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Abstract
Off-policy Reinforcement Learning (RL) is fun-
damental to realizing intelligent decision-making
agents by trial and error. The most notorious is-
sue of off-policy RL is known as Deadly Triad,
i.e., Bootstrapping, Function Approximation, and
Off-policy Learning. Despite recent advances in
bootstrapping algorithms with better bias control,
improvements on the latter two factors are rela-
tively less studied. In this paper, we propose a
general off-policy RL algorithm based on policy
representation and policy-extended value func-
tion approximator (PeVFA). Orthogonal to better
bootstrapping, our improvement is two-fold. On
one hand, PeVFA’s nature in fitting the value func-
tions of multiple policies according to correspond-
ing low-dimensional policy representation offers
preferable function approximation with less inter-
ference and better generalization. On the other
hand, PeVFA and policy representation allow to
perform off-policy learning in a more general and
sufficient manner. Specifically, we perform addi-
tional value learning for proximal historical poli-
cies along the learning process. This drives the
value generalization from learned policies and in
turn, leads to more efficient learning. We eval-
uate our algorithms on continuous control tasks
and the empirical results demonstrate consistent
improvements in terms of efficiency and stability.

1. Introduction
Off-policy Reinforcement Learning is an important branch
of reinforcement learning that has attracted much attention
thanks to its generality and application potential (François-
Lavet et al., 2018). In off-policy RL, three widely utilized
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techniques: Bootstrapping, Function Approximation, and
Off-policy Learning, are combined together, which is col-
lectively referred to as Deadly Triad (Sutton, 1988; Sutton
& Barto, 2018). Despite high-profile empirical successes,
sample inefficiency and learning instability due to Deadly
Triad remain to be key issues of off-policy RL (Achiam
et al., 2019; Van Hasselt et al., 2018). This greatly limits
the deployment of off-policy RL in real-world scenarios.
In recent years, significant progress has been made by im-
proving bootstrapping methods, resulting in more advanced
off-policy RL algorithms (Fujimoto et al., 2018; Kuznetsov
et al., 2020; Lan et al., 2020; Chen et al., 2021; Liang et al.,
2022). Nevertheless, the latter two factors (i.e., function
approximation and off-policy learning) receive relatively
less attention. Existing works on these two factors primar-
ily focus on how to design better function approximators
(Ota et al., 2020; Shah & Kumar, 2021) (usually modeled
by neural networks) and compensate for the discrepancy
between the distributions of the policy of interest and the
behavior policy (Saglam et al., 2022; Kumar et al., 2020).
Although some progress has been made in these works, es-
sentially they have only independently improved one of the
two factors. We argue that the two factors are closely related
and that improving both of them simultaneously may obtain
greater improvements.

Recently, in the on-policy setting, Faccio et al. (2020) and
Tang et al. (2020) both propose methods to improve func-
tion approximation by using policy parameters and policy
representations with encoded policy parameters as an addi-
tional input to the traditional Value Function Approximator
(VFA). Similarly, in the offline setting, the Policy Evalu-
ation Networks (PVN) (Harb et al., 2020) is proposed to
approximate the expected return of multiple policies with
policy representation obtained by policy fingerprints as in-
put. Furthermore, towards obtaining preferable function
approximation with better generalization across policies and
tasks, Raileanu et al. (2020) and Sang et al. (2022) pro-
pose to use both a policy representation and an environment
representation as additional inputs to the VFA. On the sur-
face, these works mentioned above develop different value
function approximators, but essentially they aim to improve
value approximation by extending the input of the VFA with
policy and environment representations.
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Inspired by these works, we investigate how the policy-
extended value function approximator (PeVFA) can improve
the off-policy RL from both function approximation and
off-policy learning. First of all, we propose a new Bell-
man operator to characterize off-policy RL with PeVFA
for the purpose of better function approximation. Building
upon the proposed Bellman operator, we further develop
a Generalized Off-Policy Evaluation manner with PeVFA
(GOPE-P) for more efficient learning. Additionally, we pro-
pose a simple and effective policy representation learning
method, named Layer-wise Permutation-invariant Encoder
with Dynamic Masking (LPE-DM), which follows the char-
acteristics of policy data itself for learning policy representa-
tion. Our work differs from previous studies in two aspects.
Firstly, we focus on the more general off-policy scenario.
Secondly, in addition to function approximation, we further
investigate the effectiveness of PeVFA in off-policy learning.
We refer to our method as Off-policy PeVFA.

In this paper, we first propose to improve both function
approximation and off-policy learning from the PeVFA per-
spective. To evaluate the effectiveness and generality of the
proposed method, we introduce two practical implementa-
tions of our method based on TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018), namely TD3-PeVFA and
SAC-PeVFA. We evaluate them on six OpenAI continuous
control tasks and the empirical results indicate that our al-
gorithm significantly outperforms the benchmarks in every
environment tested. We summarize our main contributions
below:

1) We propose a general off-policy RL algorithm based
on PeVFA, which leverages value generalization among
policies to improve the learning process.

2) We propose a new policy representation learning method
for the effective encoding of policy network parameters.

3) Empirical results on popular OpenAI Gym control tasks
demonstrate the consistent superiority of our algorithms in
terms of efficiency and stability.

2. Preliminary
2.1. Reinforcement Learning

A Markov Decision Process (MDP) (Puterman, 2014) is
usually defined by a five-tuple ⟨S,A, P, r, γ⟩, with the state
space S, the action space A, the transition probability
P : S × A → ∆(S), the reward function r : S × A → R
and the discount factor γ ∈ [0, 1). ∆(X) denotes the prob-
ability distribution over X . A stationary policy π ∈ Π :
S → ∆(A) is a mapping from states to action distribu-
tions, which defines how to behave under specific states.
An agent interacts with the MDP at discrete timesteps
by its policy π, generating trajectories with s0 ∼ ρ0(·),
at ∼ π(·|st), st+1 ∼ P (· | st, at) and rt+1 = r (st, at),
where ρ0 is the initial state distribution. The goal of an

RL agent is to maximize the value defined as the expected
cumulative discounted returns Es0∼ρ0(·)[

∑∞
t=0 γ

trt+1 |
s0]. Given a policy π, the discounted state visitation
distribution from initial states regarding ρ0 is defined as
dπ(s). There exists an action-value function Qπ(s, a) =
Es∼dπ(s),a∼π [

∑∞
t=0 γ

trt+1 | s0 = s, a0 = a], which is de-
fined as the expected return for performing action a in state
s. We compute the action-value function through the Bell-
man operator, T πQπ(s, a) = Es′∈S [r + γQπ (s′, π (s′))]
(Sutton & Barto, 2018). The optimal action-value function
Q∗(s, a) = maxa∈AQ

π(s, a) is obtained by the greedy
actions of the corresponding policy.

