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ABSTRACT

The performance of federated learning relies heavily on the label quality of each
distributed client. In this paper, we consider a federated learning setting with het-
erogeneous label noise, where each local client might observe training labels with
heterogeneous noise rates, which may even be drawn from different subsets of
the label space. The above high heterogeneity poses challenges for applying the
existing label noise learning approaches to each client locally. We formalize the
study of federated learning with heterogeneous label noise by firstly identifying
two promising label noise generation models. Then we propose a dual structure
approach named FedDual. Intuitively, if there exists a model that filters out the
wrongly labeled instances from the local dataset, the effect of label noise can
be mitigated. Considering the heterogeneity of local datasets, in addition to the
globally shared model, each client in FedDual maintains a local and personalized
denoising model. The personalized denoising models can combine information
from the global model or other pre-trained models to ensure the performance of
denoising. Under this framework, we instantiate our approach with several lo-
cal sample cleaning methods. We present substantial experiments on MNIST,
CIFAR10, and CIFAR100 to demonstrate that FedDual can effectively recognize
heterogeneous label noise in different clients and improve the performance of the
aggregated model.

1 INTRODUCTION

Federated Learning (FL) aims to learn a common model from different clients while maintaining
client data privacy and it has gradually been applied to real applications (Li et al., 2020b; He et al.,
2020; 2019). However, data in each local client may be biased (Li et al., 2019b; 2021c; Zhu et al.,
2021c) and noisy (Wang et al., 2022). For example, the label quality of each client may be heteroge-
neous due to human labeling errors (Wei et al., 2022; Han et al., 2018; Yi et al., 2022). The existence
of noisy labels severely degrades the generalization performance of FL models (Wang et al., 2022).

We compare the prediction accuracy of FL model training at different noisy label rates in Indepen-
dent and Identically Distributed (IID) and non-Independent and Identically Distributed (non-IID)
distributions in Figure 1(a). The result demonstrates that the performance of the FL model will dra-
matically decrease with higher label noise, compared with training on clean samples (purple lines).
Additionally, the negatice effect of label noise is more severe in the non-IID distribution.

To further diagnose the performance drop observed above, we record the loss of clean samples and
corrupted samples during the training process of FL, as shown in Figure 1(b). According to the
memorization effect of deep learning when the neural network will prioritize the learning of simple
and clean patterns (Liu et al., 2020; Arpit et al., 2017), it is expected that the loss of noisy samples
is always larger than the loss of clean samples and it is closer to each other under larger noise rates.
The memorization effect is observed in FL models when the data distribution is IID (first row in
1(b)). However, with an increasing degree of non-IID data distribution, the memorization effect is
gradually violated: the model started to memorize the corrupted ones equally early or even earlier
during the training (bottom right corner on 1(b)). In other words, the curves of noisy samples and
clean samples will be switched in high-noise and large-heterogeneity settings, as marked with the
red background box of Figure 1. We conjecture that this observation is related to the heterogeneity
of label noise in clients, which will be carefully defined in Section 3.
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Figure 1: FedAvg on CIFAR10 with symmetric label noise. (a): Test accuracy when noise rates are
0.0, 0.2, and 0.5. (b): Loss of clean samples and noisy label samples with symmetric label noise.
Subfigures in same column are at the same noise level and the noise rate ranges from 0.2 to 0.8 with
an interval of 0.3. Subfigures in the same row are at the same heterogeneity. Data heterogeneity is
increasing from #class=10 (IID) to #class=2 (extermely non-IID). The case where the clean loss
is larger than the noise loss is marked by the red background box.

Although there are many research results on model-based noisy label learning that achieve signif-
icant performance by reducing noisy label samples (Cheng et al., 2021a; Li et al., 2019a; Liu &
Guo, 2020; Natarajan et al., 2013; Wei et al., 2020), they are often studied in centralized learning
and cannot be directly applied to FL because directly applying existing approaches to each client
will lead to uncertain performance. The main reason is that with insufficient sample size and possi-
bly an incomplete observed label space (in the non-IID setting) at each local client, the centralized
learning-based methods tend to overfit the corrupted samples and recognize the noisy samples as
clean samples. Therefore, it is challenging to avoid model overfitting and effectively recognize
wrongly labeled samples from different clients in FL.

