = \mathbf{w}_0^\top \mathbf{B}$ and \mathbf{c}_0 are constant vectors. The solution in the original coordinate frame becomes
 936

$$\mathbf{X}(t) = \sum_{\lambda_i > 0} \mathbf{v}_i \left(\frac{\mathbf{b}_i}{\lambda_i} + \mathbf{c}_i^\top e^{-\lambda_i t} \right) + \mathbf{v}_0(\mathbf{b}_0 t + \mathbf{c}_0^\top), \quad (26)$$

937 where λ_i and \mathbf{v}_i denote the positive eigenvalues and corresponding Eigenvectors of \mathbf{L} ; $\mathbf{b}_i = \mathbf{w}_i^\top \mathbf{B}$,
 938 where \mathbf{w}_i are the left eigenvectors of \mathbf{L} . Particularly, \mathbf{v}_0 is an all-ones vector, i.e., $\mathbf{v}_0 = [1, 1, \dots, 1]^\top$,
 939 $\mathbf{b}_0 = \mathbf{w}_0^\top \mathbf{B}$, and $\mathbf{c}_0, \mathbf{c}_i$ are constant vectors. As $t \rightarrow \infty$, the exponential terms $\mathbf{c}_i^\top e^{-\lambda_i t}$ decays
 940 to zero and Equation (26) tends towards a linear system dominated by \mathbf{v}_0 . Moreover, for large
 941 timescales, the difference in node features is relatively small resulting in reduced discriminability
 942 (another form of oversmoothing), and poorer network performance. \square
 943

944 **Lemma A.2** (Oversmoothing in GREAD-F and GREAD-FB*). *GREAD-F and GREAD-FB*
 945 exhibits oversmoothing.*

946 *Proof.* **GREAD-F.** In GREAD-F, the layer-wise transformations is of the form,
 947

$$\dot{\mathbf{X}} = -\mathbf{LX} + \mathbf{X} \odot (1 - \mathbf{X}), \quad (27)$$

948 where \odot denotes the Hadamard product. For Laplacian \mathbf{L} , there exist a constant $C > 0$ such that
 949

$$|[\mathbf{LX}]_i| \leq C|\mathbf{X}_i|, \quad (28)$$

950 where C depends on the maximum degree and largest edge weights and \mathbf{X}_i denotes the i -th row of
 951 \mathbf{X} . Equation (27) can therefore be rewritten as
 952

$$\dot{\mathbf{X}}_i = -[\mathbf{LX}]_i + \mathbf{X}_i(1 - \mathbf{X}_i) \leq C|\mathbf{X}_i| + \mathbf{X}_i - \mathbf{X}_i^2. \quad (29)$$

953 Notably, when $\mathbf{X}_i < -C$, the RHS of Equation (29) is strictly smaller than zero. Since the dominant
 954 term \mathbf{X}_i^2 grows quadratically, the solution diverges to infinity
 955

$$\lim_{t \rightarrow \infty} \mathbf{X}_i(t) = -\infty \quad \text{for all } i. \quad (30)$$

Therefore, as long as the maximum of \mathbf{X} is smaller than some negative threshold $-C$, the entire system becomes monotonically decreasing, eliminating the possibility of equilibrium or steady-state convergence. While node values may diverge at different rates, the components with the fastest decay rate dominates the overall behavior. The remaining components which decays more slowly becomes negligible in relative magnitude. Therefore, all node features collapse and oversmoothing occurs.

GREAD-FB*. In GREAD-FB*, the layer-wise transformations is of the form,

$$\dot{\mathbf{X}} = -\alpha \mathbf{L} \mathbf{X} + \beta (\mathbf{L} \mathbf{X} + \mathbf{X}), \quad (31)$$

where α, β are trainable parameters to (de-)emphasize each term. As the external input is a linear transformation, the dynamics can be rewritten as

$$\dot{\mathbf{X}} = \underbrace{((\beta - \alpha)\mathbf{L} + \beta\mathbf{I})}_{\tilde{\mathbf{L}}} \mathbf{X}. \quad (32)$$

Given the property of linear opinion dynamics, when $\alpha > \beta > 0$, the eigenvalue of $\tilde{\mathbf{L}}$ exists in range $[2\Delta(\beta - \alpha), \beta]$, where Δ is the maximum graph degree. In particular, the smallest eigenvalue of \mathbf{L} , which is zero, maps to the largest eigenvalue of $\lambda_{\tilde{\mathbf{L}}} = \beta$. This guarantees a global stable equilibrium cannot exist as at least one mode grows exponentially with rate β .

Meanwhile, as $t \rightarrow \infty$, the remaining components associated with smaller eigenvalues either increases slowly or decays to zero (depends on the sign of the eigenvalue), and thus becoming negligible in relative magnitude. Consequently, all node features are asymptotically dominated by the leading eigenvector, which is $[1, \dots, 1]^\top$. This leads to a collapse in feature diversity and oversmoothing occurs. \square

A.2 BEHAVIOR-INSPIRED MESSAGE PASSING NEURAL NETWORK

A.2.1 LEMMA 5.2

The general form of nonlinear opinion dynamics (Equation (11)),

$$\dot{\mathbf{X}}(t) = -d\mathbf{X}(t) + \tanh \left[u \left(\alpha \mathbf{X}(t) + \mathbf{A}^a \mathbf{X}(t) + \mathbf{X}(t) \mathbf{A}^{o\top} + \mathbf{A}^a \mathbf{X}(t) \mathbf{A}^{o\top} \right) \right] + \mathbf{X}(0),$$

can be written,

$$\dot{\mathbf{x}} = -d\mathbf{x} + \tanh \left[u \left((\alpha - 1)\mathbf{x} + \tilde{\mathbf{A}}\mathbf{x} \right) \right] + \mathbf{b}, \quad (33)$$

where $\tilde{\mathbf{A}}$ is the effective adjacency matrix, $\mathbf{x} = \text{vec}(\mathbf{X})$ and $\mathbf{b} = \text{vec}(\mathbf{B})$.

Proof. We first rewrite Equation (11) as

$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh \left[u \left((\alpha - 1)\mathbf{X} + (\mathbf{A}^a + \mathbf{I})\mathbf{X}(\mathbf{A}^{o\top} + \mathbf{I}) \right) \right] + \mathbf{B}. \quad (34)$$

From here, we can write the matrix product \mathbf{ABC} with $\mathbf{A} \in \mathbb{R}^{m \times m}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$, as $\mathbf{ABC} = \text{vec}^{-1} [(\mathbf{C}^\top \otimes \mathbf{A}) \text{vec}(\mathbf{B})]$, where vec denotes the vectorization operator Magnus & Neudecker (2019). This yields the following form

$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh \left[u \left((\alpha - 1)\mathbf{X} + \text{vec}^{-1}(\tilde{\mathbf{A}} \text{vec}(\mathbf{X})) \right) \right] + \mathbf{B}, \quad (35)$$

where $\tilde{\mathbf{A}} = (\mathbf{A}^o + \mathbf{I}) \otimes (\mathbf{A}^a + \mathbf{I})$ follows from Definition 5.1. Vectorizing both sides of yields

$$\dot{\mathbf{x}} = -d\mathbf{x} + \tanh \left[u \left((\alpha - 1)\mathbf{x} + \tilde{\mathbf{A}}\mathbf{x} \right) \right] + \mathbf{b}, \quad (36)$$

where $\mathbf{x} = \text{vec}(\mathbf{X})$, and $\mathbf{b} = \text{vec}(\mathbf{B})$. We obtain the general nonlinear opinion dynamics in the form of Equation (12). By vectorizing \mathbf{X} , each agent opinion on an option is treated as an individual agent-like entity, thereby reducing the original dynamics to the form where options are uncorrelated. \square

1026 A.2.2 LEMMA 5.3
10271028 *The leading eigenvalue of the effective adjacency matrix $\tilde{\mathbf{A}}$ is $\lambda_{\max}^{\tilde{a}} = 4$.*
10291030 *Proof.* Since both the communication adjacency matrix \mathbf{A}^a and the belief adjacency matrix \mathbf{A}^o
1031 are right stochastic, their leading eigenvalues are equal to one (i.e., $\lambda_{\max}^a = \lambda_{\max}^o = 1$). Since
1032 $\tilde{\mathbf{A}} = (\mathbf{A}^o + \mathbf{I}) \otimes (\mathbf{A}^a + \mathbf{I})$, its leading eigenvalue is equal to $\lambda_{\max}^{\tilde{a}} = (\lambda_{\max}^a + 1)(\lambda_{\max}^o + 1) = 4$. \square
10331034 A.2.3 LEMMA 5.4: BIFURCATION POINT u^*
10351036 *The bifurcation point u^* of the attention-opinion bifurcation diagram is equal to $d/(\alpha - 1 + \lambda_{\max}^{\tilde{a}})$.*
10371038 *Proof.* The bifurcation point of the attention-opinion bifurcation diagram, i.e., the point where the
1039 number and/or stability of the solutions change, occurs when the input parameter \mathbf{B} is equal to zero.
1040 Following Leonard et al. (2024), we use a linear analysis to determine the bifurcation point of the
1041 attention-opinion bifurcation diagram. The linearization of the nonlinear opinion dynamics model
1042 (Equation (36)) is given by $\dot{\boldsymbol{\omega}} = J(\mathbf{x}_e) \boldsymbol{\omega}$, where $J(\mathbf{x}_e)$ is the Jacobian evaluated at the equilibrium
1043 \mathbf{x}_e , and $\boldsymbol{\omega} = \mathbf{x} - \mathbf{x}_e$. At the equilibrium $\mathbf{x}_e = \mathbf{0}$, the Jacobian is given by
1044

1045
$$\mathbf{J} = (-d + u(\alpha - 1))\mathbf{I} + u\tilde{\mathbf{A}}. \quad (37)$$

1046

1047 The eigenvalue of the Jacobian determines the equilibrium stability. Denoting the eigenvalue of $\tilde{\mathbf{A}}$,
1048 $\lambda^{\tilde{a}}$, the eigenvalue of the Jacobian can be expressed,
1049

1050
$$\lambda' = -d + u(\alpha - 1) + u\lambda^{\tilde{a}}. \quad (38)$$

1051 The bifurcation point of the attention-opinion bifurcation diagram occurs when the dominant eigen-
1052 value of the Jacobian is zero, reaching the upper bound for stability of the equilibrium \mathbf{x}_e . As
1053 u continues to increases and the dominant eigenvalue becomes positive, the equilibrium \mathbf{x}_e be-
1054 come unstable and a bifurcation emerges. Solving for the critical value of the attention yields
1055 $u^* = d/(\alpha - 1 + \lambda_{\max}^{\tilde{a}})$. \square
10561057 A.2.4 LEMMA 5.5: BIMP CONVERGES TO EQUILIBRIUM
10581059 *A BIMP model with time-independent input parameter \mathbf{B} , converges to an equilibrium.*1060 *Proof.* Due to the monotonicity of our BIMP model, the opinions are guaranteed to converge to an
1061 equilibrium. Without loss of generality, consider the case where the graph is undirected and the
1062 system has only one option (i.e., $\mathbf{A}^o = 0$ with no interrelationship between options),
1063

1064
$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh\left[u(\mathbf{A}^a\mathbf{X} + \alpha\mathbf{X})\right] + \mathbf{B}. \quad (39)$$

1065

1066 Let \mathbf{p} be an permutation matrix that re-index our system into block diagonal form
1067

1068
$$\hat{\mathbf{A}}^a = \mathbf{P}\mathbf{A}^a\mathbf{P}^\top = \begin{bmatrix} \mathbf{A}_{11} & 0 & 0 & 0 \\ 0 & \mathbf{A}_{22} & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \mathbf{A}_{nn} \end{bmatrix}, \quad \hat{\mathbf{X}} = \mathbf{P}\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_n \end{bmatrix}, \quad \hat{\mathbf{B}} = \mathbf{P}\mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_n \end{bmatrix}, \quad (40)$$

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

where \mathbf{A}_{nn} are irreducible blocks or zero matrices. Considering \mathbf{p} is an orthonormal vector, \mathbf{A}^a and
1074 \mathbf{X} can be expressed as
1075

1076
$$\mathbf{A}^a = \mathbf{P}^\top \hat{\mathbf{A}}^a \mathbf{P}, \quad \mathbf{X} = \mathbf{P}^\top \hat{\mathbf{X}}, \quad \mathbf{B} = \mathbf{P}^\top \hat{\mathbf{B}}. \quad (41)$$

1077

Substituting \mathbf{A}^a and \mathbf{X} with $\hat{\mathbf{A}}^a$ and $\hat{\mathbf{X}}$ respectively in Equation (39) yields
1078

