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ABSTRACT

Linear modeling methods like Mamba have been merged as the effective back-
bone for the 3D object detection task. However, previous Mamba-based methods
utilize the bidirectional encoding for the whole non-empty voxel sequence, which
contains abundant useless background information in the scenes. Though directly
encoding foreground voxels appears to be a plausible solution, it tends to degrade
detection performance. We attribute this to the response attenuation and restricted
context representation in the linear modeling for fore-only sequences. To address
this problem, we propose a novel backbone, termed Fore-Mamba3D, to focus
on the foreground enhancement by modifying Mamba-based encoder. The fore-
ground voxels are first sampled according to the predicted scores. Considering the
response attenuation existing in the interaction of foreground voxels across dif-
ferent instances, we design a regional-to-global slide window (RGSW) to prop-
agate the information from regional split to the entire sequence. Furthermore, a
semantic-assisted and state spatial fusion module (SASFMamba) is proposed to
enrich contextual representation by enhancing semantic and geometric awareness
within the Mamba model. Our method emphasizes foreground-only encoding and
alleviates the distance-based and causal dependencies in the linear autoregression
model. The superior performance across various benchmarks demonstrates the
effectiveness of Fore-Mamba3D in the 3D object detection task.

1 INTRODUCTION

3D object detection is a critical task in computer vision with broad applications in autonomous driv-
ing (Mao et al.,|2023}; |Grigorescu et al., [2020), embodied intelligence (Gupta et al., [2021; Huang
et al.| 2022} Zhang et al.l 2025), and robotic navigation (Gul et al., [2019; Xu et al., [2023). Pre-
vious LiDAR-based methods (Shi et al.| [2020Db; Q1 et al., |2017b}; [Li et al., 2021} | Yan et al., 2018])
achieve remarkable performance, which utilize sparse convolutional neural network (SpCNN) (Liu
et al., 2015) or the Transformer (Vaswani, 2017) architecture as their backbones. However, the
hardware incompatibility of SpCNN and the quadratic computational complexity of Transformer
present substantial obstacles to their deployment in real-time detection applications. Recently, sev-
eral Mamba-based methods (Gu & Daol [2023} Liu et al., [2024a; Zhang et al., 2024c) empirically
show that integrating a bidirectional scanning mechanism with the state space model (SSM) could
achieve promising performance in 2D image recognition tasks with linear computational cost.

Inspired by the effectiveness in 2D computer vision tasks, some studies extend SSM to 3D object
detection (Liu et al., [2024b} [Zhang et al.l 2024c). These methods can be briefly classified into
group-based and group-free approaches. As shown on the left of Figure[I] group-based works (Liul
et al.l |2024b; [Wang et al.| [2023)) partition the 3D voxel features into multiple groups along the
X/Y-axis order for linear modeling. In contrast, group-free methods (Zhang et al.| [2024c) directly
flatten all the non-empty voxels in the scene via space-filling curves, such as Hilbert (Hilbert &
Hilbert, |1935) or Z-order (Orenstein, | 1986) curves. Though these methods encode the entire scene
in various ways, the informative foreground occupies only a small portion, as illustrated on the right
of Figure[I] This naturally motivates focusing on the effective foreground-only encoding technique.

Nevertheless, foreground-centric detectors confront inherent challenges. Primarily, imprecise or
incomplete foreground sampling risks omitting critical structural information, thereby necessitating
a specialized prediction and sampling strategy to ensure representational integrity. More critically,
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the sparse distribution of foreground voxels across distinct instances hinders conventional linear
encoders from capturing long-range dependencies, resulting in response attenuation. Given that
group-based methods excel at local modeling while group-free methods provide stronger global
interaction, it is intuitive to mitigate response attenuation through a regional-to-global encoding
strategy that leverages the advantages of both paradigms. In addition, enhancing the semantic and
geometric awareness of the state variables in Mamba can further enrich contextual understanding
and lead to superior overall performance.
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Mamba component for better

semantic and geometric understanding in state variables, which consists of semantic-assisted fusion
(SAF) and state spatial fusion (SSF) modules. As shown on the right of the Figure (1| the proposed
combinations reduce the memory usage with promising performance achieved simultaneously. The
main contributions of our paper are summarized as follows:

* We propose Fore-Mamba3D model, a novel Mamba-based approach that focuses on the
effective linear encoding of foreground features for superior 3D detection performance.

* A regional-to-global sliding window strategy is designed to aggregate and propagate lo-
cal information to the global sequence to address the deficiency of global interaction in
previous autoregression models.

* The SASFMamba component is introduced to leverage both semantic-assisted fusion and
selective state spatial fusion in state variables, which achieves non-casual encoding with
semantic and geometric understanding.

