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Abstract

Generalized Additive Models (GAM) (Hastie,
2017) and Neural Additive Models (NAM) (Agar-
wal et al., 2021) have gained a lot of attention for
addressing trade-offs between accuracy and inter-
pretability of machine learning models. Although
the field has focused on minimizing trade-offs
between accuracy and interpretability, the limi-
tation of GAM or NAM on data that has multi-
ple subpopulations, differentiated by latent vari-
ables with distinctive relationships between fea-
tures and outputs, has rarely been addressed. The
main reason behind this limitation is that these
models collapse multiple relationships by being
forced to fit the data in a unimodal fashion. Here,
we address and describe the overlooked limita-
tion of ”one-fits-all” interpretable methods and
propose a Mixture of Neural Additive Models
(MNAM) to overcome it. The proposed MNAM
learns relationships between features and outputs
in a multimodal fashion and assigns a probability
to each mode. Based on a subpopulation, MNAM
will activate one or more matching modes by in-
creasing their probability. Thus, the objective
of MNAM is to learn multiple relationships and
activate the right relationships by automatically
identifying subpopulations of interest. Similar to
how GAM and NAM have fixed relationships be-
tween features and outputs, MNAM will maintain
interpretability by having multiple fixed relation-
ships. We demonstrate how the proposed MNAM
balances between rich representations and inter-
pretability with numerous empirical observations
and pedagogical studies. The code is available at
(https://github.com/youngkyungkim93/MNAM).
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1. Introduction
Deep neural networks (DNN) achieve extraordinary results
across several important applications such as object detec-
tion (Redmon et al., 2016; Girshick et al., 2014; Ren et al.,
2015), object classification (He et al., 2016; Krizhevsky
et al., 2017; Dosovitskiy et al., 2020), and natural language
processing (Mikolov et al., 2013; Devlin et al., 2018; Brown
et al., 2020). Yet DNN’s popularity is still low in criti-
cal applications where miss-classification has high conse-
quences or transparency is required for decision-making,
e.g., to prevent unfairness toward certain groups; examples
are medical-related risk estimation and machine learning
(ML) based public policies. According to experts in these
domains, one of the main factors limiting the adoption of
DNN-based approaches is the lack of interpretability and
trustworthiness associated with these algorithms (Shorten
et al., 2021; Amarasinghe et al., 2020; Li et al., 2022). Even
though several techniques have been proposed to increase
the understanding of DNN (Agarwal et al., 2021; Ribeiro
et al., 2016; Pedapati et al., 2020), medical professionals
or policymakers still prefer simple models for which they
can understand directly the factors that lead to a particular
prediction. On the opposite end of DNN are algorithms
such as linear regression and its multiple variants (Mont-
gomery et al., 2021), which are simple and interpretable
but lack the flexibility and high performance that DNN has.
Notably, linear models can’t capture nonlinear relationships
and can’t exploit numerous novel tools that efficiently opti-
mize modern DNN approaches. A recent approach proposed
by Agarwal et al., named Neural Additive Models (NAM),
which is a form of Generalized Additive Models (GAM),
provides an interesting balance between interpretability and
learning power. Individual features undergo nonlinear trans-
formations independently, and these transformed features
are merged in a regression-like paradigm, allowing the user
to understand the weight of each factor leading to a pre-
diction. This enables the algorithm to learn non-trivial re-
lationships between the features and the target outcomes
while leveraging powerful state-of-the-art optimization tools
developed for deep learning.

Although most of the research on GAM has focused on min-
imizing the trade-offs between accuracy and interpretabil-
ity (Nori et al., 2019; Zuur, 2012; Agarwal et al., 2021),
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addressing the lack of power for GAM and NAM in cap-
turing multimodal relationships between input and target
variables has been rare or nonexistent. This limitation is
crucial especially when a dataset has multiple relationships
with distinctive relationships between features and outputs.
For example, imaging in the context of a medical application
where we are predicting the glucose level y using electronic
health records (EHR) as input variables x1, ..., xn; let us
assume there are two subpopulations identified by the vari-
able d ∈ {0, 1}, which can be observed or latent features.
For both cases, NAM would fail to capture a relationship
in which y is positively correlated with (x1|d = 0) but is
uncorrelated with (x1|d = 1). This is due to NAM only
learning one deterministic relationship between input and
output. When d is a latent variable, NAM will fail to dif-
ferentiate them and collapse two relationships into one by
averaging them to learn one deterministic relationship. Even
if d is an observed feature, NAM will fail to differentiate
them as a DNN assigned for X1 doesn’t take d as an input
to have information on two subpopulations.

To address this while preserving the virtues of NAM, we
propose a probabilistic Mixture of Neural Additive Models
(MNAM). The main idea is to apply mixture density net-
works (MDNs), a neural network with mixture of k Gaussian
distributions as an outcome, as a linking function for GAM
to model the relationship between input and outcome in a
multimodal relationship and associate a probability to each
mode. The probability of each mode enables the model
to be flexible in representing multiple subpopulations as
MNAM is able to activate accurate relationships for certain
subpopulations by increasing their probability.

Figure 1 illustrates the power and flexibility of MNAM.
These strengths are also illustrated in Section 3 through
applying MNAM on real datasets. Such flexibility will
be especially crucial in decision-making with high conse-
quences. For example, for analyzing the side effects of
medicine, 99% of participants might have steady glucose
levels but 1% might have high and dangerous glucose lev-
els after taking a medicine. NAM will collapse both levels
into one indicating no side effects on average, but MNAM
will accurately show, with probability, two glucose levels of
different subpopulations.

