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Abstract

We present a principled probabilistic framework for discovering Granger causal relationships
from multivariate time-series data in low-data regimes, where short sequences limit the
applicability of modern deep learning approaches. While deep neural vector autoregressive
(VAR) models perform well in high-data settings, they often struggle to generalize with
limited samples and provide little insight into model uncertainty. To address these challenges
we introduce HiBaNG, a hierarchical Bayesian nonparametric framework for Granger causal
discovery. HiBaNG places a hierarchical factorized prior over binary Granger causal graphs
that encodes structured sparsity and enables interpretable, uncertainty-aware inference. We
develop a tractable Gibbs sampling algorithm that exploits conjugacy and augmentation
for scalable posterior estimation. Extensive experiments on synthetic, semi-synthetic, and
real-world climate datasets demonstrate that HiBaNG consistently outperforms both classical
and deep VAR baselines, achieving improved accuracy and calibrated uncertainty.

1 Introduction

Multivariate time-series (MTS) data consist of observations of multiple variables recorded at multiple
timestamps and are fundamental to a wide range of applications in economics, healthcare, climatology, and
neuroscience. In these domains, uncovering causal relationships among time-series is often essential for
understanding system dynamics and supporting decision-making.

In this paper, we focus on discovering such relationships from observational MTS data using Granger Causality
(GC) (Granger, 1969; Lütkepohl, 2005; Shojaie & Fox, 2022), which posits that one variable is causal for
another if its past values provide statistically significant information for predicting the future of the latter,
beyond what is contained in its own past. While GC does not necessarily imply a structural or interventional
causal relationship in the sense of, e.g., Pearl’s do-calculus (Pearl, 2009) or Rubin’s potential outcomes (Imbens
& Rubin, 2015), it remains widely used for time-series causality1. The most common implementation of GC
is via Vector Autoregressive (VAR) models (Lütkepohl, 2005), which assume that each variable is a function
of the lagged values of other variables.

Bayesian VARs (Woźniak, 2016; Miranda-Agrippino & Ricco, 2019) extend classical VARs by incorporating
prior beliefs, enabling uncertainty quantification and improved estimation under limited data. More recently,
deep learning-based VAR models (Montalto et al., 2015; Tank et al., 2018; Wang et al., 2018; Nauta et al.,
2019; Khanna & Tan, 2020; Wu et al., 2020; Marcinkevičs & Vogt, 2021; Gong et al., 2022; Fan et al., 2023)
have gained popularity for their ability to capture complex, nonlinear dynamics, provided ample data are
available. In practice, however, many real-world applications do not have the luxury of abundant data,
especially during the early stages of data collection. In these low-data regimes, where the number of samples
is small relative to the number of variables, deep VARs often underperform. This is mainly due to: 1) When
model complexity exceeds the informational content of the data, the learned function becomes unstable,
noise-sensitive, and yields unreliable predictions with distorted uncertainty estimates. (Geffner et al., 2022;
Annadani et al., 2023; Deleu et al., 2023); 2) In practice, model selection and hyperparameter tuning are
difficult in causal discovery because the task is unsupervised: the target object (the true causal graph) is

1Throughout this paper, causality refers specifically to Granger causality.
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Figure 1: HiBaNG models the given MTS data via a set of binary Granger causal graphs Gτ as latent
variables with a hierarchical factorized prior. It learns to draw samples from the posterior distributions over
the graphs via an efficient Gibbs sampling algorithm that exploits the nonparametric Bayesian nature of the
model and conjugacy, improving stability and significantly reducing the number of hyperparameters to tune.
Because of this and because of the information shared across related parameters through a structured prior,
HiBaNG is particularly suited to low-data settings, allowing the model to remain expressive while enhancing
generalization.

typically unobserved, and therefore cannot be used directly as a validation target Biza et al. (2020). Moreover,
although ground-truth graphs may exist in synthetic benchmarks, using them for model tuning can lead to
potentially biased comparisons, since it amounts to selecting models with privileged access to evaluation
information that is unavailable in real applications Machlanski et al. (2023).

To address these challenges, we propose a new hierarchical Bayesian VAR framework for Granger causal
discovery, specifically designed for low-data regimes. Our method addresses the aforementioned issues by:

1. Introducing a hierarchical factorized prior over binary Granger causal graphs, which is designed to
encode structured sparsity, adaptive regularization, and low-complexity latent organization, helping
stabilize causal discovery in low-data regimes where likelihood-based evidence alone is insufficient;

2. Decomposing Granger causality into discrete (graph structure) and continuous (causal strength)
components, allowing the binary graph to constrain parameter estimation and improve generalization;

3. Leveraging Bayesian nonparametric techniques to integrate out latent factors and reduce the number
of tunable hyperparameters.

Overall contribution: We develop HiBaNG, a hierarchical Bayesian nonparametric framework for Granger
causal discovery in data-scarce settings, which integrates interpretable priors, principled uncertainty quan-
tification, and enables tractable posterior inference via Gibbs sampling. Our extensive experiments on
synthetic, semi-synthetic, and real-world climate datasets show that HiBaNG attains improved or competitive
performance relative to both classical and deep VAR baselines.

2 Preliminaries

Consider a collection of MTS data of N time series or variables in T timestamps, stored in the matrix of
X ∈ RN×T = (x1, . . . ,xT ) where xt ∈ RN consists of the samples/values of the N variables at timestamp
t ∈ {1, . . . , T}. A VAR model for Granger causality (Lütkepohl, 2005; Hyvärinen et al., 2010) assumes that
xt can be predicted from the τmax time lags {xt−1, . . . ,xt−τmax} by learning a coefficient matrix Aτ ∈ RN×N

for each lag τ ∈ {1, . . . , τmax}:

xt =
τmax∑
τ=1

Aτ 2xt−τ + ϵt, (1)

where ϵt is an independent noise variable. Conventionally, variable j (the parent) does not Granger-cause
variable i (the child) (i, j ∈ {1, . . . , N}) if and only if for all τ , Aτ

ij = 0. For deterministic VARs, learning
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can be done by minimizing a regression error: min{Aτ }τmax
τ

∥xt −
∑τmax

τ=1 Aτ xt−τ ∥2
2 + λ reg({Aτ }τmax

τ ) where
reg({Aτ }τmax

τ ) is a sparsity-inducing penalty e.g., a group lasso penalty (Yuan & Lin, 2006; Lozano et al.,
2009):

∑N
i=1,j=1∥Aτ

i,j∥2. Other alternative penalties can be found in Nicholson et al. (2017).

Bayesian VARs (BVARs) (Litterman, 1986) are another important line of research especially in
econometrics and finance. A standard method may model xt with multivariate normal distributions:
xt ∼ MN (

∑τmax
τ=1 Aτ xt−τ ,Σ) , where various priors can be imposed on {Aτ }τmax

τ=1 (e.g., sparsity-inducing
priors) and Σ (e.g., Inverse-Wishart priors). Learning BVARs involves inferring the posterior of {Aτ }τmax

τ=1
and Σ. In standard BVARs, one may need to “convert” {Aτ }τmax

τ=1 into GC graphs.

Deep VARs have recently become popular, as they use deep neural networks to model nonlinear dynamics
between timestamps, which essentially generalize Eq. (1) using: xit = fi (

∑τmax
τ=1 Aτ xt−τ ) + ϵt, where fi is

typically implemented with nonlinear neural networks.

3 Method

In this section, we first give a complete picture of our proposed model and then introduce the motivations
of our design choices at the end of the section. Specifically, we first present our BVAR model in a general
form, which separates the coefficients into binary GC graphs and weight matrices; then we propose a new
link function that helps build a hierarchical model on binary GC graphs in Section 3.1; subsequently, we
provide details of the full model in Section 3.2 and its Bayesian inference algorithm in Section 3.3. Finally in
Section 3.4, we discuss some properties and design choices in our model that allow us to tackle the challenges
mentioned in the introduction.

Our overall model can be seen as a Bayesian VAR of the form:

xt ∼ MN

(
τmax∑
τ=1

(Aτ ⊙ Gτ ) xt−τ ,Σ
)
, (2)

where Gτ ∈ {0, 1}N×N is the adjacency matrix for the binary GC graph of lag τ and ⊙ denotes the Hadamard
product. We further impose the following conjugate prior distributions (Miranda-Agrippino & Ricco, 2019)
on Aτ : ψτ

i,j ∼ Gamma (1, 1) , Aτ
i,j ∼ N

(
0, (ψτ

i,j)−1) and on Σ: λi ∼ Gamma (1, 1) ,Σ = diag (λ1, . . . , λN )−1

where diag (λ1, . . . , λN ) returns a matrix with its diagonal elements as λ1, . . . , λN . In our model, the impact
of variable j on i is modelled by two components: Gτ

i,j ∈ {0, 1} indicating whether there is a link between i
and j and Aτ

i,j ∈ R indicating the weight of the link. If Gτ
i,j = 0, j does not impact i in lag τ regardless of

the value of Aτ
i,j while if Gτ

i,j = 1, Aτ
i,j captures the influence from j to i. We also note that variable j does

not Granger-cause variable i (i, j ∈ {1, . . . , N}) if and only if for all τ , Gτ
i,j = 0.

