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Figure 1: Selected arbitrary-resolution samples (384x384, 224x448, 448x224, 256x256). Generated
from a single FlowDCN-XL/2 model trained on ImageNet 256×256 resolution with CFG = 4.0.

Abstract
Arbitrary-resolution image generation still remains a challenging task in AIGC,
as it requires handling varying resolutions and aspect ratios while maintaining
high visual quality. Existing transformer-based diffusion methods suffer from
quadratic computation cost and limited resolution extrapolation capabilities, mak-
ing them less effective for this task. In this paper, we propose FlowDCN, a purely
convolution-based generative model with linear time and memory complexity, that
can efficiently generate high-quality images at arbitrary resolutions. Equipped
with a new design of learnable group-wise deformable convolution block, our
FlowDCN yields higher flexibility and capability to handle different resolutions
with a single model. FlowDCN achieves the state-of-the-art 4.30 sFID on 256×256
ImageNet Benchmark and comparable resolution extrapolation results, surpassing
transformer-based counterparts in terms of convergence speed (only 1

5 images),
visual quality, parameters (8% reduction) and FLOPs (20% reduction). We believe
FlowDCN offers a promising solution to scalable and flexible image synthesis.
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1 Introduction

Image generation is an important task in computer vision research, which is aimed at capturing the
inherent data distribution of original image datasets and generating high-quality synthetic images
through sampling. Diffusion models [1, 2, 3, 4, 5] have recently emerged as a highly promising
foundation for training algorithms in image generation, outperforming GAN-based models [6, 7]
and Auto-Regressive models [8] by a significant margin. The evolution of diffusion models is fast,
transitioning from discrete forms [1] to SDE-based continuous forms [2, 3, 4, 5, 9]. In a nutshell,
diffusion models incrementally degrade an image through a time-dependent stochastic perturbation
process and then learn the reverse process to restore the original image from its corrupted state.

Beyond theoretical advancements in diffusion models, the architecture of these models also signifi-
cantly influences the quality of generated images. Many works [1, 10, 11] in the diffusion domain
adopt a standard UNet architecture as the generation backbone, which consists of downsample blocks,
upsample blocks, and long residual connections between these components. Inspired by the success
of the vision transformer in perception tasks, DiT [12] eliminates the long residual connection in
favor of a pure transformer-based architecture. Through rigorous experiments, DiT demonstrates
that the UNet inductive bias is not essential for achieving high performance in diffusion models [12].
Meanwhile, PixArt [13, 14] and SD3 [15] venture further by significantly increasing the number of
parameters, exploring new frontiers in model architecture and its impact on image generation.

When considering the generation of images at arbitrary resolution, diffusion transformers need to
confront at least two primary challenges. The first is the quadratic computation cost: the architecture
of diffusion transformers employs attention mechanisms to aggregate spatial tokens. Owing to
the dense nature of attention computations, high-resolution image generation inevitably leads to
significant computation and memory demands, both scaling with O(n2) complexity. To address the
quadratic computation challenge, some methods [16] have adapted recurrent computational strategies
from natural language processing. However, these adaptations do not fully capitalize on the strengths
of autoregressive tasks and result in slower inference speeds due to the reduced parallelism inherent in
RNN-based scanning. The second challenge is resolution extrapolation: many diffusion transformers
rely on absolute position embedding (APE) [17] to incorporate positional information, introducing
it at the onset of the model. This approach forces subsequent layers to become overfitted to the
APE for providing positional context to the attention layers, which presents a significant barrier
when extrapolating to different resolutions. To address this issue, FiT [18] has turned to Rotary
Positional Encoding [19], incorporating RoPE2D to enhance its resolution extrapolation capabilities.
Nevertheless, FiT still requires a training pipeline tailored to arbitrary-resolution generation.

In contrast, convolutional models are the most common choice of visual encoders, boasting linear
complexity and aggregating spatial features based on relative positions. With the support of modern
convolution operators [20, 21, 22], convolutional models have demonstrated comparable performance
or even surpassed transformers in perception tasks. This naturally leads us to inquire: Can modern
convolutional networks achieve arbitrary-resolution generation efficiently and outperform trans-
former counterparts? To answer this question, we opt for deformable convolution as the basic block
for exploration in generation, owing to its superior performance in perception tasks.