1079
$$\mathbf{P}^\top \dot{\hat{\mathbf{X}}} = -d\mathbf{P}^\top \hat{\mathbf{X}} + \tanh\left[u(\mathbf{P}^\top \hat{\mathbf{A}}^a \mathbf{P} \mathbf{P}^\top \hat{\mathbf{X}} + \alpha \mathbf{P}^\top \hat{\mathbf{X}})\right] + \mathbf{P}^\top \hat{\mathbf{B}}, \quad (42)$$

$$1080 \quad = \mathbf{P}^\top (-d\hat{\mathbf{X}}) + \mathbf{P}^\top \tanh \left[u(\hat{\mathbf{A}}^a \hat{\mathbf{X}} + \alpha \hat{\mathbf{X}}) \right] + \mathbf{P}^\top \hat{\mathbf{B}}, \quad (43)$$

$$1081$$

$$1082$$

1083 and multiplying \mathbf{P} on both sides

$$1084 \quad \dot{\hat{\mathbf{X}}} = -d\hat{\mathbf{X}} + \tanh \left[u(\hat{\mathbf{A}}^a \hat{\mathbf{X}} + \alpha \hat{\mathbf{X}}) \right] + \hat{\mathbf{B}}. \quad (44)$$

$$1085$$

$$1086$$

1087 Leveraging the block diagonal form, Equation (44) can be decoupled into

$$1088 \quad \dot{\mathbf{X}}_m = -d\mathbf{X}_m + \tanh \left[u(\mathbf{A}_{mm} \mathbf{X}_m + \alpha \mathbf{X}_m) \right] + \mathbf{B}_m. \quad (45)$$

$$1089$$

$$1090$$

1091 where the convergence of each subsystem $\dot{\mathbf{X}}_m = f_m(\mathbf{X}_m)$, $1 \leq m \leq n$ can be examined individually.
1092 The Jacobian of subsystem $\dot{\mathbf{X}}_m = f_m(\mathbf{X}_m)$ is defined as

$$1093 \quad \mathbf{J}_m(\mathbf{X}_m) = \frac{\partial f_m(\mathbf{X}_m)}{\partial \mathbf{X}_m} = -d\mathbf{I} + \mathbf{1} \text{vec} \left(\text{sech}^2(u(\mathbf{A}_{mm} \mathbf{X}_m + \alpha \mathbf{X}_m)) \right)^\top \circ [u((\mathbf{A}_{mm} \otimes \mathbf{I}) + \alpha \mathbf{I})], \quad (46)$$

$$1094$$

$$1095$$

1096 where \mathbf{I} is the identity matrix, $\mathbf{1}$ the all-ones vector and vec is the vectorization. \circ is Hadamard
1097 product. Each subsystem and their associated Jacobian satisfies

$$1098$$

- 1099 • **Cooperative.** Since $\text{sech} \in (0, 1]$, \mathbf{A}_{mm} are positive matrices (as it is the output of a
1100 softmax function) and $\alpha \geq 0$, $\mathbf{J}_m(\mathbf{X}_m)$ is a Metzler matrix in which all the off-diagonal
1101 elements are non-negative. This implies that $\mathbf{J}_m(\mathbf{X}_m)$ is *cooperative* and the subsystem
1102 $\dot{\mathbf{X}}_m = f_m(\mathbf{X}_m)$ is monotone Hirsch (1985).
- 1103 • **Irreducible.** As \mathbf{A}_{mm} is constructed to be irreducible, $((\mathbf{A}_{mm} \otimes \mathbf{I}) + \alpha \mathbf{I})$ remains irreducible
1104 and hence the Jacobian $\mathbf{J}_m(\mathbf{X}_m)$ is *irreducible*.
- 1105 • **Compact closure.** The existence of the damping term d in subsystem $\dot{\mathbf{X}}_m = f_m(\mathbf{X}_m)$
1106 ensure the forward orbit has compact closure (i.e., bounded).

$$1107$$

$$1108$$

1109 If the Jacobian for a continuous dynamical system $\dot{x} = f(x, t)$ is cooperative and irreducible, then it
1110 approaches the equilibrium for almost every point x whose forward orbit has compact closure Hirsch
1111 (1985). Since the Jacobian $\mathbf{J}_m(\mathbf{X}_m)$ for each subsystem $\dot{\mathbf{X}}_m = f_m(\mathbf{X}_m)$ satisfies this condition,
1112 almost every state \mathbf{X}_m approaches the equilibrium set. Therefore the dynamical system defined
1113 in Equation (39) converges to an equilibrium set. As all trajectories tend towards the equilibrium
1114 solution, analyzing the equilibrium behavior is sufficient to understand the underlying dynamics of
1115 our BIMP model.

1116 If there are more than one option in the system (i.e., $\mathbf{A}^o \neq [0]$), the vectorized system defined in
1117 Equation (36) can be shown analogously to converge to its equilibrium set. \square

$$1118$$

$$1119$$

A.2.5 THEOREM 5.6: DISENSUS IN BIMP

1120 *BIMP will not exhibit oversmoothing when the input parameter \mathbf{B} is time-independent with unique
1121 entries.*

$$1122$$

1123 *Proof.* Without loss of generality, consider the case where the graph is undirected and the system has
1124 only one option (i.e., $\mathbf{A}^o = \mathbf{0}$). By Definition 5.1, the effective adjacency matrix becomes

$$1125$$

$$1126 \quad \tilde{\mathbf{A}} = \mathbf{1} \otimes (\mathbf{A}^a + \mathbf{I}) = \mathbf{A}^a + \mathbf{I}. \quad (47)$$

$$1127$$

1128 Consider that $\mathbf{x} = [x_1, x_2, \dots, x_{N_a}]^\top$, we can decouple the dynamical equation of x_i from Equation
1129 such that

$$1129 \quad \dot{x}_i = -dx_i + \tanh(u(\tilde{\alpha}x_i + \tilde{\mathbf{a}}_i \mathbf{x})) + b_i, \quad (48)$$

$$1130$$

1131 where $\tilde{\mathbf{a}}_i$ is the i -th row of $\tilde{\mathbf{A}}$ and b_i is the i -th element of \mathbf{b} . Assume \mathbf{x} converges to consensus such
1132 that $x_1 = x_2 = \dots = x_{N_a} = \bar{x}$. For any pair x_m and x_n , $m \neq n$ with corresponding input $b_m \neq b_n$,
1133 their dynamical equations are

$$1134 \quad \dot{x}_m = -dx_m + \tanh(u(\tilde{\alpha}x_m + \tilde{\mathbf{a}}_m \mathbf{x})) + b_m, \quad (49)$$

$$1135$$

1134 $\dot{x}_n = -dx_n + \tanh(u(\tilde{\alpha}x_n + \tilde{\mathbf{a}}_n \mathbf{x})) + b_n.$ (50)

1135
1136 We observe that

1137 $-dx_m = -dx_n = -d\bar{x},$ (51)

1138 $-\tilde{\alpha}x_m = -\tilde{\alpha}x_n = -\tilde{\alpha}\bar{x},$ (52)

1139 and

1140 $\tilde{\mathbf{a}}_m \mathbf{x} = \tilde{\mathbf{a}}_n \mathbf{x} = 2\bar{x},$ (53)

1141 due to $\tilde{\mathbf{a}}_m$ and $\tilde{\mathbf{a}}_n$ being right stochastic. However, since $b_m \neq b_n$, the right hand side of Equation
1142 and Equation (50) cannot be 0 at the same time. Therefore, by contradiction, consensus cannot
1143 be the equilibrium for BIMP if $b_m \neq b_n$. If \mathbf{b} has unique elements, the equilibrium of the system
1144 forms dissensus and avoids oversmoothing.

1145 If there are more than one option in the system (i.e., $\mathbf{A}^o \neq \mathbf{0}$), formation of dissensus is still possible
1146 since \mathbf{A}^o is also right stochastic. \square

1147 A.2.6 THEOREM 5.7: BIMP HAS WELL BEHAVED GRADIENTS

1148 **| BIMP gradients are upper bounded and do not vanish exponentially.**

1149 *Proof.* For simplicity, consider the forward Euler method for integration of the dynamics defined by
1150 Equation (11) such that

1151 $\mathbf{X}^t = \mathbf{X}^{t-1} + \Delta t \dot{\mathbf{X}}^{t-1},$ (54)

1152 $\mathbf{X}^0 = \phi(\mathbf{X}_{\text{in}}) = \mathbf{W} \mathbf{X}_{\text{in}},$ (55)

1153 where Δt is the numerical integration step size, $\mathbf{X}^t \in \mathbb{R}^{N_a \times N_o}$ are the features at time $t \in [1154$
1155 $[\Delta t, 2\Delta t, \dots, M\Delta t]$, and $\mathbf{X}_{\text{in}} \in \mathbb{R}^{N_a \times f}$ are the input features. For the simplicity, we assume
1156 a linear encoder ϕ parameterized by learnable weights \mathbf{W} . Similar to existing continuous depth
1157 GNNs, the total steps of ODE integrations M is interpreted as the number of layers of a model.
1158 Consider a node classification task using BIMP subject to mean squared error loss

1159 $\mathcal{L}(\mathbf{W}) = \frac{1}{2N_a N_o} \sum_{i=1}^{N_a} \sum_{j=1}^{N_o} (x_{ij}^M - \hat{x}_{ij})^2,$ (56)

1160 where x_{ij}^M is an element of the learned features \mathbf{X}^M at layer M and \hat{x}_{ij} is an element of the ground
1161 truth $\hat{\mathbf{X}}$. Consider all intermediate layers where $t \in [\Delta t, 2\Delta t, \dots, M\Delta t]$, the gradient descent
1162 equation can be constructed as

1163 $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^M} \frac{\partial \mathbf{X}^M}{\partial \mathbf{X}^1} \frac{\partial \mathbf{X}^1}{\partial \mathbf{X}^0} \frac{\partial \mathbf{X}^0}{\partial \mathbf{W}},$ (57)

1164 where

1165 $\frac{\partial \mathbf{X}^M}{\partial \mathbf{X}^1} = \prod_{t=2}^M \frac{\partial \mathbf{X}^t}{\partial \mathbf{X}^{t-1}}.$ (58)

1166 With increasing depth (i.e., $M \rightarrow \infty$), this repeated multiplication leads to gradient exploding
1167 (vanishing) when the components $\frac{\partial \mathbf{X}^t}{\partial \mathbf{X}^{t-1}} > \mathbf{I}$ ($\frac{\partial \mathbf{X}^t}{\partial \mathbf{X}^{t-1}} < \mathbf{I}$). The BIMP model provides
1168 an upper and lower bound on gradients in Lemma A.3 and A.4 to guarantee exploding or vanish
1169 gradients cannot occur. \square

1170 **| Lemma A.3.** *BIMP gradients are upper bounded when the step-size $\Delta t \ll 1$ and damping term
1171 $d < 1/\Delta t$.*

1172 *Proof.* Consider integrating BIMP with the forward Euler scheme defined in Equation (54) and (55)
1173 with fixed hyper parameters $\tilde{\alpha} = \alpha - 1$ and $u = d/\tilde{\alpha} + 4$,

1174
$$\mathbf{X}^t = \mathbf{X}^{t-1} + \Delta t \left(-d\mathbf{X}^{t-1} + \tanh \left[u \left(\tilde{\alpha} \mathbf{X}^{t-1} + (\mathbf{A}^a + \mathbf{I}) \mathbf{X}^{t-1} (\mathbf{A}^{o\top} + \mathbf{I}) \right) \right] + \mathbf{X}^0 \right) \quad (59)$$

$$1188 \quad = (1 - d\Delta t)\mathbf{X}^{t-1} + \Delta t \tanh \left[u \left(\tilde{\alpha} \mathbf{X}^{t-1} + (\mathbf{A}^a + \mathbf{I}) \mathbf{X}^{t-1} (\mathbf{A}^{o\top} + \mathbf{I}) \right) \right] + \Delta t \mathbf{X}^0, \quad (60)$$

1189 with initial feature embedding

$$1190 \quad \mathbf{X}^0 = \phi(\mathbf{X}_{\text{in}}) = \mathbf{X}_{\text{in}} \mathbf{W}. \quad (61)$$

1191 Vectorizing Equation (60) and (61) yields

$$1194 \quad \mathbf{x}^t = (1 - d\Delta t)\mathbf{x}^{t-1} + \Delta t \tanh \left[u \left(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}} \right) \mathbf{x}^{t-1} \right] + \Delta t \mathbf{x}^0, \quad (62)$$

$$1195 \quad \mathbf{x}^0 = \tilde{\mathbf{W}} \mathbf{x}_{\text{in}}, \quad (63)$$

1196 where $\tilde{\mathbf{A}} = (\mathbf{A}^o + \mathbf{I}) \otimes (\mathbf{A}^a + \mathbf{I})$, $\tilde{\mathbf{W}} = \mathbf{W}^\top \otimes \mathbf{I}_{N_a}$, and $\mathbf{x}^t = [x_1^t, x_2^t, \dots, x_{N_a \times N_o}^t]^\top$. Reformulating
1197 gradient calculation in Equation (57) subject to loss function defined in Equation (56) with respect to
1198 the vectorized variables gives

$$1202 \quad \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} \frac{\partial \mathbf{x}^1}{\partial \mathbf{x}^0} \frac{\partial \mathbf{x}^0}{\partial \tilde{\mathbf{W}}}, \quad (64)$$

$$1204 \quad \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} = \prod_{t=2}^M \frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}}, \quad (65)$$

1207 where the upper bound for $\left\| \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} \right\|_\infty$, $\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} \right\|_\infty$, $\left\| \frac{\partial \mathbf{x}^1}{\partial \mathbf{x}^0} \right\|_\infty$ and $\left\| \frac{\partial \mathbf{x}^0}{\partial \tilde{\mathbf{W}}} \right\|_\infty$ can be found individually
1208 and are summarized in Equation (78), (84), (86), and (87) respectively.

