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ABSTRACT

In recent years, Contrastive Language-Image Pre-training (CLIP) has become a
cornerstone in multimodal intelligence. However, recent studies have identified
that the information loss in the encoding process of CLIP is substantial. Such defi-
ciency significantly limits the ability of a single CLIP model to handle images rich
in visual detail. In this work, we propose a simple yet effective model-agnostic
strategy, Diversified Multiplet Upcycling (DMU) for CLIP. It integrates multi-
ple CLIP models that capture diversified, complementary information into a Mix-
ture of Experts (MoE) architecture. Inspired by the recently proposed Multistage
Contrastive Learning (MCL), which constructs multiple CLIP models that share
the same structure while capturing different complementary information, Diver-
sified Multiplet Upcycling efficiently fine-tunes a series of CLIP models from a
dense pre-trained CLIP checkpoint to capture different feature distributions, shar-
ing parameters except for the Feed-Forward Network (FFN). These models are
then transformed into a CLIP-MoE with a larger model capacity but minimal
computational overhead. Extensive experiments demonstrate the significant per-
formance of CLIP-MoE across various zero-shot retrieval, zero-shot image clas-
sification tasks, and downstream Multimodal Large Language Model (MLLM)
benchmarks by serving as a vision encoder. Furthermore, Diversified Multiplet
Upcycling enables the conversion of any dense CLIP model into CLIP-MoEs,
which can seamlessly replace CLIP in a plug-and-play manner without requiring
further adaptation in downstream frameworks. Through Diversified Multiplet Up-
cycling, we aim to provide valuable insights for future research on developing
more efficient and effective multimodal learning systems.

1 INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) is a strong vision-language
foundation model that utilizes large-scale datasets to learn comprehensive visual representations by
bridging vision and language via contrastive image-text pre-training. Beyond traditional tasks like
classification, CLIP has been broadly applied in areas such as image (Wang et al., 2023; Zhang
et al., 2023), audio (Guzhov et al., 2022), and video (Rasheed et al., 2023) understanding, cross-
modal retrieval (Ma et al., 2022; Zhao et al., 2024), multimodal generation (Ramesh et al., 2022;
Xie et al., 2024), and data filtering (Schuhmann et al., 2022). Additionally, CLIP serves as the vision
encoder for various Multimodal Large Language Models (MLLMs) (Alayrac et al., 2022; Liu et al.,
2024b;c; Chen et al., 2024b; Li et al., 2024c).

However, existing CLIP models still face inherent limitations. Recent studies have highlighted that
CLIP often encodes inputs in a very coarse-grained manner, overlooking much useful informa-
tion (Tang et al., 2023; Tong et al., 2024b; Bleeker et al., 2022). As a result, CLIP frequently pro-
duces blind pairs (Tong et al., 2024b), where two semantically different images with similar visual
components are encoded into the same representation. This leaves downstream models with insuf-
ficient information, especially when CLIP serves as a vision encoder. Such substantial information
loss negatively impacts downstream tasks and can confuse downstream models, such as the base
LLMs in Multimodal Large Language Models (MLLMs). To address this issue and enhance CLIP’s
ability to encode richer information, efforts have been made to improve the quality of training data
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and to scale up model size. However, these works typically involve retraining the CLIP model from
scratch (Li et al., 2024b; Ma et al., 2024; Xu et al., 2023), which is both resource-intensive and
costly. Additionally, there are attempts to ensemble different types of vision encoders (Tong et al.,
2024b; Shi et al., 2024), which makes the entire model heterogeneous and total parameters grow
explosively.

To address the above limitations, we propose a simple yet effective model-agnostic strategy, Diver-
sified Multiplet Upcycling (DMU), for CLIP, which leverages the sparsely activated Mixture of
Experts (MoE) framework to extend model capacity while fully utilizing off-the-shelf pre-trained
dense checkpoints, avoiding the need for training from scratch. MoE has proven effective in scaling
large pre-trained models by using fixed activated parameters, enhancing both performance and ro-
bustness (Jiang et al., 2024; Dai et al., 2024; Chen et al., 2024a). In Diversified Multiplet Upcycling,
we first fine-tune the base dense CLIP model to produce a series of multiplet CLIP models using the
recently proposed Multistage Contrastive Learning (MCL) (Zhang et al., 2024b). MCL generates
models that encode diversified information through a multistage clustering and fine-tuning process.
By multiplet, we refer to CLIP models that share all parameters except for the feed-forward network
(FFN) layers during MCL fine-tuning. By diversified, we mean that these models yield a series of
FFN experts, each capturing different aspects of the input information, which are then used to ini-
tialize a CLIP-MoE model. Finally, through fine-tuning the router in CLIP-MoE, we ensure the full
utilization of all experts, enabling CLIP-MoE to capture richer and more useful information than the
base model, while leveraging sparse activation to avoid the explosion of activated parameters.