It is important to highlight the interpretability of the model.
Similar to NAM having a one fixed relationship between
input features and output variables, MNAM will have fixed
multiple relationships, which makes the model interpretable.
Only the probability of each mode will change from the
change in other features, which indicates changes in a sub-
population. Finally, just as for NAM, all powerful state-of-
the-art tools developed for deep learning are applicable to
MNAM.

Our main contributions are: (i) we identify the overlooked

limitation that GAM and NAM have when they are trained
with a dataset that has multiple subpopulations; (ii) we pro-
vides a practical alternative to solve the critical problem or
“one-fits-all” standard in interpretable DL approaches; (iii)
we propose a model called MNAM that could learn mul-
tiple relationships among subpopulations for the solution;
(iv) we propose a method to train MNAM, with objectives
to learn multiple relationships and activate one or more
matching relationships for a given subpopulation; and (v)
we demonstrate MNAM is more expressive in accuracy and
flexible in interpretability compared to NAM. We describe
the proposed method in Section 2. Section 3 presents em-
pirical evidence and pedagogical studies, showing strengths
of MNAM. We discuss related work in Section 4 and lim-
itations in Section 5. Finally, we provide a conclusion in
Section 6.

Figure 1. Linear regression, NAM, and MNAM on linear, nonlin-
ear, and bimodal data. The left column illustrates the input for
three datasets. The columns illustrate the representations learned
by linear regression, NAM, and MNAM, respectively. As expected,
linear regression fails to learn datasets with nonlinear relationships.
NAM fails to learn datasets with relationships that have more than
one modality, and only MNAM is able to learn nonlinear and mul-
timodal relationships.

2. Method
2.1. Problem Statement

The GAM and NAM models lack the ability to effectively
represent multimodal relationships between input and output
due to their link functions. These link functions have a sin-
gle output, which results in the averaging of the multimodal
relationship to minimize loss. To address this limitation,
we require an additive model that utilizes a function with
multiple outputs for link functions. By training each out-
put to represent a specific mode, rather than learning the
average of the multimodal relationship, we can overcome
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this limitation. Furthermore, GAN and NAM models also
fall short in identifying subpopulations, as their main ob-
jective is to learn the average of multimodal relationships
rather than learning each mode separately. To overcome
this limitation, an additional model is needed to learn the
identification of different subpopulations and activate the
appropriate mode or outcome within the additive model with
multiple outcomes.

To address both of these challenges, the MNAM model has
been developed. MNAM tackles these problems by incor-
porating a function with multiple outputs for link functions,
enabling the representation of multimodal relationships, and
by incorporating a separate model to identify subpopulations
and activate the relevant mode within the additive model.

2.2. Architecture

In order to represent the multimodal relationship between
inputs and outcomes, MNAM has an outcome of a mix-
ture of k Gaussian distributions, which are described as
(N1(µ1, σ

2
1), ...,Nk(µk, σ

2
k), π1, ..., πk). Ni(µi, σ

2
i ) de-

notes the standard Gaussian distribution with µi as mean
and σi as standard deviation, while πi represents the proba-
bility associated with it. Since the Gaussian mixture model
is a universal approximator for any density distributions,
MNAM will be able to approximate any multimodal rela-
tionships given large enough k. We formalize this notion
in Section 3.2. One or more Gaussian distributions will be
assigned to one of the input-output relationships for the rep-
resentation and MNAM will activate certain relationships
for given subpopulations of the input by increasing the prob-
ability of the appropriate Gaussian distributions. This is an
important property as it indicates that we can successfully
capture and represent modes for relationships on various
subpopulations in the dataset, without knowing the num-
ber of modes in advance. Such property will be shown in
Section 3.2 through a pedagogical example.

Similar to NAM, MNAM predictions are built from a linear
combination of embeddings Zi of each input feature Xi

mapped through a neural network. In contrast with NAM,
MNAM embedding consists of parameters for k Gaussian
distributions and a latent variable for predicting the prob-
ability of the mixture of k Gaussian distribution models
(N1,j(µ1,j , σ
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1,j), ...,Nk,j(µk,j , σ

2
k,j), Z

π
j ). The left index

of the Gaussian distributions is a reference to the number
of components for the mixture and the right index j is a
reference to one of the input features. As shown in Equation
1, we compute the mean and variance of the Gaussian distri-
butions for the MNAM outcome by linearly combining the
mean and variance of matching components for Gaussian
distributions of features’ embedding.

Ni,1(µi,1, σ
2
i,1) + ...+Ni,m(µi,m, σ2

i,m)

= N (

m∑
j=1

µi,j ,
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σ2
i,j) = Ni(µi, σ

2
i )

(1)

The advantage of this linear property of summation for the
Gaussian distributions is that MNAM is able to linearly
represent how much the overall mean and uncertainty of
prediction changes due to changes in a feature.

Latent variables for predicting the probability of the mixture
of k Gaussian distributions for all features’ embeddings
will be the input for a separate neural network that predicts
the probability of the output. This neural network will
learn to identify which subpopulation is being represented
based on input from all features, and activate the correct
relationships by assigning a high probability to the matching
Gaussian distributions. The description of how MNAM
computes predictions is summarized in Appendix A and
the comparison of the architecture for NAM and MNAM is
illustrated in Figure 2.

2.3. Training and Optimization

As mentioned in Section 1, state-of-the-art optimization
tools for deep learning are applicable for training MNAM.
For this work, we used Adam (Kingma & Ba, 2014) with a
learning rate decreasing by 0.5% for each epoch. The objec-
tive of the training and optimization of MNAM is to assign
one or more Gaussian distributions to each relationship in
the dataset. Another objective is to learn to identify sub-
populations from the given features to activate the correct
relationship associated with the given sample. We devise
hard-thresholding (HT) and soft-thresholding (ST) algo-
rithms for the given objectives. The HT algorithm trains
or updates a single mode or a Gaussian distribution with a
minimum loss, while the ST algorithm trains or updates all
k modes or Gaussian distribution with weights computed
by the likelihood of each mode on the label. Between the
two algorithms, we chose the HT algorithm because the
algorithm is more numerically stable and computationally
efficient compared to the ST model, which has been shown
in the empirical experiment in Section B in the appendix.
The detailed description of the HT algorithm is described
next. The detailed description of the ST algorithm can be
found in Section B in the appendix.