1209 Consider the first term $\left\| \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} \right\|_\infty$ and recalling that

$$1212 \quad \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} = \prod_{t=2}^M \frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}}. \quad (66)$$

1215 By inspecting each term $\frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}}$, it follows that

$$1217 \quad \frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}} = (1 - d\Delta t)\mathbf{I} + \Delta t \mathbf{1} \left[\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \mathbf{x}^{t-1} \right) \right]^\top \circ \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \right), \quad (67)$$

1220 where $\mathbf{1} \left[\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \mathbf{x}^{t-1} \right) \right]^\top$ represents a matrix repeating the vector
1221 $\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \mathbf{x}^{t-1} \right)$ along the row dimension. \circ is the Hadamard product. As $\text{sech}(\cdot) \in (0, 1]$,
1222 we can leverage the triangle identity to obtain an upper bound

$$1225 \quad \left\| \frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}} \right\|_\infty \leq \left\| (1 - d\Delta t)\mathbf{I} + u\Delta t(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \right\|_\infty \quad (68)$$

$$1227 \quad \leq \left\| (1 - d\Delta t)\mathbf{I} \right\|_\infty + u\Delta t \left\| \tilde{\alpha} \right\|_\infty + u\Delta t \left\| \tilde{\mathbf{A}} \right\|_\infty. \quad (69)$$

1229 Since $u = d/\alpha + 3$, $\tilde{\alpha} = \alpha - 1$, $d > 0$, $\alpha \geq 0$, it follows that

$$1231 \quad u\Delta t \left\| \tilde{\alpha} \right\|_\infty = \frac{d}{\alpha + 3} \Delta t \left\| \alpha - 1 \right\| < d\Delta t. \quad (70)$$

1233 Since $\tilde{\mathbf{A}} = (\mathbf{A}^o + \mathbf{I}) \otimes (\mathbf{A}^a + \mathbf{I})$ from Definition 5.1 and given that \mathbf{A}^a and \mathbf{A}^o are right stochastic,
1234 it follows that

$$1235 \quad \left\| \tilde{\mathbf{A}} \right\|_\infty < 4. \quad (71)$$

1236 Therefore, Equation (69) can be further bounded by Equation (70) and (71) as

$$1238 \quad \left\| \frac{\partial \mathbf{x}^t}{\partial \mathbf{x}^{t-1}} \right\|_\infty \leq \left\| (1 - d\Delta t)\mathbf{I} \right\|_\infty + d\Delta t + 4u\Delta t, \quad (72)$$

$$1240 \quad < (1 - d\Delta t) + d\Delta t + 4u\Delta t, \quad (73)$$

$$1241 \quad < 1 + 4u\Delta t. \quad (74)$$

1242 Since we assume $\Delta t \ll 1$, it follows that
 1243

$$(1 + 4u\Delta t)^{M-1} = 1 + 4(M-1)u\Delta t + \mathcal{O}(\Delta t^2), \quad (75)$$

$$\approx 1 + 4(M-1)u\Delta t, \quad (76)$$

$$< 1 + 4Mu\Delta t. \quad (77)$$

1247 Finally, the term is upper bounded as
 1248

$$\left\| \frac{\partial \mathbf{x}^M}{\partial \mathbf{x}^1} \right\|_\infty \leq 1 + 4Mu\Delta t. \quad (78)$$

1252 Consider the second term $\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} \right\|_\infty$
 1253

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} = \frac{1}{N_a N_o} \text{diag}(\mathbf{x}^M - \hat{\mathbf{x}}), \quad (79)$$

1254 where $\text{diag}(\mathbf{x}^M - \hat{\mathbf{x}})$ is a diagonal matrix with vector entry $\mathbf{x}^M - \hat{\mathbf{x}}$ on the diagonal and $\hat{\mathbf{x}} = \text{vec}(\hat{\mathbf{X}})$.
 1255 Taking the absolute value of Equation (62) and recalling $\tanh(\cdot) \in (-1, 1)$, it follows that
 1256

$$|x_i^M| \leq (1 - d\Delta t)|x_i^{M-1}| + (1 + |x_i^0|)\Delta t. \quad (80)$$

1260 Therefore, recursively it can be shown that
 1261

$$|x_i^M| \leq (1 - d\Delta t)^M |x_i^0| + \left(\sum_{p=0}^{M-1} (1 - d\Delta t)^p \right) (1 + |x_i^0|)\Delta t, \quad (81)$$

$$\leq |x_i^0| + M(1 + |x_i^0|)\Delta t. \quad (82)$$

1266 Taking ∞ -norm of Equation (79) yields
 1267

$$\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} \right\|_\infty \leq \frac{1}{N_a N_o} (\|\mathbf{x}^M\|_\infty + \|\hat{\mathbf{x}}\|_\infty). \quad (83)$$

1271 Substituting Equation (82) into Equation (83) result in the upper bound
 1272

$$\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{x}^M} \right\|_\infty \leq \frac{1}{N_a N_o} (M\Delta t + (1 + M\Delta t)\|\mathbf{x}^0\|_\infty + \|\hat{\mathbf{x}}\|_\infty). \quad (84)$$

1275 Consider the third term $\left\| \frac{\partial \mathbf{x}^1}{\partial \mathbf{x}^0} \right\|_\infty$. Since the input term \mathbf{x}^0 contributes to the differential defined in
 1276 Equation (60), it follows that the upper bound can be derived as
 1277

$$\frac{\partial \mathbf{x}^1}{\partial \mathbf{x}^0} = \left(1 - (d-1)\Delta t \right) \mathbf{I} + \Delta t \mathbf{1} \left[\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \mathbf{x}^0 \right) \right]^\top \circ \left(u(\tilde{\alpha} \mathbf{I} + \tilde{\mathbf{A}}) \right), \quad (85)$$

$$\left\| \frac{\partial \mathbf{x}^1}{\partial \mathbf{x}^0} \right\|_\infty < 1 + (4u + 1)\Delta t. \quad (86)$$

1283 Consider the fourth term $\left\| \frac{\partial \mathbf{x}^0}{\partial \tilde{\mathbf{W}}} \right\|_\infty$, the upper bound can be defined as
 1284

$$\left\| \frac{\partial \mathbf{x}^0}{\partial \tilde{\mathbf{W}}} \right\|_\infty = \|\mathbf{x}_{\text{in}}\|_\infty. \quad (87)$$

1289 Combining Equation (78), (84), (86), and (87), it follows that the upper bound for gradient calculations of BIMP is
 1290

$$\left\| \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}} \right\|_\infty < \frac{1}{N_a N_o} \left(M\Delta t + (1 + M\Delta t)\|\mathbf{x}^0\|_\infty + \|\hat{\mathbf{x}}\|_\infty \right) \left(1 + 4Mu\Delta t \right) \left(1 + (4u + 1)\Delta t \right) \|\mathbf{x}_{\text{in}}\|_\infty. \quad (88)$$

1294 By designing hyperparameters
 1295

$$\beta = M\Delta t, \quad (89)$$

$$1296 \quad \gamma = (1 + 4Mu\Delta t) (1 + (4u + 1)\Delta t), \quad (90)$$

1298 the upper bound defined in Equation (88) can be simplified as

$$1299 \quad 1300 \quad \left\| \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}} \right\|_{\infty} < \frac{1}{N_a N_o} (\beta + (1 + \beta) \|\mathbf{x}^0\|_{\infty} + \|\hat{\mathbf{x}}\|_{\infty}) \gamma \|\mathbf{x}_{\text{in}}\|_{\infty}. \quad (91)$$

1302 Consider that \mathbf{W} and $\tilde{\mathbf{W}}$ have the same elements, $\|\frac{\partial \mathcal{L}}{\partial \mathbf{W}}\|_{\infty} = \|\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}}\|_{\infty}$ and therefore

$$1304 \quad 1305 \quad \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{W}} \right\|_{\infty} < \frac{1}{N_a N_o} (\beta + (1 + \beta) \|\mathbf{x}^0\|_{\infty} + \|\hat{\mathbf{x}}\|_{\infty}) \gamma \|\mathbf{x}_{\text{in}}\|_{\infty}. \quad (92)$$

1306 which indicates that the gradients are upper bounded regardless of network depth and avoids exploding
1307 gradients. \square

Lemma A.4. *BIMP gradients will not vanish exponentially when the step-size $\Delta t \ll 1$ and the damping term $d < 1/\Delta t$.*

1313 *Proof.* From Equation (57), the terms $\frac{\partial \mathbf{X}^M}{\partial \mathbf{X}^1}$, $\frac{\partial \mathbf{X}^1}{\partial \mathbf{X}^0}$, $\frac{\partial \mathcal{L}}{\partial \mathbf{X}^M}$, and $\frac{\partial \mathbf{X}^0}{\partial \mathbf{W}}$ can be individually reformulated
1314 as a recursive summation operation and are summarized in Equation (93), (95), (99), and (100)
1315 respectively.

1316 Consider the term $\frac{\partial \mathbf{X}^M}{\partial \mathbf{X}^1}$, which can be expressed as

$$1318 \quad 1319 \quad \frac{\partial \mathbf{X}^t}{\partial \mathbf{X}^{t-1}} = \mathbf{I} + \Delta t \mathbf{E}_{t-1}, \quad (93)$$

1321 where

$$1322 \quad 1323 \quad \mathbf{E}_{t-1} = -d\mathbf{I} + \mathbf{1} \left[\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{X}^{t-1} + (\mathbf{A}^a + \mathbf{I}) \mathbf{X}^{t-1} (\mathbf{A}^{o\top} + \mathbf{I})) \right) \right]^{\top} \\ 1324 \quad 1325 \quad \circ u \left[\tilde{\alpha} \mathbf{I} + \left(\mathbf{I} \otimes (\mathbf{A}^o + \mathbf{I}) \right) \left((\mathbf{A}^a + \mathbf{I}) \otimes \mathbf{I} \right) \right]. \quad (94)$$

1327 Consider the term $\frac{\partial \mathbf{X}^1}{\partial \mathbf{X}^0}$, which can be reformulated as

$$1329 \quad 1330 \quad \frac{\partial \mathbf{X}^1}{\partial \mathbf{X}^0} = \mathbf{I} + \Delta t \mathbf{E}_0, \quad (95)$$

1332 where

$$1333 \quad 1334 \quad \mathbf{E}_0 = (1 - d)\mathbf{I} + \mathbf{1} \text{vec} \left(\text{sech}^2 \left(u(\tilde{\alpha} \mathbf{X}^{t-1} + (\mathbf{A}^a + \mathbf{I}) \mathbf{X}^{t-1} (\mathbf{A}^{o\top} + \mathbf{I})) \right) \right)^{\top} \\ 1335 \quad 1336 \quad \circ u \left[\tilde{\alpha} \mathbf{I} + \left(\mathbf{I} \otimes (\mathbf{A}^o + \mathbf{I}) \right) \left((\mathbf{A}^a + \mathbf{I}) \otimes \mathbf{I} \right) \right]. \quad (96)$$

1338 Combining the previous two terms, it follows that

$$1340 \quad 1341 \quad \frac{\partial \mathbf{X}^M}{\partial \mathbf{X}^0} = \left(\mathbf{I} + \Delta t \mathbf{E}_{M-1} \right) \left(\mathbf{I} + \Delta t \mathbf{E}_{M-2} \right) \dots \left(\mathbf{I} + \Delta t \mathbf{E}_0 \right), \quad (97)$$

$$1343 \quad 1344 \quad = \mathbf{I}_n + \Delta t \left(\mathbf{E}_0 + \sum_{t=1}^{M-1} \mathbf{E}_t \right) + \mathcal{O}(\Delta t^2). \quad (98)$$

1346 Consider the term $\frac{\partial \mathcal{L}}{\partial \mathbf{X}^M}$

$$1347 \quad 1348 \quad \frac{\partial \mathcal{L}}{\partial \mathbf{X}^M} = \frac{1}{N_a N_o} \text{diag}(\mathbf{X}^M - \hat{\mathbf{X}}), \quad (99)$$

1349 where $\text{diag}(\mathbf{X}^M - \hat{\mathbf{X}})$ is a diagonal matrix with vector entry $\text{vec}(\mathbf{X}^M - \hat{\mathbf{X}})$ on the diagonal.

1350 Consider the term $\frac{\partial \mathbf{X}^0}{\partial \mathbf{W}}$

$$\frac{\partial \mathbf{X}^0}{\partial \mathbf{W}} = \mathbf{X}_{\text{in}} \otimes \mathbf{I}. \quad (100)$$

1353 Therefore, combining Equation (98), (99) and (100) yields

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^M} \left[\mathbf{I} + \Delta t \left(\mathbf{E}_0 + \sum_{i=1}^M \mathbf{E}_i \right) + \mathcal{O}(\Delta t^2) \right] \frac{\partial \mathbf{X}^0}{\partial \mathbf{W}}, \quad (101)$$

1358 which reformulates the gradient calculation into a recursive sum. This implies that the gradients will
1359 not vanish exponentially, but the gradients may still become very small. \square

B OTHER PROOFS

1363 We provide additional Lemmas to provide deeper insight into the theoretical properties of our BIMP
1364 model.

Lemma B.1 (Expressive capacity of BIMP). *BIMP can model more diverse node feature representations than approaches whose dynamics are equivalent to linear opinion dynamics.*

1369 *Proof.* Nonlinear systems can exhibit more complex behavior, such as multiple equilibria and
1370 bifurcations, than linear systems. Also, many continuous-depth GNNs Chamberlain et al. (2021a);
1371 Thorpe et al. (2022); Choi et al. (2023); Nguyen et al. (2024) lack a feature mixing mechanism. In
1372 contrast, BIMP introduces the option graph \mathcal{G}^o to enable feature mixing across dimensions, modeling
1373 more complex information exchange.