Specifically, we propose a novel approach to decouple the scale and direction prediction of deformable
convolution, giving rise to a group-wise multiscale deformable convolution block that enables efficient
multiscale feature aggregation. By leveraging this block, we introduce FlowDCN, a modern purely
convolution generative model that tackles arbitrary-resolution generation. Thanks to the new design
of convolutional deformable block, our FlowDCN yields higher flexibility and capability to handle
different resolutions with a single model. The experiments demonstrate that FlowDCN consistently
surpasses its diffusion transformer counterparts, DiT [12] and SiT [23]. Notably, on the 256x256
ImageNet benchmark, FlowDCN achieves faster convergence, yielding SoTA sFid of 4.30 and
FID of 2.13 under 1.5M steps with batch size 256, while exhibiting 20% lower latency, 8% fewer
parameters, and approximately 20% fewer floating-point operations (FLOPs). On the 512x512
ImageNet benchmark, FlowDCN achieves 4.53 sFid o and 2.44 FID under 100K finetuning steps
with batch size 256.

Moreover, our FlowDCN offers a significant advantage in fast arbitrary-resolution generation, as it
only requires linear time and memory complexity. Through visualization comparisons, our FlowDCN
demonstrates substantially better visual quality even at extremely small sampling steps, such as
3, 4, and 5 steps. To further enhance its visual quality, we propose Scale Adjustment, a simpler
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technique for extrapolating resolution to unseen dimensions. Our results show that FlowDCN achieves
comparable resolution extrapolation capabilities to highly tailored methods, underscoring its potential
for generating high-quality images at various resolutions. The contributions can be summarized as:

• We decouple the scale and direction priors of deformable convolution and propose a Group-
wise MultiScale Deformable Block. Building upon this block, we propose FlowDCN, a
purely convolution-based generative model with high efficiency.

• On 256x256 ImageNet benchmark, under only 1.5M training steps, our FlowDCN-XL/2
achieves 2.13 FID and SoTA 4.30 sFID with Euler solver and classifier free guidance.

• On 512x512 ImageNet benchmark, under only 100K finetuning steps, our FlowDCN-XL/2
achieves 2.44 FID and 4.53 sFID with Euler solver and classifier free guidance.

• We propose a much simple and efficient resolution extrapolation method, deemed as Scale
Adjustment. For arbitrary resolution generation, we achieve comparable results to highly
tailored methods.

2 Preliminary

2.1 Linear-based Flow Matching

Flow matching [4, 5] is a simple but powerful diffusion family. We incorporate linear-based flow
matching as the training framework for its simplicity. Given the image sampled x from training
distributions and the noise ϵ sampled from a Gaussian distribution, linear-based flow matching
forward process interpolate xt with x and ϵ using the following equation:

xt = tx+ (1− t)ϵ. (1)

The velocity field of linear-based flow matching [4, 5] is defined as Eq. (2). We train our FlowDCN
to predict the time-dependent velocity field between x and ϵ:

vt(xt) = x− ϵ. (2)

During training, the flow matching objective directly regresses the target velocity:

Lv =

∫ 1

0

E[∥ vθ(xt, t)− vt(xt) ∥2]dt. (3)

For sampling, the common ODE/SDE solver e.g.. Euler method, Heun method can be employed.

2.2 Deformable Convolution Revisited

Given an image feature x ∈ RH×W×D, deformable convolution predicts the deformable field
∆P(x) ∈ RH×W×G×K×2 and the dynamic weights W(x) ∈ RH×W×G×K from the image feature
x. Specifically, H and W represent the height and width of the feature spatial shape, D is the feature
channel, K is the number of sampling points, and G is the number of groups in the deformable
convolution operation. The deformable field and dynamic weights are computed as Eq. (4):

∆P(x) = WT
deformablex+ bdeformable, (4)

W(x) = WT
weightx+ bweight. (5)

For a specific group g in deformable convolution, the sampling position is determined by the base
feature position p0, sampling position prior pk, and predicted deformable ∆pk from ∆P(x) for the
k-th sampling point. The dynamic weight wk is provided from W(x). The deformable convolution
aggregates K sparse spatial features according to the sampling location and dynamic weight as
following:

yg(p0) =

K∑
k=0

wg
kx

g(p0 + pk +∆pk(x)), (6)

y = concat(y1, y2, ...., yG). (7)

The predefined spatial position prior pk is initialized from the regular convolution, commonly using
(−1,−1), (−1, 0), ...(0, 0), ...(1, 1) as the predefined value.
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Deformable convolution introduces long-range dependencies and dynamic aggregation into regu-
lar convolutions, bridging the gap between convolution and multi-head self-attention [24]. Thus,
deformable convolution shares the efficiency merit of convolution and the dynamics merit of the
attention mechanism. In most scenarios, DCN-like architectures are more powerful than common
CNNs, we provide comparison experiments of DCN and CNN of flow matching training. Notably,
deformable convolution directly predicts the dynamic weights and only aggregates limited features
from spatial locations, enjoying a relatively sparse computation diagram. A deformable convolu-
tion operator only requires 4KHWC

G
FLOPs for computation when employing bilinear sampling to

aggregate features.