2 RELATED WORK

2.1 LIDAR-BASED 3D OBJECT DETECTION

LiDAR is an important sensor for 3D perception due to its precise and intuitive geometric repre-
sentation of scenes. Most of the LiDAR-based 3D detection methods (Shi et al., [2020a; Qi et al.,
2017aib; |Vora et al., 2020; [Yan et al., [2018}; (Chen et al., [2022)) can be typically categorized into
point-based and voxel-based approaches. Point-based methods (Qi et al.,[2017ajb; [Shi et al.,2019a))
directly take raw points as input, which assemble the regional context through set abstraction, and
progressively downsampling for point encoding. The above process in point-based methods is com-
putationally inefficient. In contrast, voxel-based methods (Deng et al., 2021} |Zhou & Tuzel, |2018;
Chen et al., |2023) first divide point clouds into regular voxel grids, and then extract features via 3D
SpCNN (Chen et al., 2023; 2022; [Wu et al., 2022) or Transformer encoder (Wang et al., [2022b;
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Bai et al., 2022} |Sheng et al.| [2021). 3D SpCNN-based methods extract the voxel features by nor-
mal convolution kernels, limiting the capability to capture the larger or global scene context. The
Transformer-based method groups the voxels in sequence and encodes the information in a self-
attention or cross-attention mechanism, which is hindered by the quadratic complexity. Therefore,
reducing computational complexity while achieving global recognition remains a challenge.

2.2 MAMBA FOR 3D DETECTION

Similar to the process in structured 2D images, the 3D points cloud or voxel representation can also
be flattened into serials. Most of the 3D Mamba-based methods (Liang et al., 2024} |Liu et al.,
2024b; |[Zhang et al., 2024c; Ning et al., [2024) can be categorized into group-based and group-free
classes. PointMamba (Liang et al.,|2024) is the pioneer in grouping the point cloud by faster points
sampling (FPS) and serializing all the non-empty voxels. LION (Liu et al.,2024b) enables sufficient
feature interaction in a much larger group than previous Transformer-based methods, such as DSVT
(Wang et al., [2023). In contrast, Voxel-Mamba (Zhang et al) [2024c) is a group-free approach,
which serializes the whole space of voxels into a single sequence and enhances the spatial proximity
of voxels by designing a dual-scale SSM. MambaDETR (Ning et al 2024])) serializes the queries in
the current 3D scene and aggregates the sequential in different frames. However, the linear encoding
for all the non-empty voxels is unnecessary and time-cost, while the semantic and spatial relation in
the state space is lacking. Our approach tackles these limitations by performing foreground-focused
encoding to substantially reduce redundancy.

2.3 FOREGROUND SAMPLING AND ENCODING

Foreground sampling and encoding have become central components in recent 3D object detection
approaches (Zhang et al, 2022} Wang et al., [2022a}; Zhang et al., 2023)), particularly for LiDAR-
based methods. For example, [A-SSD (Zhang et al.}2022) introduces instance-aware downsampling
to hierarchically select foreground points, while RBGNet (Wang et al.,|2022a) employs foreground-
biased sampling to capture more object-surface points and then applies ray-based feature grouping
for improved bounding box prediction. DSASA (Zhang et al., 2023) further develops a series of
FPS-based strategies to increase foreground coverage while balancing point density across instances.
Nevertheless, a persistent challenge lies in maintaining sufficient representation when the sampled
foreground points are sparse and spatially scattered. InthiSsworkypwemitigaterthisissueby designing
the specific module to alleviates the response attenuation and information loss arising from sparse
foreground-only sequences.

3 METHOD

As shown in Figure 2[a), the 3D backbone of Fore-Mamba3D consists of four stages and each
contains an instance selection block and a downsampling block. The instance selection block in
Figure [2(b) is the main component in our method, which includes foreground voxel sampling, a
regional-to-global sliding window (RGSW) strategy in Figure 2fc), and a semantic-assisted and
state spatial fusion Mamba (SASFMamba) in Figure d).

3.1 FOREGROUND VOXEL SAMPLING AND FLATTENING

In autonomous driving scenarios, background voxels typically account for a substantial portion of
the entire scene (e.g., about 80% in the nuScenes or KITTI datasets, as shown in Figure[T). Encoding
all nonempty voxels would significantly increase the computational cost and memory usage. To
address this challenge, we propose a foreground voxel sampling and encoding method. Given voxel
features X € RIXHXWXD "where L x H x W denotes the spatial resolution and D indicates
the channel dimension, we predict foreground score F for each nonempty voxel via a submanifold
convolution. Then, we add the positional embedding PE with X element-wisely, followed by a
sparse convolution operator to obtain the updated features. Subsequently, the top-k (= «) updated
features are sampled to form our foreground features Xy € RV according to their predicted
scores F in a descending order. The parameter /N indicates the number of sampled voxels and the
background voxels are defined as A}. Then, we resort X'y based on the predefined Hilbert curve.
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Figure 2: The overall framework of Fore-Mamba3D . (a) Framework: the backbone of Fore-
Mamba3D consists of four stages and each contains an instance selection block and a downsam-
pling block. (b) Instance Selection Block: we predict the foreground score for each voxel and select
the top-k foreground voxels for further linear encoding. (c) RGSW: we utilize a regional-to-global
sliding window process for iterative encoding. (d) SASFMamba: semantic-assisted and state spatial
fusion modules are designed to enhance the semantic and geometric recognition of state variables.