1374 To highlight the contributions of the intrinsic nonlinearity and the option graph \mathcal{G}^o , we compare BIMP
1375 with linear opinion dynamics as a representative baseline: linear opinion dynamics is a first-order
1376 approximation of BIMP without correlated options $\mathbf{A}^o = \mathbf{0}$.

1377 When attention parameter $u = 1$, input parameter $\mathbf{B} = \mathbf{0}$, and uncorrelated options $\mathbf{A}^o = \mathbf{0}$, the
1378 BIMP model has dynamics of the form

$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh(\alpha\mathbf{X} + \mathbf{A}^a\mathbf{X}). \quad (102)$$

1381 When $\mathbf{X} = \mathbf{0}$, $\dot{\mathbf{X}} = \mathbf{0}$, so $\mathbf{X} = \mathbf{0}$ is an equilibrium of the system. The first-order approximation of
1382 our model dynamics about this equilibrium is given by

$$\dot{\mathbf{X}} = (\mathbf{A}^a - c\mathbf{I})\mathbf{X}, \quad c = d - \alpha. \quad (103)$$

1385 When $c = 1$, this equation reduces to,

$$\dot{\mathbf{X}} = (\mathbf{A}^a - \mathbf{I})\mathbf{X}, \quad (104)$$

1389 which is of the same form as linear opinion dynamics in Equation (6). Since linear opinion dynamics
1390 has the same form as the first-order approximation of BIMP, we say BIMP has greater expressive
1391 capacity. \square

Lemma B.2 (Expressive capacity of BIMP can degrade). *The BIMP model reduces to a linear system when the attention parameter u is either very small or very large.*

1397 *Proof.* The degeneration to a linear model occurs under two settings: (1) when u is very small and the
1398 nonlinear term evaluates to 0; (2) or when u is very large such that the hyperbolic tangent saturates,
1399 and therefore the nonlinear term evaluates to ± 1 . \square

1401 To avoid both degenerate cases, we set the attention parameter u at the bifurcation point. Beyond the
1402 reasoning provided in Section 5.2, this lemma offers an additional perspective that placing u at the
1403 bifurcation point ensures that BIMP operates within the nonlinear regime of Equation (11), thereby
preserving its expressive capacity.

1404
 1405 **Lemma B.3** (Reduced order representation of BIMP). *When the input parameter \mathbf{B} is equal to*
 1406 *zero, the dynamics of BIMP can be approximated by the dynamics of the reduced one-dimensional*
 1407 *dynamical equation.*

$$1408 \quad \dot{y} = -d y + \tanh [u(\alpha + 3)y], \quad (105)$$

1409 *where $y = \langle \mathbf{x}, \mathbf{w}_{\max} \rangle \in \mathbb{R}$, and \mathbf{w}_{\max} is the left dominant eigenvector of $\tilde{\mathbf{A}}$.*

1410 *Proof.* Leveraging the Lyapunov-Schmit reduction, the BIMP dynamics can be projected onto a
 1411 one-dimensional critical subspace Leonard et al. (2024). The BIMP dynamics in Equation (12) can
 1412 be vectorized following Lemma 5.2 as
 1413

$$1414 \quad \dot{\mathbf{x}} = -d\mathbf{x} + \tanh \left[u \left((\alpha - 1)\mathbf{x} + \tilde{\mathbf{A}}\mathbf{x} \right) \right] + \mathbf{b}, \quad (106)$$

1415 where $\mathbf{x} = \text{vec}(\mathbf{X})$, and $\mathbf{b} = \text{vec}(\mathbf{B})$. Defining the right eigenvector matrix $\mathbf{T} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{N_a}]$
 1416 and the left eigenvector matrix $\mathbf{T}^{-1} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{N_a}]^\top$ of $\tilde{\mathbf{A}}$, Equation (106) can be expressed
 1417 in the new coordinates $\mathbf{x} = \mathbf{T}\mathbf{y}$ as
 1418

$$1419 \quad \dot{\mathbf{T}}\mathbf{y} = -d\mathbf{T}\dot{\mathbf{y}} + \tanh \left[u \left((\alpha - 1)\mathbf{T}\mathbf{y} + \tilde{\mathbf{A}}\mathbf{T}\mathbf{y} \right) \right]. \quad (107)$$

1420 Multiplying \mathbf{T}^{-1} on both sides gives
 1421

$$1422 \quad \dot{\mathbf{y}} = -d\dot{\mathbf{y}} + \mathbf{T}^{-1} \tanh \left[u \left((\alpha - 1)\mathbf{T}\mathbf{y} + \tilde{\mathbf{A}}\mathbf{T}\mathbf{y} \right) \right]. \quad (108)$$

1424 Consider that $c \tanh(x) \approx \tanh(cx)$ for small $|x|$, Equation (108) can be approximated by
 1425

$$1426 \quad \dot{\mathbf{y}} = -d\dot{\mathbf{y}} + \tanh \left[u \left((\alpha - 1)\mathbf{y} + \mathbf{T}^{-1}\tilde{\mathbf{A}}\mathbf{T}\mathbf{y} \right) \right]. \quad (109)$$

1428 Defining $\mathbf{\Lambda}$ as the diagonal matrix of eigenvalues of $\tilde{\mathbf{A}}$, Equation (109) can be further simplified by
 1429 decomposing $\tilde{\mathbf{A}} = \mathbf{T}\mathbf{\Lambda}\mathbf{T}^{-1}$
 1430

$$1431 \quad \dot{\mathbf{y}} = -d\dot{\mathbf{y}} + \tanh \left[u \left((\alpha - 1)\mathbf{y} + \mathbf{\Lambda}\mathbf{y} \right) \right]. \quad (110)$$

1433 Equation (110) approximates the dynamics of Equation (106) around $\mathbf{x} = \mathbf{0}$. By observing that
 1434 $\mathbf{x} = y_1\mathbf{v}_1 + y_2\mathbf{v}_2 + \dots + y_{N_a}\mathbf{v}_{N_a}$, we can further restrict the dynamics of BIMP to the critical
 1435 subspace $\text{Ker}(J) = \mathbf{v}_{\max} = \mathbf{v}_1$ through setting $y_2 = y_3 = \dots = y_{N_a} = 0$. As such, Equation (110)
 1436 simplifies into
 1437

$$y_1 = -dy_1 + \tanh [u((\alpha - 1)y_1 + \lambda_1 y_1)]. \quad (111)$$

1438 Substituting $\lambda_1 = \lambda_{\max}^{\tilde{a}} = 4$ from Proposition 5.3 and simplifying y_1 as y gives
 1439

$$\dot{y} = -dy + \tanh [u(\alpha + 3)y], \quad (112)$$

1440 which we define as the one-dimensional critical subspace for our model. The remaining eigenvectors
 1441 \mathbf{v}_i make up the regular subspace as their eigenvalues are smaller than 0. Systems on the regular
 1442 subspace vanishes quickly and does not contribute to the long-term behavior (i.e., convergence to
 1443 equilibrium). It is therefore sufficient to focus on the critical subspace to understand the dynamics of
 1444 the equilibrium as the regular subspace decays quickly. \square
 1445

1446 **Lemma B.4** (Formation of consensus in BIMP). *BIMP exhibits oversmoothing when the input*
 1447 *parameter \mathbf{B} is equal to zero.*

1448 *Proof.* For \mathbf{x} in the neighborhood of the equilibrium $\mathbf{x} = \mathbf{0}$, the Equation (105) in Lemma B.3 is
 1449 isomorphic to
 1450

$$\dot{y} = (u(\alpha + 3) - d)y - u(\alpha + 3)y^3. \quad (113)$$

1451 At the bifurcation point $u = \frac{d}{\alpha+3}$, Equation (113) has unique equilibrium $y = 0$.
 1452

1453 This corresponds to an equilibrium solution of $\mathbf{x} = \mathbf{0}$ in the original system (Equation (36)) which
 1454 means that $\mathbf{X} = \mathbf{0}$ and all agents form neutral opinions for all options. Since the opinions of all
 1455 agents have converged, the system has reached consensus (i.e., exhibits oversmoothing). \square
 1456

1457 This lemma indicates that BIMP requires an appropriately chosen input term \mathbf{B} to avoid converging
 1458 to consensus, as discussed in Theorem 5.6.

1458 C DATASETS
14591460 C.1 HOMOPHILIC DATASETS
1461

1462 Table 2 in Section 6.2 performs semi-supervised node classification task on the Cora McCallum et al.
 1463 (2000), Citeseer Sen et al. (2008), Pubmed Namata et al. (2012), CoauthorCS Shchur et al. (2018) and
 1464 Amazon Computers and Photo McAuley et al. (2015) homophilic datasets. Recent continuous-depth
 1465 models such as GRAND- ℓ and KuramotoGNN make use of the largest connected component (LCC)
 1466 of the datasets, which discards smaller subgraphs. However, Wu et al. (2022) theoretically analyzes
 1467 that, for dense graphs, the number of GNN layers required to trigger oversmoothing decreases as
 1468 the graph size shrinks. This creates a trade-off between avoiding smaller components to oversmooth
 1469 and building deep enough models for expressivity. Instead, since our BIMP is designed to mitigate
 1470 oversmoothing across all parts of graphs, we retain the full graph and show that BIMP maintains
 1471 stable performance.

1472 **Cora.** The Cora dataset contains a citation graph where 2708 computer science publications are
 1473 connected by 5278 citation edges. Each publication has an 1433-dimensional bag-of-words vector de-
 1474 rived from a paper keyword dictionary. Publications are classified into one of 7 classes corresponding
 1475 to their primary research area.

1476 **Citeseer.** The Citeseer dataset contains a citation graph where 3312 computer science publications
 1477 are connected by 4552 citation edges. Each publication has a 3703-dimensional bag-of-words
 1478 vector derived from a paper keyword dictionary. Publications are classified into one of 6 classes
 1479 corresponding to their primary research area.

1480 **Pubmed.** The Pubmed dataset contains a citation graph where 19717 biomedical publications are
 1481 connected by 44324 citation edges. Each publication is represented by a 500-dimensional TF/IDF
 1482 weighted word vector derived from a paper keyword dictionary. Publications are classified into one
 1483 of 3 classes corresponding to their primary research area.

1485 **CoauthorCS.** The CoauthorCS dataset is one segment of the Coauthor Graph datasets that contains a
 1486 co-authorship graph that consist of 18333 authors and connected by 81894 co-authorship edges. Each
 1487 author is represented by a 6805-dimensional bag-of-words feature vector derived from their paper
 1488 keywords. Authors are classified into one of 15 classes corresponding to their primary research area.

1489 **Amazon Computers.** The Amazon Computers dataset, denoted as Computers in our paper, contains
 1490 a co-purchase graph where 13381 computer products are connected by 81894 edges. The edges
 1491 indicate that two products are frequently bought. Each product is represented by a 767-dimensional
 1492 bag-of-words feature vector derived from their product reviews. Products are classified into one of 10
 1493 classes corresponding to their product categories.

1494 **Amazon Photo.** The Amazon Photo dataset, denoted as Photo in our paper, contains a co-purchase
 1495 graph where 7487 photo products are connected by 119043 edges. The edges indicate that two
 1496 products are frequently bought. Each product is represented by a 745-dimensional bag-of-words
 1497 feature vector derived from their product reviews. Products are classified into one of 8 classes
 1498 corresponding to their product categories.

1500 C.2 HETEROPHILIC DATASETS
1501

1502 Table 6 in Section 6.2 performs semi-supervised node classification task on the Texas, Wisconsin,
 1503 and Cornell heterophilic datasets from the CMU WebKB Craven et al. (1998) project.

1505 **Texas.** The Texas dataset contains a webpage graph where 183 web pages are connected by 325
 1506 hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
 1507 contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
 1508 content.

1509 **Wisconsin.** The Wisconsin dataset contains a webpage graph where 251 web pages are connected by
 1510 512 hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
 1511 contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
 content.

1512 **Cornell.** The Cornell dataset contains a webpage graph where 183 web pages are connected by
 1513 298 hyperlink edges. Each webpage has a 1703-dimensional bag-of-words vector derived from the
 1514 contents of the webpage. Webpages are classified into one of 5 classes corresponding to their primary
 1515 content.

1516 **Squirrel.** The Squirrel dataset contains a Wikipedia page-page network on squirrels where 5201
 1517 pages are connected by 217073 edges. Each webpage has a 2089-dimensional bag-of-words vector
 1518 derived from the contents of the webpage. Nodes are classified into one of 5 classes in term of the
 1519 number of the average monthly traffic of the web page.

1520 **Chameleon.** The Chameleon dataset contains a Wikipedia page-page network on chameleon where
 1521 2277 pages are connected by 36101 edges. Each webpage has a 2325-dimensional bag-of-words
 1522 vector derived from the contents of the webpage. Nodes are classified into one of 5 classes in term of
 1523 the number of the average monthly traffic of the web page.