3 Method

3.1 Multi-Scale Deformable Convolution

The original deformable convolution has been widely adopted in hierarchical model architectures [25,
24, 20] for perception tasks. However, these models typically progressively downsample the feature
maps to increase the reception field growth rate. In contrast, image generation tasks require outputs
with more high-frequency details and low-level information. From this perspective, progressively
downsampling features would lead to the loss of high-frequency details. One possible solution is
to introduce long residual connections to generation models [11, 10]. However, in practice, this
approach demands caching image features from the encoder part, which increases peak memory
usage during model inference.

To strike a balance between receptive fields and high-frequency details, we propose decoupling the
deformable field into scale and direction, and introduce a novel multiscale deformable convolution.
Unlike previous deformable convolutions, our approach assigns different scale priors to different
groups.

Decoupling deformable field to direction and scale. The original deformable convolution directly
regresses the deformable field to learn an unbounded and adaptive sampling point generator. However,
the vast image spatial range poses a challenge to the learning process, as it leads to unstable regression
of the deformable range when extrapolating from local neighbors to distant feature locations. We
tackle this problem by decoupling the direction and scale of the deformable field. Specifically, we
reorganize the sampling point formulation in Eq. (9).

s(x) = Smax ∗ sigmoid(WT
s x), (8)

p = p0 + s(x) ∗ (pk +∆pk(x)), (9)
where s(x) is the learnable scale predicted from the image feature x. Smax is the max scale value of
the given deformable convolution, we leave it as a hyper-parameter only related to input resolution,
thus we can manually tune it according to input resolution, details are placed in Sec. 3.3.

Group-wise multi-scale deformable convolution. To keep high-resolution feature maps and own a
large reception field growth rate, we propose to assign different scale priors to different groups. This
allows deformable groups with large scale priors to aggregate long-dependency features, while those
with small scale priors aggregate short-dependency features as follows:

sg(x) = Smax ∗ sigmoid(WT
s x+ sg0), (10)

p = p0 + sg(x) ∗ (pk +∆pk(x)). (11)

Specifically, we initialize the scale priors with Eq. (12) and initialize Ws with zeros to obtain linearly
increased sigmoid(sg0) along group axis:

sg+1
0 = log(

g

G− g
). (12)

3.2 Flow-based Deformable Convolutional Generative Model

We introduce our novel diffusion generation architecture, dubbed FlowDCN. Rather than directly
adopting tailored architectures for image generation, such as long residuals and normalization tech-
niques, we aim to explore the generative capabilities of deformable convolution-based architectures
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Figure 2: The Architecture of Our FlowDCN and MultiScale DCN Block.

in a faithful manner. To this end, we deliberately discard long residual connections and opt to build a
pure convolution-based generative model, preserving the unique characteristics of DCN-like models
as much as possible. For training and sampling, we leverage the powerful flow matching algorithm to
align our model with the state-of-the-art SiT [23].

Deformable convolution generative model. The model architecture is illustrated in Fig. 2a. We
aim to build a pure DCN-like generative model to explore the generation ability of DCN-like [20]
architectures. To match the base resolution of model input with DiT [12] and SiT [23], we similarly
patchify the noisy input via convolution. Inspired by DiT [12], we inject the timestep and label
conditions through adaLN-Zero [12, 26]. The basic block is formulated as Eq. (13). Drawing
inspiration from LLaMA [27, 28], we replace vanilla FFN and LayerNorm with SwiGLU and
RMSNorm, respectively. Note we also provide FFN and LayerNorm version FlowDCN for fair
comparisons:

x1 = x+ AdaLN(y, t,MultiScale-DCN(x)), (13)
x2 = x1 + AdaLN(y, t, SwiGLU(x1)). (14)

3.3 Arbitrary Resolution Sampling

We denote the training resolution as Htrain × Wtrain and the inference resolution as Htest × Wtest.
Notably, our FlowDCN is capable of handling arbitrary resolution that differs from the training
resolution. As a reminder, the multiscale deformable convolution block aggregates features based
on predicted scales and directions according to Equation (Eq. (9)). In practice, the predicted scale
of the multiscale deformable convolution layer is typically fitted to match the training resolution
distribution. However, this limits the reception fields of the image features when encountering
unseen resolution, ultimately hurting the global semantic consistency [29, 30]. To improve the global
semantic consistency, we propose adjusting the scaling factor based on the relative ratio between the
training resolution and inference resolution.