There are also some studies to solve the challenge of FL with noisy labels and they can be divided
into two major types. The first type of methods (Chen et al., 2020; Li et al., 2021a; Yang et al.,
2021) solves the challenge by selecting recognized low-noise level clients. However, these methods
have limitations. On one hand, unselected clients with clean-label samples are still useful for model
training. On the other hand, selected clients with noisy label samples will damage model training to
a certain extent. The second type of methods solves the aforementioned limitations to some extent
(Tuor et al., 2021; Xu et al., 2022). However, they are often complex with more stages to pre-process
or fine-tune global models, and do not fully attend to the heterogeneous label noise setting.

In this paper, we first formalize the definition of homogeneous and heterogeneous label noise, as well
as propose two promising label noise generation methods and discuss the situation of homogeneous
and heterogeneous label noise in them. Then, we propose an FL framework with a dual model
structure named FedDual which can effectively deal with noisy label challenges on FL for both the
IID and non-IID distributions. Different from existing works, FedDual is a simple and effective
dual model structure to deal with the homogeneous or heterogeneous noise label challenges in the
federated setting. Instead of introducing additional complex stages to filter label noise samples,
FedDual filters the corrupted label samples in the training process; see Figure 2 for an overview.
There are two models in the FedDual, one of the models is the global model (G model) and another
model is the personal denoising model (P model) used to filter the noise label samples in clients.
The constructed P model filters label noise samples, then the G model will be updated individually
based on clean samples in every client. We propose three ways to construct the P model, shown as
in Figure 3. The first way is training-free by extracting from pre-trained models trained on other
clean datasets, which can acquire a good representation of other clean samples, and filter the noise
samples. The second way is extracted from the G model, which can acquire more global knowledge
to guarantee the denoising performance of the P model. Both the P model and G model of the
third way are trained locally on the clean samples filtered by each other so that different types of
error introduced by noisy labels can be filtered with two different learning abilities of models in this
exchange filtered samples procedure. Finally, to verify the effectiveness of FedDual, we instantiate
FedDual with CORES (Cheng et al., 2021a) and KNN-based denoising (Bahri et al., 2020; Zhu
et al., 2021a) methods. Our contributions can be summarized as:
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Figure 2: Overview of FedDual. Figure (a) shows the training process of FedDual. In every round,
the updated G model from clients will participate in the aggregation process on the server, but the P
model will be kept locally. Figure (b) is an illustration of a dual model structure in a client. The P
model, as a noisy label samples filter module, helps the G model to select clean samples, based on
which the G model can update parameters. When finishing all the local updates, the G model will
be sent to the server to be aggregated.

• We discuss and define the problem of federated learning with heterogeneous label noise, as well
as propose two label noise generation models for our setting.

• To effectively train the FL model on noisily labeled samples, we propose a dual structure called
FedDual, where in addition to the globally shared model, each client maintains a local person-
alized model to perform the task of denoising samples. The denoising module is flexible to be
implemented with many existing label error detection methods.

• With extensive experiments, we demonstrate that FedDual can achieve more significant perfor-
mance than these baseline methods.