2.2. Off-policy RL

In deep RL, the action-value function is modeled by a dif-
ferentiable function approximator Qθ(s, a) with parameters
θ, commonly known as Q-network. The deep action-value
function is obtained by temporal difference (TD) learning
(Sutton, 1988) based on the Bellman equation:

Qθ(s, a)← (r + γQθ−
(
s′, a′)), ∀s, s′ ∈ S, a, a′ ∈ A, (1)

where Qθ− is the target network for providing a fixed objec-
tive to the Q-network and ensuring stability in the updates.
In particular, the target network is updated by some pro-
portion τ at each time step θ− ← τθ + (1− τ)θ−, named
soft-update. The Q-network is optimized by minimizing
TD-error, i.e., (r + γQθ− (s′, a′))−Qθ(s, a).

In continuous action spaces, obtaining the maximum
of the action-value function over the action space, i.e.,
maxa∈AQ

π(s, a), is intractable (Saglam et al., 2022).
Thus, a separate network named the actor network is em-
ployed which selects actions on the observed states. The
deep RL algorithms that adopt both actor and critic are
called actor-critic methods. In actor-critic methods, the
actor network πϕ with parameters ϕ is optimized by one-
step gradient ascent over the policy gradient ∇ϕJ(ϕ),
where J(ϕ) = Qθ(s, πϕ(s)). For deterministic policies,
i.e., mapping states to unique actions, the policy gradi-
ent following the Deterministic Policy Gradient algorithm
(DPG) (Silver et al., 2014) is computed: ∇ϕJdet (ϕ) =
∇aQθ(s, a)|a=πϕ(s)∇ϕπϕ(s). For stochastic policies, i.e.,
mapping states to action probabilities, the policy gradient is
computed: ∇ϕJsto(ϕ) = Qθ(s, a)∇ϕ log πϕ(a | s).

In off-policy deep RL, the policy πϕ can be optimized using
collected data that are not necessarily obtained under the
current policy πϕ, but from a behavioral policy πβ . In this
case, the deterministic policy gradient and stochastic policy
gradient are respectively:

∇ϕJdet (ϕ) = Es∼d
πβ (s)

[
∇aQθ(s, a)|a=πϕ(s)∇ϕπϕ(s)

]
,

(2)
∇ϕJsto (ϕ) = Es∼d

πβ (s),a∼πϕ
[Qθ(s, a)∇ϕ log πϕ(a | s)] .

(3)
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The sample efficiency of off-policy RL algorithms is im-
proved as they make use of any past experience (Degris
et al., 2012). This may be especially useful in some scenar-
ios where it may be costly or dangerous to collect data using
the learned policy.

2.3. Policy-Extended Value Function Approximator

The policy-extended value function approximator (PeVFA,
V : S × Π → R) (Tang et al., 2020) is an extension
of the conventional value function approximator (VFA),
which explicitly takes policy (representation) as input. Here,
we consider a general policy representation function f :
Π → X ∈ Rn which maps the original policy π ∈ Π
to a n-dimensional policy representation χπ ∈ X . Fol-
lowing the definition of PeVFA (Tang et al., 2020), for
∀s ∈ S, a ∈ A, π ∈ Π, we define the policy-extended
action-value function Q (s, a, χπ):

Q (s, a, χπ) = Eπ

[
∞∑
t=0

γtrt+1 | s0 = s, a0 = a

]
. (4)

One key difference from the original action-value function
Q (s, a) is that Q (s, a, ·) preserves the values of multiple
policies. With function approximation, Qθ (s, a, ·) is ex-
pected to approximate values among policy space:

Fµ,p,ρ(θ, f,Π) =
∑
π∈Π

µ(π) ∥Qθ (s, a, χπ)−Qπ(s, a)∥p,ρ ,

(5)
θ∗ = argmin

θ∈Θ
F (θ, f,Π), (6)

where µ, ρ are distributions over policies and states respec-
tively, which are related to specific tasks. p denotes Lp-
norm. From Eq.6, policy representations endow Qθ (s, a, ·)
with the property of value generalizing across policies, al-
lowing Qθ to utilize preserved old knowledge within the
value function to evaluate unseen policies efficiently. This
appealing characteristic is highly significant for improving
Generalized Policy Iteration (GPI) (Sutton, 1988) followed
by most RL algorithms, because the value function Qθ can
quickly generalize to successive policies by leveraging the
value of previous policies along the policy improvement
path during GPI. Thus, in this paper, we focus on the GPI
and use a uniform state distribution ρ and L2-norm. Intu-
itively, for µ(π), it should be the distribution of policies we
are interested in when learning the value function. We defer
the concrete choices of it in Sec. 3.2. For brevity, we refer
to the policy-extended action-value function as PeVFA in
the following.

3. Off-Policy RL with PeVFA
Our goal is to propose a general off-policy RL algorithm
with policy representations and PeVFA for boosting off-
policy RL. In this section, we first formally define the new

Bellman operator with PeVFA, Tπ which is used to com-
pute the action-value function in off-policy RL (Sec. 3.1).
Then, we propose a more general and efficient manner to
perform off-policy learning based on the PeVFA (Sec. 3.2).
Finally, we present in detail a practical implementation of
the proposed algorithm (Sec. 3.3).

3.1. Bellman Operator with PeVFA

In general, off-policy RL algorithms learn the conventional
action-value function Qπ through the Bellman operator T π:
T πQπ(s, a) = Es′∈S [r + γQπ (s′, π (s′))]. Thus, we in-
troduce our algorithm starting from the Bellman operator.
First of all, following the definition of the Bellman opera-
tor, we propose a novel Bellman operator Tπ regarding the
policy-extended action-value function as follows:

Definition 3.1 (Bellman operator with PeVFA). Let Tπ :
Q → Q be the operator on the policy-extended action-
value function Q. For a given policy π ∈ Π, f(π) is a
policy representation function that maps the policy π to
a n-dimensional policy representation χπ ∈ X . ∀s, s′ ∈
S, a, a′ ∈ A, the new Bellman operator Tπ is defined as:

TπQπ(s, a, χπ) = Es′∈S [r + γQπ (s′, π (s′) , χπ)] . (7)

Tπ is a recursive operator which satisfies the compression
map theorem (Sutton & Barto, 2018) with a unique fixed-
point Qπ, denoted as TπQπ = Qπ. Hence, for arbitrary
policy π, we perform multiple Bellman operations on its
initial policy-extended action-value function Qπ0 to obtain
the unique fixed-point Qπ, i.e., convergence to the policy-
extended action-value function of the policy π.