1524 **Actor.** The Actor dataset contains the actor-only induced subgraph of the film-director-actor-writer
 1525 network where 7600 actors are connected by 30019 co-occurrence on Wikipedia. Each webpage
 1526 has a 932-dimensional bag-of-words vector derived from the contents of the webpage. Nodes are
 1527 classified into one of 5 classes in term of words of actor’s Wikipedia page.

1529

1530 C.3 LARGE GRAPHS

1531

1532 Table 7 in Appendix D.2.3 performs semi-supervised node classification task on the ogbn-arXiv Hu
 1533 et al. (2020) dataset. The ogbn-arXiv dataset consists of a single graph with 169,343 nodes and
 1534 1,166,243 edges where each node represents an arxiv paper, and edges represent citation relationships.
 1535 We train each model in a semi-supervised way, and compute the training loss over 90,941 of the
 1536 169,343 nodes. We use 29,799 of the remaining nodes for validation, and the final 48,603 nodes for
 1537 testing.

1538

1539

1540 D EXPERIMENT DETAILS

1541

1542 D.1 PERFORMANCE AT LARGE DEPTHS

1543

1544 D.1.1 CLASSIFICATION ACCURACY

1545

1546 Experiment 6.1: Classification accuracy evaluates the classification performance of BIMP and
 1547 continuous-depth baselines at different depths of $T = \{1, 2, 4, 8, 16, 32, 64, 128\}$ with 100 splits and
 1548 10 random seeds. We use the classification accuracy as a measure of the robustness to deep layers of
 1549 BIMP and baseline methods.

1550

1551 Figure 3 show the comparison of classification accuracy of BIMP and select continuous baseline
 1552 methods. Figure 5 show the comparison of classification accuracy of BIMP and additional baselines
 1553 and oversmoothing mitigation techniques, [including pairnorm \(Zhao & Akoglu, 2019\)](#) (denoted
 1554 -pairnorm) and [differentiable group normalization \(Zhou et al., 2020\)](#) (denoted -group). Specially, in
 1555 differentiable group normalization, we have the skip-connection as suggested in their paper.

1556

1557 Since adaptive step-size methods like Dormand–Prince (Dopri5) can result in inconsistent numbers
 1558 of integration steps, we implement the Euler method with fixed step size $\Delta t = 1$ for fair comparison.
 1559 Notably, BIMP outperforms GRAND $+\ell$ at significant depths, even though GRAND $+\ell$ only
 1560 supports Dormand–Prince (Dopri5).

1561

1562 Some baselines incorporate an additional learnable weight to scale the differential equation. For
 1563 instance, in GRAND $-\ell$, the implementation was modified as $\dot{\mathbf{x}} = \alpha[(A - I)\mathbf{x} + \beta\mathbf{x}(0)]$, where α
 1564 acts as a time-scaling factor. To eliminate its influence and ensure consistency, we set $\alpha = 1$ across
 1565 all methods.

1566

1567 For each method, we use the fine-tuned parameters provided by each baseline and fix the set of
 1568 hyperparameters across all depths. For all experiments, we run 100 train/valid/test splits for each
 1569 dataset with 10 random seeds for each split.

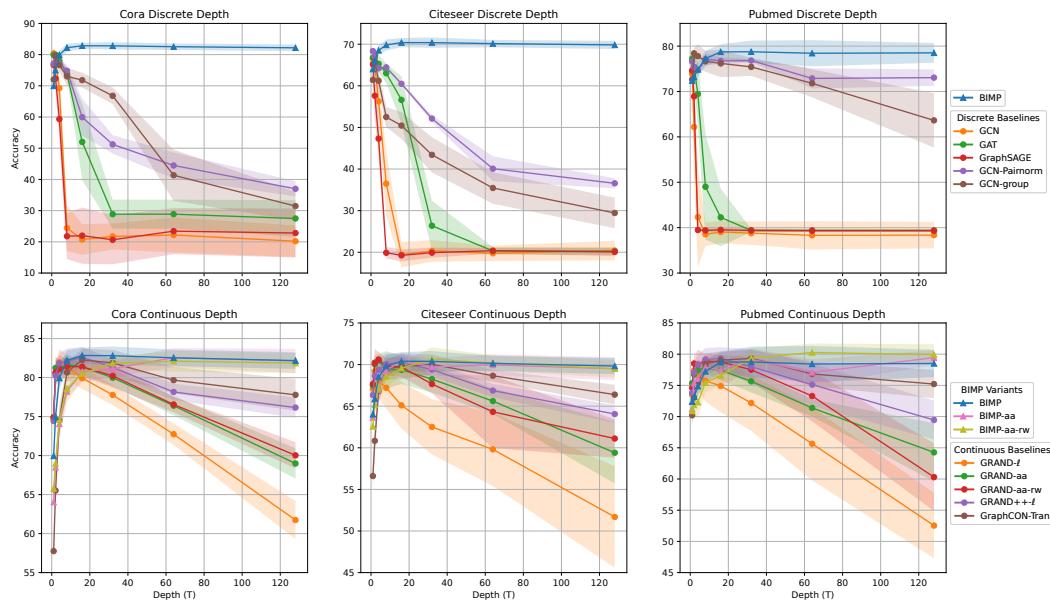


Figure 5: **Classification accuracy.** BIMP is designed to learn node representations that resist oversmoothing even for very large depths. We compare the classification accuracy of BIMP to baseline models for architectures with 1, 2, 4, 8, 16, 32, 64 and 128 timesteps. Our BIMP model and its variants are stable out to 128 timesteps, while baseline performance deteriorates after 32 timesteps.

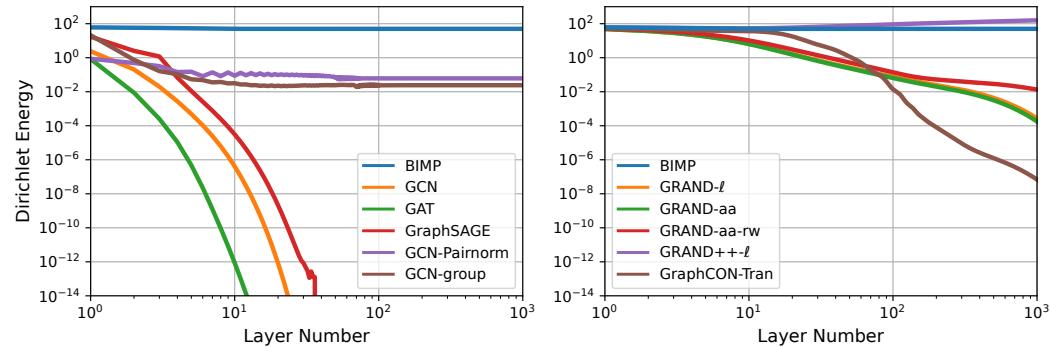


Figure 6: **Dirichlet energy.** BIMP is designed to learn node representations that resist oversmoothing even for very large depths. We compare the Dirichlet energy of node features over a range of network depths. The Dirichlet energy of BIMP remains stable even at very deep layers, while the energy of baseline modes does not.

D.1.2 DIRICHLET ENERGY

Experiment 6.1: Dirichlet energy illustrates the dynamics of the Dirichlet energy in BIMP and baseline methods, which indicates the similarity between the learned features. We randomly generate an undirected graph with 10 nodes each with 2-dimensional features sampled from $\mathcal{U}[0, 1]$. We randomly initialize the models with the same seed and the node features are propagated forward through 1000 layers.

Figure 3 show the comparison of Dirichlet energy of BIMP and select continuous baseline methods. Figure 6 show the comparison of Dirichlet energy of BIMP and additional baselines and oversmoothing mitigation techniques.

1620 D.2 CLASSIFICATION ACCURACY
16211622 D.2.1 CLASSIFICATION ACCURACY ON HOMOPHILIC DATASET
16231624 We demonstrate improved classification performance compared to GRAND- ℓ , GRAND++- ℓ , Ku-
1625 ramotoGNN, GraphCON, GAT, GCN and GraphSAGE. Additionally, we consider oversmoothing
1626 mitigation techniques of pairnorm Zhao & Akoglu (2019) (denoted -pairnorm) and differentiable
1627 group normalization Zhou et al. (2020) (denoted -group) and training methods of adaptive attention
1628 (denoted -aa) and rewiring with graph diffusion convolution Atwood & Towsley (2016) (denoted
1629 -rw). Classification performance on random splits is reported in Table 4, and performance on standard
1630 splits is reported in Table 5, where BIMP constantly outperforms baseline methods.
16311632 Table 4: **Classification accuracy on homophilic datasets.** Classification accuracies on the Cora,
1633 Citeseer, Pubmed, CoauthorCS, Computers, and Photo datasets are reported, where BIMP outper-
1634 forms competitive baselines. Results are averaged over 20 random initializations and 100 random
1635 train-validation-test splits.
1636

Dataset	Cora	Citeseer	Pubmed	CoauthorCS	Computers	Photo
BIMP	83.19±1.13	71.09±1.40	80.16±2.03	92.48±0.26	84.73±0.61	92.90±0.44
BIMP-aa	82.96±1.31	70.43±0.80	80.35±0.99	91.82±0.37	84.72±0.45	92.27±0.36
BIMP-aa-rw	82.59±1.06	70.51±1.37	78.56±1.12	91.97±0.37	84.76±0.23	92.92±0.19
GRAND- ℓ	82.20±1.45	69.89±1.48	78.19±1.88	90.23±0.91	82.93±0.56	91.93±0.39
GRAND-aa	82.59±0.28	70.21±1.21	78.39±1.95	91.44±0.42	83.09±1.71	92.50±0.53
GRAND-aa-rw	82.86±1.47	70.95±1.13	78.56±1.13	91.52±0.31	83.47±0.51	92.64±0.24
GRAND++- ℓ	82.83±1.31	70.26±1.46	78.89±1.96	90.10±0.78	82.79±0.54	91.51±0.41
GRAND++-aa	80.14±0.93	69.94±1.45	78.50±1.28	85.65±1.30	84.00±0.47	91.86±0.52
GRAND++-aa-rw	81.91±1.39	69.41±0.95	79.44±1.06	86.23±0.80	83.35±0.63	92.50±0.22
KuramotoGNN	81.16±1.61	70.40±1.02	78.69±1.91	91.05±0.56	80.06±1.60	92.77±0.42
GraphCON-Tran	82.80±1.34	69.60±1.16	78.85±1.53	90.30±0.74	82.76±0.58	91.78±0.50
GAT	79.76±1.50	67.70±1.63	76.88±2.08	89.51±0.54	81.73±1.89	89.12±1.60
GCN	80.76±2.04	67.54±1.98	77.04±1.78	90.98±0.42	82.02±1.87	90.37±1.38
GCN-pairnorm	79.55±1.21	66.93±0.94	76.14±0.63	90.63±0.69	81.88±2.73	86.93±1.35
GCN-group	80.48±1.40	66.99±1.97	77.53±0.97	90.97±0.54	81.97±0.75	89.84±0.71
GraphSAGE	79.37±1.70	67.31±1.63	75.52±2.19	90.62±0.42	76.42±7.60	88.71±2.68

1656 Table 5: **Classification accuracy on Planetoid datasets.** We report the classification accuracies on
1657 the Cora, Citeseer and Pubmed, using 20 different initializations on the Planetoid train-val-test splits,
1658 where BIMP outperforms competitive baselines.
1659

Dataset	Cora	Citeseer	Pubmed
BIMP	83.45±0.61	72.52±0.28	80.18±0.63
BIMP-aa	82.81±0.62	71.73±1.18	80.53±0.82
BIMP-aa-rw	82.23±0.72	72.21±0.77	79.52±0.28
GRAND- ℓ	83.60±0.56	71.29±0.74	79.76±0.28
GRAND++- ℓ	83.31±0.74	71.84±0.57	79.23±0.69
KuramotoGNN	83.26±1.13	71.31±0.62	79.79±0.49
GraphCON-Tran	82.42±0.60	71.56±1.09	79.92±0.61
GAT	80.49±0.74	65.55±0.76	77.70±0.35
GCN	81.89±0.63	66.26±0.56	77.64±0.50
GCN-pairnorm	79.85±1.33	66.25±1.54	76.28±0.36
GCN-group	81.13±0.04	67.60±1.02	77.87±0.49

1674 D.2.2 CLASSIFICATION ACCURACY ON HETEROGRAPHIC DATASET
1675

1676 We demonstrate overall improved classification performance compared to GRAND- ℓ , GRAND++- ℓ ,
1677 KuramotoGNN, GraphCON, GAT, GCN, and GraphSAGE, as well as superior performance on
1678 larger datasets compared to heterophily-specific methods such as ACM-GNN (Luan et al., 2022)
1679 and GloGNN (Li et al., 2022). Additionally, we consider oversmoothing mitigation techniques of
1680 pairnorm (denoted -pairnorm) and differentiable group normalization (denoted -group) and training
1681 methods of adaptive attention (denoted -aa) and rewiring with graph diffusion convolution (denoted
1682 -rw). Classification performance is reported in Table 6.

1683 **Table 6: Classification accuracy on heterophilic datasets.** Classification accuracies on three small
1684 datasets, Texas, Wisconsin, and Cornell, and three larger datasets, Actor, Squirrel, Chameleon, are
1685 reported, where BIMP outperforms competitive baselines, especially for the larger datasets. Results
1686 are averaged over 100 random initializations and 10 standard splits. We adopt some baseline results
1687 reported in the GloGNN paper, marked with \dagger .