2 RELATED WORK

Robust federated learning Robust federated learning has been studied extensively for statistical
and security purposes (Ghosh et al., 2019; Sattler et al., 2019; Ang et al., 2020; Pillutla et al., 2019;
Fang et al., 2020; Li et al., 2021b; Wan & Chen, 2021; Xu & Lyu, 2020). Depending on whether
the client is malicious or not, research on robust federated learning falls into two main types: 1.
robustness in security. 2. robustness in statistics. In research on robustness in security, these methods
are often client-level, i.e. malicious clients are viewed as the major factors for weak robustness. On
the one hand, many approaches aim to improve the robustness of federated learning by identifying
and discarding malicious clients (Xu & Lyu, 2020; Li et al., 2020a). On the other hand, robust
aggregation methods are proposed to reweight updates of clients to avoid global model damage by
malicious model updates (Fu et al., 2019; Wan & Chen, 2021; Pillutla et al., 2019). There are also
some honest clients discarded because of their corrupted samples in local data. Therefore, a large
number of important data will be lost if these honest clients are removed. In research on robustness
in statistics, except for client-level methods (Fang & Ye, 2022; Yang et al., 2021), some sample-level
methods reduce noisy label samples from local data.

Learning with noisy labels There is a large number of works focusing on noisy label learning.
They can be mainly divided into five categories: Robust Architecture (Goldberger & Ben-Reuven,
2016; Lee et al., 2019), Robust Regularization (Xia et al., 2020; Gudovskiy et al., 2021), Robust Loss
Design (Ghosh et al., 2017; Jiang et al., 2021), and Sample Selection (Jiang et al., 2018; Han et al.,
2018; Cheng et al., 2021a). Our work is focused on Sample Selection methods to achieve federated
learning with noisy labels. This type of method is gaining ground after that the memorization nature
of DNNs has been explored theoretically and empirically to identify clean examples from noisy
training data (Xia et al., 2020; Liu et al., 2020).
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3 FL WITH HETEROGENEOUS LABEL NOISE

3.1 PROBLEM DEFINITION

Consider a large collection of data D with a sample size of N and L class labels, which is distributed
over K clients that D = ∪Kk=1D

k := ∪Kk=1

{
(xk

n, y
k
n)
}
n∈[Nk]

, where [Nk] = {1, 2, ..., Nk} is the

set of example indices on client k. Each local instance (xk
n, y

k
n) ∈ Dk follows the data distribution

(Xk, Y k) ∼ Dk. If the distributions (Xk, Y k) ∼ Dk,∀k ∈ [K] are independent and identical, we
call the sample from all clients are Independent and Identically Distributed (IID); otherwise they are
non-IID. We partition non-IID distribution like (McMahan et al., 2017), where the label space on
client k is a subset of the total label space [L]. For a machine learning task, the loss of the prediction
on examples (x, y) made with model parameters w can be defined as ℓ(x, y;w). In real-world
scenarios where the labels come from human annotators (Wei et al., 2022), the label information
is imperfect and the noisy label ỹn may or may not be identical to yn. If ỹn ̸= yn, we call ỹn is
corrupted otherwise it is clean. Assume the label noise is class-dependent (Natarajan et al., 2013;
Liu & Tao, 2015; Liu & Guo, 2020). Then for each client k, we can use the noise transition matrix
T k to capture the transition probability from clean label Y = y to noise label Ỹ = ỹ. Specifically,
we have the following definition:

Definition 1 (Client-Dependent Label Noise). The label noise on clients {1, · · · ,K} is client-
dependent if the label noise on each client k can be characterized by label noise transition matrix
T k, where each element satisfies:

∀k ∈ [K], i, j ∈ [L], T k
ij := P(X,Y )∼Dk(Ỹ = j|Y = i).

When Tk = T, ∀k ∈ [K], we call them homogeneous, otherwise they are heterogeneous. Next, we
discuss the generation models for homogeneous and heterogeneous noise, respectively.

3.2 SYNTHESIZING NOISY LABELS IN FL

Label noise generation Let p(X) := [P(Y = 1|X), · · · ,P(Y = L|X)]⊤ be the soft label of
each clean instance (Zhu et al., 2021b). Note in extreme cases when there exists i such that P(Y =
i|X) = 1, p(X) reduces to the one-hot encoding of label i. Denote by g the label noise generation
function specified by noise transition matrix T . According to transition matrix T , noisy labels will
be generated, where p̃(X) := g(p(X)) = [P(Ỹ = 1|X), · · · ,P(Ỹ = L|X)]⊤ = T⊤p(X). Note
Y ∼ p(X) and Ỹ ∼ p̃(X). Denote the local noise transition matrix on the client k by T k. Similarly,
we have Y k ∼ p(Xk) and Ỹ k ∼ p̃(Xk) = (T k)⊤p(Xk).