2.3.1. HARD-THRESHOLDING (HT) ALGORITHM

Given the output of a mixture of k Gaussian distributions for
MNAM, the Gaussian negative log-likelihood (GNLL) loss
is computed for each Gaussian distribution against a label.
Among k losses, only the minimum factor will be used to
compute the total loss, which means only weights used to
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Figure 2. Illustrative schemes of NAM and MNAM network architectures. As shown in (a) and (b), NAM independently maps features
into embedding through neural networks and then linearly combines embeddings for a prediction. Similar to NAM, MNAM independently
maps features into embeddings through neural networks. The difference is that embedding consists of k Gaussian distributions and a latent
variable for predicting probabilities for a mixture of the k Gaussian distributions, which is illustrated in (c) and (d). (e) illustrates linear
combinations of each component of the Gaussian distributions for all features’ embeddings. (f) depicts the mapping of latent variables for
a mixture of k Gaussian distributions (Zπ

1 , Z
π
2 , ..., Z

π
n ) into probabilities for the mixture of k Gaussian distributions through a neural

network. (g) is an example of the outcome for MNAM, which is the mixture of k Gaussian distributions.

compute minimum loss are updated from a backpropagation.
This enables the model to assign one Gaussian distribution
to learn each relationship. Cross-entropy loss between the
probabilities of a mixture of Gaussian distributions for a pre-
diction and the index number of the Gaussian distribution
with the minimum loss is computed to measure how well
MNAM activates the corresponding Gaussian distribution
for the input. This loss enables the model to learn to identify
subpopulations for a given input to increase the probability
of the correct Gaussian distribution for representation. Al-
gorithm 1 summarizes the proposed training algorithm. It
is important to highlight that the proposed learning method
is unsupervised, in the sense that the data subgroups do not
need to be known or defined in advance.

3. Result
3.1. Empirical Observations

3.1.1. DATASETS

We evaluate six datasets: the California Housing (CA Hous-
ing) (Pace & Barry, 1997), the Fair Isaac Corporation
(FICO) (FICO, 2018), the New York Citi Bike (BIKE) (Van-
schoren et al., 2013), the Medical Information Mart for

Algorithm 1 Hard-Thresholding (HT) Algorithm
Input: Data (X , Y ), MNAM f , GNLL loss g, Cross-
entropy loss function h, Rate for cross-entropy loss
λ
N1(µ1, σ1), ...,Nk(µk, σk), π1, ..., πk = f(X)
min loss = 0
for i = 1 to k do

gau loss = g(Ni(µi, σi), Y )
if min loss > gau loss then
min loss = gau loss
min index = i

end if
end for
prob loss = h((π1, ..., πk),min index)
total loss = Min loss+ λ · prob loss

Intensive Care (MIMIC-III) (Johnson et al., 2016), the US
Census data on Income (ACS Income) for California in 2018
(Ding et al., 2021), and the US Census data on Travel time
(ACS Travel) for California in 2018 (Ding et al., 2021).
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3.1.2. TRAINING AND EVALUATION

Similar to how the original paper trained NAM, we used
Bayesian optimization (Močkus, 1975) to finetune variables
to train NAM and MNAM. Learning rate, weight decay, and
output penalty are finetuned for NAM. Learning rate, weight
decay, output penalty, number of Gaussian distributions, and
lambda for cross-entropy loss are finetuned for MNAM. For
both models, we utilized early stopping to reduce overfitting.
Optimized parameters from Bayesian optimization can be
found in the table from Section C in the appendix. We
used a 5-fold cross-validation for CA Housing, FICO, and
MIMIC-III datasets, and a 3-fold cross-validation for BIKE,
ACS Income, and ACS Travel datasets. For evaluation, we
trained 20 different models by randomly splitting the train
set into train and validation sets for each fold. We ensembled
20 models to evaluate on the test set.

In comparing deterministic and probabilistic models, we
encountered a challenge due to the lack of standardized
evaluation metrics. Therefore, we decided to use the mean
absolute error (MAE) as a metric for comparison. However,
MAE has a limitation. It fails to account for the uncertainty
in predictions made by probabilistic models. Even if a prob-
abilistic model accurately predicts a true distribution for the
label distribution, it may still receive the same MAE score
as a deterministic model if it is correct in predicting the
mean of the label distribution. To address this limitation,
we transformed NAM into a probabilistic model (pNAM)
by setting k=1 in MNAM. We then utilized likelihood as a
metric to compare the performance of pNAM with the re-
maining deterministic models, to emphasize the importance
of having multimodal compared to unimodal distribution as
an outcome. For the remaining deterministic models, we
used the earth mover’s distance (EMD) to assess how well
they learned to approximate the label distribution. The EMD
scores of models can be found in the table from Section E
in the appendix. It’s worth noting that the EMD score is an
unfair evaluation for deterministic models. This is because
deterministic models do not learn the uncertainty of the data
during training, unlike probabilistic models.

3.1.3. REGULARIZATION

Similar to NAM, all regularization methods for deep learn-
ing can be applied to MNAM, including weight decay,
dropout, and output penalty. For this study, we utilized
weight decay and output penalty.