The learning process of action-value function Qπ based on
the two Bellman operators T π and Tπ can be expressed as
limn→∞ T πn Qπ0 = Qπ and limn→∞ TπnQπ0 = Qπ, respec-
tively. Somewhat naturally, the closer Qπ0 and Qπ0 are to
the true value Qπ, the smaller n is, resulting in the higher
efficiency of value iteration. Thus, a key question is whether
Qπ0 is closer to the true value Qπ than Qπ0 . We first study
the value learning in a two-policy case (i.e., πt,πt+1) where
only the value of policy π1 is approximated by PeVFA as
below:

Theorem 3.2. For a value learning process, Pπ : Θ →
Θ̂, fθ̂(π) = ∥Qθ̂(π) − Qπ∥, if fθ̂t(πt) + fθ̂t(πt+1) ≤
∥Qπt −Qπt+1∥, then ∥Qθ̂t(πt+1)−Qπt+1∥ ≤ ∥Qθ̂t(πt)−
Qπt+1∥.

Theorem 3.2 can be proved by the Triangle Inequality.
Based on the Theorem 3.2, the value learning at policy
πt+1 with PeVFA starts from the generalized value estima-
tion Qθ̂t(πt+1). Conversely, with respect to VFA, the value
learning at policy πt+1 starts from the Qθ̂t(i.e., equivalent
to Qθ̂t(πt)) which has no explicit policy πt+1 as an addi-
tional input. Thus, PeVFA offers a better initial function
approximation. Recall the GPI process, the value learning
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from each πt and πt+1 can be similarly considered as the
two-policy case.

3.2. Generalized Off-policy Evaluation with PeVFA

In this section, we mainly investigate how to make use
of PeVFA to improve off-policy learning. To the best
of our knowledge, there is no related work to improve
off-policy learning from the PeVFA perspective. Recall
the PeVFA introduced in Sec.2.3, it is characterized by
fitting the value functions of multiple policies based
on corresponding policy representation χπ, i.e., θ∗ =
argminθ∈Θ

∑
π∈Π µ(π) ∥Qθ (s, a, χπ)−Qπ(s, a)∥p,ρ.

Naturally, we argue that performing value learning across
policies can motivate PeVFA to offer more perfect function
approximation. Inspired by this, we propose a generalized
off-policy evaluation manner with PeVFA, denoted as
GOPE-P.

Concretely, during the GPI (θ0
Tπ1
n−→ θ1, · · · , θt

Tπt
n−→

θt+1, · · · ), for a value approximation process at each it-

eration θt
Tπt
n−→ θt+1, we add an additional value learning

process Pπ∈ΠGPI
St

, i.e., θt
P

π∈ΠGPI
St−→ θ′t

Tπt
n−→ θt+1. ΠGPISt

de-
notes the policy subspace obtained along the GPI at the t-th
iteration. Similarly, ∀πi ∈ ΠGPISt

, we update the PeVFA for
Pπ∈ΠGPI

St
using Bellman operator with PeVFA:

Qπi
θ (s, a, χπi)← r+γQπi

θ−

(
s′, πi(s

′), χπi

)
, ∀(s, a, r, s′) ∈ B,

(8)
where B indicates the experience replay buffer shared by all
policies. With PeVFA, we extend off-policy learning to any
policy in the policy subspace derived from GPI. With the
proposed GOPE-P, our method further improves learning
efficiency while improving the generalization of the value
function across policies. We defer the discussion of the
policy subspace in Appendix C.

3.3. A Practical Implementation of the Proposed
Algorithm

The Sec.3.1 and 3.2 detail how PeVFA boosts the off-policy
RL from both function approximation and off-policy learn-
ing. Next, combining the general and popular value estima-
tion method, Clipped Double Q-learning (CDQ) adopted
in off-policy RL, such as the TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018), we propose a practical
implementation of the proposed algorithm.

We first recall the CDQ method. Following Double Q-
learning algorithm (Hasselt, 2010; Van Hasselt et al., 2016),
the CDQ consists of double estimator, i.e., Qθ1 , Qθ2 . How-
ever, instead of using the opposite critic in the learning
targets, which suffer from overestimation, the CDQ pro-
poses to simply upper-bound the less biased value estimate
Qθ2 by the biased estimate Qθ1 to alleviate the overestima-
tion problem. Thus, for any policy πϕ during the learning

ℚ𝜃1 ℚ𝜃1− ℚ𝜃2 ℚ𝜃2−

𝑓𝜓 𝑓𝜓−

TD-error
Figure 1. The illustration diagram for the PeVFA-based Clipped
Double Q-learning. The black solid arrows indicate forward prop-
agation and red dashed arrows are backward propagation.

process, the update target that both critic Qθ1 , Qθ2 share is:

y = r + γ min
i=1,2

Qθ−i
(s′, πϕ (s

′)) . (9)

In this work, replacing the VFA (i.e.,Qθi ,Qθ−i ) with PeVFA
(i.e., Qθi , Qθ−i ), we propose a PeVFA-based CDQ method,
named PeCDQ. Furthermore, the value approximation of
both critics is formulated below, for i=1, 2:

Qθi(s, a, χπ)← r + γ min
i=1,2

Qθ−i (s′, πϕ (s
′) , χπ) . (10)

For policy representation χπ, in this paper, we propose to
learn policy representation from policy parameters ϕ, i.e.,
χπ = fψ(ϕ). The f(·) denotes the policy encoder with
parameter ψ. In particular, in order to adapt to the target
PeVFA network Qθ−i in the PeCDQ, we maintain a target
policy encoder fψ− . This makes our modified TD learning
update:

Qθi(s, a, fψ(ϕ))← r+γ min
i=1,2

Qθ−i
(
s′, πϕ (s

′) , fψ−(ϕ)
)
.

(11)
The target policy encoder fψ−(ϕ) is updated by ψ− ←
τψ + (1− τ)ψ−. Fig.1 illustrates the structure of PeCDQ.
Additionally, we also empirically investigate other structures
and perform experimental validation on four Mujoco-based
environments. More method details and experimental results
are in the Appendix B.