3.1 Generalized Bernoulli Poisson Link

Before describing the model in full detail, we propose a new link function named generalized Bernoulli Poisson
link (GBPL) that thresholds a random Poisson variable m at V ∈ {1, 2, . . . } to obtain a binary variable b, as
one of the key building blocks in our approach.
Definition 3.1. (Generalized Bernoulli Poisson Link)

m ∼ Poisson (γ) , b = 1(m ≥ V ),

where 1(·) is function returning one if the condition is true otherwise zero.

Property 3.2. Given γ and V , one can marginalize m out to get: b ∼ Bernoulli
(

1 −
∑V −1

v=0
e−γ γv

v!

)
.

Remark. As b = 0 if and only if m < V , p(b = 0) =
∑V −1

v=0 p(m = v), thus, p(b = 1) = 1 −
∑V −1

v=0 p(m = v).
Moreover, as E(b) = p(b = 1), larger V leads to lower expected probability of b being one, under the same γ.

2We use superscript as the index of the matrix instead of power.
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Property 3.3. Given b, the conditional posterior of m conditioned on b, γ, and V is in close-form:

m ∼

{
TPoissonV (γ) , if b > 0
CategoricalV ([. . . , f(v, γ), . . . ]) , otherwise

where TPoissonV (γ) is the Poisson distribution with parameter γ left-truncated at V (i.e., the samples
from that Poisson distribution are greater than or equal to V ) and f(v, γ) =

e−λλv

v!∑V −1
v′=0

e−λλv′

v′!

is the normalized

Poisson probability mass function. To sample from a truncated Poisson distribution, common approaches are
rejection sampling (Geyer) or inverse transform sampling with inverse CDF (NumPyro). Although either
approach is efficient when V is large, as shown later, V in our case takes a small number, leading to a
relatively efficient sampling algorithm.
Remark. If b > 0, m ≥ V almost surely (a.s.) and one can sample m from the truncated Poisson distribution
at V efficiently by computing the inverse Poisson cumulative distribution function (Giles, 2016). If b = 0,
m ∈ {0, . . . , V − 1} is sampled from the categorical distribution with normalized Poisson probability masses.
The close-form conditional posterior contributes to the development of an efficient algorithm of our model.
Property 3.4. When V is set to 1, GBPL reduces to the link function proposed in Zhou (2015).

3.2 Poisson Factorized Granger-Causal Graph

Now we introduce our Bayesian construction on binary GC graphs with GBPL. To assist clarity, we discuss
our method with only one lag, i.e., τmax = 1, temporally omitting the notation of lag τ , and introduce the
extension to multiple lags later.

The general idea is that we assume a binary GC graph G ∈ {0, 1}N×N is a sample of a probabilistic
factorization model with K latent factors: G ∼ p(ΘΦT) where Θ ∈ RN×K

+ each entry of which θi,k indicates
the weight of the kth factor for variable i of being a child in a GC relation and Φ ∈ RN×K

+ each entry of
which ϕj,k indicates the weight of the kth factor for variable j of being a parent in a GC relation. In this way,
whether j Granger-causes i depends on their interactions with all the K factors: Gi,j ∼ p

(∑K
k=1 θi,kϕj,k

)
.

Conditioned on Θ and Φ, we have: p(G|Θ,Φ) =
∏N

i=1
∏N

j=1 p(Gi,j |Θ,Φ), meaning that the links in G can be
generated independently.

With the help of GBPL, we propose to impose the following hierarchical Bayesian prior p(G):

rk ∼ Gamma (1/K, 1/c) , θi,k ∼ Gamma (ai, 1/dk) , ϕj,k ∼ Gamma (bj , 1/ek) ,

Mi,j ∼ Poisson
(

K∑
k=1

rkθi,kϕj,k

)
, Gi,j = 1(Mi,j ≥ V ), (3)

where the first and the second parameters of gamma distribution are the shape and scale parameters,
respectively; noninformative gamma priors Gamma (1, 1) are used for ai, bj , dk, ek, and c.

In the above model, variable rk is introduced to capture the global popularity of the kth factor (Yang &
Leskovec, 2012; 2014; Zhou, 2015). Intuitively, we can understand the vector of θi,: and ϕi,: as the embeddings
of variable i and j respectively. Whether i is a child of j is determined by the inner product between their
embeddings. Moreover, each dimension of the embeddings weights differently and rk indicates the weight of
the kth dimension.

Mathematically, the construction on Θ, Φ, and r can be viewed as the truncated version of a gamma
process (Ferguson, 1973; Wolpert et al., 2011; Zhou, 2015) on a product space R+ × Ω: G ∼ ΓP(Ga,b, 1/c),
where Ω is a complete separable metric space, c is the concentration parameter, Ga,b is a finite and continuous
base measure over Ω. The corresponding Lévy measure is ν(drdθdϕ) = r−1e−crdrGa,b(dθdϕ). In our
case, a draw from the Ga,b is a pair of θ:,k and ϕ:,k where θ:,k = [θ1,k, . . . , θN,k] θ:,k = [θ1,k, . . . , θN,k] and
ϕ:,k = [ϕ1,k, . . . , ϕN,k]. A draw from the gamma process is a discrete distribution with countably infinite
atoms from the base measure: G =

∑∞
k=1 rkδθ:,k,ϕ:,k

and rk is the weight of the kth atom. Although there
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are infinite atoms, the number of atoms with rk greater than ρ ∈ R+ follows Poisson(
∫∞

ρ
r−1e−crdr) and

the expectation of Poisson decreases when ρ increases. In other words, the number of atoms that have
relatively large weights will be finite and small, thus, a gamma process based model has an inherent shrinkage
mechanism. In our case, if we set the maximum number of latent factors K (i.e., the truncation level) large
enough, the model will automatically learn the number of active factors.

In our model, Bayesian nonparametrics provides a principled way to build models whose complexity adapts
to the data, rather than being fixed ahead of time. Even if K is set to a large value, the model will not
use all of the latent factors, the prior acts as a complexity penalty, preferring simpler models unless there
is strong evidence to the contrary. In our model, K is quite different from hyperparameters in parametric
models such as the number of layers of a neural network. K is a truncation level that tells the model the
number of maximum latent factors it can potentially use while the actual number it will use is determined by
the data. In addition, the model will self-regularize if it uses more latent factors than necessary.

Finally, we refer to the model in Equations (2) and (3) as Poisson Factorized Granger-Causal Graph (PFGCG)
and denote G ∼ PFGCG(V ). In the case of multiple lags, we summarize the model as:

Gτ ∼ PFGCGτ (V ), xt ∼ MN

(
τmax∑
τ=1

(Aτ ⊙ Gτ ) xt−τ ,Σ
)
, (4)

where we have a separate generative process for the GC graph at each lag τ .

3.3 Inference via Gibbs sampling

Here we introduce how to estimate the posterior over the parameters of the above model using Gibbs
sampling (Casella & George, 1992), which adheres to the detailed balance condition (Gilks et al., 1995), a
fundamental property of Markov Chain Monte Carlo (MCMC) methods that guarantees the Markov chain
converges to the desired posterior distribution as its stationary distribution. To further enhance efficiency, our
method employs a hierarchical prior structure with conjugacy properties with the help of several augmentation
techniques between Poisson and gamma distributions (Zhou et al., 2012; Zhou, 2015). These conjugate
priors ensure that all conditional distributions are analytically well-defined and computationally tractable,
simplifying the sampling process. The conjugate structure not only improves computational efficiency but
also contributes to the stability of Gibbs sampling, enabling the algorithm to effectively explore the posterior
distribution even in challenging settings. Here we highlight the sampling of Gτ and leave the other details
in Section A.