3.1.4. RESULTS

Table 1 displays the MAE scores of NAM and MNAM,
as well as the likelihood scores of pNAM and MNAM on
datasets described above. MNAM consistently exhibited
similar or superior MAE scores compared to NAM across
all six datasets. Moreover, MNAM showcased a signifi-

cantly improved performance in terms of likelihood scores
when compared to NAM for all datasets, except for the
FICO dataset. Notably, the optimized number of Gaussian
distributions for MNAM was 1, which means that pNAM
and MNAM are identical models. This finding underscores
MNAM’s remarkable ability to effectively learn the out-
put distribution, surpassing both NAM and pNAM in this
aspect.

Differences in performance between MNAM and NAM
differ greatly by datasets. Specifically, the discrepancy in
likelihood scores between NAM and MNAM is much more
pronounced for the CA Housing dataset compared to the
ACS Income dataset. Several explanations could account for
these observations. Firstly, the CA Housing dataset might
exhibit more intricate interaction relationships among its fea-
tures, rendering it more challenging for NAM to accurately
capture the underlying patterns without any interaction term
learning. Conversely, MNAM, with its enhanced capabil-
ity to model complex interactions, would demonstrate an
improved likelihood score on such datasets. Secondly, the
CA Housing dataset might possess modes that differ more
significantly from one another, making it harder to fit using
a single Gaussian distribution for NAM. In this scenario,
MNAM would enhance the likelihood score by accommo-
dating the complexity of interaction relationships and the
differences among modes within the datasets.

NAM PNAM MNAM

DATASET MAE↓ LIKELIHOOD↑ MAE↓ LIKELIHOOD↑

CA HOUSING 0.48± 9e−05 0.58 ±6e−04 0.46 ± 4e−05 0.73 ± 0.001
FICO 2.7 ± 0.002 0.084 ± 2e−06 2.7 ± 0.002 0.084 ± 2e−06

MIMIC 1.5± 0.0002 0.15 ±3e−06 1.5± 0.0003 0.25 ± 6e−05

BIKE 3.4 ± 0.0005 0.069 ±3e−08 3.4 ± 0.0006 0.092 ±1e−06

ACS INCOME 37.2 ± 0.003 0.011 ±4e−07 35.7 ± 0.02 0.013 ± 4e−07

ACS TRAVEL 15.6± 0.0004 0.017 ±2e−08 15.5 ± 0.002 0.036 ± 2e−05

Table 1. MAE score for NAM and MNAM, and likelihood score
for pNAM and MNAM on CA Housing, FICO, MIMIC, BIKE,
ACS Income, and ACS Travel dataset

3.1.5. OUT-OF-DISTRIBUTION ROBUSTNESS

To evaluate the out-of-distribution robustness of pNAM and
MNAM models, we trained the models on the 2018 Cali-
fornia dataset of ACS Income and ACS Travel. We then
computed the mean and variance of the likelihood scores for
these models when evaluated on data from different states
and years, ranging from 2014 to 2017, for both ACS Income
and ACS Travel. The computation of the mean and variance
is presented in Table 2. MNAM consistently outperformed
pNAM in all four scenarios. Interestingly, both pNAM and
MNAM demonstrated better or similar performance when
evaluated on out-of-distribution datasets compared to in-
distribution datasets. This could be attributed to the fact
that pNAM and MNAM had a larger training set when eval-
uating on out-of-distribution data, as they didn’t need to
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reserve a third of the dataset for testing purposes. However,
when it came to the state shift of ACS Income, the perfor-
mance of both pNAM and MNAM significantly decreased
compared to their performance on in-distribution evalua-
tion. This indicates that there are greater variations among
states for ACS Income compared to other out-of-distribution
datasets. Nevertheless, the performance gap between pNAM
and MNAM remained consistent across different datasets.
This evaluation highlights the strength of MNAM in main-
taining flexibility when dealing with out-of-distribution data
compared to pNAM, showcasing its ability to adapt and
capture nuanced relationships between variables.

ACS INCOME (LIKELIHOOD↑) ACS TRAVEL (LIKELIHOOD↑)

STATE SHIFT YEAR SHIFT STATE SHIFT YEAR SHIFT

PNAM 0.0065 ± 2e−07 0.011 ± 2e−07 0.016 ± 1e−06 0.017 ± 3e−08

MNAM 0.0083 ± 5e−07 0.015 ± 5e−07 0.037 ± 4e−05 0.035 ± 3e−06

Table 2. Comparison of likelihood score for pNAM and MNAM,
which are trained on 2018 California dataset of ACS Income and
ACS Travel, evaluated on different states and years of ACS Income
and ACS Travel.

3.1.6. INTERPRETABILITY

In this section, we visualize the relationships between fea-
tures and labels, and how different relationships are acti-
vated from changes in subpopulations; we illustrate this
for the MIMIC and CA Housing datasets. These examples
illustrate the strength of the interpretability of MNAM. Rela-
tionships plots for all five datasets can be found in Section F
in the appendix. As illustrated in the left column of Fig-
ure 3 and Figure 4, MNAM is able to learn and represent
multiple relationships between features and labels, which
NAM fails to do as it collapses those relationships into mean.
Therefore, MNAM is more flexible in explaining and repre-
senting multiple relationships between features and labels
by activating one or multiple of them.

Allowing multimodal data representations sheds light on
non-trivial data relationships that are otherwise hidden in
average “one-fit-all” models. For example, as illustrated in
Figure 3, the variance or the discrimination of the length of
stay among different ethnicities significantly differ between
the two modes recognized by MNAM. (The left graph of
Figure 3) The first relationship, which is a red line, has more
variance or discrimination among ethnicities compared to
the second relationship, which is a blue line, in the length of
stay. If we group the algorithm’s output by admission type
(the middle graph represents common admission and the
right graph represents urgent admission), we recognize the
model activates more on relationships with less discrimina-
tion among ethnicities with urgent admission and vice versa
with common admission. In other words, there is more
variance and discrimination in the length of stay among
ethnicities for common admission compared to urgent ad-

mission.