However, there usually exists ‘regional truncation’ issue in the Hilbert curve, as illustrated on the
bottom of Figure |Zkb). Voxels (e.g., v1 and vs) that are close in the original 3D coordinates may
be far from each other in the sequence, which cannot be resolved by bidirectional encoding in
previous works (Zhu et al} 2024} Zhang et al.,|2024c)). Therefore, we rotate and flatten the original
scene along the Z-axis for multiple times to ensure the truncated neighbor voxels can be closer in
the sequence, such as the v] and v5. Specifically, given the grid coordinates of sampled voxels
P € RV*3, we rotate the entire scene with an angle @ in the bird’s eye view (BEV). The initial
coordinate p = (x,y, )7 is transformed to R(0,p) = (|zcosd + ysinb|, |ycosd — xsind|, 2)7T,
where | -] indicates the floor function. Subsequently, the voxels are linearized according to the index
of their rotated coordinates in the Hilbert curve template. The flattened features can be defined as:

Xpo = H(X;, {R(0,p)lp € P}) € RV*D, (1)

where {R(0,p)|p € P} represents the rotated coordinates set and H (-) refers to the Hilbert curve
interpolation function. The sequence features Xy, within different 6, are fed into the subsequent
encoding modules, followed by a sum and multi-layer perception (MLP) operation. The encoded
features are then concatenated with the background features A}, to produce the final output X’ ". The
above process is formulated as follows:

X' =Cat[MLP(> Enc(Xyy,)), X, )
i=1
where r denotes the rotation times (default as 2). The approach effectively alleviates the regional
truncation issue in the Hilbert curve template and improves the robustness of the model across
different viewpoints.

3.2 REGIONAL-TO-GLOBAL SLIDING WINDOW STRATEGY

To address the response attenuation in the foreground voxels across different instances, we conduct
a RGSW strategy for effectively propagating information from the region to the entire sequence, as
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bidifectional'éncodifig)) we introduce a local token 7; € RP inserted into the end of each patch to
acquire the expanded feature z € RM* (37 +1D*D which is further sent to our SASFMamba model
to obtain the encoded feature z'. On account of the autoregression property of linear modeling,
the encoded local token 7;, naturally aggregates the comprehensive regional information within the

patch z;. Subsequently, we propagate this summarized context 7': back to the preceding voxel
features within the patch via a similarity-based weighting, defined as:

T)xT,, 3

where x; ; € RP denotes the j-th vector in the i-th patch and Sim(-) refers to the cosine similarity.

! !’ ’
;5 = x5+ Sim(z, j,

~

Although the above approach ensures regional information within each patch can be captured, in-
teraction between patches remains unaddressed. To facilitate global understanding, we implement
a sliding window mechanism to update the patch by combining the later half of x; with the former
half of x; 1 to obtain the new sliding patch z7, formulated as:
N / N

i = Cat(zlorr ] 2l 57D, (4
where % represents the middle position in x; Given the obtained =, it is further fed into SASF-
Mamba for information propagation. The above process is repeated for ¢ times to enable information
propagation across patches. The technique enables information propagation across patches, which
is a critical limitation prevalent in the previous group-based approaches.

~

3.3 SASFMAMBA FOR LINEAR ENCODING

To mitigate the limited contextual representation caused by incomplete and imprecise foreground
sampling, we incorporate both geometric and spatial cues and design the SASFMamba encoder.
This proposed encoder consists of two critical components: semantic-assisted fusion (SAF) and
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where K = {—K,-- - , K'} denotes the ERF and K refers to kernel size in the convolution operation.
Crucially, N (i) represents the original index of the feature that is spatially adjacent to ¢ in the
rearranged semantic domain. «y is the learnable convolution weight. By expanding Ay, (i), we

calculate the association score M, ; between the updated state hj and the input z; as:
M. ; = Z ak‘;'.Nk(i)Bj; Ki; ={k e K| Ne(i) > j}, @)

kEK
where ICéj ; denotes the subset of the kernel where the semantic neighbor’s original index Ny (i)

appears after the input index j. From Equationm itis evident that if there exists a valid k € ICé, ;- then
the cumulative transition @, # 0. Since ay, and B, are non-zero, this ensures M;_; # 0. This

theoretically demonstrates that the SAF module enables the current state hé to effectively capture
information from distant inputs 2; (where j < Ny (¢)) that share similar semantics, overcoming the
locality bias of standard linear encoders.

3.3.2 STATE SPATIAL FUSION.

To solve the geometric distortion from 3D to 1D sequence, we propose the SSF module. Given the
state variables i~ after the SAF module, we first map each variable into the 3D space based on its
original coordinate in the feature space to create a new sparse 3D tensor in the state space. Since
there are inherent spatial deficiency in the linear modeling, we apply a dimension-wise convolution
(He et al.l |2024) with a large kernel along different axis to achieve spatial recognition. Then, we
flatten the 3D representation back into a sequence h". Thus, the overall design of the state space
fusion can be expressed as follows:

h" = S2L(DwConv(L2S(h))), (8)
where “L2S” and “S2L” refer to the transformation from linear features to a sparse 3D tensor and the
reverse process, respectively. “DwConv” denotes the dimension-wise convolution operation. Based
on the observation equation in SSM, we multiply n' by the dynamic output matrix C' to acquire the
output features z’. The mechanism in the SSF is similar to SAF, which can ensure the non-casual
and geometrically correlated encoding.