Data partition Let MK×L be the data distribution matrix, where Mij is the proportion of the
samples labeled as j on the i-th client to the j-th class samples. Denote by h the data partition
mechanism specified by data distribution matrix M . According to the data distribution matrix M ,
data D with a sample size of N can be divided into K clients, where p(Xk) = h(X, p(X), k).
Further details can be found in the supplementary material; see Appendix B.

Noise generation models in FL Consider two label noise generation models in FL: ANDC (Add
Noise then Divide Clients) and DCAN (Divide Clients then Add Noise).

• ANDC: The noisy label is generated by the global noise transition matrix T , where Ỹ ∼
p̃(X) = T⊤p(X). The corresponding noisy soft label on client k is p̃(Xk) := [P(Ỹ k =

1|Xk), · · · ,P(Ỹ k = L|Xk)]⊤ = h(X,T⊤p(X), k)

• DCAN: The noisy label on client k generated by local noise transition matrix T k satisfies Ỹ k ∼
p̃(Xk) = (T k)⊤p(Xk) and the corresponding noisy soft label is p̃(Xk) := (T k)⊤h(X, p(X), k).

Next, we discuss when the above label noise generation models are homogeneous or heterogeneous.

Homogeneous Label Noise The partition function h should be the IID partition, i.e.,
h(X, p(X), k) = p(X). There are two cases:
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Algorithm 1 FedDual
Input: G model w, θ, learning rate η, number of local epochs E, local mini-batch size B.
Output: global model w.

1: Server executes:.
2: initialize w0;
3: for each round t from 1 to T do
4: m← max(C ·K, 1)
5: St← (random set of m clients) # selects m clients randomly
6: for each client k ∈ St in parallel do
7: N̄k, wk

t+1 ← ClientUpdate(k,wt) # get #clean samples, and the updated G model

8: wt+1 ←
∑K

k=1
N̄k

N̄
wk

t+1 # aggregate the updates of G model with FedAvg
9: Client executes: // Run on client k

10: ClientUpdate(k, w):
11: B̃ ← (split D̃k into batches of size B)
12: for each local epoch i from 1 to E do
13: for batch b̃ ∈ B̃ do
14: Obtain b̄ = PmodelFilter(b̃) # P model filters out noisy samples for the G model
15: w ← w − η▽ l(w; b̄) # update the G model
16: record the number of selected samples on client k as N̄k.
17: Return N̄k, w

• ANDC (IID partition). With IID partition, the label noise is homogeneous since:

p̃(Xk) := h(X, g(p(X)), k) = h(X,T⊤p(X), k) = T⊤p(X),∀k ∈ [K].

• DCAN (Homogeneous T ). With g(p(Xk)) = T⊤p(Xk),∀k ∈ [K] and IID partition, the label
noise is homogeneous since:

p̃(Xk) := g(h(X, p(X), k)) = g(p(Xk)) = T⊤p(Xk),∀k ∈ [K].

Heterogeneous Label Noise In real-world cases, the data partition is often non-IID, i.e.,
h(X, p(X), k) = p(Xk) ̸= p(X). There are two cases:
• ANDC (non-IID partition). With non-IID partition, the label noise is heterogeneous since:

p̃(Xk) := h(X, g(p(X)), k) = h(X,T⊤p(X), k) ̸= T⊤p(Xk),∀k ∈ [K].

• DCAN (Heterogeneous Tk). With g(p(Xk)) = T kp(Xk) ̸= T⊤p(Xk),∀k ∈ [K], the label noise
is heterogeneous since:

p̃(Xk) := g(h(X, p(X), k)) = g(p(Xk)) = (T k)⊤p(Xk) ̸= T⊤p(Xk),∀k ∈ [K].