To demonstrate the generality of our algorithm, we imple-
ment TD3-PeVFA and SAC-PeVFA in this paper. Due to
space limitations, we present only TD3-PeVFA in the Al-
gorithm 3.3, and SAC-PeVFA can be found in Appendix
F.

4. Dynamic Masking for Policy Network
Representation Learning

To derive general off-policy deep RL algorithms with the
proposed GOPE-P, a tricky question is how to learn com-
pact policy representations for better approximation and
generalization of PeVFA across policies. Intuitively, pol-
icy representations optimized based on TD learning con-
tain the most relevant features with value approximation.
Therefore, we consider using TD loss to optimize policy
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Algorithm 1 TD3-PeVFA
Initialize critic networks Qθ1 ,Qθ2 , actor network πϕ and policy encoder network fψ , with random parameters θ1, θ2, ϕ,
ψ, target networks θ1− ← θ1, θ2− ← θ2, ϕ− ← ϕ, ψ− ← ψ, replay buffer B, policy buffer D
for iteration t = 0, 1, 2, · · · do

Select action a and observe reward r and new state s′. Store transition tuple (s, a, r, s′) in B. Store policy (ϕ, ϕ−) in D

Value learning of historical policies

for m = 0, 1, 2, · · · do
Sample mini-batch of n policies from D and mini-batch of N transitions (s, a, r, s′) from B
for v = 1, 2, · · · , n do
a′ ← πϕ−

v
(s′), store N transition tuple (s, a, r, s′, a′, v) in B′

end for
Sample mini-batch of N transitions (s, a, r, s′, a′, v) from B′
y ← r + γmini=1,2 Qθ−i

(
s′, a′, fψ−(ϕv)

)
Update critics θi, ψ ← argminθi,ψ E(s,a,r,s′,a′,v)∼B′

∑i=2
i=1 (y −Qθi (s, a, fψ(ϕv)))

2

if t mod d then
Update target networks θ−i ← τθi + (1− τ)θ−i , ψ− ← τψ + (1− τ)ψ−

end for

Value learning of current policy
for m = 0, 1, 2, · · · do

Sample mini-batch of N transitions (s, a, r, s′) from B
y ← r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ)

)
Update critics θi, ψ ← argminθi,ψ E(s,a,r,s′)∼B

∑i=2
i=1 (y −Qθi (s, a, fψ(ϕ)))

2

if t mod d then
Update actor ϕ← argmaxϕ E(s,a,r,s′)∼B(Qθ1 (s, πϕ (s) , fψ(ϕ)))
Update target networks θ−i ← τθi + (1− τ)θ−i , ϕ− ← τϕ+ (1− τ)ϕ−, ψ− ← τψ + (1− τ)ψ−

end for
end for

representations. To be specific, given a policy πϕ, the policy
representation optimization objective J(ψ) is defined as:

J(ψ) = E(s,a,r,s′)∈B[

2∑
i=1

(y −Qθi(s, a, fψ(πϕ)))2] (12)

y = r + γ min
i=1,2

Qθ−i
(
s′, πϕ (s

′) , fψ−(πϕ)
)
. (13)

For practical implementation, we further consider 1) the
policy data sources for learning policy representations and
2) the construction of fψ. In essence, any data characteriz-
ing policies can be used as the policy data sources, such as
parameters of a policy network, trajectories, etc. However,
compared with the trajectories with high randomness, the
parameters of the policy network are usually available and
highly deterministic, which is more convenient for learning
policy representation. Typically, in DRL, the size of policy
networks is usually 64× 64, 256× 256, or larger. The high-
dimensional policy parameters raise the question of whether
to always use all parameters to learn policy representations
during the learning process. This motivates a hypothesis:
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Figure 2. Average amount of parameter change of policy network
neural nodes on the Ant during the learning process. The x-axis
represents the indices of neural nodes, and the y-axis is the nor-
malized average amount of parameter change.

some neural nodes of the policy network may not be ac-
tive in parameter updates and action decisions during the
learning process, and the policy parameters associated with
these neural nodes may not be useful to the learning policy
representations.

To verify the hypothesis, we investigate the evolvement
of neural nodes of the policy network during the learning
process. We first train a TD3 and a SAC agent on Mujoco-
based tasks and store policies {ϕi}i=1,··· ,N at intervals of
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200 steps over the course of training. Ranging from the
initial policy πϕ1 to the final policy πϕN

, we iteratively
accumulate the amount of parameter change of two adjacent
policies, i.e., πϕi

,πϕi+1
for each parameter dimension k,

denoted as δk. Assuming that the dimensionality of the
policy parameters is K, then δk is defined as:

δk =

i=N−1∑
i=1

|ϕki − ϕki+1|, k = 1 · · ·K, (14)

where ϕki represents the parameter of the kth dimension for
the policy πϕi

. Further, we calculate the average amount
of parameter change in the association parameters for each
neural node j (j = 1, . . . , J) of the policy network, denoted
as δ̄j . In Fig. 2, we show the activity of neural nodes for
the policy network on the Ant for both algorithms. The
significant differences in the activity of neural nodes of
the policy network, illustrated in Fig.2, provide empirical
validation of our hypothesis.

Based on the empirical discovery of the activity of neural
nodes of the policy network, a natural idea of learning policy
representations is to only make use of the neural nodes that
are active in parameter change. To this end, we propose
Dynamic Masking (DM): a methodology that allows us to
dynamically mask neural nodes with low activity during the
learning process. The intuitive idea is to characterize the
policy using the policy parameters ϕ̃i associated with neural
nodes with high activity. Formally, ϕ̃i is defined as,

ϕ̃i = {pji}, j /∈ {1, 2, · · · , j, · · · J}
η

δ̄j
, (15)

where {1, 2, · · · , j, · · · J}η
δ̄j

denotes node set that are
masked by masking ratio η based on the amount of pa-
rameter change of nodes δ̄j . p

j
i denotes the parameters of

policy πϕi
for associating the jth neural node. As the policy

updates, we dynamically update the node set at an interval of
50 steps and the policy representation is always calculated
with the latest node set. For a given policy πϕ with parame-
ters ϕ, the policy representation can be obtained by fψ(ϕ̃).
In this work, we adopt a Layer-wise Permutation-invariant
Encoder (LPE) (Tang et al., 2020) as the implementation
choice of fψ. The effectiveness of LPE in encoding policy
networks has been demonstrated previously. The implemen-
tation details of LPE with DM are presented in Appendix D.