3.4 Loss FUNCTION

To improve the precision of the scores F in foreground prediction and semantic category .S in the
SAF module, we design two loss functions £¢ and L, for supervision. Moreover, we define voxels
within enlarged bounding boxes—obtained by expanding the original boxes by 0.5 m along the
X/Y axes and 0.25 m along the Z axis—as foreground, in order to preserve ambiguous boundary
informationmConsidering the number imbalance between the predicted categories, we select the
focal loss to calculate £ and L, which are defined as:
c
L, Ls= —Zﬁi(l — i) yilog(pi), )
i=1
where C defines the number of output classes. The focusing parameter v = 2 is introduced to em-
phasize hard-to-classify samples. 3; and p; represent the weight and probability of the i-th category.
v, indicates whether the ground-truth label matches the i-th category. After acquiring £y and L,
from the 3D backbone, we integrate them with the classification loss L, and regression loss L.
from the detection head with weight w = 2. L., and L,., are computed with the widely used
cross-entropy loss and smooth-L1 loss, respectively (Yan et al., [2018 |Shi et al., |2020a). The final
loss L is defined as:
L=w(Lls+ L)+ Lets + Lreg- (10)

4 EXPERIMENTS

4.1 DATASET AND METRICS

nuScenes dataset. The nuScenes dataset (Caesar et al.,|2020) is a large-scale 3D detection bench-
mark with a perception range of up to 100 meters. The dataset includes 700 training scenes, 150
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Table 1: Performances on the nuScenes validation and test set. ‘C.V., ‘Ped.’, and ‘T.C.” are short
for construction vehicle, pedestrian, and traffic cone, respectively. The first and second best results
are in bold and underlined, respectively. All the results are conducted without class-balance ground-
truth sampling (CBGS).

Method | Present at

mAP | NDS | Car Truck Bus Trailer C.V. Ped. Motor. Bike T.C. Barrier

Performance on the validation dataset

CenterPoint (Yin et al.|2021) CVPR21 | 592 | 66.5 | 849 574 707 38.1 169 85.1 59.0 420 698 683
TransFusion-L _(Bai et al.||2022) CVPR22 | 655 | 70.1 | 869 60.8 73.1 434 252 875 729 573 772 703
VoxelNeXt (Chen et al.;[2023) CVPR23 | 645 | 700 | 846 53.0 647 558 287 858 732 457 790 746
DSVT (Wang et al.[[2023) CVPR23 | 664 | 71.1 | 874 626 759 421 253 882 748 587 719 710
HEDNet (Zhang et al.||2024b) NIPS23 66.7 | 714 | 817 606 778 507 289 87.1 743 56.8 763 669

SAFDNet (Zhang et al.[[2024a) CVPR24 | 663 | 71.0 | 87.6 60.8 78.0 435 266 878 755 580 750 697
Voxel-Mamba (Zhang et al.|[2024c) | NIPS24 675 | 719 | 879 628 768 459 249 893 771 58.6  80.1 71.5

LION (Liu et al.|[2024b) NIPS24 | 68.0 | 72.1 | 87.9 649 776 444 285 89.6 756 594 808 716
FSHNet (Liu et al.|[2025) CVPR25 | 68.1 | 71.7 | 887 614 793 478 263 893 767 605 786 723
Fore-Mamba3D (Ours) - 684 | 723 | 884 652 803 480 282 893 757 577 80.0 712
Performance on the fest dataset
HEDNet (Zhang et al.||2024b) NIPS24 | 67.7 | 72.0 | 87.1 565 704 635 336 879 704 448 85.1 78.1
SAFDNet (Zhang et al.|[2024a) CVPR24 | 683 | 723 | 873 573 680 637 373 89.0 7l.1 448 849 795
Voxel-Mamba (Zhang et al.[[2024c) | NIPS24 | 69.0 | 73.0 | 86.8 57.1 680 632 354 895 747 508 869 773
LION (Liu et al.|[2024b) NIPS24 | 69.8 | 739 | 87.2 61.1 689 650 363 90.0 740 492 873 795
Fore-Mamba3D (Ours) - 70.1 | 740 | 87.1 606 70.5 639 343 902 737 53.1 886 786

validation scenes, and 150 testing scenes. Detection performance is evaluated using the normal met-
rics: mean average precision (mAP) and the nuScenes detection score (NDS), as previous works
(Yin et al.| 2021} Bai et al., [2022)).

KITTI dataset. The KITTI dataset (Geiger et al.,|2012) contains 3,712 paired training samples,
3,769 paired validation samples, and 7,518 paired test samples. The standard metrics include 3D
and BEV average precision (AP) under 40 recall thresholds (R40), with three different difficulty
levels. In this work, we evaluate our method across three major categories with IoU thresholds of
0.7 for cars, and 0.5 for both pedestrians and cyclists, which is the same as previous methods (Shi
et al.l [2020a;|Yan et al., 2018 Zhou & Tuzel, [2018)).

Waymo Open Dataset. The Waymo dataset (Sun et al., | 2020) includes 230k annotated samples
and the whole scene covers a large reception range of 150 meters. The evaluation metrics contain
the average precision (AP) and its variant by weighted heading accuracy (APH). The detection
difficulty of each object is divided into two categories: Level 1 (L1) for objects containing more
than five points and Level 2 (L2) for those containing at least one point.