Dataset	Cornell	Texas	Wisconsin	Actor	Squirrel	Chameleon
<i>Homophily level</i>	0.30	0.11	0.21	0.22	0.22	0.23
BIMP	77.13 \pm 3.38	82.16 \pm 4.06	86.57 \pm 4.33	37.46 \pm 1.24	58.22\pm1.16	69.72 \pm 1.81
BIMP-aa	76.95 \pm 4.71	82.25 \pm 6.49	86.27 \pm 4.36	37.52\pm1.08	58.17 \pm 1.12	69.79\pm1.77
BIMP-aa-rw	77.46 \pm 4.80	82.43\pm6.76	86.22 \pm 4.34	36.78 \pm 0.65	55.18 \pm 1.67	69.10 \pm 1.98
GRAND- ℓ	70.00 \pm 6.22	74.59 \pm 5.43	82.75 \pm 3.90	36.68 \pm 1.25	41.11 \pm 1.70	55.61 \pm 1.97
GRAND++- ℓ	70.30 \pm 8.50	76.14 \pm 5.77	83.09 \pm 2.83	34.28 \pm 1.98	34.68 \pm 1.60	50.44 \pm 1.77
KuramotoGNN	76.02 \pm 2.77	81.81 \pm 4.36	85.09 \pm 4.42	35.67 \pm 1.28	36.22 \pm 1.76	50.63 \pm 2.00
GraphCON-GCN	74.05 \pm 3.24	80.54 \pm 4.49	84.79 \pm 2.51	35.69 \pm 1.04	31.53 \pm 1.46	41.18 \pm 1.53
GloGNN	83.35\pm4.42	81.30 \pm 6.28	85.57 \pm 4.36	37.26 \pm 1.57	57.48 \pm 1.63	69.68 \pm 2.55
ACM-GNN	91.95\pm4.32	90.41\pm4.16	92.94\pm3.99	37.32 \pm 1.37	56.83 \pm 1.99	67.69 \pm 2.21
GAT	42.16 \pm 7.07	57.84 \pm 5.82	49.61 \pm 4.21	27.44 \pm 0.89 \dagger	40.72 \pm 1.55 \dagger	60.26 \pm 2.50 \dagger
GCN	41.35 \pm 4.69	57.03 \pm 5.98	48.43 \pm 5.75	27.32 \pm 1.10 \dagger	53.43 \pm 2.01 \dagger	64.82 \pm 2.24 \dagger

1704 D.2.3 EXPERIMENT ON LARGE GRAPH
1705

1706 We demonstrate improved classification performance compared to GRAND- ℓ , GRAND++- ℓ , Kuramo-
1707 toGNN, GraphCON, GCN, GAT and GraphSAGE on ogbn-arXiv dataset, where BIMP outperforms
1708 all continuous-depth baseline methods.

1709 **Table 7: Classification accuracy on ogbn-arXiv dataset.** Our BIMP model outperforms GRAND- ℓ ,
1710 GRAND++- ℓ , KuramotoGNN, GraphCON, GCN, GAT and GraphSAGE on the ogbn-arXiv dataset,
1711 using 20 random initialization on the standard split.

Dataset	ogbn-arXiv	number of parameters
BIMP	71.04\pm0.94	128,159
GRAND- ℓ	70.19 \pm 0.43	98,964
GRAND++- ℓ	67.61 \pm 0.34	320,791
KuramotoGNN	66.96 \pm 0.25	160,719
GraphCON-Tran	67.13 \pm 0.41	99,290
GCN	61.66 \pm 0.32	200,967
GAT	69.86 \pm 0.59	435,733
GraphSAGE	66.51 \pm 0.26	401,671

1723 D.2.4 LONG-RANG GRAPHS EXPERIMENT.
1724

1725 We demonstrate improved prediction performance compared to GCN, GIN, Transformer+LapPE,
1726 SAN+LapPE, GRAND- ℓ , GraphCON and ADGN on Peptides-func and Peptides-struc datasets,
1727 where BIMP outperforms all continuous-depth baseline methods and on par with the SOTA results
(Table 3).

Following the experiment design in Gravina et al. (2025), we evaluated our BIMP model with 3 different seeds, and baseline results are taken directly from Gravina et al. (2025).

According to the result, Graphormers with Laplacian positional encoding (denoted as LapPE) achieve slightly better performance than our BIMP. However, LapPE requires a preprocessing step. For the Peptides-struct dataset, this preprocessing amounts to 1m 14s on an NVIDIA A100 with four AMD Milan 74133 CPU cores Dwivedi et al. (2022). In addition, BIMP requires only \sim 111K parameters, which is substantially smaller than Graphomer’s \sim 500K, highlighting the efficiency of our architecture.

D.2.5 HOMOPHILIC DATASET HYPERPARAMETERS

We search the hyperparameters using Ray Tune Liaw et al. (2018) with 1000 random trials for each dataset and final values are shown in Table 8. Experiments were run with 100 random splits and each split trained on 20 seeds.

Table 8: **Hyperparameter for homophilic dataset.** The hyperparameters for homophilic datasets in Section 6.2 is reported.

Dataset	Cora	Citeseer	Pubmed	CoauthorCS	Computers	Photo
Opinion Dim.	80	128	128	16	128	64
Epoch	100	250	600	250	100	100
Learning Rate	0.0178	0.0034	0.0210	0.0018	0.0035	0.0056
Optimizer	AdaMax	AdaMax	AdaMax	RMSProp	Adam	Adam
Weight Decay	0.0078	0.1	0.0020	0.0047	0.0077	0.0047
Dropout	0.1353	0.3339	0.0932	0.6858	0.0873	0.4650
Input Dropout	0.4172	0.5586	0.6106	0.5275	0.5973	0.4290
Attention Head	4	2	1	4	4	4
Attention Dim.	16	8	16	8	64	64
Attention Type	Scaled Dot	Exp. Kernel	Cosine Sim.	Scaled Dot	Scaled Dot	Pearson
NODE Adjoint	False	False	True	True	True	True
Adjoint Method	n/a	n/a	Euler	dopri5	dopri5	dopri5
Adjoint Step Size	n/a	n/a	1	1	1	1
Integral Method	dopri5	dopri5	dopri5	dopri5	dopri5	dopri5
Linear Encoder	True	True	False	True	True	False
Linear Decoder	True	True	True	True	True	True
Step Size	1	1	1	1	1	1
Time (T)	12.2695	6.6067	9.7257	4.0393	3.2490	2.0281
Damping (d)	0.8952	1.0970	0.6908	0.1925	1.0269	1.0230
Self-reinforce (α)	1	1	1	1	1	1

D.2.6 HETEROPHILIC DATASET HYPERPARAMETERS

We search the hyperparameters using Ray Tune with 200 random trials for each dataset and final values are shown in Table 9. Experiments were run with 10 standardized splits and each split trained on 100 seeds.

E ADDITIONAL EXPERIMENTS

E.1 MULTI-AGENT TRAJECTORY EXTRAPOLATION

In the motivating experiment (Figure 1), we observe that GCN-based GraphODE (Poli et al., 2019) tends to collapse trajectories, thereby degrading predictive accuracy and underscoring the critical role of oversmoothing. Here, we provide the detail of the experiment setup, model architecture and additional results of both GraphODE and BIMP.

1782 Table 9: **Hyperparameter for heterophilic dataset.** The hyperparameters for heterophilic datasets
 1783 in Section 6.2 is reported.

1785	Dataset	Texas	Wisconsin	Cornell
1786	Opinion Dim.	256	32	32
1787	Epoch	200	100	100
1788	Learning Rate	0.0178	0.0178	0.0218
1789	Optimizer	AdaMax	AdaMax	AdaMax
1790	Weight Decay	0.0078	0.0091	0.0478
1791	Dropout	0.6531	0.2528	0.2030
1792	Input Dropout	0.0052	0.0042	0.0417
1793	Attention Head	8	4	4
1794	Attention Dim.	32	16	16
1795	Attention Type	Scaled Dot	Scaled Dot	Scaled Dot
1796	NODE Adjoint	False	False	False
1797	Integral Method	dopri5	dopri5	dopri5
1798	Linear Encoder	False	False	False
1799	Linear Decoder	True	False	False
1800	Step Size	1	1	1
1801	Time (T)	0.01	0.01	0.01
1802	Damping (d)	0.0086	0.0075	0.0195
1803	Self-reinforce (α)	2	2	1.5

1804 E.1.1 EXPERIMENT SETUP

1805 We evaluate BIMP and the GCN-based GraphODE on extrapolating the dynamics of a synthetic
 1806 mass–spring system, where 2D particles are randomly connected by springs with connection proba-
 1807 bility $\frac{1}{2}$. Each edge is binary (0/1), indicating the presence or absence of a spring. The node features
 1808 are the position \mathbf{x}_i and velocity \mathbf{v}_i of agent i . The system dynamics are governed by

$$1809 \dot{\mathbf{x}}_i = \mathbf{v}_i, \quad \dot{\mathbf{v}}_i = - \sum_{j \in \mathcal{N}(i)} k_{ij}(\mathbf{x}_i - \mathbf{x}_j) \quad (114)$$

1810 where k_{ij} is the interaction strength between agent i and j .

1811 Starting from the initial states, the models are required to recursively extrapolate the next 19 steps.
 1812 Both BIMP and GraphODE are trained by minimizing the mean squared error between the predicted
 1813 and ground-truth particle states across these 19 steps. For evaluation, we deploy the trained models
 1814 on the test set to recursively predict the next 19 steps, and plot the predicted trajectories separately.

1815 E.1.2 MODEL ARCHITECTURE

1816 Inspired by Poli et al. (2019); Huang et al. (2020), we design both GraphODE and BIMP using an
 1817 encoder–processor–decoder architecture. The encoder ϕ maps the initial state $\mathbf{x}_i(t_0)$ into the latent
 1818 space as $\mathbf{z}_i(t_0)$, after which an ODE function g predicts latent trajectories starting from the encoded
 1819 initial states. Finally, a decoder ψ reconstructs the predicted dynamics $\mathbf{x}_i(t)$ at any timestamp t . The
 1820 architecture can be summarized as

$$1821 \mathbf{z}_i(t_0) = \phi(\mathbf{x}_i(t_0)), \quad (115)$$

$$1822 \mathbf{z}_i(t) = \mathbf{z}_i(t_0) + \int_{t_0}^t g(\mathbf{z}_i(t), \mathcal{G}) dt, \quad (116)$$

$$1823 \mathbf{x}_i(t) = \psi(\mathbf{z}_i(t)). \quad (117)$$

1824 where \mathcal{G} is the graph. In GraphODE, g is implemented as a two-layer GCN, while in BIMP, g is
 1825 instantiated as our nonlinear opinion dynamics model (Equation 11). We employ the Euler method for
 1826 numerical integration. Notably, since g is recursively applied during latent trajectory prediction, this
 1827 process is equivalent to stacking many layers, which makes the model susceptible to oversmoothing
 1828 in the latent space.

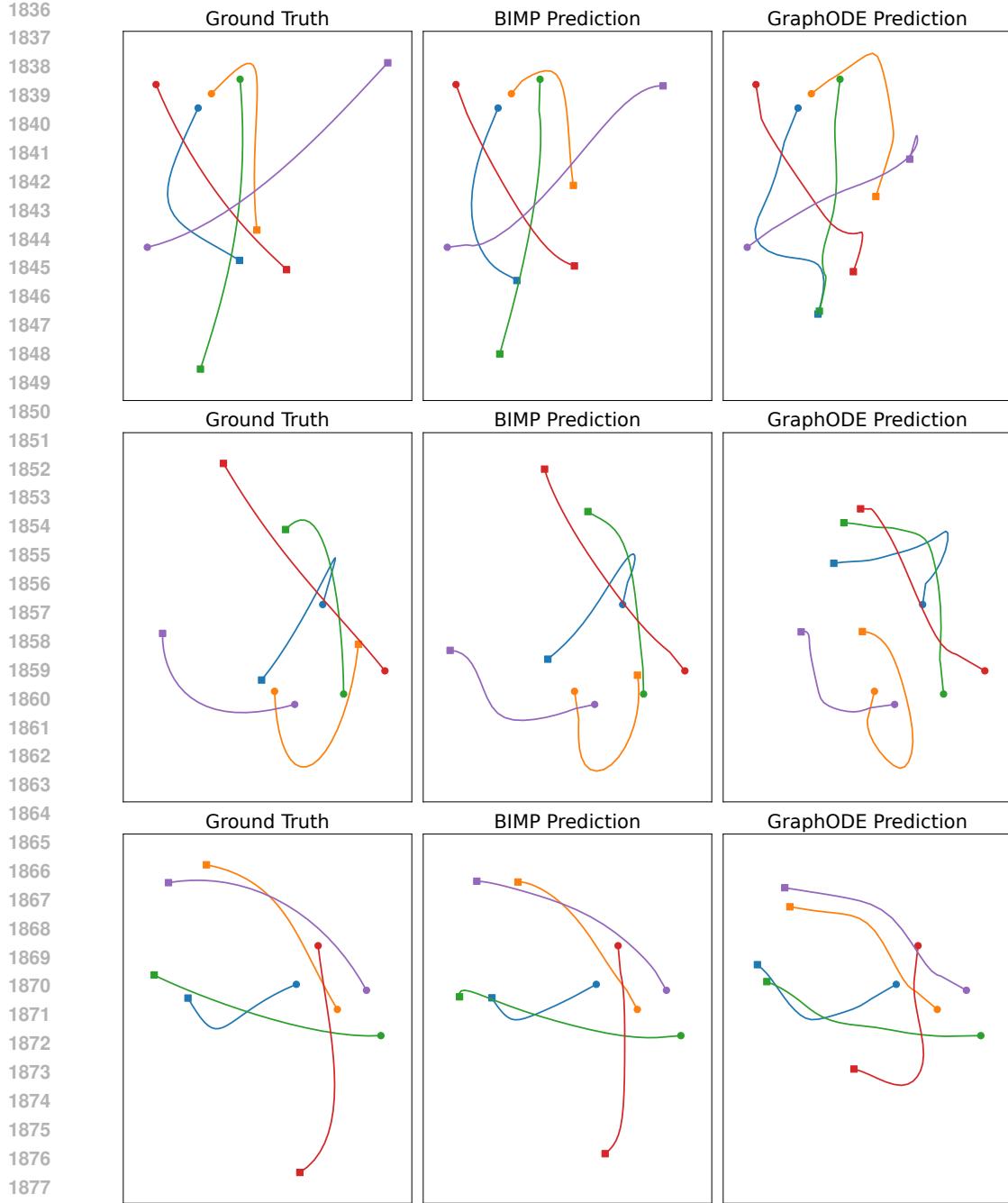


Figure 7: **Mass–spring trajectory extrapolation.** Each row presents trajectories predicted by BIMP (middle) and GraphODE (right), with the ground-truth trajectories shown in the left column for reference. We observe that, over time, predictions of GraphODE collapse to the same position, deviating from the ground truth trajectories.