5. Experiments
To evaluate our proposed algorithm, we conduct experi-
ments on the OpenAI Gym continuous control tasks (Brock-
man et al., 2016). We run each task for 1 million time steps
with evaluations every 5000 time steps, where each evalu-
ation reports the average reward over 10 episodes with no
exploration noise.
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Figure 3. The x-axis represents four tasks, and the y-axis is the
normalized average return. Our method (Tπ with PeVFA) in each
environment is chosen as a normalized baseline. Conclusion: In
both TD3 and SAC cases, our method outperforms the original
Bellman operator (T π with VFA), which empirically proves that
the generalization property of PeVFA across policies.

5.1. Comparative Evaluation

In Sec.3.3, we present a practical implementation of our
algorithm, which builds on the representative value estima-
tion algorithm, CDQ (Fujimoto et al., 2018). To be specific,
following the original CDQ, we also maintain a pair of crit-
ics i.e., Qθ1(s, a, fψ(πϕ)), Qθ2(s, a, fψ(πϕ)) along with a
single actor πϕ. For our implementation of the critic, we uti-
lize a two-layer feedforward neural network of 256 and 256
hidden nodes, respectively. We optimize a 2-layer policy
network with 64 hidden nodes for each layer, resulting in
over 4k to 10k policy parameters depending on the tasks. In
addition, in this paper, for each policy update step, we store
the updated policy and maintain a proximal policy buffer D
of size 20000. The above setting applies to all experiments
in the paper. We list common hyperparameters in Table 5
and Table 6.

The experimental results of our implementations (TD3-
PeVFA, SAC-PeVFA) and the corresponding baselines (RA
(Random Agent), TD3 and SAC) are reported in Table 1 and
Table 2, respectively. We defer the full learning curves to
Appendix G (see Fig. 8, 9). In Table 1 and Table 2, we report
two performance metrics: 1) the average performance at-
tained over the course of training (denoted Ave-Evaluation),
which is a measure of the stability of RL algorithms over the
course of training and 2) the max performance attained by
the algorithm after a fixed number of gradient steps (denoted
Max-Evaluation). In addition, we evaluate the aggregated
improvement (denoted Norm. Agg.) of our algorithm on
multiple tasks using random agent and TD3, SAC for nor-
malization, respectively. The empirical results demonstrate
that our methods (TD3-PeVFA, SAC-PeVFA) consistently
improve the benchmarks on all tasks tested. Moreover, com-
pared with TD3, our method improves 26% and 16% with
respect to Ave-Evaluation and Max-Evaluation, respec-
tively; Compared with SAC, our method improves 23% and
11% with respect to Ave-Evaluation and Max-Evaluation,
respectively. The significant improvement demonstrates the
advantages of our algorithm in terms of learning efficiency
and stability.
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Table 1. Evaluation of TD3-PeVFA in terms of learning stability and efficiency. The results of evaluation returns (± half a std) over 10
trials for algorithms are reported. The best results are bolded for each environment.

Environment Ave-Evaluation Max-Evaluation

RanP TD3 TD3-PeVFA RanP TD3 TD3-PeVFA

HalfCheetah -363.75±83.99 7866.79±546.25 9048.27±168.56 -340.60±92.09 9920.17±750.17 11254.0±159.42
Hopper 21.43±8.23 2464.53±159.18 2778.23±101.82 22.72±8.73 3659.1±28.97 3666.16±26.83

Walker2d -7.76±1.67 2573.99±286.84 3241.44±194.73 -6.99± 2.23 4187.83±287.79 4819.58±156.07
Ant 926.89±14.53 2265.99±97.2 3606.0±281.72 937.77±15.32 3474.56±219.35 5203.67±365.05

InvDouPend 72.53±5.79 8463.32±90.4 8761.04±48.12 78.34±9.45 9336.3±7.95 9355.73±1.39
LunarLander -206.35±68.91 226.08±9.61 241.40±6.03 146.22±41.30 292.26±1.91 292.58±2.57

Norm. Agg. 0 1 1.26 (↑ 26%) 0 1 1.16 (↑ 16%)

Table 2. Evaluation of SAC-PeVFA in terms of learning stability and efficiency. The results of evaluation returns (± half a std) over 10
trials for algorithms are reported. The best results are bolded for each environment.

Environment Ave-Evaluation Max-Evaluation

RanP SAC SAC-PeVFA RanP SAC SAC-PeVFA

HalfCheetah -363.75±83.99 8765.53±133.77 9908.77±101.9 -340.60±92.09 12431.71±52.78 13394.42±476.68
Hopper 21.43±8.23 2064.33±216.12 2180.57±98.04 22.72±8.73 3503.37±89.04 3295.36±117.82

Walker2d -7.76±1.67 3312.06±150.46 3748.67±189.07 -6.99± 2.23 5102.93±213.06 5427.39±217.68
Ant 926.89±14.53 2416.79±169.40 3825.16±139.74 937.77±15.32 3911.47±525.99 5633.17±174.72

InvDouPend 72.53±5.79 8983.37±30.96 9019.36±31.56 78.34±9.45 9359.37±0.22 9359.53±0.26
LunarLander -206.35±68.91 182.97±13.08 232.61±11.14 146.22±41.30 284.0±1.35 283.23±1.75

Norm. Agg. 0 1 1.23 (↑ 23%) 0 1 1.11 (↑ 11%)

HalfCheetahHopper Walker2d Ant
(a) TD3

0

20

40

60

80

100

HalfCheetahHopper Walker2d Ant
(b) SAC

0

20

40

60

80

100

OPE-V OPE-P GOPE-V GOPE-P

Figure 4. The x-axis represents four test tasks, and the y-axis is
the normalized average return. Our method (GOPE-P) in each
environment is chosen as a normalized baseline. Conclusion: In
both TD3 and SAC cases, our method is better than the comparison
methods (OPE-V, OPE-P, GOPE-V), which empirically proves the
efficacy of generalized off-policy evaluation with PeVFA.