4.2 IMPLEMENTATION DETAILS

Our model is trained by the Adam optimizer on eight NVIDIA RTX 4090D GPUs with a cosine
learning rate of 3e-3. For the nuScenes dataset, our method builds upon the TransFusion framework
(Bai et al.,[2022)) and it is trained for 36 epochs with 2 batch size. For the KITTI dataset, we replace
the 3D backbone of the SECOND network (Yan et al.} |2018)) with our proposed method and train
the model for 50 epochs with a batch size of 4. For the Waymo dataset, our method is employed
based on the CenterPoint (Yin et al.,|2021)) with the channel dimension equal to 64 and it is trained
for 24 epochs with 2 batch size. We adopt a similar data augmentation configuration in the training
stage as previous works (Chen et al., [2023] [Yan et al.| 2018} |Yin et al.| 2021} Bai et al., [2022).
Notably, the Hilbert curve templates are generated offline and directly loaded into each stage for
both training and inference acceleration.

4.3 COMPARISON WITH THE PREVIOUS METHODS

Performance on the nuScenes dataset. In Table [I] we compare Fore-Mamba3D with previous
methods on both the nuScenes validation and test sets. For a fair comparison, all experiments are
conducted without class-balanced ground-truth sampling or model ensembling. Fore-Mamba3D
achieves state-of-the-art performance among all existing LiDAR-only approaches.

Performance on the KITTI dataset. We compare Fore-Mamba3D with other methods based on
various 3D backbone architectures, including MLP (Shi et al.l 2019a), SpCNN (Zhou & Tuzel,
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Table 2: Comparison of the performance on the KITTI validation set with an average recall of 11.
1 indicates that the result is reproduced by us. The first and second best results are in bold and
underlined, respectively.

Car Pedestrian Cyclists
Methods ‘ BackBone |y g | Mod | Easy | Hard | Mod | Easy | Hard | Mod | Easy
PointPillars (Lang et al.|[2019) MLP 79.1 | 75.0 | 683 | 52.1 | 435 | 41.5 | 75.8 | 59.1 | 52.9
IA-SSD (Zhang et al.[2022) MLP 88.3 | 80.1 | 75.0 | 46.5 | 39.0 | 35.6 | 784 | 619 | 55.7
VoxelNet (Zhou & Tuzel|[2018) SpCNN 775 | 65.1 | 57.7 | 39.5 | 337 | 31.5 | 61.2 | 484 | 44.4
DSVT (Wang et al.|[2023) Transformer | 87.8 | 77.8 | 76.8 | 66.1 | 59.7 | 55.2 | 83.5 | 66.7 | 63.2
DGT-Det (Ren et al.|[2023) Transformer | 89.6 | 80.6 | 78.8 - - - 82.1 | 689 | 61.0
LION (L1u et al.[[2024b) Mamba 88.6 | 783 | 77.2 | 67.2 | 60.2 | 55.6 | 83.0 | 68.6 | 63.9
VoxelMamba (Zhang et al.]|2024c)i Mamba 89.1 | 80.8 | 78.1 | 66.0 | 59.7 | 53.7 | 84.2 | 69.1 | 64.8
Fore-Mamba3D (Ours) | Mamba | 90.3 | 82.2 | 79.5 | 67.8 | 62.2 | 57.0 | 864 | 69.5 | 66.3

Table 3: Performance on the Waymo dataset (trained on the 20% training dataset and evaluated
on the full validation dataset). T denotes that the results of previous work are implemented by
OpenPCDet (OpenPCDet Development Teaml, [2020). The first and second best results are in bold
and underlined, respectively.

Vehicle Pedestrian Cyclist AP
Methods AP APH AP APH AP APH m
Ll | L2 Ll | L2 LI | L2 Ll | L2 Ll | L2 Ll | L2 L2

SECOND { (Yan et al.|2018) 71.0 | 62.6 | 70.3 | 62.0 | 652 | 57.2 | 54.2 | 47.5 | 57.1 | 55.0 | 55.6 | 53.5 | 58.3
PV-RCNN { (Shi et al.|[2020a) 754 | 67.4 | 747 | 66.8 | 72.0 | 63.7 | 61.2 | 54.0 | 65.8 | 63.4 | 643 | 61.8 | 64.8
Part-A2 1 (Shi et al.[[2019b) 747 | 658 | 74.1 | 653 | 71.7 | 62.5 | 622 | 54.1 | 66.5 | 64.1 | 652 | 62.8 | 64.1
CenterPoint { (Yin et al.[[2021) 713 | 63.2 | 70.8 | 62.7 | 72.1 | 64.3 | 65.5 | 58.2 | 68.7 | 66.1 | 67.4 | 649 | 64.5
Voxel-RCNN 7 (Deng et al.[[2021) | 76.1 | 68.2 | 75.7 | 67.7 | 782 | 69.3 | 72.0 | 63.6 | 70.8 | 68.3 | 69.7 | 67.2 | 68.6
TA-SSD (Zhang et al.[[2022) 70.5 | 61.6 | 69.7 | 60.8 | 69.4 | 60.3 | 58.5 | 50.7 | 67.7 | 65.0 | 65.3 | 62.7 | 62.3
LION (Liu et al.|[2024b) - 67.0 - 66.6 - 75.4 - 70.2 - 71.9 - 71.0 | 71.4

Fore-Mamba3D (Ours) | 763 | 67.8 | 75.8 | 67.4 | 82.1 | 75.6 | 75.6 | 70.0 | 72.8 | 722 | 71.3 | 70.6 | 719

2018), Transformer (Wang et al.,|[2023)), and Mamba (Liu et al., [2024b), to highlight the effective-
ness of our model’s structure. The result in Table [2] shows that our method achieves state-of-the-art
performance on the KITTI dataset, yielding an average improvement of 1.7% over the second-best
method VoxelMamba (Zhang et al., 2024c).