An entry Gτ
i,j in Gτ is involved in the generative process of data as in Eq. (2) and has a Bernoulli prior

according to Eq. (3). Therefore, by denoting p(Gτ
i,j = 0|−) = sτ,0

i,j and p(Gτ
i,j = 1|−) = sτ,1

i,j (− stands for all
the other variables), we can derive:

sτ,0
i,j =

V −1∑
v=0

e−qτ
i,j (qτ

i,j)v

v! , and sτ,1
i,j = e− 1

2 ((Aτ
i,j)2λiUτ

j −2Aτ
i,jλiW τ

i,j)
(

1 − sτ,0
i,j

)
, (5)

where:

qτ
i,j =

K∑
k=1

θτ
i,kr

τ
kϕ

τ
j,k, Uτ

j =
T∑

t=1
x2

j,t−τ , W τ
i,j =

T∑
t=1

x¬τ,¬j
i,t xj,t−τ ,

x¬τ,¬j
i,t = xi,t −

N∑
j′ ̸=j

Aτ
i,j′Gτ

i,j′xj′,t−τ −
τmax∑
τ ′ ̸=τ

N∑
j′=1

Aτ ′

i,j′Gτ ′

i,j′xj′,t−τ ′ . (6)

We can then sample Gτ
i,j ∼ Bernoulli

(
sτ,1

i,j /
(
sτ,0

i,j + sτ,1
i,j

))
. With the above conditional posterior, one can

sample the entries of Gτ one by one using Eq. (5). After each sample, we only need to update W τ
i,j and the

other statistics can be updated after all the entries are sampled.
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Computational complexity: With the above we have that, in one Gibbs sampling iteration, the complexity
of sampling Gτ is O(N2). As can be seen in Algorithm 1 in the appendix, the whole complexity of each Gibbs
sampling iteration of our model is O(N2(V +K)τmax + Tτ2

max), where N , T , V , K, τmax are the number of
variables, the number of timestamps, the truncation level, the number of factors, and the maximum number
of lags, respectively.

3.4 Properties, design choices and practical consequences

We refer to our method as HiBaNG (for hierarchical Bayesian nonparametric Granger causal discovery), which
uses the PFGCG model and the Gibbs sampling algorithm described in Sections 3.2 and 3.3, respectively.
Here we discuss some of HiBaNG’s properties, its underlying design choices and their practical consequences.

Separate Aτ and Gτ structures modeling VAR coefficients: In our approach, A ⊙ G represents
coefficients, which are intrinsically sparse as G is binary. Thus, no sparsity-inducing penalties (Nicholson
et al., 2017; Ahelegbey et al., 2016; Ghosh et al., 2018; Billio et al., 2019) or post-hoc heuristics (Nauta et al.,
2019; Marcinkevičs & Vogt, 2021) are needed. Moreover, modeling binary G directly enables us to learn the
probability of a causal link between two variables directly and one can quantify uncertainty straightforwardly.

Independence of Granger graphs across lags: In our model, we assume that the prior over Granger
causal (GC) graphs factorizes across lags as shown in Eq. (2). Our primary motivation for this choice is
to avoid imposing strong parametric or structural assumptions about temporal coherence of causal effects
across lags, which may not be universally valid. While many dynamical systems exhibit smoothly decaying or
persistent effects, others such as in complex observational domains such as climate or socio-economic systems
can exhibit lag-specific interactions that do not conform to monotonic or smooth temporal patterns. An
independent prior across lags therefore provides a more agnostic and flexible inductive bias. Importantly,
although the priors are factorized, the posterior is not. The lag-specific graphs are coupled through the
shared likelihood: p({G(τ)}τmax

τ=1 | X) ∝ p
(
X | {G(τ)}τmax

τ=1
)∏τmax

τ=1 p(G(τ)), which couples all lagged parent sets
through the autoregressive structure, inducing posterior dependencies across lags when supported by the
data. Thus, temporal coherence is learned rather than imposed, which is especially important in low-data
regimes where strong priors can dominate inference. Although cross-lag sharing can be introduced by tying
parameters or latent variables, this adds modeling commitments and weakly identified hyperparameters that
can increase sensitivity to prior choices. We therefore use a factorized prior across lags, allowing coherence to
emerge through the joint likelihood without additional tuning.

Linearity and potential extension to nonlinear models: Our model adopts a linear Gaussian
VAR likelihood, which emphasizes interpretability, principled uncertainty quantification, and robustness
in low-data regimes. In principle, the framework can be extended to a nonlinear likelihood of the form
xt = f

(
{xt−τ }τmax

τ=1 , {Gτ }τmax
τ=1

)
+ εt, where f is a parameterized nonlinear function (e.g., a neural network).

However, such an extension would generally break the conditional conjugacy structure of the proposed
Bayesian model. As a result, inference would require hybrid algorithms (e.g., combining MCMC with
variational or gradient-based methods), substantially increasing computational complexity and reducing
robustness. We note that a linear VAR may not be a faithful generative model for many real-world systems,
and that fitting a linear model to data generated by nonlinear dynamics can introduce bias. Nevertheless, one
may consider using a linear model even when the underlying system is nonlinear as a pragmatic approximation.
In such cases, linear Granger-based methods may still recover meaningful aspects of the causal structure
when dependencies are approximately linear in expectation, or when nonlinear effects give rise to detectable
linear predictive improvements. Moreover, in low-data regimes, linear models can offer more stable inference
and better-calibrated uncertainty than highly flexible nonlinear alternatives.

Suitability to low-data settings: Our hierarchical Bayesian model is particularly suited to low-data
settings because it allows for information sharing across related parameters through a structured prior.
Specifically, our prior on Gτ takes a factorized form, allowing θi,k or ϕj,k to capture the specific information
for an individual variable in terms of factor k. At a deeper level in the hierarchy, θi,k is influenced by two
higher-level components: ai (capturing variable-specific traits) and dk (capturing factor-specific traits). This
setup allows the model to partially pool information to learn robust estimates for θi,k even when direct data
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is sparse by borrowing strength from related variables (via dk) and related factors (via ai). As a result, the
model remains expressive while enhancing generalization in low-data regimes.

Need for the GBPL link function: Instead of modeling binary GC graphs directly with Bernoulli
distributions, we introduce GBPL as a link function that connects Bernoulli variables to underlying Poisson
distributions (Zhou, 2015). This transformation enables the use of hierarchical Poisson-Gamma constructions,
akin to those in Poisson matrix factorization models (Canny, 2004; Zhou et al., 2012; Gopalan et al., 2014).
By leveraging the Poisson-gamma conjugacy, we gain access to a broader and more flexible set of tools for
hierarchical Bayesian modeling and inference, which are difficult to apply directly to Bernoulli likelihoods.

Given the specification of the prior distributions, one can see that E
(∑K

k=1 rkθi,kϕj,k

)
= 1 as E(θi,k) =

E(ϕj,k) = 1 and E(rk) = 1/K. Therefore, according to Property 3.2 of GBPL, a priori, the expected sparsity
of G is N2

(
1 −

∑V −1
v=0

e−1

v!

)
. Note that V ∈ {1, 2, . . . } is a hyperparameter that incorporates our prior belief

of the graph sparsity, i.e., larger value of V means that we encourage the model to learn sparser graphs, while
the final sparsity will be determined by the model to fit the observational data. Specifically, we compute
the value of 1 −

∑V −1
v=0

e−1

v! with V = {1, 2, 3, 4} as 0.2642, 0.0883, 0.0190, 0.0037, respectively. When V = 3,
it means that less than 2% of the node pairs are expected to be connected in a graph. When V = 4, the
sparsity is less than 0.5%, which can be overly sparse. Empirically, we observe that when V = 4, the sampled
GC graphs from the posterior nearly have zero links, thus, we set V ∈ {1, 2, 3} in practice. According to
Property 3.4, the link function proposed in Zhou (2015) is a special case of GBPL (when V = 1). The model
of Zhou (2015) cares less about the sparsity of a graph as it is given in the data. However, the expected
sparsity of Zhou (2015) is 0.2642 (V = 1), which is too dense for many GC discovery problems. Although
the expected sparsity takes finite values, the posterior graphs are not pinned to the prior grid, as data often
overwhelms the prior.

Fewer hyperparameters: In low-data scenarios without ground-truths, selecting a model from a large set
of hyperparameters is challenging. Our method has, by construction, a small number of hyperparameters as it
integrates out the intermediate variables in its hierarchical Bayesian structure. Furthermore, it automatically
learns K from data via Bayesian nonparametrics. Indeed, the main hyperparameter of our model is V that
only takes a small number of discrete values, while the regularization weights in other VARs are usually
continuous parameters in an infinite range.

4 Related Work

Here we focus on the following lines of related works in the literature of machine learning and refer the readers
to surveys such as Shojaie & Fox (2022); Assaad et al. (2022); Gong et al. (2023) for a more comprehensive
overview.

Bayesian VARs: have been widely used in econometrics and statistics (Breitung & Swanson, 2002; George
et al., 2008; Fox et al., 2011; Nakajima & West, 2013; Ahelegbey et al., 2016; Ghosh et al., 2018; Billio et al.,
2019; Ghosh et al., 2021). For comprehensive reviews, please see Woźniak (2016); Miranda-Agrippino &
Ricco (2019). Different from most existing methods focusing on modeling real-valued coefficients of VARs,
ours models the binary GC graphs directly with a novel model construction. As BVARs are across multiple
disciplines, comprehensive comparisons to the latest deep VARs in the same settings and datasets have not
been carefully studied before.