E.1.3 ADDITIONAL RESULTS

We present three additional prediction examples in Figure 7. Over time, GraphODE predictions collapse toward the same region, deviating dramatically from the ground-truth trajectories. In contrast, BIMP remains robust to oversmoothing, maintains well-separated trajectories, and achieves superior prediction accuracy. [Furthermore, we quantify the predict performance by MSE and mean average](#)

percentage error (MAPE) in Table 10, computing the error at each prediction time step. BIMP consistently outperforms GraphODE across different steps.

Table 10: **Accuracy across predicted trajectories.** We report the MSE and mean absolute percentage error (MAPE) on the mass-spring trajectory predicting task, averaged over 1000 synthetic trajectories. BIMP consistently outperforms GraphODE across different predict steps.

Steps	2	4	8	14	20
MSE					
BIMP (ours)	0.0015 \pm 0.0010	0.0019 \pm 0.0009	0.0083 \pm 0.0045	0.0235 \pm 0.0152	0.0331 \pm 0.0242
GraphODE	0.0081 \pm 0.0043	0.0082 \pm 0.0049	0.0217 \pm 0.0123	0.0873 \pm 0.0482	0.2379 \pm 0.1128
MAPE					
BIMP (ours)	27.51% \pm 4.98%	38.04% \pm 12.81%	57.54% \pm 26.15%	94.22% \pm 46.64%	144.60% \pm 51.52%
GraphODE	70.01% \pm 16.8%	129.55% \pm 69.01%	123.84% \pm 78.50%	356.08% \pm 107.20%	610.97% \pm 260.51%

E.2 COMPUTATIONAL COMPLEXITY

BIMP’s space complexity is higher than other baselines as its increase in expressive capacity comes from the introducing of an additional option adjacency matrix \mathbf{A}^o . Specially, we compare the space complexity of BIMP with that of GRAND- ℓ . The complexity of BIMP is $\mathcal{O}(mN_o + N_o^2)$, where m is the number of edges, N_a is the number of nodes, and N_o is the number of options. The space complexity of GRAND- ℓ is $\mathcal{O}(mN_o)$. Given that the number of options is generally smaller than the number of agents, N_o remains relatively small compared to the number of edge m , resulting acceptable computational overhead.

Additionally, BIMP introduces a nonlinearity through the saturation function $\tanh(\cdot)$, which increases computational cost. However, considering this function operates element-wise, it is more efficient than other nonlinear dynamical processes, such as KuramotoGNN. To illustrate this difference, we compare the average run time of our model against baseline models in Table 11. We note that BIMP has comparable run time performance to linear baselines models such as GRAND++- ℓ .

We record the running time for BIMP and other 4 popular continuous-depth GNNs, GRAND- ℓ , GRAND++- ℓ , GraphCON-Tran and KuramotoGNN on Cora and Citeseer dataset. We train each model 100 times with a fixed number of epoch (100 for Cora and 250 for Citeseer) using fine tuned hyperparameters. The average training time listed in Table 11 demonstrates, in contrast to other nonlinear methods like KuramotoGNN, BIMP maintains a training time comparable to other linear continuous-depth baselines.

To compare against competitive non-ODE baselines, we report the running time for BIMP and GCN-residual (Chi et al., 2021), GATv2 (Brody et al., 2022) and GOAT (Kong et al., 2023) on the ogbn-arXiv dataset. Each model is trained 10 times for 100 epochs using fine tuned hyperparameters. The average running time and memory usage reported in Table 12 demonstrates, in contrast to other transformer based method like GOAT, BIMP maintains a training time comparable to other non-ODE baselines and requires the least amount of memory.

All experiments reported in the paper was conducted on work stations with an Intel Xeon Gold 5220R 24 core CPU, an Nvidia A6000 GPUs, and 256GB of RAM.

Table 11: **Comparable running time with ODE based methods.** The average running time (in seconds) for each fine-tuned method tested on the Cora dataset for 100 epochs and the Citeseer dataset for 250 epochs. Our BIMP model exhibits a modest increase in running time.

Dataset	BIMP (ours)	GRAND- ℓ	GRAND++- ℓ	GraphCON-Tran	KuramotoGNN
Cora	14.33	11.97	14.06	12.86	201.32
Citeseer	42.38	31.34	41.47	15.84	252.73

E.3 CHOICE OF NONLINEARITY IN NOD MODULE

To understand how the choice of nonlinearity in our Nonlinear Opinion Dynamics (NOD) module impacts performance, we experiment with a suite of alternative nonlinearities (softsign, arctan,

1944
 1945 Table 12: **Comparable running time with non-ODE based methods.** The average running time
 1946 (in seconds) and memory usage for each fine-tuned method tested on the ogbn-arXiv dataset for 100
 1947 epochs. Numbers in parentheses indicate the additional time for the positional encoding preprocessing.
 1948 Our BIMP model exhibits a modest increase in running time and requires the least memory.
 1949
 1950
 1951

	BIMP (ours)	GCN-residual	GATv2	GOAT
Running time (s)	114.15	37.43	77.81	3601.13 (75.96)
Memory usage (MB)	1465	4628	6975	3210

1952
 1953 sigmoid, ReLu and GELU) and linearity (linear). Softsign and arctan satisfy the nonlinearity
 1954 constraint in the NOD definition (i.e., $S(0) = 0, S'(0) = 1, S''(0) \neq 0$), but sigmoid, ReLu and
 1955 GELU do not. Specifically, sigmoid does not pass through the origin, ReLu is not differentiable, and
 1956 GELU does not satisfy $S'(0) = 1$. Linear refers to the BIMP model without any nonlinearity. We
 1957 find that using nonlinearities that meet the NOD criteria effectively prevent oversmoothing, while the
 1958 others do not. We report the classification accuracy of our BIMP model with alternative nonlinearities
 1959 in the NOD module in Table 13.
 1960

1961
 1962 For better understanding, we also visualize the Dirichlet energy of node features over a range of
 1963 network depths, given different choices of nonlinearity. The result is shown in Figure 8 (left).
 1964 We observe the BIMPs without satisfying saturation functions make the Dirichlet energy explode
 1965 significantly, while the BIMPs with reasonable saturation functions stabilize the Dirichlet energy.
 1966

1967 Table 13: **Nonlinear opinion dynamics nonlinearity ablation.** Classification accuracy of our BIMP
 1968 model on the Cora dataset using various nonlinearities.
 1969

Layer	tanh	softsign	arctan	sigmoid	ReLU	GELU	linear
1	69.96±1.45	63.25±1.73	64.05±1.58	60.36±1.39	64.17±1.72	62.45±1.57	77.52±1.44
2	75.00±1.50	68.34±2.03	72.62±2.40	63.20±1.63	67.21±2.18	67.06±2.25	81.92±0.85
4	79.93±1.41	72.37±1.50	76.91±1.82	65.54±1.80	73.16±1.44	72.40±1.60	82.08±1.34
8	82.21±1.26	77.05±1.67	79.84±1.05	63.91±2.13	77.76±1.47	77.56±1.49	81.24±1.48
16	82.83±1.12	79.88±1.82	81.81±1.54	29.55±1.80	81.32±0.96	81.47±0.63	80.45±1.43
32	82.81±1.19	81.45±1.48	82.48±1.81	29.92±1.22	82.51±1.51	27.99±4.22	79.99±1.21
64	82.53±1.07	81.14±1.65	82.94±0.73	30.72±1.02	76.56±3.88	29.64±1.82	76.74±1.86
128	82.18±1.06	81.71±1.37	81.26±1.93	29.37±2.77	71.18±7.09	26.27±4.89	75.44±0.89

1970 Table 14: **Inductive bias ablation.** Classification accuracy of our BIMP model on the Cora dataset.
 1971

Layer	BIMP	w/o damping term	w/o input	w/o attention mechanism	w/o right-stochastic
1	69.96±1.45	67.83±1.55	74.25±1.25	72.21±2.18	72.96±0.86
2	75.00±1.50	74.00±1.25	79.40±1.77	78.09±1.17	79.17±1.62
4	79.93±1.41	78.53±1.46	81.74±1.32	80.22±1.95	81.32±1.49
8	82.21±1.26	78.38±0.98	81.32±1.07	81.31±2.24	82.03±0.98
16	82.83±1.12	79.62±1.37	81.24±1.64	81.85±1.20	82.71±1.22
32	82.81±1.19	79.12±1.15	79.94±0.82	81.45±1.13	82.32±1.32
64	82.53±1.07	78.95±1.62	77.71±0.82	81.28±1.37	80.44±1.40
128	82.18±1.06	76.60±2.27	74.10±0.92	81.04±1.15	71.17±5.37