We demonstrate that using a small high-quality image-caption dataset, our MCL-initialized CLIP-
MoE significantly improves CLIP’s performance. Notably, on retrieval tasks, CLIP-MoE outper-
forms the base OpenAI CLIP model by about 20%, while incurring minimal additional training
overhead—less than 2% of the total computational cost of training the base CLIP model from
scratch. When serving as a vision encoder for MLLMs, CLIP-MoE also shows substantial im-
provements in most benchmarks simply by replacing the original vision encoder. Our experiments
show that CLIP-MoE not only outperforms other fine-tuning baselines but also surpasses popular
MoE-construction methods like Sparse Upcycling (Komatsuzaki et al., 2022). To the best of our
knowledge, this work is the first to introduce sparsely activated MoE into CLIP foundation mod-
els, whereas previous methods have focused either on vision representation (Li et al., 2024a) or
model-wise ensembling (Ma et al., 2024).

In summary, the contributions of this work are as follows: First, we propose a novel method, Di-
versified Multiplet Upcycling for CLIP, which initializes a CLIP-MoE using FFN experts obtained
through multistage fine-tuning, offering a new pathway to effectively scale the CLIP foundation
model. Second, we demonstrate that our model-agnostic Diversified Multiplet Upcycling signifi-
cantly improves model performance by fully leveraging new high-quality data and pre-trained CLIP
checkpoints, while avoiding the high computational costs associated with training from scratch.
Third, we conduct extensive experiments, showing that our upcycled CLIP-MoE achieves signif-
icant performance improvements over the original CLIP and other baselines with lower computa-
tional costs across various downstream tasks, including classification, retrieval, and serving as a
vision encoder for MLLMs.

2 RELATED WORKS

2.1 CONTRASTIVE LEARNING

In contrastive learning, the core objective is to minimize the distance between positives and the
anchor while maximizing the distance between negatives and the anchor within the representation
space. This objective compels the model to effectively encode sufficient information of the inputs to
distinguish anchors from their negatives.

Contrastive learning has become a central technique in self-supervised learning, aiming to learn
representations by bringing semantically similar samples closer in the embedding space while push-
ing dissimilar samples apart (Chen et al., 2020; He et al., 2020). This approach has been particu-
larly successful in multimodal settings, where models like Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) have emerged as foundational tools. CLIP aligns visual and textual
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representations by training on vast datasets of paired images and text, enabling the model to bridge
different modalities effectively.

Despite its success, CLIP is not without its limitations. One significant shortcoming is its tendency
to encode only coarse-grained visual concepts, which can lead to the loss of fine-grained information
that is crucial for certain downstream tasks (Tang et al., 2023; Tong et al., 2024b). To address these
limitations, recent works mainly focus on improving the quality of training data (Li et al., 2024b;
Ma et al., 2024; Xu et al., 2023; Zhang et al., 2024a). However, most of these approaches require
retraining the model from scratch, which is computationally expensive, time-consuming, and not
easily extendable when better data becomes available.

2.2 MIXTURE-OF-EXPERTS

The Mixture-of-Experts (MoE) architecture could scale the model capacity without additional com-
putational cost (Fedus et al., 2022a). For each input token, only top-k best experts are selected to
obtain an aggregated representation (Shazeer et al., 2017). This sparsity allows MoE models to scale
to trillions of parameters while maintaining the computational efficiency (Lepikhin et al., 2020; Fe-
dus et al., 2022b). Due to the large model capacity, the performance could be improved by large
margins (Rajbhandari et al., 2022; Dai et al., 2024). Besides, specialized experts in MoE models are
good at handling a wide range of tasks (Shen et al., 2023; Zhu et al., 2024; Lu et al., 2024) with high
robustness (Chen et al., 2024a).

However, one challenge in MoE training is expert initialization. Sparse Upcycling (Komatsuzaki
et al., 2022) has been proposed as a technique to initialize MoE models by copying Feed-Forward
Networks (FFN) from dense models as multiple experts. It selectively activates and fine-tunes only
a sparse subset of parameters. This method significantly reduces the training cost.

In this work, we explore the integration of Multistage Contrastive Learning (MCL) with the MoE
architecture. By using MCL to initialize the experts, we aim to capture complementary information
across different CLIP experts, which can then be leveraged by the MoE structure to enhance overall
performance with minimal additional computational cost.