4 FEDDUAL: A DUAL STRUCTURE APPROACH

In this section, we introduce FedDual, the proposed dual model structure to effectively train fed-
erated learning with noisy labels by identifying and filtering noisy label samples in clients. As a
Plug-and-Play component, FedDual can be implemented on the different training strategies of FL.
Figure 2 is the overview of FedDual, where the training process of FedDual is exemplified in Fig-
ure 2 (a), and the dual model structure is displayed in Figure 2 (b).

4.1 TRAINING PROCESS OF FEDDUAL

Different from FedAvg (McMahan et al., 2017), the distributed objective of FedDual is:

min
w

{
f(w) ≜

K∑
k=1

N̄k

N̄
Fk(w)

}
(1)

where w is the parameters of the global model (G model), N̄k

N̄
is the weight of the k-th device,

N̄k

N̄
≥ 0, and

∑
k N̄k = N̄ . Here, N̄k is the number of selected samples on k-th client and N̄ is the
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Figure 3: Three types of the dual model structure, corresponding to three ways of obtaining P model.

sum of selected samples on all clients, which depends on the private model (P model) as shown in
Figure 2. For client k, Fk is the local optimization objective that the loss of the prediction on local
data with noisy labels, which is defined as:

Fk(w) =
1

N̄k

∑
n∈[Nk]

vn · ℓ(xn, ỹn;w),

where vn ∈ {0, 1} indicates whether example n is clean (vn = 1) or not (vn = 0).

Towards the optimization objective, there are three stages included in the training process of Fed-
Dualas summarized in Algorithm 1. Particularly, at each communication round t:
• Step-1 (Lines 4–6): The selected clients download the G model from the server. The amount of

selected clients is controlled by C, the fraction of a fixed set of K clients in each round.
• Step-2 (Lines 10–17): The lient updates E epochs locally in parallel with the selected clean

samples.
• Step-3 (Lines 7–8): The locally-computed parameter updates ∇wt of the G model will be up-

loaded to the server for aggregation.

4.2 DUAL MODEL STRUCTURE

As shown in Figure 3, there are three dual model structures based on the ways to the construct P
model. The first way is extracted from pred-trained models trained on other clean datasets. The
second way is extracted from the G model of FL. The third way is to train a P model based on the
local dataset. Next, we will explain the above three ways in detail.

Training-free It is training-free to construct the P model in the first Dual model structure, as shown
in Figure 3 (I). By extracting from pre-trained models trained on other clean datasets, the P model
can acquire an effective representation of clean samples. The P model builds on the assumption that
nearby representations should belong to the same true class with a high probability (Gao et al., 2016).
The representation of feature xn is denoted by x̂n = g(xn), where g(·) denotes a representation
extractor and x̂n is a high-dimensional vector. Based on the k-nearest representations of x̂n, P
model then estimates the probability by counting the frequency of each class and get k-NN labels
ŷn (Zhu et al., 2021a). The ith element ŷn[i] is the probability of predicting class-i and the largest
element in ŷn will be predicted class, i.e. yvote

n = argmaxi∈[K] ŷn[i]. We instantiate the KNN-based
method by this dual model structure as FedKNNPretrain.

Extracted From the G model Figure 3 (II) shows the second dual model structure. In the
dual model structure II, the P model is extracted from the G model. According to different de-
noising methods, different parts of G model are extracted. For example, CORES (Cheng et al.,
2021a) needs to extract the logistic layer of G model to evaluate examples by the regularized
loss ℓ(f(xn) , ỹn)+ℓCR(f (xn)) and αn is used to specify thresholds to filter noisy samples, where
αn := 1

K

∑
ỹ∈[K] ℓ

(
f̄ (xn) , ỹ

)
+ ℓCR

(
f̄ (xn)