Deep VARs: have recently become popular in the machine learning community (Montalto et al., 2015; Tank
et al., 2018; Wang et al., 2018; Nauta et al., 2019; Khanna & Tan, 2020; Wu et al., 2020; Marcinkevičs &
Vogt, 2021; Gong et al., 2022; Fan et al., 2023), where different neural network architectures or learning
mechanisms have been explored such as in Tank et al. (2018); Nauta et al. (2019); Khanna & Tan (2020);
Marcinkevičs & Vogt (2021); Bussmann et al. (2021); Fan et al. (2023); Zhou et al. (2024). More recently,
Bayesian deep VARs have been proposed, such as ACD (Löwe et al., 2022), RHINO (Gong et al., 2022),
Dyn-GFN (Tong et al., 2022), and MCD (Varambally et al., 2024). Although these methods can also be
considered as Bayesian approaches, many of them have different methodologies and focuses to ours. For
example, ACD (Löwe et al., 2022) focuses on discovering causal relations across samples with different
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underlying causal graphs but shared dynamics. RHINO (Gong et al., 2022) extends VAR by modeling
instantaneous causal relations (Runge, 2020; Pamfil et al., 2020) and introducing history-dependent noise,
which we do not consider in this paper. Dyn-GFN (Tong et al., 2022) is a Bayesian approach based on
GFlowNets (Bengio et al., 2023) focusing on discovering causal graphs varying with time. There are also
recently proposed deep VAR variants focusing on causal discovery on MTS data with missing values (Cheng
et al., 2023; 2024a). Wu et al. (2024) studies a different problems to ours, where their data is event sequences
and each event is with a timestamp of occurrence and in a certain type. While Deep VAR models focus on
expressive nonlinear dynamics and high-capacity predictors, HiBaNG adopts a different objective: learning
an interpretable and uncertainty-aware posterior over Granger causal graphs using a Bayesian framework
that is well-suited to low-data regimes.

Non-VAR methods: for causal discovery on MTS data is not the focus of our paper. To capture instan-
taneous causal effects that are not modeled by VARs and GC, there are functional causal models such as
in Hyvärinen et al. (2010); Peters et al. (2013); Pamfil et al. (2020) and methods based on dynamic Bayesian
networks (DBNs) (Dean & Kanazawa, 1989; Murphy, 2002) or structured VAR models in econometrics (Swan-
son & Granger, 1997; Demiralp & Hoover, 2003). For DBNs, we refer readers to surveys such as Mihajlovic &
Petkovic (2001); Shiguihara et al. (2021). Moreover, there are also constraint-based approaches that extend
the PC algorithm (Spirtes et al., 2000) to model time-series data (Runge, 2018; Runge et al., 2019; Runge,
2020; Huang et al., 2020).

Causal discovery for non-time-series data: (e.g., I.I.D.) (Glymour et al., 2019) is another area with a
different focus. Here we consider Bayesian methods (Lorch et al., 2021; Cundy et al., 2021; Geffner et al.,
2022) that model binary causal graphs as loosely related works to ours among the rich literature. These
methods usually leverage gradient-based Bayesian inference algorithms such as variational inference and use
reparameterization techniques (Maddison et al., 2016; Jang et al., 2016) to relax the optimization over binary
causal graphs to a continuous one, while ours models binary graphs directly. Moreover, they require the
discovered graphs to be directed acyclic graphs. We believe that extending their methods to time-series data
with multiple lags is nontrivial.

Other related works: Poisson factor analysis is a generic Bayesian framework used in various areas such
as graph learning (Zhou, 2015; Zhao et al., 2017), topic modeling (Zhao et al., 2018), and dynamical data
modeling (Schein et al., 2019). To the best of our knowledge, it has not been adapted for Granger causal
discovery. The closest works to ours include Kalantari et al. (2018); Kalantari & Zhou (2021) which learns a
set of latent factors from time-series data as well as a binary graph between them. There are several key
differences with our method: 1) Ours is tailored to Granger causal discovery which learns binary graphs of
time-series variables instead of latent factors; 2) ours considers multiple-lags while they only consider one;
and 3) ours is based on the proposed GBPL while they use the original Bernoulli Poisson Link (Zhou, 2015),
which is less applicable to our problem.

5 Experiments

Here we evaluate our method using a set of synthetic and semi-synthetic datasets as well as a real application
involving the analysis of climate data. As mentioned in Section 3.4, we refer to our method as HiBaNG.
Addition to the content of the main paper, we show comprehensive analysis on empirical computational
performance and convergence of HiBaNG in Section D and F of the appendix, respectively.

5.1 Experimental settings

HiBaNG: We use 10,000 as the maximum Gibbs sampling iterations where the first 5,000 are burn-in
iterations and we then collect the samples from the conditional posteriors of the graphs every 10 iterations3,
which are stored in Y ∈ RN×N×τmax×H

+ (H = 500 is the number of collections). The Bernoulli conditional
posterior probability of a link between i and j at lag τ in collection h ∈ {1, . . . ,H} is computed by Eq. (5)
as: Y [i, j, τ, h] = sτ,1

i,j

sτ,0
i,j

+sτ,1
i,j

. Given the collections, to compare with other methods, we compute the averaged

3As shown in Section D, our method converges in much less iterations.
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probability of the discovered GC graph by mean(max(Y ,dim = ‘τ ′), dim = ‘h′) (Marcinkevičs & Vogt, 2021).
As HiBaNG has an intrinsic shrinkage mechanism on K, we set K = 50 that is empirically large enough for
our experiments. The only hyperparameter that we need to tune is V , which we vary in {1, 2, 3}.

Baselines: As ours is a VAR approach for GC, we mainly include baselines that are also based on
the VAR framework in our comparison. 1) We compare with the widely-used VAR with F-tests for
Granger causality and the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) for controlling
the false discovery rate (FDR) (at q = 0.05) denoted as VAR (FBH) and implemented in the statsmodels
library (Seabold & Statsmodels, 2010). 2) For Bayesian methods, we compare with two classic approaches
but with different prior distributions: BVAR with diffuse/noninformative priors on the coefficients, named
BVAR(d), i.e., ({Aτ }τmax

τ ,Σ) ∝ |Σ|− N+1
2 (Litterman, 1986; Miranda-Agrippino & Ricco, 2019), whose

posterior has an analytical form. BVAR with conjugate priors on the coefficients, named BVAR(c): ψτ
i,j ∼

Gamma (1, 1) , Aτ
i,j ∼ N

(
0, (ψτ

i,j)−1) and for Σ: λi ∼ Gamma (1, 1) ,Σ = diag (λ1, . . . , λN )−1. This is
equivalent to an ablation of our model without {Gτ }τmax

τ , for which we use the Gibbs sampling with the same
settings as ours. For deep/neural VARs, we compare with a method with component-wise statistical recurrent
units (SRU) (Oliva et al., 2017) and its improved version (economy SRU, eSRU) (Khanna & Tan, 2020)
with sample-efficient architectures. The important hyperparameters of SRU and eSRU are the strengths
(µ1, µ2, µ3) of three regularization terms. We also compare with GVAR (Marcinkevičs & Vogt, 2021) that
uses self-explaining neural networks (Alvarez Melis & Jaakkola, 2018) and converts the weights in the neural
networks into binary GC graphs with a heuristic stability-based procedure. As one of state-of-the-art methods,
Jacobian Regularizer-based Neural Granger Causality (JRNGC) (Zhou et al., 2024) is also included in the
comparison. For non-VAR methods, the most recent one PCMCI+ (Runge, 2020) is also compared. For
the baselines, we either use their original settings or follow these in Marcinkevičs & Vogt (2021), shown in
Table 3. For all the compared methods, we set τmax = 5 unless otherwise specified.

Evaluation metrics: Following Khanna & Tan (2020); Marcinkevičs & Vogt (2021) that aggregate graphs
at multiple lags into one, we use four metrics to compare the discovered GC graph of a method on a dataset
with the ground-truth graph. For all the baseline methods, we compute the score of a discovered GC graph
from their learned VAR coefficients. For our method, the score of a GC graph is the mean of the Bernoulli
posterior. We report the areas under receiver operating characteristic (AUROC) and precision-recall (AUPRC)
curves by comparing the score of a discovered GC graph to the ground-truth graph. Moreover, as mentioned
before, VAR (FBH) and GVAR use specific post-hoc processes to convert coefficients to binary GC graphs,
thus, we also report the structural Hamming distance (SHD) between the discovered binary GC graph and the
ground-truth one. Note that unlike AUCROC and AUPRC, SHD is biased to the sparsity of the ground-truth
graph, e.g., for a sparse ground-truth graph, a method always predicting no links achieves low SHD. To
measure the predictive uncertainty of the Granger-causal graphs discovered by different approaches, we report
the calibration error (CE) (Guo et al., 2017), which has been a widely used metric for model uncertainly and
confidence (Liu et al., 2020; Kumar et al., 2019). CE examines the difference between the model’s probability
and the true probability given the model’s output, whose definition is shown in Definition 2.1 of Kumar
et al. (2019). We consider the causal discovery task with N variables as a binary classification problem
with N2 samples, i.e., predicting a Granger-causal link between a pair of variables and then compute CE
accordingly using the method in Kumar et al. (2019). For AUCROC and AUPRC, higher values indicate
better performance and for SHD and CE, lower values are better. For all the numerical results, we run our
method and the baselines with 5 different random seeds and report the mean and standard deviations.