3 PRELIMINARIES

3.1 MULTISTAGE CONTRASTIVE LEARNING (MCL)

Multistage Contrastive Learning (MCL) (Zhang et al., 2024b) is designed to obtain a series of con-
trastive models, each capturing different and complementary information from the input data through
multiple cluster-and-contrastive processes. Specifically, at each stage, the learned representations
are clustered. In the following stage, for each anchor, negative samples are drawn only from the
same accumulated cluster from the previous stages. In this way, the model learns new information
beyond what was captured in earlier stages. For example, consider a dataset containing objects with
varying shapes, colors, and textures. In the first stage, the contrastive model might focus on learning
color information. After clustering, samples within the same cluster will share the same color. In the
second stage, since the anchor and its negative samples share the same color, the model is compelled
to learn other features, such as texture, to differentiate between them. After clustering in the second
stage, samples in the same accumulated cluster will now share both color and texture. Consequently,
in the third stage, the model must focus on other attributes, such as shape, to distinguish between
samples. After three stages, we obtain three contrastive models, each encoding distinct information:
color, texture, and shape.

Formally, let X = {xi}Mi=1 represent a dataset. After training the encoder in the first stage, we
obtain encoded representations Z0 = {f0(xi)}Mi=1. By clustering Z0, we obtain cluster assignments
Y0 = {y(i,0)}Mi=1. In the jth stage, after the cluster-and-contrastive process, each sample xi is
assigned to an accumulated cluster ŷ(i,j) = [y(i,0), · · · ,y(i,j−1)]. The objective at the jth stage is:

L = Ex,x+,{x−
i |ŷj=ŷ−

(i,j)
}m
i=1

[
− log

es(z,z
+)/τ

es(z,z+)/τ +
∑m

i=1 e
s(z,z−

i )/τ

]
, (1)
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where ŷj represents the accumulated cluster assignment of the anchor x at the jth stage; ŷ−
(i,j)

denotes the accumulated cluster assignment of the negative sample x−
i at the jth stage; and s(·, ·)

denotes cosine similarity. In our proposed Diversified Multiplet Upcycling, we leverage the MCL
framework to fine-tune a base model and extract a series of experts for the MoE, whereas the original
MCL results in a series of standalone CLIP models.

3.2 MIXTURE OF EXPERTS (MOE)

Mixture of Experts (MoE) is an efficient architecture designed to scale large models by dynamically
routing inputs through a subset of specialized sub-models, or “experts”. This structure allows the
model to maintain high overall capacity while only utilizing a fraction of its parameters for any given
input, thereby optimizing both computational efficiency and performance.

In the context of Transformer, an MoE layer (Jiang et al., 2024) typically replaces the standard feed-
forward network (FFN) with a set {Ei}Ni=1 of N experts, each of which is an independent FFN.
Given an input token representation x, it first passes through a gating network Wr to obtain the
logits corresponding to each expert, then the largest Top-K experts will be chosen, and finally, the
probabilities of these selected experts are normalized using Softmax. In this way, we can obtain the
probability R(x) of selected experts among all N experts. Notably, the probability of non-

xout =

N∑
i=1

R(x)i · Ei(x), R(x) = Softmax(TopK(x ·Wr)), (2)

where R(x)i denotes the i-th routing weight vector produced by the router network Wr.

To ensure that all experts are utilized effectively and prevent the model from overfitting to a small
subset of experts, a load balancing loss (Fedus et al., 2022b) is often added to the primary loss
function. This loss penalizes imbalanced expert usage by encouraging a more uniform distribution
of the input tokens across all experts.

4 DIVERSIFIED MULTIPLET UPCYCLING FOR CLIP

4.1 EXPERT EXTRACTION

We begin by extracting a series of Feed-Forward Network (FFN) layers utilizing Multistage Con-
trastive Learning (MCL) to fine-tune a pre-trained base CLIP model for multiple stages. During
fine-tuning, we freeze all parameters of the base CLIP model except for the FFN layers within each
transformer block in both the image and text encoders. Because the distributions of contrastive neg-
ative samples in different MCL stages are distinct, the FFN layers at each stage will learn diversified
and complementary information distinct from previous stages. For clarity, we use superscripts to
index the transformer blocks and subscripts to index the MCL stages or MoE experts. Suppose we
are fine-tuning a transformer-based CLIP model, where the image encoder contains A transformer
blocks and the text encoder contains B transformer blocks. The FFN layers in the original base
model are denoted as {E(i)

0 }A+B
i=1 . As illustrated in Figure 1, the base model might initially focus

on color-related information. During MCL Stage 1, only the FFN layers are fine-tuned. After the
cluster-and-contrast process in MCL, the FFN layers {E(i)

1 }A+B
i=1 in the fine-tuned model learn new

information beyond color, such as texture. In MCL Stage 2, the model further fine-tunes the FFN
layers, resulting in {E(i)

2 }A+B
i=1 , which now encodes additional features such as shape. Through two

stages of MCL, we obtain FFN layers where {E(i)
0 }A+B

i=1 focus on color, {E(i)
1 }A+B

i=1 on texture, and
{E(i)

2 }A+B
i=1 on shape.