)
. Different from CORES, the KNN-based method

needs a representation layer to filter noisy samples. In this dual model structure, we respectively
instantiate the KNN-based method and CORES as FedKNN and FedCORES.
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Trained Locally In the third of the dual model structure, the P model is trained on local data
filtered by the G model. In turn, the G model is trained on the local data filtered by the P model.
P model and G model like a twin help each other to filter noisy label samples. Figure 3 (III) is an
illustration of how the P model and G model work. There are two key points for the intuition of
the third dual network structure. On one hand, the P model can include more individual noisy label
information of clients without aggregation but can not accurately identify clean samples because of
the lack of global data information. On the other hand, with aggregated data information of different
clients, the G model can learn more global representations but lacks client-side personalized noisy
label distribution information. Therefore, the dual model structure combines the advantages of the G
model and P model to filter noisy label instances. Here, we respectively instantiate the KNN-based
method and CORES as FedTwinKNN and FedTwinCORES in the third dual model structure.

5 EXPERIMENT

5.1 EXPERIMENTS SETUP

Our methods & Baselines. We instantiate two state-of-the-art methods of noisy label learning
methods: CORES (Cheng et al., 2021a), and the KNN-based method (Zhu et al., 2021a) to FedDual
with three dual model structures. CORES can’t be instantiated by dual model structure (I), Because
it needs to extract the logistic layer of models. Therefore, there are five corresponding instantiated
methods of FedDual as shown below.
• FedKNNpretrain: instantiated KNN-based method according to Dual model structure I.
• FedKNN: instantiated KNN-based method according to Dual model structure II.
• FedCORES: instantiated CORES according to Dual model structure II.
• FedTwinKNN: instantiated KNN-based method according to Dual model structure III.
• FedTwinCORES: instantiated CORES according to Dual model structure III.
We consider CORES (Cheng et al., 2021a), and the KNN-based method (Zhu et al., 2021a) applied
to every client (PCORES, PKNN as mentioned below) as baselines. For reference, we also compare
FedDual with two state-of-the-art methods of FL: FedAvg (McMahan et al., 2017), and FedProx (Li
et al., 2020b), and FL based on Loss Correction (Patrini et al., 2017) The detailed explanation is as
follows:
• PCORES: CORES applied to each client locally to sieve noisy label samples.
• PKNN: KNN-based method applied to each client locally to sieve noisy label samples.
• FedAvg: the vanilla FL framework.
• FedProx: A popular federated learning optimizer that adds a quadratic penalty term to the local

objective.
• FedCorAvg: FL based on Loss Correction.

Implement Details. We evaluate different methods on MNIST,CIFAR10, CIFAR100 datasets. We
consider two noisy label data generation models and corrupt these datasets with two types of label
noise: symmetric and pairflip (Cheng et al., 2021a). We generated heterogeneous label noise by
assigning each of the clients 5 classes for 10 classification tasks and 50 classes for 100 classification
tasks. In addition, we set common parameter for FL as: local epoch E = 5, the fraction of selected
clients on CIFAR100 and MNIST per round C = 0.1, Local solver is SGD, batch size B = 32,
learning rate η = 0.01. Further details can be found in the supplementary material; see Appendix C.

We use test accuracy to evaluate the performance of the federated learning task and F1-score to
evaluate the performance of label error detection. Particularly, F1-score is calculated by F1 =
2×Precision×Recall

Precision+Recall . Let vn = 1 indicate that ỹn is detected as a corrupted label, and vn = 0 if
ỹn is detected to be clean (Cheng et al., 2021b). The precision and recall can be calculated as
Precision =

∑
n∈[N] 1(vn=0,ỹn=yn)∑

n∈[N] 1(vn=0) , Recall =
∑

n∈[N] 1(vn=0,ỹn=yn)∑
n∈[N] 1(ỹn=yn)

.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare the prediction performance of FedDual with all the baseline methods as mentioned
above, in homogeneous and heterogeneous label noise settings with different types and noise rates.
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Table 1: The accuracies of various methods on CIFAR10 with homogeneous label noise and het-
erogeneous label noise at different noise levels. Both two label noise generation models (ANDC
and DCAN) are tested. The accuracy where FedDual is better than the existing noise label methods
applied to FL is painted with a darker background color. For each noise level, we highlight in bold
all cases when the accuracy of FedDual is better than other baselines.