Model selection and parameter tuning: Importantly, we note that our task is discovering GC graphs
from data without training with ground-truth, which is an unsupervised problem (e.g., akin to unsupervised
clustering). As no ground-truth is given for training, we use forecasting performance, mean square error
(MSE), on held-out temporal segments (last 20% of data (Gong et al., 2022)) as a proxy objective for selecting
model parameters for VAR-based methods, including ours. This is consistent with how Granger causality is
commonly defined—based on predictive influence. We believe this constitutes a fair comparison across all
VAR-based methods, as the same procedure is used consistently. For each method, we select the parameters
of a method that give the best MSE. Our model selection is different from that of GVAR (Marcinkevičs &
Vogt, 2021), where the best model is selected by comparing with the ground-truth graphs and report the best
achievable performance. PCMCI+ relies on conditional independence testing to infer a causal graph. Its key
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hyperparameter is the p-value threshold. Unlike VAR methods, PCMCI+ does not perform forecasting, and
thus MSE cannot be used as a model selection criterion. Therefore, we used the standard default setting of
0.05. The parameter space where we search for each method is shown in Table 3 of the appendix and the
performance of our method under different parameter configurations is shown in Table 4 of the appendix.

Setting V : As stated in Section 3.4, the expected sparsity of G in the proposed prior distribution is
N2
(

1 −
∑V −1

v=0
e−1

v!

)
, where V controls the sparsity of the graphs. We compute the value of 1 −

∑V −1
v=0

e−1

v!
with V = 1, 2, 3, 4 as 0.2642, 0.0883, 0.0190, 0.0037, respectively. Thus, setting V = 3 already induces
significant sparsity, which matches the empirical needs of our experiments. We see that when V = 4, the
sampled GC graphs from the posterior nearly have zero links, thus, we set V ∈ {1, 2, 3} in practice.

Setting K: We believe that K = 50 is sufficiently large in our experiment settings. This can be seen on
the RHS of Figure 2, which shows rτ

k for all the lags and all K factors as a K × τmax a matrix (K = 50 and
τmax = 5). Recall that rτ

k indicates the weight of latent factor k at lag τ . If we look at one column of the
figure that shows the weights of the 50 factors for one lag, we can see that only a few entries have large
values, meaning that only a few factors are active among K = 50. We had similar observations in other
datasets as well.

5.2 Synthetic and semi-synthetic datasets

We report the results on toy synthetic datasets in Section B. For more comprehensive quantitative comparisons,
we conduct our experiments on three widely-used benchmark datasets, detailed as follows.

Lorenz 96 (Lorenz, 1996) is a standard benchmark synthetic MTS dataset for GC, which is generated from
the following nonlinear differential equations: dxi,t

dt = (xi+1,t − xi−2,t)xi−1,t − xi,t + F, for 1 ≤ i ≤ N, where
F is a constant that models the magnitude of the external forcing. The system dynamics become increasingly
chaotic for higher values of F (Karimi & Paul, 2010). We set N = 40, F = 40, and T = {100, 500} which
mimic noisy observations with reasonably large numbers of variables but few observations.

Following Marcinkevičs & Vogt (2021), we evaluate the methods on another synthetic dataset generated by
the Lotka–Volterra model (Bacaër & Bacaër, 2011), where we use N = 40 and T = {200, 500}. For the
other parameters of the Lotka–Volterra model, we use the same settings as in Marcinkevičs & Vogt (2021).

Finally, we consider the FMRI dataset with realistic simulations of blood-oxygen-level dependent (BOLD) time
series (Smith et al., 2011). In the dataset, multivariate BOLD time series are generated from a known directed
network structure via a biophysically grounded forward model that links neural activity to hemodynamic
responses. Specifically, the simulator uses Dynamic Causal Modeling (DCM)–style architectures (Friston
et al., 2003) to produce realistic BOLD signals from a predefined connectivity matrix. The corresponding
directed adjacency matrix used in the generation process is treated as the ground truth when evaluating
causal discovery methods. Following Khanna & Tan (2020); Marcinkevičs & Vogt (2021), we use 5 replicates
from the simulation no. 3 of the original dataset, where N = 15 and T = 200 are pre-specified as standard
settings. We introduce a straightforward metric to measure the severity of low-data of a dataset: β = N/T ,
meaning that larger β indicates a dataset have larger number of variables with few number of observations.
We show the value of β of a dateset in Table 1. We notice that Cheng et al. (2024b) recently introduces a
few new benchmark datasets with many timestamps (e.g, from 8,000 to 50,000). Our focus is on low-data
regimes with less timestamps and their ground-truth graphs are undirected (i.e., the adjacency matrices are
symmetric) while our method discovers directed graphs, therefore, these datasets are less applicable to our
problem.

We present the results for AUCROC and AUPRC in Table 1. Overall, our proposed method, HiBaNG,
demonstrates superior performance across most datasets and metrics. A notable observation is the enhanced
performance of HiBaNG as the parameter β increases. This trend underscores the robustness of our model in
severe low-data situations, where traditional methods often struggle. For the FMRI dataset, where the severity
of low-data conditions is reduced, HiBaNG ranks second in both AUCROC and AUPRC metrics. This result
aligns with expectations, as richer datasets reduce the relative advantage of our Bayesian approach. Comparing
HiBaNG with BVAR(c), which essentially represents HiBaNG without the integration of binary GC graphs,
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Table 1: AUCROC and AUPRC results on semi-synthetic datasets. VAR (FBH) and BVAR(d) failed to learn
when T = 100 on Lorenz 96 and T = 200 on Lotka–Volterra. Best and second best results are highlighted in
boldface and underline texts, respectively. β = N/T indicates the ratio of the number of variables to the
number of observations.

Lorenz 96
T = 100, β = 0.4

Lorenz 96
T = 500, β = 0.08

Lotka–Volterra
T = 200, β = 0.2

Lotka–Volterra
T = 500, β = 0.08

FMRI
β = 0.075

AUCROC↑ AUPRC↑ AUCROC↑ AUPRC↑ AUCROC↑ AUPRC↑ AUCROC↑ AUPRC↑ AUCROC↑ AUPRC↑

BVAR(c) 0.47±0.02 0.09±0.01 0.73±0.02 0.43±0.02 0.50±0.01 0.50±0.011 0.78±0.04 0.52±0.05 0.66±0.08 0.42±0.12
BVAR(d) - - 0.73±0.03 0.43±0.02 - - 0.67±0.01 0.23.±0.03 0.68±0.06 0.40±0.06

VAR (FBH) - - 0.72±0.01 0.39±0.03 - - 0.68±0.03 0.18±0.01 0.60±0.04 0.32±0.02
PCMCI+ 0.62±0.02 0.17±0.01 0.82±0.02 0.59±0.02 0.72±0.03 0.44±0.02 0.78±0.01 0.47±0.01 0.89±0.04 0.67±0.07

SRU 0.53±0.01 0.12±0.01 0.82±0.03 0.57±0.04 0.55±0.02 0.54±0.01 0.61±0.02 0.32±0.02 0.66±0.02 0.32±0.03
eSRU 0.54±0.03 0.12±0.01 0.84±0.01 0.63±0.05 0.64±0.03 0.58±0.01 0.67±0.03 0.36±0.01 0.72±0.01 0.47±0.01
GVAR 0.57±0.01 0.15±0.03 0.83±0.01 0.63±0.01 0.66±0.02 0.62±0.01 0.81±0.03 0.61±0.04 0.72±0.02 0.57±0.06

JRNGC 0.58±0.07 0.14±0.04 0.79±0.01 0.55±0.03 0.68±0.02 0.32±0.03 0.87±0.02 0.61±0.03 0.69±0.03 0.45±0.04
HiBaNG 0.71±0.03 0.35±0.04 0.86±0.02 0.68±0.02 0.73±0.01 0.73±0.01 0.84±0.03 0.66±0.03 0.73±0.03 0.60±0.03

reveals that HiBaNG consistently outperforms BVAR(c). This comparison highlights the significance of
incorporating binary GC graphs into the Bayesian framework, facilitating a clearer and more interpretable
understanding of causal links while enhancing predictive accuracy.