4.2 INITIALIZATION OF MIXTURE OF EXPERTS

Once a series of FFN layers {E(i)
j }Nj=0 have been obtained through N stages of MCL, we utilize

these FFNs as the experts in a Mixture of Experts (MoE) model, as depicted in Figure 1. According

4
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MCL STAGE 1 MCL STAGE 2
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Figure 1: Overview of Diversified Multiplet Upcycling: Our approach involves three key steps. (a)
Fine-tuning the base CLIP model using the MCL framework while freezing all parameters except
for the FFN layers. This process yields a new set of FFN layers at each stage of MCL. (b) Using the
obtained FFN layers as experts to initialize a CLIP-MoE. (c) Continuously fine-tuning the CLIP-
MoE using both contrastive learning loss and a router balancing loss to optimize the routers. The
terms ‘color’, ‘shape’, and ‘texture’ are metaphorical representations of abstract features.

to Equation 2, in the ith transformer block of the base CLIP model, the original FFN layer is replaced
with a randomly initialized router and a set of experts:

x
(i)
out =

N∑
j=0

R(i)(x(i))j · E(i)
j (x(i)), R(i)(x(i)) = Softmax(TopK(x(i) ·W(i)

r )), (3)

where R(i)(x)j denotes the j-th component of the routing weight vector produced by the router
network W

(i)
r in the ith transformer block. This setup results in a CLIP-MoE model where different

experts within different transformer blocks specialize in distinct aspects of the input.

4.3 CONTINUOUS FINE-TUNING OF CLIP-MOE

To enable the model to learn optimal routing strategies while preserving the information learned by
the FFN layers during MCL, we further fine-tune the routers while freezing all other parameters.
We apply the standard contrastive learning loss while incorporating an auxiliary load balancing loss,
following the approach from Fedus et al. (2022b), to encourage a balanced load across experts.
Given N + 1 experts indexed by j = 0 to N , and a batch B with T tokens, the load balancing loss
for the ith transformer block is defined as:

Lbalance = N ·
N∑
j=0

fj · Pj , fj =
1

T

∑
x∈B

1{argmax p(x) = j}, Pj =
1

T

∑
x∈B

pj(x), (4)

where fj is the fraction of tokens assigned to expert j, and p(x) is the logits output from the router
network; Pj represents the fraction of router probability allocated to expert j, which is the mean
of pj(x), the probability of routing token x to expert j. For simplicity, we omit the transformer
block index i in the equation. Since fj and Pj are positive and both their sums are equal to 1,
Lbalancing is minimized if and only if fj = 1

T , Pi =
1
T . This balancing loss encourages not only a

uniform distribution of actual tokens routed to each expert (i.e., ensuring that all experts have equal
importance), but also a uniform distribution of router confidence across tokens (i.e., preventing
the router from being overly confident for some tokens and underconfident for others). With this
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auxiliary load balancing loss, the total loss is given by:

L = LCLIP + α · 1

A+B

A+B∑
i=1

L(i)
balance. (5)

Following Fedus et al. (2022b), we set α = 0.01 by default. By applying MoE-Packing to CLIP, we
obtain a CLIP-MoE model that is capable of capturing more useful information than the base model,
with minimal computational overhead, resulting in a robust and efficient enhancement of CLIP.

5 EXPERIMENTS

5.1 DATASETS

To fully showcase the potential of our MCL-initialized CLIP-MoE, we implement our experiments
on the following two image-caption datasets respectively.

Recap-DataComp. Recap-DataComp-1B (Li et al., 2024b) is a large-scale dataset comprising 1.3
billion high-quality image-caption pairs. This dataset is derived from the original DataComp-1B
dataset, with all images re-captioned using a fine-tuned LLaVA-1.5 model powered by LLaMA-
3 (Dubey et al., 2024). Li et al. (2024b) utilized this dataset to train CLIP models from scratch,
resulting in significant improvements in retrieval performance. Due to computational constraints,
our experiments use a randomly sampled subset of 1 million pairs from Recap-DataComp-1B, re-
ferred to as Recap-DataComp-1M, to demonstrate the data efficiency of our proposed pipeline.

ShareGPT4V. ShareGPT4V (Chen et al., 2023) is a high-quality image-text dataset containing 1.2
million highly descriptive captions. The captions are generated by a Multimodal Large Language
Model (MLLM) fine-tuned on 100k image-text pairs produced by GPT4V, resulting in well-aligned
image-text pairs.