Performance on Waymo dataset. We further evaluate Fore-Mamba3D on a subset of the Waymo
Open Dataset, training with only 20% of the training set and testing on the full validation set. As
shown in Table E], our method achieves competitive results with 71.9% mAP in the L2 level, out-
performing the CenterPoint baseline (Yin et al.,|2021) by 7.4%. Moreover, all the results in the L1
level surpass those of previous methods, further highlighting the effectiveness of our approach.

4.4 ABLATION STUDY

In this section, we conduct a series of ablation study on the nuScenes and KITTI validation sets to
evaluate the effectiveness and efficiency of all the proposed components.

Foreground Sampling and Efficiency. The results in Table ] demonstrate the effectiveness of
our foreground voxel sampling strategy across different sampling ratios, along with its impact on
computational efficiency. Specifically, we rotate the entire scene around the Z-axis with § = 0 and
7 /2, and select the top-k (=«) features as the foreground. When « equals to 0.2, our model achieves
the best performance, with 72.3 NDS on the nuScenes dataset and 82.2 Car mAP on the KITTI
dataset. The performance gain can be attributed to the value of o approximating the true distribution.
Moreover, we further compare the efficiency under a single-GPU setting with a batch size of 1. Our
approach reduces FLOPs by 43.7% and increases FPS by 23.9% compared with the LION backbone.
The FLOPs in Mamba are determined by the sequence length, hidden dimension, selective-scan
operatorsyand causal'convolutionicomponentsyIn addition, the supervised foreground scores ensure
the alignment between the prediction and the ground-truth. Visualization of the heatmap in the BEV
is provided in the Appendix.
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Ablation on the Combination of Different Components. To clearly demonstrate the effective-
ness of each component proposed in our method, we fix the sampling ratio « at 0.2 and progres-
sively integrate individual components into the vanilla Mamba encoder. The results are depicted in
Table[5] Employing Hilbert curve flattening with multiple rotations achieves certain detection accu-
racy. Moreover, the RGSW strategy strengthens long-range interactions in the sequence, leading to
further performance gains. The SAF and SSF modules focus on capturing semantic and geometric
relationships in the foreground representations, respectively. When both of them are incorporated,
our model achieves the final promising result.

Regional-to-Global Sliding Window. As depicted in Table [6] we explore the validity of the
RGSW strategy in mitigating response attenuation. Without either encoding mechanism, the model
exhibits suboptimal performance, achieving only 70.2% mAP. Introducing local token insertion or
the sliding-window encoding independently improves detection performance by 0.6% and 0.7%,
respectively. Notably, the global sliding-window approach provides more remarkable gains for
large objects, such as cars ( +1.2%). Meanwhile, the local token insertion is particularly benefi-
cial for smaller and sparser instances, improving the detection of pedestrians (+0.93%) and cyclists
(+0.35%). Furthermore, applying more than two iterations of the sliding strategy yields negligible
additional gains, indicating a saturation point. Consequently, we adopt ¢ = 2 as the default setting
to achieve a trade-off between accuracy and efficiency.

Table 4: Efficiency under different sampling ratios Table 5: Performance on the various combi-

and comparison with LION (Liu et al., 2024b). nations of proposed components. ‘HEF de-
fines the Hilbert flattening.

KITTI nuScenes
o | car 'Ped | cye. | mAP | NDs | FLOPS (@) 4 | FPS HF | RGSW | SAF SSF | Car | Ped. | Cyc.
01 | 810 | 609 | 687 | 674 | 71.0 | 2262 70
02 | 822 622|695 | 684 | 723 26.04 67 j y ;g-g gg% gg-g
05 | 818 [6L1|700| 680 | 718 | 3862 58 - . :
1.0 | 815|615 697 | 678 | 71.6 52.17 50 ? j v p g%.g g%g 253
LION | 783 | 602 | 686 | 680 | 72.1 | 4624 | 52 v v s Y el an | o

Table 6: Ablation on the regional-to-global slid-

ing window. ‘Regional’ denotes the insertion of ~ Table 7: Comparison of applying different ker-
local tokens. ‘Global’ represents the slide win- ~ nel sizes in the SAF module. ‘Sim’ denotes the
dow operation. ‘t’ denotes the iteration number.  similarity score between the predicted matrix M

and the label.

Regional | Global | ¢ | Car | Ped. | Cyc. | mAP
118097 | 60.94 | 68.66 | 70.2 K | mAP | NDS | Mems (G) | | FLOPs (G) | | Sim 1
v 1] 81.56 | 61.87 | 69.01 | 70.8 g ggé ;ééla 21,? %g.g 8'4212
v 282126154 ] 6891 | 709 7 | 684 | 723 55 26.0 0.64
v v 2 | 82.16 | 62.23 | 69.46 | 71.3 15 | 682 | 724 6.4 304 0.68

v v | 481456195 | 69.84 | 71.1

(a) SSM (b) SAF (K = 7) (c) SAF (K = 15) (d) Label

Figure 3: The association matrix in (a) vanilla SSM, (b, c) semantic-assisted strategy with different
kernel sizes K and (d) the semantic association labels. We define the semantic labels to follow a
Gaussian distribution for the distance.