The strengths of MNAM is more evident when trained on
the CA Housing dataset as the differences in activation of re-
lationships among subpopulation are more drastic than when
MNAM is trained on the MIMIC dataset. In Figure 4, we
identified that the price of a house could increase or decrease
as the number of people in the neighborhood increases (the
first column of Figure 4, illustrates the two modes recog-
nized by MNAM). If we group the algorithm’s output by
median income (the first row of the second column repre-
sents the bottom one percent, and the first row of the third
column represents the top one percent), we can recognize
that one of the modalities is associated with higher income
households and the other with lower income households.
For example, the first row of the second column shows that
the top mode is activated more frequently on this subgroup
(darker blue represents higher frequency), suggesting that
the larger the number the people in the neighborhood, the
higher the house prices. The opposite can be recognized
for the higher-income subgroups (see the first row of the
third column). In other words, the output of the model sug-
gests that for wealthier neighborhoods, the more people,
the less expensive houses are, while the opposite occurs in
poor communities. A similar story is illustrated when we
group the algorithm’s output by proximity to the beach (the
second row of the second column represents inland, and the
second row of the third column represents the area near the
beach). The output of the model suggests that for areas near
beaches, the more people the more expensive houses are,
while the opposite occurs inland. Notice how these rich data
interpretations would have been missed using NAM, where
a “one-fit-all” model is optimized.

3.1.7. COMPLEXITY AND TRAINING EFFICIENCY

Table 7 shows the comparison of average training time, train-
ing time per epoch, and the number of epochs required to
train NAM and MNAM on different datasets. As expected,
MNAM takes longer to train per epoch than NAM because
it has an additional neural network for computing mode
weights. Therefore, MNAM will be inefficient during pre-
diction and evaluation compared to NAM as the model has
higher computational complexity. However, interestingly,
MNAM was faster than NAM in training for half of the
datasets, and MNAM required fewer epochs than NAM for
all datasets except one. Our hypothesis is that MNAM’s
assignment of modes to subpopulations effectively shrinks
the space for the model to explore, resulting in fewer epochs
needed for training, as each mode only needs to represent
one subpopulation. In contrast, NAM has only one outcome
that must represent multiple subpopulations, causing it to
oscillate among subpopulations for representation during
training. Overall, MNAM may be more efficient than NAM
in terms of training time, despite having more parameters to
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Figure 3. Line graphs on the relationship between the length of stay and the ethnicity for MIMIC with whisker representing a variance.
The left graph represents two modes recognized by MNAM between the length of stay and the ethnicity. The middle and right graphs
represent changes in the activation of two modes from changes in admission type. Except for admission type, all other remaining features
have been fixed to mean values. The magnitude of the mode’s activation is illustrated through the intensity of color and thickness of lines.
The darker blue and thicker line represents higher activation of a mode. The blue color bar and different thickness of lines on the right
side of the color bar represents the magnitude of a mode’s activation.

compute.

TRAINING TIME TRAINING TIME NUMBER OF
(SECONDS)↓ PER EPOCH (SECONDS)↓ EPOCHS↓

DATASET NAM MNAM NAM MNAM NAM MNAM

CA HOUSING 636.38 411.73 0.72 0.84 885.36 489.85
FICO 326.26 337.54 0.78 0.85 417.34 397.67
MIMIC 173.10 278.58 0.93 1.09 186.64 256.53
BIKE 410.42 477.62 1.37 1.85 298.76 258.36
ACS INCOME 1460.31 896.41 3.22 4.47 453.65 200.40
ACS TRAVEL 2411.51 946.55 3.86 5.75 624.43 164.58

Table 3. Comparisons of average training time in seconds, training
time per epoch in seconds, and number of epochs between MNAM
and NAM

3.2. Pedagogical Example

For pedagogical value and to further illustrate the differ-
ences between the original NAM and the proposed MNAM,
we created a synthetic dataset with different subpopulations,
which are differentiated by either observed or latent vari-
ables. NAM has limitations in accurately representing such
dataset as it collapses four relationships between X1 and
Y into one deterministic relationship by averaging them.
When X2 is an observed variable, NAM is not able to dif-
ferentiate relationships, since a neural network assigned
to X1 does not take X2 as input. The neural network for
X1 simply uses the average relationship for representation,
which is shown when X2 = 0 and X2 = 1. The representa-
tion is worsened for NAM when variables that differentiate
subpopulations are latent variables, which is the case for
X2 = 2 and X2 = 3 in the synthetic dataset. NAM tries
to represent multiple relationships with one relationship, as
shown in the second column of Figure 5. This can be critical,
for example, in medical applications, where a drug might
be effective in a certain subgroup of the population, tools
like MNAM, would allow identifying from data modes or

outliers that might not fit the general expected therapeutic
trend. MNAM overcomes such limitations as it is able to
learn four relationships and activate the right relationships
for each subpopulation. Another strength of MNAM is that
as long as k is larger than the number of relationships in a
dataset, MNAM will be able to represent the relationships
accurately. In other words, tuning k is not critical, as long
as its value is higher than the expected number of modes.
Furthermore, MNAM is able to learn the uncertainty of each
relationship, which NAM is unable to do. Described limi-
tations of NAM and strengths of MNAM are illustrated in
Figure 5.