5.2 BASELINES

Direct Fine-tuning. As our experiments incorporate additional data, we use direct fine-tuning as a
basic baseline to evaluate the performance contributions from the additional data.

Sparse Upcycling. Sparse Upcycling (Komatsuzaki et al., 2022) is a widely adopted method for
initializing a Mixture of Experts (MoE) model using a pre-trained dense checkpoint. It is a simple
yet effective approach for scaling up a pre-trained model and is much more efficient than training an
MoE from scratch.

Long-CLIP. Long-CLIP (Zhang et al., 2024a) introduces an efficient pipeline to enhance CLIP per-
formance through fine-tuning on high-quality image-caption datasets with long captions. It aligns
the long caption of an image with the encoded image features and the short caption with the primary
components of the image features. While effective on the ShareGPT4V dataset, Long-CLIP is lim-
ited to datasets with a similar structure, where each image has both one short and one long caption.
Moreover, it requires significantly more computational resources compared to our approach.

LLaVA-1.5. LLaVA-1.5 (Liu et al., 2024a) is an improved version of LLaVA (Liu et al., 2024b),
commonly used as a baseline for MLLMs. It bridges a pre-trained CLIP vision encoder with a pre-
trained LLM using a simple MLP, enabling the LLM to gain visual understanding with minimal fine-
tuning on image-text pairs. We evaluate the representation quality of our CLIP-MoE by replacing
the vision encoder in the original LLaVA-1.5 with our CLIP-MoE and fine-tuning it following the
same pipeline as LLaVA-1.5.

5.3 TRAINING SETUP

By default, we use OpenAI CLIP-ViT-L/14 (Radford et al., 2021) as the base model for our Di-
versified Multiplet Upcycling approach. During the clustering process at each stage of MCL, we
cluster the image features into 3 clusters and the text features into 3 clusters, resulting in 9 clusters
per stage (the Cartesian product of the image and text feature clusters). To accommodate longer text
inputs, we interpolate the positional embeddings following the approach in (Zhang et al., 2024a).
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The global batch size is maintained at 800 unless otherwise specified. To balance performance and
computational cost, we set the number of experts to 4 and use top-2 activation.

5.4 TRAINING COST

We use 8 A100 GPUs for training. To train the CLIP-MoE model with four experts, we introduce
three additional MCL fine-tuning stages, each trained for 1 epoch. When using the ShareGPT4V
dataset, each MCL stage takes approximately 0.5 hours, and the router fine-tuning stage also takes
about 0.5 hours. In total, the training time is less than 2.5 hours. In comparison, Long-CLIP train-
ing under the same conditions takes around 6 hours, making our approach significantly more ef-
ficient. Our maximum GPU memory usage is 8×65955MB, which is comparable to Long-CLIP’s
8×63581MB. When training on the Recap-DataComp-1M dataset, the training cost is even lower.
During inference, with top-2 activation, the activated parameter size of our CLIP-MoE is approxi-
mately 1.7 times that of the base model (OpenAI CLIP-ViT-L/14).

5.5 EVALUATION

We begin by evaluating the performance of CLIP-MoE on Zero-Shot Image-Text Retrieval, a key
task for assessing whether the CLIP model can capture rich fine-grained information, following
Zhang et al. (2024a). All baselines are trained and compared using the Recap-DataComp-1M
(Recap-DC) and ShareGPT4V (ShareGPT) datasets, with the exception of Long-CLIP. Long-CLIP
is incompatible with the Recap-DataComp dataset, as it requires both a short and long caption for
each image, whereas Recap-DataComp provides only one caption per image. Next, we assess the
effectiveness of CLIP-MoE as a vision encoder within LLaVA-1.5, a representative Multimodal
Large Language Model (MLLM). LLaVA-1.5 serves as an effective visual representation evaluator,
helping to mitigate potential biases present in traditional evaluation tasks (Tong et al., 2024a). Fi-
nally, we test CLIP-MoE on traditional Zero-Shot Image Classification tasks, which rely more on
coarse-grained features.