Effectiveness of the State Variable Fusion. We also investigate the effectiveness of the state vari-
able fusion in enhancing the contextual understanding. As illustrated in Figure 3] we visualize the
association matrix M in vanilla SSM, semantic-assisted strategy with different kernel sizes, and
the semantic association labels. The association matrix M in the vanilla SSM is a lower triangular
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matrix. After applying our semantic-assisted fusion strategy, the current output can attend to sub-
sequent inputs within similar semantics. Furthermore, as the kernel size K increases, the response
in the matrix extends further. This demonstrates that our model could focus on the semantic rela-
tionship across the entire sequence. We further compare the detection performance under different
kernel sizes in Table[7} which motivates us to adopt a kernel size of 7 as the default setting to balance
effectiveness and efficiency.

5 CONCLUSION

In this work, we propose Fore-Mamba3D , a novel framework that integrates foreground voxel
selection with a hierarchical regional-to-global sliding window strategy to effectively capture inter-
instance dependencies in 3D scenes. Furthermore, we introduce the SASFMamba module to en-
hance both semantic cues and geometric structures, enabling non-causal interactions in the whole
linear sequence. Our approach demonstrates substantial performance improvements over existing
Mamba-based or foreground-based methods, achieving state-of-the-art results across various au-
tonomous driving benchmarks. Comprehensive ablation studies further validate the effectiveness of
each proposed component, highlighting their contribution in advancing the 3D detection task.
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APPENDIX

.1 CODE RELEASE

In compliance with the double-blind review protocol, we have released our code to an anonymous
repository: https://anonymous.4open.science/r/Fore-Mamba3D-1234.

.2 PERFORMANCE IN DIFFERENT MODEL SCALES

To investigate the impact of the channel dimension in the 3D backbone, we compare the performance
of different model scales on the KITTI dataset. As shown in Table [8] the model with a channel
dimension of 128 outperforms the model with a channel dimension of 64 by 1.25% and 1.31% mAP
in 3D and BEV moderate level detection, respectively.

3D BEV
Model Scale Easy | Mod | Hard ‘ Easy | Mod | Hard
-T 88.53 80.91 78.46 90.87 87.78 87.27
-B 90.32 82.16 79.54 92.27 89.09 88.11
(+1.80) | (+1.25) | (+1.08) | (+1.40) | (+1.31) | (+0.84)

3

Table 8: Performance on different model scales. ‘-T’ indicates the channel dimension in the back-
bone is 64, and ‘-B’ denotes the channels dimension is set as 128.

.3  DERIVATION OF STATE VARIABLE FUSION

Defining the initial state h in state transition as zero, we rewrite the state transition equation and
observation equation in the recursive form as follows:

hi =A;hi—1 + Bz
=A;(Ai_1hi—as+ Bi_1zi-1) + Biw;
=A;A;_1hi—o+ A;Bi 1z + Bix;
=A;---Athg+ A4; - AsByzy + - -

+ A A 1By _oxi o+ A;B; 171 + Bix; an
=> (] A0Bjz; => AXBjx;;
j<i t=j+1 J<i

yi =Cih; + D;z;

The output matrix D; in the observation equation is also omitted, so the output y; in Equation [6]can
be simplified as follows:

Jj<i
Assuming the matrix M’ indicates the association between the output sequence y = [y1, Y2, " » Yn)
and the input sequence © = [z, za, -+ ,Zy], wWhich is defined by y; = M; ;. Combining Equa-

tionwith the observation equation, M; 5 can be calculated as:

M;; = Y aCiA%y B; (13)
ke)cg’j

where the Ni (i) could define the semantic or geometric neighbor index. Actually, there usually
exists & satisfies V(i) > j to ensure fljx Ny (i) and M; ; not equal to 0. Therefore, when the Ny (4)
represents the index of a semantically neighboring feature, the output y; is adaptively recalibrated
to prioritize subsequent input features x; exhibiting high semantic similarity with x;. In contrast,
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Figure 4: The detailed pipeline in the SAF module, which contains the rearrangement, the 1D
convolution, and the reverse process.

when Ny (¢) indicates the index of a geometrically neighboring feature, the output y; attends to the
later input x; with a spatial proximity to x;.

Moreover, we visualize the process from the h to 4’ in the SAF module, as shown in the Figure E
The entire pipeline contains the rearrangement, the 1D convolution operator, and the reverse process.
The illustration also corresponds to the transform from Equation 5 to Equation 6.

.4 VISUALIZATION ON THE FOREGROUND PREDICTION

We visualize the BEV
heatmap of the predicted
foreground scores and 0.9
compare it with the ground

truth (GT). Notably, we 0.8
choose the foreground

scores from the third 07
stage in the backbone 0.6
and accumulate them

along the Z-axis. As 0.5
illustrated in Figure [3] the 04
predicted scores closely ’
match the ground truth 0.3
values, demonstrating

a clear separation be- 0.2
tween the foreground and 01
background voxels. This ’
demonstrates the high 0.0
accuracy of our foreground (b) Prediction

prediction, thereby vali-

dating the effectiveness of Figure 5: The accuracy in foreground scores prediction. We accumu-

the proposed foreground j,e the scores along the z-axis and visualize the heatmap in the BEV.
sampling strategy.

.5 MORE QUALITATIVE COMPARISON
Results on the KITTI test dataset. We also evaluate Fore-Mamba3D on the KITII test dataset.