3.3. Trade-offs between Accuracy and Interpretability

In this section, we compared different models to explore
trade-offs between accuracy and interpretability. We eval-
uated Linear Regression (LR); NAM; the here proposed
MNAM; Explainable Boosting Machine (EBM) (Nori et al.,
2019), which is a form of Generalized Additive Models
(GAM) with pairwise interaction terms; and Gradient Boost-
ing Trees (GBT) (Friedman, 2001; Pedregosa et al., 2011).
We used grid search for LR, EBM, and GBT to finetune hy-
perparameters for training. Table 4 shows the MAE scores
for these five models. The order of the columns, left to right,
represents an increase in complexity and a decrease in inter-
pretability (here considered as a clear relationship between
input and output). The table is split into two, which are
models with direct relationships and complex relationships
(left and right respectively). LR, NAM, and MNAM are
models with direct relationships because their feature and
output relationships are fixed even from changes in other
features. Meanwhile, EBM and GBT are considered as mod-
els with complex relationships as their feature and output
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Figure 4. Line graph and heatmaps on the relationship between housing price and population for CA Housing. The first column, a line
graph, represents two modes recognized by MNAM between housing prices and populations. Second and third columns, heatmaps,
represents changes in the activation of two modes from changes in features of interest. The first row represents changes in median income
and the second row represents changes in proximity to the beach. Except for each row’s feature of interest, all other remaining features
have been fixed to mean values. The magnitude of the mode’s activation is illustrated through the intensity of color in heatmaps. Darker
blue represents higher activation of a mode. The blue color bar represents the magnitude of a mode’s activation.

relationships changes from a change in other features due
to their interaction terms. With this complexity, it becomes
difficult to interpret those models.

Even though the MAE score improves from an increase in
the complexity of models for most datasets (as expected),
differences in performances among models fluctuate greatly
by datasets. This could be a result of datasets having differ-
ent complexity. For example, models have similar perfor-
mances on the MIMIC datasets. This could be due to the
datasets being too simple to not even require nonlinearity or
interaction terms of models for representations. In contrast,
for the ACS Income dataset, the performance increases with
an increase in complexity. This could be due to the dataset
being more complex and requiring nonlinearity and more in-
teraction terms with higher degrees for models to represent
the dataset well.

4. Related Works
For interpretable models, GAM (Hastie, 2017) has been
widely used. GAM transforms each feature by a function
and linearly combines the transformed features, which en-
ables features to have a fixed relationship with the output.
NAM (Agarwal et al., 2021) uses neural networks while
GAM uses boosted decision trees (Lou et al., 2012; Guisan
et al., 2002) to transform the features. Compared to those
models, MNAM has multiple outputs with probability, in-

DIRECT INPUT COMPLEX INPUT
AND OUTPUT AND OUTPUT

RELATIONSHIPS RELATIONSHIPS

DATASETS LR NAM MNAM EBM GBT

CA HOUSING 0.54 0.48 0.46 0.34 0.31
FICO 3.38 2.7 2.7 2.5 2.4

MIMIC 1.5 1.5 1.5 1.5 1.5
BIKE 3.65 3.4 3.4 3.4 3.4

ACS INCOME 40.0 37.2 35.7 33.3 31.8
ACS TRAVEL 16.8 15.6 15.5 14.2 13.8

COMPLEXITY
INTERPRETABILITY

Table 4. MAE score for LR, NAM, MNAM, EBM, and GBT on
CA Housing, FICO, MIMIC, BIKE, ACS Income, and ACS Travel
datasets. The complexity of models increases from left to right
and the interpretability of models increases from right to left.

stead of one single estimate. These multiple outputs enable
the model to represent multiple subpopulations in the dataset.
Furthermore, it is more flexible for interpretation as it is able
to show multiple relationships between features and labels,
and how different relationships are activated by changes in
a subpopulation.

To address the limitation of GAM in representing multiple
subpopulations in a dataset, Generalized Additive Model
with Pairwise Interactions (GA2M) (Karatekin et al., 2019)
or EBM has been proposed, which adds interaction terms
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Figure 5. NAM versus MNAM on a dataset that has variables that
identify subpopulations as observed and latent variables. The left
column is a scatter plot for a dataset with different values of X2.
The remaining columns represent predictions from training on the
dataset for NAM, MNAM with k = 4, and MNAM with k = 10.
NAM clearly fails to represent the dataset as it collapses multiple
relationships into one relationship. On contrary, MNAM with
k = 4 and k = 10 accurately represents the dataset as it learns
four relationships and activates the right ones for different values
of X2.

into GAM. Yet, the limitation of GA2M is that relation-
ships between features and labels are not fixed due to its
interaction terms, making the model less interpretable. The
model requires users to read two graphs for interpretation.
One is for a line graph on the relationship between label
and feature of interest and another one is for a heatmap
on interaction terms. Users have to mentally visualize the
relationship by looking at two graphs to understand how
the relationship changes from a change in other features.
Compared to GA2M, users have to only look at one graph
and don’t have to mentally visualize as the relationship is
fixed for MNAM.

Mixture Density Networks (MDNs) (Bishop, 1994) is the
first model to use a mixture of k Gaussian distributions as
an outcome for a neural network. Its purpose was to solve
inverse and robotics problems. MDNs is not a form of a
Generalized Additive Model but more of a DNN with a mix-
ture of k Gaussian distributions as an outcome. For DNN
and MDN, the relationship between a feature of interest
and a label will completely change from changes in other
features. It is difficult to compare all possible relationships
and describe how they differ from each other.