The results for SHD and CE are displayed in Table 2. For SHD, we include methods capable of converting
their coefficients into sparse graphs, while for CE, we concentrate on the top-performing methods based on
AUCROC and AUPRC scores. It is important to note that SHD is influenced by the method’s approach to
generating binary graphs, which may introduce bias depending on the sparsity of the ground-truth graphs.
Our method’s capability to directly sample binary graphs without relying on arbitrary thresholds provides
a distinct advantage. Regarding CE, our method achieves the lowest error rates across almost all datasets.
This indicates that HiBaNG’s predictive confidence is highly aligned with its accuracy, a result of its inherent
uncertainty-aware design. Such alignment is crucial in real-world applications, where understanding the
reliability of causal predictions can inform better decision-making.

Table 2: SHD and CE on semi-synthetic datasets.

Lorenz 96 Lotka–Volterr FMRI
T = 100 T = 500 T = 200 T = 500

SHD↓

VAR (FBH) - 98.40±2.4 - 74.20±10.4 28.8±1.3
PCMCI+ 405.0±15.0 411.0±5.0 494.0±20.0 423.0±20.0 70.00±2.00

GVAR 389.6±220.6 127.4±76.8 279.0±104.1 82.8±24.1 71.6±21.8
HiBaNG 117.7±3.3 71.8±4.0 67.0±2.4 45.0±4.4 24.2±0.7

CE↓

BVAR (d) - 0.10±0.01 - 0.11±0.01 0.11±0.02
PCMCI+ 0.25±0.01 0.27±0.01 0.27±0.01 0.28±0.01 0.31±0.02

GVAR 0.07±0.01 0.15±0.01 0.08±0.01 0.10±0.01 0.19±0.01
JRNGC 0.01±0.01 0.09±0.01 0.07±0.01 0.13±0.01 0.09±0.02
HiBaNG 0.11±0.01 0.08±0.01 0.05±0.01 0.04±0.01 0.07±0.01

Figure 2: Qualitative analysis of HiBaNG on
Lotka–Volterra. Left: Ground-truth GC graph,
middle: Bernoulli posterior mean of the discov-
ered GC graphs, right: Matrix of {rτ

k}K,τmax
k=1,τ show-

ing that K = 50 is sufficiently large in our experi-
ments (see Section 5.1 for more details). Each rect-
angle indicates a value of a matrix and brighter
colors indicates larger values.

In Figure 2, we compare the Bernoulli posterior mean of HiBaNG with the ground-truth graph on
Lotka–Volterra. We can see that the posterior mean discovered by our method is well aligned with the
ground-truth graph, where brighter rectangles indicate higher probability of a GC link between two variables.
Finally, recall that rτ

k in Eq. (3) models the weight of latent factor k at lag τ . We plot {rτ
k}K,τmax

k=1,τ as a
K × τmax matrix. It can be seen that the matrix is quite sparse, where only a few entries have large values
and only a few factors are active among K = 50. This demonstrates the shrinkage mechanism on K.
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Figure 3: Results on JR55. Up: HiBaNG discovered causal links between indices on JR55 where the weights
are from the Bernoulli posterior of the graph (links with weights less than 0.2 are not shown) and thicker
links indicate stronger connections. Down: PCMCI+ discovered causal links.
5.3 Qualitative analysis on climate reanalysis data

We qualitatively analyze our method’s performance on climate data obtained from the Japanese reanalysis
of the atmosphere (JRA55) (Kobayashi et al., 2015), detailed in Section C. We compare HiBaNG and
PCMCI+ with lag τmax = 6 in Figure 3. We qualitatively explain physical interpretability of discovered
relationships of PCMCI and ours. 1) ENSO (MEI) Autocorrelation: HiBaNG captures autocorrelations in
MEI extending back to t–5, aligning with the known persistence of ENSO over approximately 6 months,
as discussed in Harries & O’Kane (2021) (Figure 5). PCMCI only captures MEI autocorrelations up to
t–3, suggesting a more limited temporal sensitivity. 2) MEI→PSA1 Directionality: HiBaNG correctly infers
MEI(t–1)→PSA1(t), consistent with the established ENSO-to-PSA1 influence via modulation of midlatitude
tropospheric flow (O’Kane & Franzke, 2025). PCMCI infers the reverse direction (PSA1(t–1)→MEI(t)). 3)
PNA Links: Both methods identify the PNA autocorrelation at one-month lag, consistent with observed
behavior. However, HiBaNG additionally identifies the MEI(t–1)→PNA(t) edge, also seen in Harries &
O’Kane (2021) (Figure 9b), supporting known teleconnections. PCMCI instead finds NAO–(t-1)→PNA(t),
which is plausible but not as directly supported by prior work. 4) Northern Hemisphere Modes: HiBaNG
provides a more complete representation of the interconnected dynamics among AO, NAO+, NAO–, and
AR. For example, the HiBaNG graph includes: PSA2(t–1) → NAO+(t); PSA1(t)→AR(t); NAO+ and NAO–
autocorrelations at t–1. These are consistent with Harries & O’Kane (2021) (Figures 6 and 7), and not
captured by PCMCI. Overall, the HiBaNG graph shows a larger and more diverse set of edges consistent
with those previously inferred from the JRA55 reanalysis via Bayesian structure learning as reported in
Harries & O’Kane (2021). We note that this experiment is intended primarily as a qualitative demonstration
of our framework’s interpretability and practical applicability, with PCMCI serving as a reference. We do
not claim that HiBaNG should systematically outperform PCMCI on this task, particularly since PCMCI is
more expressive in principle due to its support for nonlinear conditional independence tests.

6 Conclusion

We have presented a novel Bayesian VAR model tailored to Granger causal discovery on MTS data in
low-data settings. Our method leverages a hierarchical Bayesian framework that separates Granger causal
relationships into binary causal graphs and real-valued weights. Through extensive experiments on synthetic,
semi-synthetic, and real-world datasets, we have demonstrated that our approach can perform better in
low-data regimes. For limitations, it is important to note that our method is based on the Granger causality
framework, which assumes that causal relationships are reflected in time-lagged dependencies. While this
assumption is appropriate for many applications, it may not hold universally, and practitioners should exercise
caution when interpreting causal results.
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Broader impact statement

This paper introduces a novel method for discovering causal relationships from observational data, grounded
in the framework of Granger causality and a factorized representation of causal structure. By leveraging these
assumptions, the method enables scalable and interpretable causal discovery, which can benefit applications
in fields such as economics, neuroscience, and climate science where temporal data is abundant. The approach
opens up new possibilities for causal inference in high-dimensional settings, providing a foundation for future
work that can relax or adapt these assumptions to broader domains.

As the method relies on assumptions like Granger causality and factorized causal structures, there is a risk of
drawing incorrect conclusions if these assumptions do not hold. Misinterpretation or misuse of inferred causal
relationships could lead to flawed decisions or reinforce biases present in the data, especially in high-stakes
domains.
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A Inference via Gibbs Sampling

Sampling Aτ With the conjugacy of normal distributions, one can sample the entries of Aτ one by one by:
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Sampling M τ With GBPL, we can sample:
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Sampling Mτ
i,j,k With the relationships between Poisson and multinomial distributions, we can sample:
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Sampling aτ
i and bτ

j By introducing auxiliary variables from the Chinese Restaurant Table (CRT)
distribution (Zhou et al., 2012; Zhou & Carin, 2013), we can sample:
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Algorithm 1: Inference Algorithm for HiBaNG.
input : MTS data X, number of lags τmax, hyperparameter V
output : Posterior samples of {Aτ }τmax

τ and {Gτ }τmax
τ

Initialize all the variables;
while Not converged do

for i = 1 . . . N do
Sample λi;

end
for τ = 1 . . . τmax do

for i = 1 . . . N , j = 1 . . . N do
Sample Mτ

i,j and Mτ
i,j,k;

end
Sample cτ ;
for i = 1 . . . N do

Sample aτ
i and bτ

i ;
end
for k = 1 . . .K do

Sample dτ
k, eτ

k, rτ
k ;

end
for i = 1 . . . N do

for k = 1 . . .K do
Sample θτ

i,k and ϕτ
i,k;

end
end
for i = 1 . . . N do

for j = 1 . . . N do
Sample Aτ

i,j , ψτ
i,j , Gτ

i,j ;
end

end
end

end

Table 3: Hyperparameter settings.