5.2. Ablation Study

Next, we investigate further the efficacy of each component
of the proposed method. Concretely, we conduct ablation
experiments to answer the following three questions:

1. Can the implicit generalization of Bellman operator Tπ
with PeVFA offer better function approximation? (Sec.3.1)

2. Can generalized off-policy evaluation with PeVFA fur-
ther improve value generalization and learning efficiency?
(Sec.3.2)

3. Is LPE with dynamic masking an effective method to
encode policy network parameters? (Sec.4)
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Figure 5. The x-axis represents four test tasks, and the y-axis is
the normalized average return. Our method (LPE-DM) in each
task is chosen as a normalized baseline. Conclusion: In both TD3
and SAC cases, our method is better than the comparison methods
(RPR, Params, MLP, LPE), which empirically illustrates that LPE
with DM is an efficacy method for learning policy representations
from policy parameters.

To answer the first question, we compare the performance
difference between T π with VFA and Tπ with PeVFA. We
use TD3 and SAC as practical implementations of T π with
VFA, respectively. Correspondingly, we replace only VFA
with PeVFA in the TD3 and SAC as practical implementa-
tions of Tπ with PeVFA, respectively. Note that different
from TD3-PeVFA and SAC-PeVFA considered in Sec.5.1,
here we do not use the proposed GOPE (Sec.3.2) and DM
(Sec.4). The experimental results in Fig.3 show that the
Bellman operator Tπ with PeVFA outperforms its original
counterpart, which empirically demonstrates that implicit
generalization of Bellman operator Tπ with PeVFA offer
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Figure 6. The correlation between the value generalization (x-axis)
and the average return (y-axis) of the algorithm based on PeVFA.
Each dot represents a trial with a random seed. Conclusion: Pear-
son and Spearman both show that the weak positive correlation
between the above two.

better function approximation.

To answer the second question, we propose two groups of
ablation experiments. The first one is GOPE-P vs. GOPE-
V. We replace PeVFA in our algorithm (i.e., GOPE-P) with
VFA, and the rest of the algorithm is consistent with our
algorithm, named GOPE-V. In other words, except for the
value function approximator, GOPE-V retains the gener-
alized off-policy evaluation on the VFA. On the contrary,
the other is GOPE-P vs. OPE-P. We retain PeVFA but
do not use the generalized off-policy evaluation manner,
named OPE-P, for which the learning frequency of PeVFA
is identical to our algorithm. Besides, we use TD3 and SAC
as practical implementations of OPE-V. If the performance
can be improved by learning the VFA in the generalized
off-policy evaluation manner or by learning PeVFA more
times, then GOPE-V and OPE-P should be comparable to
our algorithm. Instead, Fig. 4 shows that the performance
of GOPE-V and OPE-P is much lower than the GOPE-P.
The empirical results show that the generalized off-policy
evaluation with PeVFA is crucial to further improve the
performance of off-Policy RL algorithm and the two (i.e.,
GOPE and PeVFA) are complementary.

To answer the third question, we consider five policy repre-
sentation learning methods in terms of both policy encoder
and dynamic masking methods. To highlight the superiority
of LPE, we compared it with unencoded policy parameters
(Params) (Faccio et al., 2020) and a multilayer perceptron
(MLP)-based policy encoder. The policy parameters, as
the source data for policy representations, can themselves
be used as an uncompressed policy representation. The
MLP-based policy encoder flattens the policy into a vector
input and utilizes a two-layer feedforward neural network
of 256 and 256 hidden nodes. In addition, we also compare
the fixed randomly generated policy representation of 64
dimensions, named as RPR. LPE-DM represents our pro-
posed policy representation learning method which employs
both LPE and DM. Fig. 5 reports the experimental results
on different methods based on TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018), respectively. Obviously,
as an original policy representation, the policy parameters
are far worse than other policy encoding methods, mainly
due to their high-dimensional and highly nonlinear, offering

no help in the function approximation. Compared to the
MLP-based policy encoder, the most significant characteris-
tic of LPE is that it explicitly considers both the intra-layer
and inter-layer structures. LPE-DM shows consistent ad-
vantages in the test task, especially in Ant environment.

5.3. On the Correlation between Value Generalization
and Learning Performance

In this section, we discuss the correlation between value
generalization and learning performance. we first define
a value generalization metric, ∆ based on TD update rule
with PeVFA:

∆ =

T∑
t=1

E(s,a,r,s′)∼B[ϵπt − ϵπt+1 ], (16)

ϵπt
=

i=2∑
i=1

(Qθi(s, a, χπt
)− y)2, (17)

ϵπt+1 =

i=2∑
i=1

(Qθi
(
s, a, χπt+1

)
− y)2, (18)

where y = r+γmini=1,2 Qθ−i
(
s′, πt+1 (s

′) , χπt+1

)
. ϵπt
−

ϵπt+1
measures the difference of fitting TD target y using

PeVFA with two adjacent policy representations (i.e., χπt ,
χπt+1, marked in blue). Here, we replace only VFA with
PeVFA in the TD3 algorithm and use the LPE without DM
as the policy encoder. We repeat the experiment 30 trials
with different random seeds on HalfCheetah and Walker2d
tasks, respectively, and store the evaluation returns and the
value generalization metric of each experiment. To increase
the reliability of the experimental results, we adopt two cor-
relation coefficients, i.e., Pearson (P-Corr) and Spearman
(S-Corr). From Fig. 6, we can obtain 1) value generaliza-
tion ∆ is positive (x-axis) (i.e., on the whole, ϵπt

≥ ϵπt+1
),

which indicates that PeVFA has the ability of positive gen-
eralization. 2) The results of the two correlation coefficients
are around 0.6, which indicates that the positive generaliza-
tion of PeVFA improves learning performance.

6. Conclusion
This paper proposes a general algorithm, Off-policy PeVFA
for boosting off-policy RL in terms of efficiency and sta-
bility. Off-policy PeVFA adopts the Bellman operator with
PeVFA for better function approximation and employs a
PeVFA-based generalized off-policy evaluation method to
further improve value generalization and learning efficiency.
Besides, this work investigates the evolvement of neural
nodes of the policy network during the learning process and
proposes a policy network representation learning method,
LPE-DM. The empirical results demonstrate that our algo-
rithm is general enough to incorporate into other off-policy
algorithms.
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A. Related work
Closely related to our work, several works also study the Policy-extended Value Function Approximator for more efficient
value estimation. Harb et al. (Harb et al., 2020) propose Policy Evaluation Networks (PVN) to approximate the expected
return of different policy π, where the policy representation is obtained through the proposed Network Fingerprinting.
Raileanu et al. (Raileanu et al., 2020) propose Policy-Dynamics Value Function (PDVF) which takes both policy and task
context as additional inputs, for the purpose of value generalization among policies and tasks so that to adapt quickly to new
tasks. Faccio et al. (Faccio et al., 2020) propose Parameter-based Value Functions (PVFs) which take policy parameters as
inputs. Tang et al. (Tang et al., 2020) propose PPO-PeVFA which learn a representation (low-dimensional embedding) for
an RL policy from its network parameters to extend value function. While these works have attempted to obtain better value
generalization by extended value function, they consider more on-policy or offline scenarios.