5. Limitations
MNAM’s current formulation is only applicable to regres-
sion problems. Unlike continuous variables, binary vari-
ables are meaningless to cluster as the only possible values
are zero and one. For our future work, we will utilize dif-
ferent algorithms such as local interpretable model-agnostic
explanations (Lime) (Ribeiro et al., 2016) to overcome such
a limitation. For example, we could utilize MNAM to ap-
proximate predictions of a neural network that has been
trained for the classification, as a prediction for the classi-
fication will be continuous. Using MNAM to approximate
the prediction of the classification model, we will able to
show multiple relationships between features and outputs
and how those relationships are activated from changes in
subpopulations or features.

MNAM trade-offs between the accuracy and interpretability
of a model. Increasing the number of k Gaussian distribu-
tions for MNAM will increase accuracy. Yet, if the number
of k Gaussian distributions is large, then it will be hard to
interpret as there are too many possible relationships be-
tween features and outputs. The larger the number of k
Gaussian distributions in MNAM, the more the model will
become similar to neural networks as it covers all separate
relationships for all possible combinations of features. For
our future works, we would explore different penalties for
the number of k Gaussian distributions in training to find an
optimal balance between accuracy and interpretability.

Although MNAM maintains interpretability through fixed
relationships between input and output, a neural network
for identifying subpopulations lacks interpretability. Con-
sequently, users must explore various inputs to determine
when a certain relationship will be activated. In the future,
we plan to explore alternative methods to enhance the inter-
pretability of the neural network that is used for identifying
subpopulations. This will enable users to understand when
a specific relationship will be activated without the need to
run the model with different inputs.

6. Conclusion
In this work, we introduced Mixture Neural Additive Model
(MNAM), an interpretable model with more flexibility com-
pared to GAM and NAM. While GAM and NAM have only
one estimate for an output and one relationship between
features and outputs, MNAM has k multiple estimates for
an output, with probability, and k relationships between
features and outputs, to represent different relationships for
each potential subpopulation separately. With such advan-
tages in flexibility, we have shown that MNAM outperforms
NAM in various datasets. Furthermore, we have shown how
MNAM improves interpretation by illustrating how different
relationships are activated by changes in subpopulations.
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A. MNAM Computation Algorithm

Algorithm 2 Mixture Neural Additive Models
Input: Data: (X1, ...Xn), Number of Features: n, Number of Gaussian Distributions: k, Neural Networks for Feature
Transformation: (f1, ..., fn), Neural Network for Probability: g
Output: Mixture of Gaussian Distributions: N1(µ1, σ

2
1), ...,Nk(µk, σ

2
k), π1, ..., πk

for i = 1 to n do
Ni,1(µi,1, σ

2
i,1), ...,Ni,k(µi,k, σ

2
i,k), Z

π
i = fi(Xi)

end for
for i = 1 to k do
µi =

∑n
j=1 µj,i

σ2
i =

∑n
j=1 σ

2
j,i

end for
π1, ..., πk = g(Zπ

1 , ..., Z
π
n )

B. Other Training Algorithms
B.1. Soft-Thresholding Algorithm

Similar to the EM algorithm (Dempster et al., 1977), the ST algorithm has expectation and maximization steps for training.
In the expectation step, we compute the posterior probability of subpopulations P (Z = k|X,Y ). As shown in Equation 2,
we compute the posterior probability by utilizing Bayesian Theorem,

P (Z = k|X,Y ) =
P (X,Y |Z = k)P (Z = k)

P (X,Y )

=
P (X,Y |Z = k)P (Z = k)∑k
i=1 P (X,Y |Z = k)P (Z = k)

,

(2)

where P (X,Y |Z = k) is the likelihood of kth Gaussian distribution for the giveninput, and P (Z = k) is the prior
probability of a subpopulation, which is predicted from MNAM. In the maximization step, we update the weights of MNAM
to maximize the expectation or posterior probability of the subpopulations. First, we compute GNLL losses for all Gaussian
distributions, and then GNLL losses for all the Gaussian distributions are linearly combined with weights matching posterior
probabilities from the expectation step. This ensures weights used to compute Gaussian distribution with a higher likelihood
are updated more. Cross-entropy loss between the prior probability predicted from MNAM and the posterior probability
computed in the expectation step is computed with a similar purpose as in the HT algorithm. Algorithm 3 summarizes the
proposed training algorithm.

Algorithm 3 Soft-Thresholding (ST) Algorithm
Input: Data (X , Y ), MNAM f , GNLL loss g, Crossentropy loss function h, Rate for cross-entropy loss λ
N1(µ1, σ1), ...,Nk(µk, σk), π1, ..., πk = f(X)
for i = 1 to k do
gau lossi = g(Ni(µi, σi), Y )
gau likei = p(Y ;µi, σi)

end for
mar prob =

∑k
j=1 gau likej · πj

π̂1, ..., π̂k =
gau like1 · π1

mar prob
, ...,

gau likek · πk

mar prob

gau loss =
∑k

i=1 gau lossi · π̂i

prob loss = h((π1, ..., πk), (π̂1, ..., π̂k))
total loss = gau loss+ λ · prob loss
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B.2. Comparison of Training Algorithms

For comparing HT and ST algorithms, we evaluated numerical stability (NS), computation of time (CT), and accuracy.
Using the dataset from the pedagogic study, we trained MNAM with different learning rates 20 times each to evaluate
metrics. NS was assessed by computing the percentage of successful training without exploding gradient. CT was assessed
by tracking average training time in seconds. Accuracy was assessed by computing MAE and EMD on the test set. Table 5
shows the evaluation of those metrics.