1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 E.4 INDUCTIVE BIAS ABLATION
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 20100
 20101
 20102
 20103
 20104
 20105
 20106
 20107
 20108
 20109
 20110
 20111
 20112
 20113
 20114
 20115
 20116
 20117
 20118
 20119
 20120
 20121
 20122
 20123
 20124
 20125
 20126
 20127
 20128
 20129
 20130
 20131
 20132
 20133
 20134
 20135
 20136
 20137
 20138
 20139
 20140
 20141
 20142
 20143
 20144
 20145
 20146
 20147
 20148
 20149
 20150
 20151
 20152
 20153
 20154
 20155
 20156
 20157
 20158
 20159
 20160
 20161
 20162
 20163
 20164
 20165
 20166
 20167
 20168
 20169
 20170
 20171
 20172
 20173
 20174
 20175
 20176
 20177
 20178
 20179
 20180
 20181
 20182
 20183
 20184
 20185
 20186
 20187
 20188
 20189
 20190
 20191
 20192
 20193
 20194
 20195
 20196
 20197
 20198
 20199
 20200
 20201
 20202
 20203
 20204
 20205
 20206
 20207
 20208
 20209
 20210
 20211
 20212
 20213
 20214
 20215
 20216
 20217
 20218
 20219
 20220
 20221
 20222
 20223
 20224
 20225
 20226
 20227
 20228
 20229
 20230
 20231
 20232
 20233
 20234
 20235
 20236
 20237
 20238
 20239
 20240
 20241
 20242
 20243
 20244
 20245
 20246
 20247
 20248
 20249
 20250
 20251
 20252
 20253
 20254
 20255
 20256
 20257
 20258
 20259
 20260
 20261
 20262
 20263
 20264
 20265
 20266
 20267
 20268
 20269
 20270
 20271
 20272
 20273
 20274
 20275
 20276
 20277
 20278
 20279
 20280
 20281
 20282
 20283
 20284
 20285
 20286
 20287
 20288
 20289
 20290
 20291
 20292
 20293
 20294
 20295
 20296
 20297
 20298
 20299
 20300
 20301
 20302
 20303
 20304
 20305
 20306
 20307
 20308
 20309
 20310
 20311
 20312
 20313
 20314
 20315
 20316
 20317
 20318
 20319
 20320
 20321
 20322
 20323
 20324
 20325
 20326
 20327
 20328
 20329
 20330
 20331
 20332
 20333
 20334
 20335
 20336
 20337
 20338
 20339
 20340
 20341
 20342
 20343
 20344
 20345
 20346
 20347
 20348
 20349
 20350
 20351
 20352
 20353
 20354
 20355
 20356
 20357
 20358
 20359
 20360
 20361
 20362
 20363
 20364
 20365
 20366
 20367
 20368
 20369
 20370
 20371
 20372
 20373
 20374
 20375
 20376
 20377
 20378
 20379
 20380
 20381
 20382
 20383
 20384
 20385
 20386
 20387
 20388
 20389
 20390
 20391
 20392
 20393
 20394
 20395
 20396
 20397
 20398
 20399
 20400
 20401
 20402
 20403
 20404
 20405
 20406
 20407
 20408
 20409
 20410
 20411
 20412
 20413
 20414
 20415
 20416
 20417
 20418
 20419
 20420
 20421
 20422
 20423
 20424
 20425
 20426
 20427
 20428
 20429
 20430
 20431
 20432
 20433
 20434
 20435
 20436
 20437
 20438
 20439
 20440
 20441
 20442
 20443
 20444
 20445
 20446
 20447
 20448
 20449
 20450
 20451
 20452
 20453
 20454
 20455
 20456
 20457
 20458
 20459
 20460
 20461
 20462
 20463
 20464
 20465
 20466
 20467
 20468
 20469
 20470
 20471
 20472
 20473
 20474
 20475
 20476
 20477
 20478
 20479
 20480
 20481
 20482
 20483
 20484
 20485
 20486
 20487
 20488
 20489
 20490
 20491
 20492
 20493
 20494
 20495
 20496
 20497
 20498
 20499
 20500
 20501
 20502
 20503
 20504
 20505
 20506
 20507
 20508
 20509
 20510
 20511
 20512
 20513
 20514
 20515
 20516
 20517
 20518
 20519
 20520
 20521
 20522
 20523
 20524
 20525
 20526
 20527
 20528
 20529
 20530
 20531
 20532
 20533
 20534
 20535
 20536
 20537
 20538
 20539
 20540
 20541
 20542
 20543
 20544
 20545
 20546
 20547
 20548
 20549
 20550
 20551
 20552
 20553
 20554
 20555
 20556
 20557
 20558
 20559
 20560
 20561
 20562
 20563
 20564
 20565
 20566
 20567
 20568
 20569
 20570
 20571
 20572
 20573
 20574
 20575
 20576
 20577
 20578
 20579
 20580
 20581
 20582
 20583
 20584
 20585
 20586
 20587
 20588
 20589
 20590
 20591
 20592
 20593
 20594
 20595
 20596
 20597
 20598
 20599
 20600
 20601
 20602
 20603
 20604
 20605
 20606
 20607
 20608
 20609
 20610
 20611
 20612
 20613
 20614
 20615
 20616
 20617
 20618
 20619
 20620
 20621
 20622
 20623
 20624
 20625
 20626
 20627
 20628
 20629
 20630
 20631
 20632
 20633
 20634
 20635
 20636
 20637
 20638
 20639
 20640
 20641
 20642
 20643
 20644
 20645
 20646
 20647
 20648
 20649
 20650
 20651
 20652
 20653
 20654
 20655
 20656
 20657
 20658
 20659
 20660
 20661
 20662
 20663
 20664
 20665
 20666
 20667
 20668
 20669
 20670
 20671
 20672
 20673
 20674
 20675
 20676
 20677
 20678
 20679
 20680
 20681
 20682
 20683
 20684
 20685
 20686
 20687
 20688
 20689
 20690
 20691
 20692
 20693
 20694
 20695
 20696
 20697
 20698
 20699
 20700
 20701
 20702
 20703
 20704
 20705
 20706
 20707
 20708
 20709
 20710
 20711
 20712
 20713
 20714
 20715
 20716
 20717
 20718
 20719
 20720
 20721
 20722
 20723
 20724
 20725
 20726
 20727
 20728
 20729
 20730
 20731
 20732
 20733
 20734
 20735
 20736
 20737
 20738
 20739
 20740
 20741
 20742
 20743
 20744
 20745
 20746
 20747
 20748
 20749
 20750
 20751
 20752
 20753
 20754
 20755
 20756
 20757
 20758
 20759
 20760
 20761
 20762
 20763
 20764
 20765
 20766
 20767
 20768
 20769
 20770
 20771
 20772
 20773
 20774
 20775
 20776
 20777
 20778
 20779
 20780
 20781
 20782
 20783
 20784
 20785
 20786
 20787
 20788
 20789
 20790
 20791
 20792
 20793
 20794
 20795
 20796
 20797
 20798
 20799
 20800
 20801
 20802
 20803
 20804
 20805
 20806
 20807
 20808
 20809
 20810
 20811
 20812
 20813
 20814
 20815
 20816
 20817
 20818
 20819
 20820
 20821
 20822
 20823
 20824
 20825
 20826
 20827
 20828
 20829
 20830
 20831
 20832
 20833
 20834
 20835
 20836
 20837
 20838
 20839
 20840
 20841
 20842
 20843
 20844
 20845
 20846
 20847
 20848

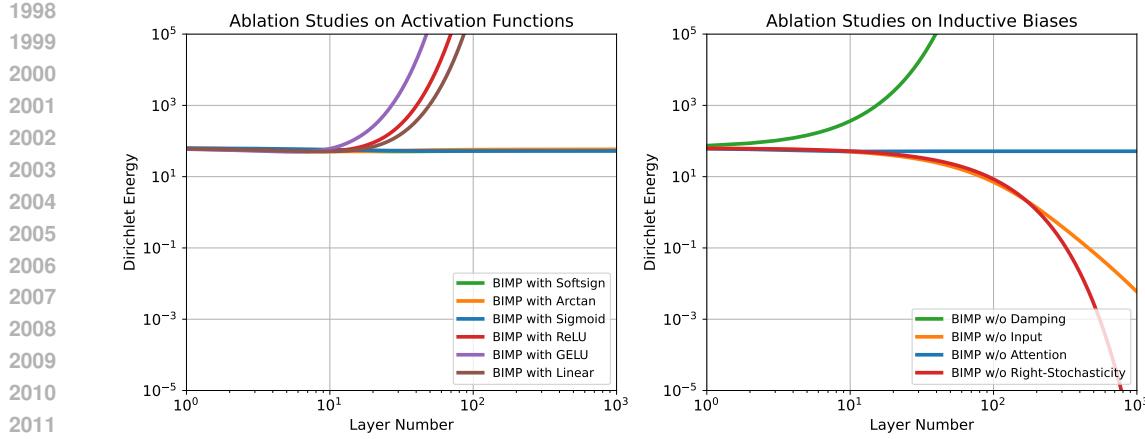


Figure 8: **Dirichlet energy in Ablation study.** Dirichlet Energy evolution of our BIMP model on the synthetic undirected graph. The Dirichlet energy of BIMPs remains stable if they satisfy our theoretical analysis, while the energy of others does not.

BIMP without the input term exhibits oversmoothing, which matches the analysis from Lemma 5.5 and Figure 2 (c), where the weighted sum of the opinion converges to 0 under no input.

BIMP without the damping term also exhibits oversmoothing. Without the damping term our formulation does not satisfy the condition of compact closure (Appendix A.2.4) required to prove Lemma 5.5.

BIMP without an attention mechanism but maintaining the right stochastic adjacency matrix yields results that do not suffer from oversmoothing, since the right stochastic property means Lemma 5.4 still holds. The model however loses expressive capacity and therefore lower classification performance.

BIMP without the right stochastic constraint on the effective adjacency matrix also exhibits oversmoothing. Without the right stochastic constraint, our formulation does not respect the assumptions of Lemma 5.4, and we lose the ability to control the position of the attention parameter and therefore lose the guarantee for oversmoothing characteristics.

For better understanding, we also visualize the Dirichlet energy of node features over a range of network depths, ablating the nonlinear inductive bias. The result is shown in Figure 8 (right). We observe the BIMPs conflicting our proposed lemmas make the Dirichlet energy diverge with depth, while the BIMPs align with the lemmas stabilize the Dirichlet energy.

To summarize, given the two ablation studies in Appendix E.3 and Appendix E.4, we identify the consistent among Dirichlet energy, classification accuracy and our theoretical analysis.

E.5 PARAMETER SENSITIVITY ANALYSIS

Since the bifurcation-controlled parameter is determined as $u = \frac{d}{\alpha+3}$, governs the emergence of dissensus behavior, ensuring its robustness across different tasks is crucial.

We vary both the damping d and the self-reinforcement α over the range $[0, 5]$ with a step size of 0.5. For each (d, α) pair, we measure the resulting classification accuracy while keeping all other hyperparameters fixed at their fine-tuned values. Each configuration is evaluated over 10 random seeds to ensure statistical reliability. The result is shown in Figure 9.

Recall that our opinion dynamics system is given by

$$\dot{\mathbf{X}} = -d\mathbf{X} + \tanh\left(\frac{d}{\alpha+3}((\alpha-1)\mathbf{X} + \tilde{\mathbf{A}}\mathbf{X})\right) + \mathbf{B}. \quad (118)$$

The classification accuracy deteriorates dramatically when the damping term is set to 0, corresponding to a pure encoder-decoder model where intermediate opinion exchange disappears.

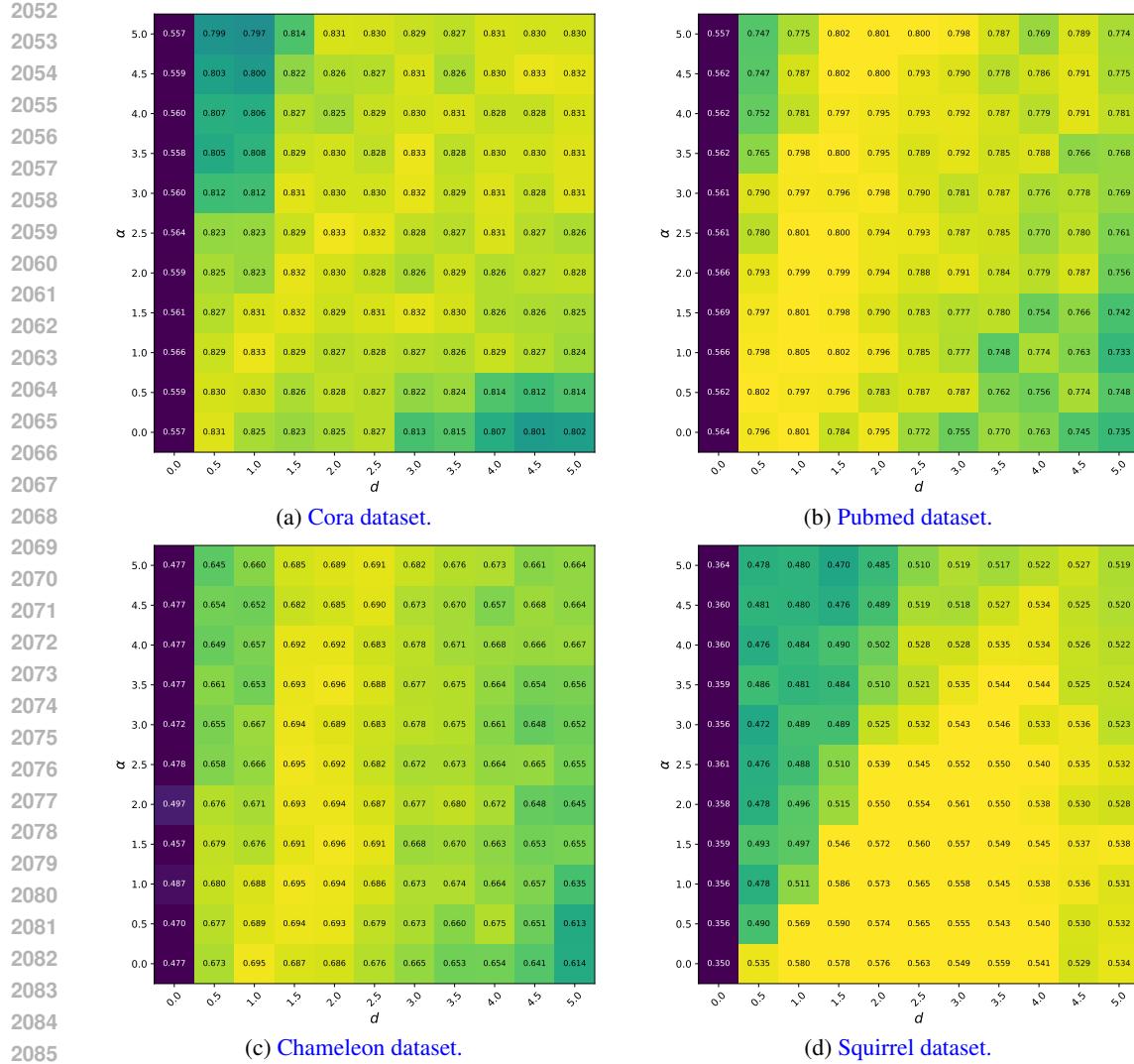


Figure 9: **Sensitivity analysis.** The sensitivity map for the attention terms $u = \frac{d}{\alpha+3}$ is shown for both homophilic (Cora and Pubmed) and heterophilic (Chameleon and Squirrel) datasets. The classification accuracy deteriorates dramatically when the damping term is set to 0, which corresponds to a encoder-decoder model where intermediate opinion exchange disappears. The classification accuracy drops slightly at the edges when combinations of d and α reduce the effect of the nonlinear term.

We also observe a slight drop in classification accuracy near the upper-left and lower-right regions of the parameter grid. At the upper-left edge, the attention factor $\frac{d}{\alpha+3}$ is extremely small, leading the nonlinear term $\tanh(\cdot)$ to become negligible, and the system effectively collapses to a linear system with limited expressive capacity. A similar phenomenon occurs at the lower-right edge, where the large damping d dominates the dynamics. In both cases, the magnitude of the nonlinear component is significantly reduced, leading to a slight degradation in accuracy.

Beyond the highlighted regions, there also exists a broad range of damping d and self-reinforcement α values that yield performance that consistently surpasses baselines.