B. Details of the PeVFA-based Clipped Double Q-learning method
In this work, we discuss four variants for PeVFA-based Clipped Double Q-learning implementation. Concretely, we consider
the TD3 algorithm based on Clipped Double Q-learning which maintains a pair of actors (πϕ, πϕ−) and critics (Qθ1 , Qθ2).
In the first variant, we maintain a pair of policy encoders (fψ(ϕ), fψ−(ϕ)), taking the parameters ϕ of policy πϕ as input.
The value approximation of both critics is formulated as: Qθi(s, a, fψ(ϕ))← r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ)

)
.

In the second variant, we maintain a pair of policy encoders (fψ(ϕ), fψ−(ϕ−)), taking the parameters ϕ of policy πϕ
and the parameters ϕ− of policy πϕ− as input, respectively. The value approximation of both critics is formulated as:
Qθi(s, a, fψ(ϕ))← r+γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ−)

)
. In the third variant, we maintain a pair of policy encoders

(fψ(ϕ−), fψ−(ϕ−)) , taking the parameters ϕ− of policy πϕ− as input. The value approximation of both critics is formulated
as: Qθi(s, a, fψ(ϕ−)) ← r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ−)

)
. In the fourth variant, we maintain two pairs of

policy encoders (fψ1,2
(ϕ), fψ−

1,2
(ϕ)), taking the parameters ϕ of policy πϕ as input. The value approximation of both critics

is formulated as: Qθi(s, a, fψi
(ϕ))← r + γmini=1,2 Qθ−i (s

′, πϕ− (s′) , fψ−
i
(ϕ)). Table 3 reports the experimental results

of the four variants (PeCDQ-v1, PeCDQ-v2, PeCDQ-v3, PeCDQ-v4) as well as the baselines (RA, TD3). The empirical
results show the superiority of the first variant which is adopted in our algorithm.

Table 3. Discussion of different implementation variants for PeVFA-based Clipped Double Q-learning. Average evaluation returns and
Max evaluation returns (± half a std) over 10 trials for algorithms. The best results are bolded.

Environment Ave-Evaluation

RanP TD3 PeCDQ-v1 PeCDQ-v2 PeCDQ-v3 PeCDQ-v4

HalfCheetah -363.75±83.99 7866.79±546.25 8620.37±110.55 8181.73±405.1 7961.49±310.02 8724.56±138.04
Hopper 21.43±8.23 2464.53±159.18 2544.11±122.45 2588.21±129.02 2427.17±38.0 2536.36±131.46

Walker2d -7.76±1.67 2573.99±286.84 3271.57±169.02 3147.0±259.95 3302.85±152.21 3425.49±86.56
Ant 926.89±14.53 2265.99±97.2 3034.7±300.83 2998.42±396.9 2645.82±204.38 2497.67±72.48

Norm. Agg. 0 1 1.24 (↑ 24%) 1.21 (↑ 21%) 1.14 (↑ 14%) 1.16 (↑ 16%)

Environment Max-Evaluation

RanP TD3 PeCDQ-v1 PeCDQ-v2 PeCDQ-v3 PeCDQ-v4

HalfCheetah -340.6±92.09 9920.17±750.17 10664.98±198.68 10637.38±271.78 10461.47±530.02 11182.97±236.79
Hopper 22.72±8.73 3659.1±28.97 3644.91±29.2 3633.78±36.7 3637.92±49.27 3637.23±35.15

Walker2d -6.99±2.23 4187.83±287.79 4854.9±226.1 4951.48±229.64 4835.86±228.55 5196.72±159.75
Ant 937.77±15.32 3474.56±219.35 4609.4±549.87 4479.09±436.54 4039.76±519.72 3801.51±412.43

Norm. Agg. 0 1 1.17 (↑ 17%) 1.16 (↑ 16%) 1.11 (↑ 11%) 1.12 (↑ 12%)

C. Details of generalized off-policy evaluation with PeVFA
Policy representations endow PeVFA Qθ with the property of generalizing across policies which makes full use of old
knowledge to improve efficiency in policy evaluation. However, during the learning process, the knowledge obtained
through the value learning of early historical policies may be too old to benefit the generalization of PeVFA across policies.
Therefore, we propose to only perform the value learning of the proximal policies of the current policy. To be specific, for
each policy update step, we store the updated policy and maintain a proximal policy buffer D of size p. To improve the
learning efficiency, in the value learning stage of the historical policies (i.e., Lines 5-15 in Algorithm 3.3), we randomly
sample 10 policies at intervals 10 from the policy buffer D for each iteration. With TD3 as the baseline, Table 4 reports the
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experimental results of different buffer sizes. Compared with the cases of p = 0 (i.e., value learning without performing
historical policies) and p = x (i.e., value learning with performing all historical policies), the value learning of proximal
historical policies (p = 5000, p = 10000) obtain better results with respect to the Ave-Evaluation, which demonstrates that
the advantages of the proposed GOPE in terms of stability and learning efficiency. For all the experiments, we uniformly set
p = 20000. In the future, we will explore better historical policy sampling methods.

Table 4. Discussion of buffer size for proximal policies. Average evaluation returns and Max evaluation returns (± half a std) over 10 trials
for algorithms. p = x indicates sampling from the policy buffer containing all historical policies. The best results are bolded for each
environment.