ANDC

Method
Homogeneous label noise Heterogeneous label noise

Symmetric Pairflip Symmetric Pairflip
0.0 0.2 0.5 0.2 0.4 0.0 0.2 0.5 0.2 0.4

FedAvg 89.00 80.03 54.85 81.75 59.81 83.23 71.19 45.42 63.08 48.82
FedCorAvg 77.51 52.08 58.65 71.22 58.92 69.75 57.24 51.86 58.27 41.27
FedProx 81.39 73.53 60.35 75.67 61.02 75.83 68.47 54.66 68.02 50.02
PCORES 52.13 44.21 33.14 37.88 36.21 51.95 41.10 27.70 36.73 34.76
PKNN 87.71 79.48 57.06 81.03 59.82 82.84 72.76 48.64 65.71 48.22
FedCORES 89.52 86.15 54.59 87.40 69.15 85.17 81.14 59.35 67.47 51.23
FedTwinCORES 90.27 84.74 65.53 81.89 69.07 86.83 78.54 57.47 57.14 46.42
FedKNN 86.96 84.28 70.67 83.85 70.59 82.53 78.52 63.40 66.63 49.24
FedTwinKNN 88.14 82.30 59.63 83.45 63.22 84.37 75.37 52.18 66.73 47.72
FedKNNPretrain 86.53 84.07 72.73 83.37 65.74 83.17 78.86 64.30 68.69 47.95

DCAN

FedAvg 89.00 78.19 52.46 80.21 58.54 83.23 61.37 31.55 69.43 54.09
FedCorAvg 77.51 59.80 56.86 71.31 55.03 69.75 55.65 39.39 58.57 45.41
FedProx 81.39 73.49 60.58 75.65 61.34 75.83 63.02 43.90 65.41 54.75
PCORES 52.13 43.81 30.58 38.28 36.73 51.95 35.17 23.42 37.51 33.36
PKNN 87.71 80.63 57.14 79.90 55.39 82.84 68.3 35.68 68.72 49.67
FedCORES 89.52 86.17 56.91 76.21 68.75 85.17 77.54 33.90 70.69 60.83
FedTwinCORES 90.27 84.99 65.18 80.60 65.38 86.83 73.95 43.22 75.16 62.04
FedKNN 86.96 84.81 74.01 84.80 67.34 82.53 79.05 52.88 77.36 53.88
FedTwinKNN 88.14 83.36 59.69 82.22 57.38 84.37 72.73 35.78 70.77 50.02
FedKNNPretrain 86.53 84.80 74.91 83.73 65.66 83.17 81.20 60.31 78.55 54.48

Table 2: The accuracies of various methods on CIFAR100 with heterogeneous label noise (DCAN)
at different noise levels.

CIFAR100 MNIST

Method Clean Symmetric Pairflip Clean Symmetric Pairflip
0.0 0.2 0.5 0.2 0.4 0.0 0.2 0.5 0.2 0.4

FedAvg 66.64 47.00 22.57 47.69 37.56 98.48 91.72 75.93 96.39 91.33
FedCorAvg 28.08 24.12 17.25 23.7 18.92 82.58 81.24 37.85 92.68 56.87
FedProx 63.09 48.51 24.2 50.51 39.0 98.03 92.38 85.03 96.10 92.14
FedPCORES 40.17 29.52 14.77 31.37 24.4 62.98 56.58 46.89 57.68 55.17
FedPKNN 64.66 52.31 26.16 52.23 36.89 98.07 94.78 84.34 95.62 88.12
FedCORES 66.89 54.43 20.48 53.16 35.66 98.74 95.93 66.84 96.29 93.37
FedTwinCORES 66.00 49.88 21.95 53.73 40.08 98.84 93.49 68.81 96.35 92.47
FedKNN 66.75 61.27 31.71 58.71 44.25 98.07 97.72 86.57 97.52 92.29
FedTwinKNN 66.49 56.03 25.94 55.15 39.94 98.12 97.79 88.85 97.49 90.44
FedKNNpretrain 66.49 49.85 22.46 52.79 38.84 98.70 95.18 88.13 96.48 88.81