The result in Table ] shows that our method surpasses the previous work and achieves promising
results in LiDAR-only 3D detection.
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Table 9: Comparison of the performance on the KITTI fest dataset with an average recall of 40. All
the results are reported in the moderate difficulty level.

Car Ped. Cyec.
3D | BEV 3D | BEV 3D | BEV

PointRCNN (Shi et al.|[2019a) | 75.64 | 87.39 | 39.37 | 46.13 | 58.82 | 67.24
PointPillars (Lang et al.|2019) | 74.99 | 86.10 | 43.53 | 50.23 | 59.07 | 62.25
VoxelNet (Zhou & Tuzel|2018) | 65.11 | 79.26 | 33.69 | 40.74 | 48.36 | 54.76

Methods

SECOND (Yan et al.|[2018) 73.66 - 42.56 - 53.85 -
TANet (Liu et al.|[2020) 7594 | 86.54 | 44.34 | 51.38 | 59.44 | 63.77
SeSame (Hayeon et al.|[2024) | 76.83 | 87.49 | 35.34 | 41.22 | 54.46 | 61.70

Ours | 77.88 | 88.06

45.60 | 50.68 | 63.97 | 68.02

Impact of the Rotation and Serialization Strategy. As shown in Table we freeze o = 0.2
and change the rotation angle. The result with § = (0, 7/2) outperforms the result without rotation
or with a single rotation, demonstrating the necessity of multiple rotations in flattening for linear
encoding. The comparison on the bottom of Table [I0]indicates that the simple convolution module
outperforms the foreground merging module (Liu et al.| [2024b)) in the downsampling block. Fur-
thermore, we evaluate the effectiveness of different serialization strategies in Table Compared
with the X/Y-raster or the Z-order curve, the Hilbert curve enables the best spatial continuity for
precise object detection. Meanwhile, the performance of different Hilbert encoding strategies shows
better adaptability to our rotation scheme compared with bidirectional selection.

Table 10: Ablation on the foreground sampling
and flattening. ‘DS’ represents the downsam-  Table 11: Performance under different scanning

pling ways. ‘a’ denotes the sampling ratio and  patterns and Hilbert encoding strategies.
‘Rot. &’ is the rotation angle along the Z-axis.

Scan Ways | mAP | NDS | FLOPs (G) | | Latency (ms) |
DS | a | Rot.§ | Car | Ped. | Cyc. | mAP X/Y-raster | 674 | 71.5 245 14.6
02 0 8131 | 62.16 | 6823 | 70.6 Z-order 67.9 71.7 25.9 16.0
Conv 0.2 /2 82.01 | 60.55 | 69.17 | 70.6 Hilbert + Bid | 68.0 | 72.0 254 15.1
02| (0,7/2) | 82.16 | 62.23 | 69.46 | 71.3 Hilbert + Rot | 68.4 | 72.3 26.0 15.48

Merging | 0.2 | (0,7/2) | 81.22 | 61.71 | 66.46 | 69.7

Comparison of different sequence modeling approaches. We also compare the performance on
different sequence modeling alternatives, which is shown in Table[I2] Specifically, we only replace
the sequence encoding part with existing methods (e.g. RetNet|Sun et al.|(2023), RWKYV |[Peng et al.
(2023), and LSTM |Hochreiter & Schmidhuber| (1997))) and maintain other components consistent
with our original pipeline. We train these alternatives from scratch in the nuScenes dataset with the
same training configuration. The Mamba model achieves the highest scores in both NDS and mAP
metrics. Meanwhile, the computation of Mamba is also efficient compared with the recent RetNet
and RWKYV approaches. Given the theoretically and empirically validated capability of Mamba in
sequence modeling, we adopt it as the default linear encoder throughout our paper.

Table 12: Comparison of the different sequence modeling, including RetNet, RWKYV, LSTM, and
Mamba.

Model | NDS mAP FLOPs FPS

RetNet | 72.1 67.7 3112 59
RWKYV | 719 67.1  36.15 47
LSTM | 708 659 2392 78
Mamba | 72.3 684  26.04 67

Robustness to the foreground sampling noise. As shown in the Table our method exhibits
robustness to the noise of foreground scoring. Specifically, we directly replace a portion of the
sampled foreground voxels (from 5% to 15%) with random background voxels during inference.
We then compare the overall detection mAP and NDS results in the nuScenes dataset, as well as the
accuracy of specific categories in the nuScenes dataset. It can be observed that our model maintains
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Figure 6: Visualization of the failure cases on the KITTI dataset. Compared with SECOND
2018) and LION 2024b), our method can predict the targets more consistently with

the ground truth.
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Visualization of Distinct Cases. As illustrated in Figure [6] we present a qualitative comparison
of the detection results produced by our method and several representative baselines across diverse
driving scenarios in the KITTI dataset. The baseline model SECOND [2018) frequently
misclassifies background clutter, such as trees or poles, as pedestrians or cyclists, leading to high
false positive rates. Similarly, LION 2024b) exhibits misdetections in cluttered scenes,
often producing false positives when detecting pedestrians and vehicles. In contrast, our proposed
method generates predictions that are highly consistent with the ground truth (GT), significantly
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reducing spurious detections. These visualizations highlight the superior robustness and precision
of our approach, especially in challenging cases involving dense and occluded pedestrian instances.
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