Zero-Shot Image-Text Retrieval. Following the methodology outlined in Zhang et al. (2024a), we

COCO I2T COCO T2I Flickr I2T Flickr T2I
Dataset Model @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

OpenAI 56.1 79.5 86.8 35.4 60.1 70.2 48.5 72.6 80.8 28.0 49.3 58.7

Recap-DC
Direct FT 58.9 81.5 88.5 44.3 69.5 78.8 41.6 66.5 76.1 37.2 60.4 69.5
Upcycling 59.2 81.7 88.7 45.8 70.9 79.9 42.1 67.3 77.0 39.4 62.9 71.7
CLIP-MoE 64.0 85.1 90.8 45.2 70.2 79.4 56.8 80.1 87.0 40.8 63.8 72.5

ShareGPT
Direct FT 63.3 84.9 91.0 44.5 70.0 78.9 50.5 74.4 82.3 38.5 61.3 69.9
Upcycling 62.9 84.6 90.8 45.2 70.6 79.6 49.6 73.8 82.1 39.5 62.4 71.1
Long-CLIP 62.8 85.1 91.2 46.3 70.8 79.8 53.4 77.5 85.3 41.2 64.1 72.6
CLIP-MoE 65.0 86.0 92.0 46.8 71.7 80.4 60.5 82.3 88.8 42.1 64.7 73.2

Table 1: Performance comparison on image-to-text (I2T) and text-to-image (T2I) retrieval tasks
using the COCO and Flickr30k datasets. The models were trained and evaluated on the Recap-
DataComp-1M (Recap-DC) and ShareGPT4V (ShareGPT) datasets, respectively. The best perfor-
mance for each dataset is highlighted in bold. Our proposed CLIP-MoE consistently outperforms
all baselines across all tasks.

evaluate text-to-image (T2I) and image-to-text (I2T) retrieval on the 5k COCO validation set (Lin
et al., 2014) and the 30k Flickr30k (Young et al., 2014) dataset. The results are presented in Table 1.
Given that both Recap-DataComp-1M and ShareGPT4V datasets offer higher caption quality and
longer average caption lengths compared to web datasets, Direct Fine-Tuning, Sparse Upcycling,
and CLIP-MoE demonstrate superior performance over the original OpenAI model across most
tasks, including COCO I2T, COCO T2I, and Flickr T2I. However, for Flickr I2T, Sparse Upcy-
cling, and Direct Fine-Tuning show significant performance degradation on the Recap-DC dataset.
In this fine-tuning context, Sparse Upcycling only provides a limited advantage over Direct Fine-
Tuning. Although Long-CLIP clearly outperforms both Direct Fine-Tuning and Sparse Upcycling,
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it is incompatible with the Recap-DataComp dataset, because it requires each image to have both
a short and a long caption. In contrast, our proposed CLIP-MoE surpasses all baselines on both
Recap-DataComp and ShareGPT4V, maintaining consistent performance by leveraging the diverse
information extracted by MoE experts initialized through different stages of MCL.

Performance in LLaVA-1.5

We further evaluate CLIP-MoE as the vision encoder within the LLaVA-1.5 model. The original
vision encoder for LLaVA-1.5 is OpenAI’s CLIP-ViT-L/14@336px (Radford et al., 2021), which is
trained on images with a resolution of 336x336 pixels. To ensure a fair comparison, we use OpenAI’s
CLIP-ViT-L/14@336px as the base model for MCL and train our CLIP-MoE on the ShareGPT4V
dataset at the same 336x336 resolution. After obtaining CLIP-MoE, we freeze it as the vision en-
coder and follow the same two-stage training procedure as LLaVA-1.5, using Vicuna-7B (Chiang
et al., 2023) as the base LLM for CLIP-MoE-LLaVA1.5-7B and Vicuna-13B (Chiang et al., 2023) as
the base LLM for CLIP-MoE-LLaVA1.5-13B. The evaluation results, shown in Table 2, demonstrate
that by simply replacing the vision encoder with our CLIP-MoE, the final MLLM achieves signif-
icant performance improvements across most downstream tasks. This supports the conclusion that
our CLIP-MoE is capable of extracting more useful information from image inputs and encoding
higher-quality image representations.

Method MME VQAv2 TextVQA POPE MMBench
LLaVA1.5-7B 1510.7 78.5 58.2 85.9 64.3
CLIP-MoE-LLaVA1.5-7B 1486.2 79.2 58.8 86.4 66.1
LLaVA1.5-13B 1531.3 80.0 61.3 85.9 67.7
CLIP-MoE-LLaVA1.5-13B 1593.7 80.0 60.9 86.3 69.1

Table 2: Performance comparison between OpenAI CLIP and CLIP-MoE as vision encoders in
LLaVA1.5. The best performance for each dataset is highlighted in bold.

Zero-Shot Image Classification. We evaluated the zero-shot image classification accuracy on Ima-

Dataset Model ImageNet ImageNet-O ImageNet-V2 Cifar10 Cifar100 Avg.