Model τmax # hidden layers # hidden units # training epochs Learning rate Mini-batch size Parameter space

VAR (FBH) {1,3,5} NA NA NA NA NA NA
BVAR(d) {1,3,5} NA NA NA NA NA NA
BVAR(c) {1,3,5} NA NA NA NA NA NA

SRU NA 1 10 2000 1.0e-3 50
µ1 = [0.01, 0.05]
µ2 = [0.01, 0.05]
µ3 = [0.01, 1.0]

eSRU NA 2 10 2000 1.0e-3 50
µ1 = [0.01, 0.05]
µ2 = [0.01, 0.05]
µ3 = [0.01, 1.0]

GVAR {1,3,5} 2 50 1,000 1.0e-4 64
λ = [0.0, 3.0]
γ = [0.0, 0.1]

HiBaNG {1,3,5} NA NA 10,000 NA NA V = {1, 2, 3}

B Synthetic Data

We conduct experiments on the synthetic data generated from a VAR model specified in Eq. (1) to test
whether our method is able to discover the ground-truth graphs. Given N = 16 and τmax = 6, we construct
{Aτ }τmax

τ=1 by first specifying the nonzero entries (i.e, the ground-truth causal graphs) and then for each
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Table 4: Performance of HiBaNG on FMRI in different parameters.

τmax V K AUROC AUPRC

1 1 5 0.711 ± 0.044 0.550 ± 0.037
1 1 20 0.725 ± 0.046 0.552 ± 0.034
1 1 50 0.714 ± 0.041 0.550 ± 0.035
1 2 5 0.715 ± 0.051 0.544 ± 0.037
1 2 20 0.713 ± 0.052 0.543 ± 0.036
1 2 50 0.712 ± 0.048 0.543 ± 0.033
1 3 5 0.705 ± 0.058 0.539 ± 0.035
1 3 20 0.710 ± 0.060 0.539 ± 0.038
1 3 50 0.706 ± 0.044 0.538 ± 0.034
3 1 5 0.737 ± 0.039 0.590 ± 0.038
3 1 20 0.731 ± 0.032 0.585 ± 0.037
3 1 50 0.739 ± 0.036 0.591 ± 0.038
3 2 5 0.732 ± 0.031 0.583 ± 0.039
3 2 20 0.728 ± 0.012 0.597 ± 0.014
3 2 50 0.724 ± 0.036 0.584 ± 0.044
3 3 5 0.723 ± 0.028 0.578 ± 0.040
3 3 20 0.731 ± 0.034 0.582 ± 0.042
3 3 50 0.736 ± 0.034 0.585 ± 0.044
5 1 5 0.736 ± 0.022 0.589 ± 0.023
5 1 20 0.742 ± 0.029 0.594 ± 0.026
5 1 50 0.742 ± 0.030 0.593 ± 0.027
5 2 5 0.732 ± 0.026 0.587 ± 0.033
5 2 20 0.743 ± 0.030 0.592 ± 0.031
5 2 50 0.740 ± 0.029 0.591 ± 0.029
5 3 5 0.733 ± 0.017 0.583 ± 0.031
5 3 20 0.738 ± 0.030 0.590 ± 0.032
5 3 50 0.734 ± 0.023 0.589 ± 0.035

nonzero entry we sample Aτ
i,j ∼ uniform(0.1, 0.2). We generate T = 1, 000 samples accordingly, initialize

x0 from a standard normal distribution and sample ϵt ∼ N (0, 0.01). We show the results of our method
in Figure 4, where we also fit a randomly initialized VAR (Seabold & Statsmodels, 2010) to the data as a
reference. It can be seen that the ground-truth graphs at different lags have diverse patterns and our method
discovers them well (also reflected by better AUCROC and AUPRC). Unlike VAR, our method directly
discovers binary graphs without using thresholds or tests.

C More Introduction to the Climate Reanalysis Data

Following Harries & O’Kane (2021), we compute a set of 13 indices diagnosing the activity of the major
atmospheric tropospheric and convective global climate modes at monthly resolution from 1960 to 2005,
resulting in an MTS dataset where N = 13 and T = 551. The climate indices’ names are shown in Table 7.
Among the indices, the Multivariate El Niño Southern Oscillation Index (MEI) index is a representative

21



Under review as submission to TMLR

Ground-truth at lag 1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ground-truth at lag 2

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ground-truth at lag 3

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ground-truth at lag 4

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ground-truth at lag 5

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ground-truth at lag 6

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 0.97

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 0.98, AUPRC: 0.92

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 0.93

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 0.98, AUPRC: 0.93

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 0.98

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 0.99, AUPRC: 0.85

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 1.00

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 0.99, AUPRC: 0.96

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 1.00

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 0.98

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 0.99, AUPRC: 0.90

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prediction, AUCROC: 1.00, AUPRC: 0.91

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 4: Synthetic dataset. First to third rows: ground-truth graphs, coefficients of VAR, and GC graphs of
ours at different lags. Columns: τ = 1, . . . , 6. The AUCROC and AUPRC scores at each lag of VAR and
ours are shown in the sub-captions. Mean AUCROC over all the lags is 0.99 (VAR) and 1.0 (ours); Mean
AUPRC is 0.93 (VAR) and 0.96 (ours).

Table 5: SHD for VAR (FBH), GVAR, and HiBaNG with τmax = 1. Means and standard derivations are
computed over 5 replicates on each dataset.

L96 LV FMRI
T = 100 T = 500 T = 200 T = 500

VAR (FBH) - 72.00±4.69 125.60±21.88 451.40±69.85 26.00±1.10
GVAR 373.20±39.77 93.60±55.23 147.80±80.36 111.00±39.75 51.00±16.79

HiBaNG 112.91±1.95 71.43±3.52 186.13±21.84 49.73±4.72 25.17±1.43

example of the other climate indices in that the timeseries is associated with regionally distributed coherent
responses in the atmosphere and surface ocean. In Figure 5(a), we plot the timeseries of MEI as an example,
which characterizes the El Niño / La Niña cycle. Positive values of the MEI are associated with El Niño
periods, negative values are associated with La Niña periods, with the magnitude of the index proportional
to the strength of the event. For example, according to the MEI index, there was a large El Niño in April of
1998. Figure 5(b) illustrates how much warmer (red) and cooler (blue) the surface air temperature was in that
month with respect to the average April. This map illustrates a large warm patch over the eastern Pacific
ocean, which is typical of El Niño. Conversely, the MEI indicates that August 1988 was a large La Niña, with
an associated surface air temperature map illustrated in Figure 5(c). This map illustrates how different the
surface air temperature was with respect to an average August. As is typical of La Niña events, the eastern
Pacific region of anomalously cool.

D Empirical computational performance

In addition to the complexity analysis given in Section 3.3, we empirically study the computational complexity
by examining two aspects: running time of one Gibbs sampling iteration and the number of iterations for
convergence. For all the experiments here, our method ran on an Apple laptop with an M1 Pro processor.
We report the running time (seconds per Gibbs sampling iteration) of our method varying the number of
variables and timestamps on Lorenz 96 in Figure 6c. It can be seen that inference in our method is efficient,
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Table 6: SHD for VAR (FBH), GVAR, and HiBaNG with τmax = 3. Means and standard derivations are
computed over 5 replicates on each dataset.

L96 LV FMRI
T = 100 T = 500 T = 200 T = 500

VAR (FBH) - 79.60±3.32 84.40±4.18 75.40±5.85 25.80±1.33
GVAR 577.40±47.51 133.20±107.22 213.80±117.98 128.60±68.31 50.00±18.99

HiBaNG 114.75±1.68 73.18±2.67 75.30±9.21 45.50±2.34 24.78±1.08

Table 7: Climate index names

Index name Abbreviation

Atlantic Oscillation AO
Indian Ocean Dipole IOD

Multivariate El Niño Southern Oscillation Index MEI
North Atlantic Oscillation (positive and negative phases) NAO+/-

Atlantic Ridge patterns AR
Scandinavian blocking patterns SCAND

Pacific North American patterns PNA
Pacific South American patterns PSA1/2

Southern Annular Mode SAM
Wheeler-Hendon Madden-Julian oscillation RMM1/2
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Figure 5: (a) MEI index. (b) The geographical locations of the indices. (c) El Niño temperature anomaly in
April 1998. (d) La Niña temperature anomaly August 1988.
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Figure 6: (a, b) HiBaNG’s (V = 2) empirical converge on Lorenz 96. For better visualisation, we show
MSE in the iterations between [a, b] where a is the first iteration that MSE goes below 2.0 and b = 500. (c)
Running times in seconds per MCMC iteration on on Lorenz 96.

scaling gracefully as a function of T . Figure 6 shows HiBaNG’s MSE over the number of iterations on Lorenz
96. Although we set the maximum number of Gibbs sampling iterations to 10,000, in most cases our method
converges around 200 iterations. We can also see that in low-data regimes (e.g., T = 100 on Lorenz 96),
samples from our model may have more variance at the beginning of the inference, which is as expected as
there are less timestamps. In general, our method converges within half an hour on a laptop in most cases.

E More analysis on Bayesian nonparametrics

To further analyze the shrinkage mechanism of our model with respect to the truncation level K, for each run,
as shown in Figure 2, we obtain the matrix of factor weights {rτ

k}K,τmax
k=1,τ , which we denote by R ∈ RK,τmax

+ .
For K = 5, we compute r5 = median(R). Since K = 5 is small, we use it as a reference point and define the
number of effective latent factors as ℓK as #{rτ

k > r5}K,τmax
k=1,τ .