The HT algorithm had better performance in NS and CT. One of the explanations for better performance in NS is that
the HT algorithm only passes minimum GNLL loss while the ST algorithm passes all GNLL losses with weights for an
update. The ST algorithm passes more loss compared to the HT algorithm, which makes it numerically unstable during
training. Furthermore, the ST algorithm has higher CT compared to the HT algorithm because it requires more computation
to estimate the posterior probability, the HT algorithm only needs to find a minimum GNLL loss for training. For accuracy,
the HT algorithm had a higher EMD score and lower MAE score compared to the ST algorithm. Based on the priority
of two metrics, one could choose one algorithm over the other. For this study, we used the HT algorithm due to its better
performance in NS and CT.

HARD-THRESHOLDING ALGORITHM SOFT-THRESHOLDING ALGORITHM
LR NS CT MAE EMD NS CT MAE EMD

0.05 100% 217.61 43.89 145.38 0% NA NA NA
0.01 100% 386.13 5.23 4.03 0% NA NA NA
0.005 100% 470.94 3.12 0.25 0% NA NA NA
0.001 100% 462.05 3.14 0.19 95% 488.77 2.82 0.40
0.0005 100% 929.62 3.09 0.19 100% 891.53 2.98 0.36
0.0001 100% 1029.1 3.12 0.29 100% 1036.5 3.06 0.30
5e−05 100% 992.03 3.31 0.28 100% 1050.7 3.08 0.45

Table 5. Comparision of HT algorithm and ST algorithm on data from pedagogic study

C. Table of optimized parameters for MNAM

LEARNING WEIGHT OUTPUT NUMBER OF CROSS-ENTROPY
DATASET RATE DECAY PENALTY GAUSSIAN DISTRIBUTION LOSS

CA HOUSING 0.009896 3.8512E-05 0.03363 2 0.6118
FICO 0.02757 6.6649E-05 0.006145 6 0.4718
MIMIC 0.01805 7.0946E-05 0.01908 2 0.7214
BIKE 0.01172 9.1022E-05 0.09256 6 0.3537
ACS INCOME 0.02873 9.13E-05 0.00167 4 0.494
ACS TRAVEL 0.01894 9.3377E-05 0.0028 4 0.3634

Table 6. Optimized parameters for MNAM on six datasets

D. Training Effeciency
Table 7 shows the comparison of average training time, training time per epoch, and the number of epochs required to train
NAM and MNAM on different datasets. As expected, MNAM takes longer to train per epoch than NAM because it has an
additional neural network for computing mode weights. However, interestingly, MNAM was faster than NAM in training for
half of the datasets, and on average, MNAM required fewer epochs than NAM for all datasets except one. Our hypothesis is
that MNAM’s assignment of modes to subpopulations effectively shrinks the space for the model to explore, resulting in
fewer epochs needed for training, as each mode only needs to represent one subpopulation. In contrast, NAM has only one
outcome that must represent multiple subpopulations, causing it to oscillate among subpopulations for representation during
training. Overall, MNAM may be more efficient than NAM in terms of training time, despite having more parameters to
compute.
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TRAINING TIME TRAINING TIME NUMBER OF
(SECONDS)↓ PER EPOCH (SECONDS)↓ EPOCHS↓

DATASET NAM MNAM NAM MNAM NAM MNAM

CA HOUSING 636.38 411.73 0.72 0.84 885.36 489.85
FICO 326.26 337.54 0.78 0.85 417.34 397.67
MIMIC 173.10 278.58 0.93 1.09 186.64 256.53
BIKE 410.42 477.62 1.37 1.85 298.76 258.36
ACS INCOME 1460.31 896.41 3.22 4.47 453.65 200.40
ACS TRAVEL 2411.51 946.55 3.86 5.75 624.43 164.58

Table 7. Comparisons of average training time in seconds, training time per epoch in seconds, and number of epochs between MNAM and
NAM

E. Table of Earth Mover’s Distance score for models

DIRECT INPUT COMPLEX INPUT
AND OUTPUT AND OUTPUT

RELATIONSHIPS RELATIONSHIPS

DATASETS LR NAM MNAM EBM GBT

CA HOUSING 0.29 0.24 0.077 0.11 0.09
FICO 1.16 0.73 0.60 0.51 0.51

MIMIC 1.36 1.43 0.24 1.32 1.25
BIKE 3.06 2.50 0.26 2.45 2.43

ACS INCOME 27.1 21.3 7.4 14.5 12.9
ACS TRAVEL 14.2 12.8 3.1 8.9 8.7

COMPLEXITY
INTERPRETABILITY

Table 8. EMD score for LR, NAM, MNAM, EBM, and GBT on CA Housing, FICO, MIMIC, BIKE, ACS Income, and ACS Travel
datasets. The complexity of models increases from left to right and the interpretability of models increases from right to left.
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F. Relationships plots on other datasets
F.1. MIMIC

Figure 6. Learned relationships between features and labels for the MNAM on MIMIC datasets. Solid lines represent the mean of the
relationships and dotted lines represent their uncertainties.

F.2. Housing

Figure 7. Learned relationships between features and labels for the MNAM on Housing datasets. Solid lines represent the mean of the
relationships and dotted lines represent their uncertainties.

15



Generalizing Neural Additive Models via Statistical Multimodal Analysis

F.3. FICO

Figure 8. Learned relationships between features and labels for the MNAM on FICO datasets. Solid lines represent the mean of the
relationships and dotted lines represent their uncertainties.
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F.4. BIKE

Figure 9. Learned relationships between features and labels for the MNAM on BIKE datasets. Solid lines represent the mean of the
relationships and dotted lines represent their uncertainties.

F.5. ACS Income

Figure 10. Learned relationships between features and labels for the MNAM on ACS Income datasets. Solid lines represent the mean of
the relationships and dotted lines represent their uncertainties.
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F.6. ACS Travel

Figure 11. Learned relationships between features and labels for the MNAM on ACS Travel datasets. Solid lines represent the mean of
the relationships and dotted lines represent their uncertainties.
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