OpenAI 75.5 31.9 69.9 95.4 76.8 69.9

Recap-DC
Direct FT 57.0 32.8 51.3 91.6 68.7 60.3
Upcycling 61.1 32.3 55.3 93.6 71.0 62.7
CLIP-MoE 74.3 32.2 68.7 95.5 79.3 70.0

ShareGPT
Direct FT 59.8 34.5 53.3 87.8 63.1 59.7
Upcycling 62.5 34.4 56.5 91.3 67.5 62.5
Long-CLIP 73.5 33.7 67.9 95.3 78.5 69.8
CLIP-MoE 74.6 33.5 68.5 95.7 79.6 70.4

Table 3: Performance comparison on zero-shot image classification. The models were trained and
evaluated on the Recap-DataComp-1M (Recap-DC) and ShareGPT4V (ShareGPT) datasets, respec-
tively. The best performance for each dataset is highlighted in bold. CLIP-MoE achieved the highest
average performance across both Recap-DC and ShareGPT.

geNet (Deng et al., 2009), ImageNet-O (Hendrycks et al., 2021), ImageNet-V2 (Recht et al., 2019),
CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-100 (Krizhevsky et al., 2009). The results are
shown in Table 3. Both Direct Fine-Tuning and Sparse Upcycling exhibited significant performance
degradation across most classification tasks, which is consistent with the observations in Zhang
et al. (2024a). This decline in performance may be attributed to model overfitting, as both the
Recap-DataComp and ShareGPT4V datasets contain approximately 1 million samples, a substan-
tially smaller dataset compared to the 400M samples used for training OpenAI’s CLIP. While Direct
Fine-Tuning and Sparse Upcycling successfully learned more fine-grained information from the im-
proved and lengthier image captions, leading to enhanced retrieval performance, they also lost the
original model’s ability to encode more coarse-grained information, resulting in decreased classifi-
cation accuracy. In contrast, our proposed CLIP-MoE demonstrated a superior ability to preserve
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classification performance compared to Long-CLIP and even surpassed the original OpenAI CLIP
on ImageNet-O, CIFAR-10, and CIFAR-100. Additionally, CLIP-MoE achieved the best average
performance when trained on both Recap-DC and ShareGPT datasets.

5.6 DISCUSSION

Ablation Study on MCL

To further validate the effectiveness of expert extraction utilizing MCL in Diversified Multiplet
Upcycling, we conducted an ablation study on ShareGPT4V by training a CLIP-MoE model with
only two experts: one from the original OpenAI CLIP and one from fine-tuning FFN layers on
ShareGPT4V. As seen in Table 4, the performance of CLIP-MoE on the retrieval tasks is consis-
tently higher than the model without MCL stages 1 and 2, demonstrating that more MCL stages do
obtain experts that capture more useful information. The slight degradation in ImageNet zero-shot
classification performance is expected, as not all of the additional learned information is beneficial
for classification, which tends to rely on more coarse-grained features (Zhang et al., 2024a).

ImageNet COCO I2T COCO T2I Flickr I2T Flickr T2I
Method Top-1 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
w/o S1 S2 75.4 62.6 84.2 90.3 43.4 68.3 77.8 56.4 79.3 86.3 37.6 60.3 69.3
CLIP-MoE 74.6 65.0 86.0 92.0 46.8 71.7 80.4 60.5 82.3 88.8 42.1 64.7 73.2

Table 4: Ablation study on the impact of MCL stages 1 and 2 in CLIP-MoE performance.

Computation and Data Efficiency We compare the performance gains of our CLIP-MoE, trained
on a 1M randomly sampled subset of Recap-DataComp-1B, to the CLIP-ViT-L-16-HTxt-Recap (Li
et al., 2024b), which was trained from scratch on the entire Recap-DataComp-1B dataset. The
activated parameter size of our CLIP-MoE, with 4 experts and top-2 routing, is 0.69B, which is
comparable to the 0.64B parameter size of CLIP-ViT-L-16-HTxt-Recap. Thanks to MoE-Packing
and leveraging the OpenAI CLIP dense checkpoint, our total training computation cost is less than
2% of that for CLIP-ViT-L-16-HTxt-Recap. As shown in Table 5, CLIP-MoE demonstrates compa-
rable performance gains on retrieval tasks relative to CLIP-Recap, with even superior text-to-image
retrieval performance on the Flickr30k dataset, highlighting the efficiency of our proposed MoE-
Packing for CLIP. It is worth noting that CLIP-Recap uses an even larger text encoder.