Under this definition, we have ℓ5 = 5∗τmax
2 by construction. For K = 20, 50, we report ℓK − ℓ5 averaged over

5 runs with different random seeds, averaged over 5 runs with different random seeds. This quantity measures
how much the number of effective latent factors deviates from the reference case K = 5, thereby indicating
whether the model activates substantially more factors when the truncation level is increased.
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Table 8: Difference in the number of effective latent factors, ℓK − ℓ5, for K ∈ {20, 50} across datasets and lag
orders. The reference value ℓ5 is computed from the case K = 5.

L96, T = 100 L96, T = 500 LV,T = 200 LV, T = 500 FMRI
K = 20 K = 50 K = 20 K = 50 K = 20 K = 50 K = 20 K = 50 K = 20 K = 50

τmax=1 0.000 -0.667 -0.667 -0.333 -0.333 0.000 1.667 4.000 0.000 0.000
τmax=3 0.667 2.000 2.667 2.000 2.333 0.667 2.000 2.667 0.000 2.667
τmax=5 2.000 3.000 1.333 4.667 3.000 1.000 2.000 2.667 -1.333 0.667

We emphasize that ℓK is not intended as a precise or exhaustive measure of the true number of active latent
factors, but rather as a coarse and interpretable proxy for assessing posterior shrinkage behavior. Since
the notion of an “effective” factor is inherently ambiguous in hierarchical Bayesian models with continuous
weights, any such metric is necessarily approximate. Our goal is therefore not exact quantification, but to
provide a simple diagnostic that reflects whether increasing K leads to a systematic increase in the number
of activated components. As shown in Table 8, the most values of ℓK − ℓ5 remain small across all datasets,
lag orders, and truncation levels. Even when increasing K from 5 to 50, the number of effective latent factors
grows only marginally and in some cases even decreases. This indicates that the posterior selectively activates
only a limited number of latent factors, while the remaining capacity remains unused.

F Convergence analysis

For detailed convergence analysis of our algorithm, we set V = 2, τmax = 3 and K = 20 and run 20 independent
Gibbs sampling chains with different random seeds and independent initializations of our method on the
FMRI dataset. Consistent with our other experiments, each chain is run for 10,000 iterations, of which the
first 5,000 are discarded as burn-in. From the remaining iterations, we retain one sample every 10 iterations,
resulting in 500 samples per chain.

R̂ and ESS: We first compute the posterior edge probabilities p̄ (mean and standard deviation) for each pair
of nodes at each lag by pooling the 500 post-burn-in samples across all chains. We then select the top 30 node
representative subset of triplets (i, j, τ) (i, j are node indexes and τ is the lag index) with the largest posterior
means for visualization. To assess convergence and mixing, we report the Gelman–Rubin diagnostic (R̂) and
effective sample size (ESS) for both G and A for the selected node pairs. Table 9 reports the convergence
diagnostics. For both G and A, R̂ and ESS are close to 1, indicating reasonably good agreement across
the 20 independent chains. Moreover, the effective sample sizes are consistently high and close to the total
number of retained samples, suggesting strong mixing and low autocorrelation. These results demonstrate
that our Gibbs sampler achieves stable and reliable posterior inference for all selected interactions.

Reliability diagram: We evaluate the probabilistic calibration of posterior edge probabilities using reliability
diagrams with respect to the ground-truth graph on the FMRI dataset. Due to the extreme sparsity of true
edges, we construct bins with approximately equal numbers of edges to obtain stable empirical estimates. For
each bin, we plot the mean predicted probability against the corresponding empirical edge frequency. Each
reliability diagram is accompanied by a histogram of predicted probabilities to contextualize the calibration
curve. As shown in Figure 7, most predictions concentrate near zero, reflecting the sparsity of the underlying
graph, while the calibration curve closely follows the diagonal in the low-probability regime, indicating
reasonable calibration where most of the probability mass lies. This aligns with the CE results reported in
Table 2.

Edge probability traces: To visually assess convergence and mixing of the Gibbs sampler, we include
multi-chain trace plots for selected edge-specific variables. Because the latent variables are matrix-valued,
it is not feasible to display traces for all entries. Instead, we visualize traces for a representative subset of
triplets (i, j, τ), selected previously. In Figure 8, for each selected triplet (i, j, τ), we plot its edge probability
p̄ across the collected 500 samples for all chains on the same axis. These trace plots provide a qualitative
diagnostic of convergence, illustrating that all chains explore the same stationary distribution, exhibit no
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Table 9: Analysis of G and A in multiple chains on FMRI.

i j τ G A

p̄ R̂ ESS p̄ R̂ ESS

10 15 1 0.9001 ± 0.29988 1.0013 6380.5 −0.28935 ± 0.70166 0.99994 9000.7
9 8 2 0.3615 ± 0.48046 1.0002 7447.9 −0.11128 ± 2.7951 0.99959 9616.7
10 5 1 0.1468 ± 0.35392 1.0011 8421.7 −0.014161 ± 2.5222 1.0005 8795.9
12 11 1 0.118 ± 0.32262 1.0001 8672.4 0.043694 ± 2.9617 0.99935 9278.9
6 13 1 0.0924 ± 0.2896 1.0009 9453 0.012286 ± 2.6168 1 9663.2
2 10 1 0.0753 ± 0.26389 1.0001 9352 −0.018597 ± 2.7518 1 9383.4
14 15 1 0.074 ± 0.26178 0.99969 9083.2 0.029438 ± 3.5335 1.0003 9653.4
3 10 1 0.0725 ± 0.25933 0.9995 8889.1 −0.059261 ± 2.7133 0.9996 9507.9
1 11 1 0.0576 ± 0.233 1.0011 9375.3 −0.0049786 ± 2.8795 0.99953 9554.4
13 15 1 0.0548 ± 0.2276 1.0009 8844.8 0.070477 ± 2.8283 0.99949 9184.5
1 8 1 0.0529 ± 0.22385 1.0002 9159.9 0.026641 ± 3.1418 0.99943 9614
6 7 1 0.0515 ± 0.22103 0.99983 9802.8 −0.024542 ± 4.5388 1.0002 9473.8
13 6 1 0.0504 ± 0.21878 0.99947 9634.5 −0.043816 ± 3.4608 0.99991 9584
11 1 1 0.0462 ± 0.20993 0.99996 9065.2 −0.022 ± 2.7709 0.99933 9097.7
6 14 1 0.0424 ± 0.20151 0.99949 9337 0.019762 ± 2.6693 0.99984 9238.7
7 3 1 0.042 ± 0.2006 0.99935 9489.2 0.039643 ± 3.1857 0.99974 8766.6
2 4 1 0.041 ± 0.1983 0.99992 8932.8 −0.015108 ± 4.9719 0.99973 9161.6
10 4 1 0.0366 ± 0.18779 1.0003 9267 0.047841 ± 3.3277 0.99952 9003.4
10 8 1 0.0351 ± 0.18404 0.99998 9416.1 0.013438 ± 2.571 0.99941 9730.2
2 11 1 0.0338 ± 0.18072 1.0005 9180.9 0.057287 ± 3.4617 0.99993 9076.5
3 14 1 0.0323 ± 0.1768 1 9177.5 0.029325 ± 3.4226 0.99954 9608.5
7 14 2 0.0294 ± 0.16893 0.99944 9598.2 0.019568 ± 4.3586 1.0002 8831.7
8 10 1 0.027 ± 0.16209 1.0006 9494.6 −0.02755 ± 2.5024 0.99996 9472
8 6 1 0.0266 ± 0.16092 0.99939 9360.1 −0.012545 ± 3.1591 0.99953 9658.2
10 12 1 0.0249 ± 0.15583 1.0004 9446.7 0.033767 ± 3.3515 1.0004 9664.7
7 1 1 0.0245 ± 0.1546 0.99925 9573.5 −0.10686 ± 11.404 0.99977 9853.3
11 13 1 0.0234 ± 0.15118 1.0006 9555.4 0.016013 ± 3.8499 1.001 9381.4
5 4 2 0.0233 ± 0.15086 0.99982 9487.6 −0.034036 ± 3.6502 0.99944 8998.4
15 1 1 0.0224 ± 0.14799 1.0004 9047.4 −0.038182 ± 4.2819 0.99974 9340.3
14 13 1 0.0223 ± 0.14766 1.0012 9922.7 −0.044632 ± 3.1499 0.99968 9062.1

visible nonstationarity, and mix adequately. We complement these visual checks with quantitative convergence
diagnostics shown in Table 9.
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Figure 7: Reliability diagrams.
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Figure 8: Edge probability traces. Colors indicate different chains.
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