Environment Ave-Evaluation
p=x p=20000 p=5000 p=0

HalfCheetah 8990.75±133.98 9048.27±168.56 8920.27±223.68 8693.77±226.57
Hopper 2758.75±108.01 2778.23±101.82 2779.54±86.74 2579.82±38.96

Walker2d 2268.95±371.82 3241.44±194.73 3496.18±217.25 3416.55±258.93
Ant 2579.88±717.87 3606.0±281.72 3073.98±375.69 3223.43±245.85

Environment Max-Evaluation
p=x p=20000 p=5000 p=0

HalfCheetah 11152.91±124.74 11254.0±159.42 11110.28±118.06 10803.12±447.49
Hopper 3657.07±19.92 3666.16±26.83 3707.71±25.66 3728.67±40.22

Walker2d 3980.16±74.25 4819.58±156.07 4881.04±209.69 5123.22±263.97
Ant 4253.95±526.31 5203.67±365.05 4424.04±556.08 5288.47±323.18

D. Details of Policy Network Representation Learning
In essence, any data characterizing policies can be used as the policy data sources, such as parameters of a policy network,
trajectories, etc. However, compared with the trajectories with high randomness, the parameters of the policy network are
usually available and highly deterministic, which is more convenient for learning policy representation. This work is based
on the actor-critic method which has a separate policy network, thus, we can utilize the parameters of the policy network as
the data for learning policy representation. To better characterize policies, we propose a Layer-wise Permutation-invariant
Encoder with Dynamic Masking (LPE-DM), denoted by fψ , which explicitly considers the characteristics of policy network
structure (i.e., the intra-layer and inter-layer structures ) and the variation of policy parameters during the learning process.
An illustration of LPE-DM is in Fig. 7. The main idea of LPE-DM is to perform permutation-invariant transformation for
inner-layer weights and biases for each layer first and then concatenate encoding of layers. In particular, in this work, based
on the empirical discovery of the activity of neural nodes of the policy network during the learning process, we characterize
the policy using the policy parameters associated with neural nodes with high activity.

E. Hyperparameters
Table 5 shows the common hyperparameters of algorithm used in all our experiments. Table 6 shows the structure of the
policy network and PeVFA network for TD3-PeVFA and SAC-PeVFA. To be specific, we utilize a two-layer feed-forward
neural network of 64 and 64 hidden units with ReLU activation (except for the output layer) for the policy network. Similarly,
the PeVFA network also uses a two-layer feed-forward neural network. As an additional input, the policy representation
dimension (pr dim) is set to 64.

F. Pseudo-code of SAC-PeVFA
The pseudo-code of the proposed algorithm, SAC-PeVFA is in Algorithm 2.

G. Complete Learning Curves
Fig. 8 and Fig. 9 shows the learning curves of RanP, TD3, SAC, TD3-PeVFA and SAC-PeVFA corresponding to the results
in Table 1 and Table 2.
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Concatenate

Figure 7. An illustration for Layer-wise Permutation-invariant Encoder with Dynamic Masking (LPE-DM). I , hi and O denote the
numbers of units for the input layer, hidden layer and output layer, respectively. h̃i and Õ represents the numbers of units using dynamic
masking for the corresponding layer.

Table 5. Common hyperparameters. We use ‘-’ to denote the ‘not applicable’ situation.

Hyperparameters TD3 & TD3-PeVFA SAC & SAC-PeVFA

Actor Learning Rate 10−3 3×10−4

Critic Learning Rate 10−3 3×10−4

Target Action Noise 0.2 -
Actor Training Interval 2 steps 1 step

Masking Ratio (η) 0.6 0.6
Discount Factor (γ) 0.99 0.99

Soft Replacement Ratio 0.005 0.002
Replay Buffer Size 200k time steps 200k time steps

Batch Size 100 128
Training Interval 1 step 1 step

Optimizer Adam Adam
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Algorithm 2 SAC-PeVFA
Initialize critic networks Qθ1 ,Qθ2 , actor network πϕ and policy encoder network fψ , with random parameters θ1, θ2, ϕ,
ψ, target networks θ1− ← θ1, θ2− ← θ2, ψ− ← ψ, replay buffer B, policy buffer D
for iteration t = 0, 1, 2, · · · do

Select action a and observe reward r and new state s′. Store transition tuple (s, a, r, s′) in B. Store policy ϕ in D

Value learning of historical policies

for m = 0, 1, 2, · · · do
Sample mini-batch of n policies from D and mini-batch of N transitions (s, a, r, s′) from B
for v = 1, 2, · · · , n do
a′, log πϕv (·|s′)← πϕv (s

′), store N transition tuple (s, a, r, s′, a′, log πϕv (·|s′), v) in B′
end for
Sample mini-batch of N transitions (s, a, r, s′, a′, log πϕv

(·|s′), v) from B′
y ← r + γ(mini=1,2 Qθ−i

(
s′, a′, fψ−(ϕv)

)
− α log πϕv (·|s′))

Update critics θi, ψ ← argminθi,ψ E(s,a,r,s′,a′,log πϕv (·|s′),v)∼B′
∑i=2
i=1

1
2 (y −Qθi (s, a, fψ(ϕv)))

2

Update target networks θ′i ← τθi + (1− τ)θ′i, ψ′ ← τψ + (1− τ)ψ′

end for

Value learning of current policy
for m = 0, 1, 2, · · · do

Sample mini-batch of N transitions (s, a, r, s′) from B
y ← r + γ(mini=1,2 Qθ−i

(
s′, πϕ (s

′) , fψ−(ϕ)
)
− α log πϕ(·|s′))

Update critics θi, ψ ← argminθi,ψ E(s,a,r,s′)∼B
∑i=2
i=1

1
2 (y −Qθi (s, a, fψ(ϕ)))

2

Update actor ϕ← argmaxϕ E(s,a,r,s′)∼B(mini=1,2 Qθi (s, πϕ (s) , fψ(ϕ))− α log πϕ(·|s))
Update target networks θ−i ← τθi + (1− τ)θ−i , ψ− ← τψ + (1− τ)ψ−

end for

Table 6. Structure of policy network and PeVFA network. We use ‘-’ to denote the ‘not applicable’ situation.

Method Layer Policy Network (π(a|s)) PeVFA Network (V(·))

TD3-PeVFA

Fully Connected (state dim, 64) (state dim + action dim + pr dim, 256)
Activation ReLU ReLU

Fully Connected (64, 64) (256, 256)
Activation ReLU ReLU

Fully Connected (64, action dim) (256, 1)
Activation tanh None

SAC-PeVFA

Fully Connected (state dim, 64) (state dim + action dim + pr dim, 256)
Activation ReLU ReLU

Fully Connected (64, 64) (256, 256)
Activation ReLU ReLU

Fully Connected (64, action dim) (256, 1)
Activation None None

Fully Connected (64, action dim) -
Activation None -
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Figure 8. Learning curves for the OpenAI gym continuous control tasks. The shaded region represents half a standard deviation of the
average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.
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Figure 9. Learning curves for the OpenAI gym continuous control tasks. The shaded region represents half a standard deviation of the
average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.