COCO I2T COCO T2I Flickr I2T Flickr T2I
Model @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
CLIP-MoE +7.9 +5.6 +4.0 +9.8 +10.1 +9.2 +8.3 +7.5 +6.2 +12.8 +14.5 +13.8
CLIP-Recap +10.8 +7.7 +5.5 +12.3 +12.3 +10.7 +10.9 +8.3 +6.8 +11.9 +12.9 +11.9

Table 5: The performance gain of CLIP-MoE and CLIP-ViT-L-16-HTxt-Recap compared to the
OpenAI CLIP-ViT-L-14 on the retrieval tasks
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Figure 2: Proportion of tokens assigned to each expert on the COCO and ImageNet validation
dataset. Here, we consider experts that are either selected as a first or second choice by the router.

Routing analysis To evaluate whether all the experts learned through MCL are utilized by CLIP-
MoE, we perform an analysis of the routing strategy. We use the CLIP-MoE model with 4 experts
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and top-2 routing trained on ShareGPT4V, and compute the proportion of tokens assigned to each
expert. For retrieval tasks, we use the COCO validation dataset, and for zero-shot image classifica-
tion, we use the ImageNet validation dataset. The analysis results are presented in Table 2. From
the results, we observe that for experts from each MCL stage (represented by each column in the
heatmap), there are consistently yellow areas (indicating heavily utilized experts). No column is
entirely dark blue, which indicates that all MCL stages contribute useful experts to CLIP-MoE. This
further validates the effectiveness of our MCL initialization in MoE-Packing.

Case Study

Orientation
a rabbit facing 

right
a rabbit facing 

left

a rabbit facing 
left

a rabbit facing 
right

Presence
snowman with 

clothes
snowman with 

clothes

snowman 
without clothes
snowman with 

clothes

State
pouring olive 

oil
pouring olive 

oil

still olive oil

pouring olive 
oil

Count
one eye of the 

eagle
both eyes of 

the eagle

one eye of the 
eagle

one eye of the 
eagle

Spatial
animal inside 

the basket
animal inside 

the basket

animal outside 
the basket

animal inside 
the basket

Color
snowman with 

black hat
snowman with 

silver hat

snowman with 
silver hat

snowman with 
black hat

Structure
a cake with a 
slice missing

a slice of cake

a slice of cake

a cake with a 
slice missing

Text
hour hand 

points at 10
hour hand 

points at 10

hour hand 
points at 8
hour hand 

points at 10

Camera
photo of coffee 

from top
photo of coffee 

from side

photo of coffee 
from side

photo of coffee 
from side

Correct Matching

Wrong Matching

CLIP-MoE

OpenAI CLIP

Figure 3: Example cases comparing the performance of CLIP-MoE and OpenAI CLIP on the
MMVP-VLM Benchmark, illustrating differences in their ability to capture fine-grained seman-
tic information.

We demonstrate the comparison between CLIP-MoE and OpenAI CLIP on samples from the
MMVP-VLM Benchmark (Tong et al., 2024b). MMVP-VLM contains manually filtered image
pairs with different semantics that are difficult to distinguish using the vanilla OpenAI CLIP. We
task the models with matching the corresponding statement to the image. As shown in Figure 3,
OpenAI CLIP struggles to distinguish fine-grained details in these image pairs. In cases like the
alarm clock, OpenAI CLIP matches both images to the statement “hour hand points at 10.” In other
cases, such as the rabbit pair, OpenAI CLIP completely misinterprets the information and matches
the opposite statement to the images. However, CLIP-MoE captures more fine-grained details and
makes the correct match in most cases. It can accurately capture camera perspectives, as seen in the
coffee example, orientation information in the rabbit example, and it demonstrates a superior ability
to distinguish relations between objects, such as differentiating between “animal inside the basket”
and “animal outside the basket.”

6 CONCLUSION & FUTURE WORK

In this paper, we proposed a novel Diversified Multiplet Upcycling for CLIP to enhance the model
with minimal computational overhead. Our method enables the extraction of diversified and comple-
mentary experts across multiple fine-tuning stages, which are then utilized within the MoE frame-
work to capture richer information from the inputs. This approach is straightforward to apply, model-
agnostic, and provides a new path to scale and improve CLIP foundation models. By leveraging
off-the-shelf CLIP checkpoints and newly constructed high-quality image-text datasets, our method
avoids the costly process of training CLIP models from scratch. We demonstrated the effectiveness
and efficiency of our approach through extensive experiments across various datasets and tasks.

For future work, our current experiments are limited to image and text modalities. We plan to ex-
tend our method to additional modalities, such as audio and video. Beyond the fine-tuning settings
explored in this paper, we aim to experiment with larger datasets and test large-scale continuous
training settings to further explore the scalability and performance boundaries of Diversified Multi-
plet Upcycling. Additionally, while we tested CLIP-MoE as a vision encoder for MLLMs, we will
also investigate its potential as a text encoder in generative tasks, such as in stable diffusion.
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