The results can be found in Table 1 for the CIFAR10 dataset, Table 2 for the CIFAR100 dataset
and the MNIST dataset. More results can be found in the supplementary. On the one hand, we can
find that FedDual can achieve the best accuracy whatever with homogeneous or heterogeneous label
noise at the different noise type and noise level, compared to all the baselines. On the other hand,
we find that PCORES and PKNN are almost ineffective when applied directly to the local client
to filter noisy label samples, where PCORES is even outright collapse. Take into consideration the
compatibility, we also test the performance of of FedDual on datasets without noisy label samples.
The experimental results show that FedDual achieves approximated prediction accuracy to FedAvg
and FedProx when noisy label rate is 0.0.

By analyzing these baselines and five instantiations of dual model structure, we also find interesting
results. Firstly, the performance of PCORES is worse seriously than PKNN. The underlying cause
of this phenomenon is that CORES is a model training-based method to filter noisy label samples.
When applied to local clients, CORES are too easy to overfit the noise samples because of the in-
sufficient sample size. Different with CORES, although supervised by noisy label samples, PKNN
detector only extract model representation, which can greatly avoid overfitting to the noise samples.
However, PKNN doesn’t effectively filter noisy label samples because of the invalid representation.
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Figure 4: The F-score distribution of FedDual in different clients with heterogeneous label noise
(class=5) and noise rate 0.5. The fraction of selected clients is C = 1.
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Figure 5: The accuracies of FedDual with increasing heterogeneity of label noise on the CIFAR10
dataset with noise rate 0.2.

Secondly, the performance of FedDual with dual structure III is not highly related with the perfor-
mance of base learner. Take CORES as an example, even though trained on local data is completely
collapsed (refer to PCORES), P model performance is greatly improved in dual structure III (refer
to FedTwinCORES). Take KNN as a counterexample, even though trained on local data (refer to
PKNN) performs well, P model performance in FedTwinKNN is worse than FedTwinCORES.

5.3 DENOISING STABILITY OF FEDDUAL

Figure 4 shows the F-score distribution of FedDual in different clients to test the denoising stability
of FedDual. By comparing the three dual structures, we can conclude that all the instantiation
method of structure (III) ensures denoising stability in each client. By comparing the instantiations
of FedDual, KNN-based methods whatever PKNN, FedKNN, or FedTwinKNN, achieve client noisy
labels identification with less gap. Note that FedKNN achieves higher noisy label identification than
PKNN, this is because of the good representation of the P model extracted from the G model, which
is consistent with the conclusion in Section 5.2. For CORES based method, although FedCORES
can achieve higher noisy label identification than PCORES generally, the noisy label identification
of FedCORES is not stable. As an alternative solution, FedTwinCORES can achieve more stable
noisy label identification on different clients.

5.4 ROBUSTNESS OF FEDDUAL WITH HETEROGENEOUS LABEL NOISE

Figure 5 shows how FedDual’s performance with the increasing increasing heterogeneity of label
noise. In general, the performance of FedDual will decrease with the increasing heterogeneity of
label noise. However, all the instantiations of FedDual almost achieve higher accuracy, compared
with FedAvg. Among these methods, FedKNNpretrain achieve the lowest accuracy in different
degree of heterogeneous label noise.

6 CONCLUSIONS

In this paper, we discuss federated learning with heterogeneous label noise by formalizing het-
erogeneous label noise under federated learning and proposing a simple and effective dual model
structure to filter noisy label samples called FedDual to solve the challenge. The extensive experi-
ments demonstrate the outperformance of FedDual at homogeneous and heterogeneous label noise
with different noise rates.
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