Adjust Smax to match inference resolution. As shown in Eq. (10), Smax controls the maximum
sampling range in multiscale deformable convolution. As discussed in Sec. 3.1, we treat it as a
resolution-dependent hyperparameter. It is straightforward to observe that scaling Smax with the
relative aspect ratio between train size and inference size could match the reception field between
train and inference:

sgh(x) = sigmoid(WT
s x+ sg0) · Smax ·

Htest

Htrain
, (15)

sgw(x) = sigmoid(WT
s x+ sg0) · Smax ·

Wtest

Wtrain
. (16)
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Operator Runtime (ms) of Input Shape H ×W ×G×D
16× 16× 16× 64 16× 16× 16× 128 32× 32× 16× 64 32× 32× 16× 128

Attention (Math SDP) 0.92/2.1 1.16/2.71 10.7/28.8 12.4/35.8
Attention (Flash SDP) [34] 0.62/N 1.47/N 4.98/N 14.4/N
DeformConv(DCNv4 [20]) 0.77/1.00 1.0/2.1 2.8/4.4 3.9/8.3
DeformConv(Shm) 0.56/0.81 1.1/1.5 2.7/3.9 5.0/7.3
DeformConv(Triton-lang)† 0.83/0.89 0.95/1.1 3.4/3.8 4.0/4.8

Table 1: Op-level benchmark on standard input shape of Diffusion backbone task. FP16/FP32
results are collected on Nvidia A10 GPU. We use 32 batch sizes for benchmarking. † indicates our Triton-
lang [32] implementation of DCNv4. N indicates implementation is not available.

Models FID↓ sFID↓ IS↑
SiT-S/2 7.42 4.47 8.7

FlowDCN-S/2 5.47 4.35 8.89
w/o MultScale 5.72 4.42 8.85
w/o PriorInit 5.68 4.49 8.9

(a) Comparsions with SiT. Our
FlowDCN outperforms SiT by a sig-
nificant margin.

Kernel FID↓ sFID↓ IS↑
4 5.88 4.6 8.89
9 5.47 4.35 8.89

16 5.39 4.54 8.93
32 5.13 4.43 9.05

(b) KernelSize K of FlowDCN.
large kernel size produces better re-
sults than small one.

pk s(x) FID↓ sFID↓ IS↑
fixed fixed 5.6 4.58 8.90
fixed learn 5.47 4.35 8.89
learn fixed 6.01 4.43 8.85
learn learn 5.63 4.37 8.89

(c) Deformable fields learning set-
ting. Default achieves best results.

Table 2: Ablation Studies and Comprasion with other flow-based method on 32x32 CIFAR
Dataset. In order to fully align with SiT [23], here we replace our SwiGLU and RMSNorm with FFN and
LayerNorm armed in SiT, respectively. Bold font indicates the default setting.

4 Experiments

We conduct experiments on 32x32 CIFAR10 and 256x256 ImageNet datasets. The training batch
size is set to 256. Similar to SiT [23] and DiT [12], we use Adam optimizer [31] with a constant
learning rate 0.0001 during the whole training. We do not adopt any gradient clip techniques for
fair comparison. For 32x32 CIFAR10 dataset, we train our model for 25000 steps. As for 256x256
ImageNet dataset, we train for 1.5M steps. We use 8×A100 GPUs as the default training hardware.

Efficient deformable convolution implementation. Although DCNv4 [20] proposes a much faster
deformable convolution implementation, it is not tailored for image generation input shape. For reso-
lution below 512× 512, there are fewer spatial tokens (only 16× 16 tokens for 256× 256 resolution)
to fully utilize sparse computation strengths, thus DCNv4 exhibits even worse latency compared to
attention. To remedy high latency of deformable convolution for low-resolution scenery, we decide
to leverage shared memory to reduce the latency of random sampling in deformable convolutions,
deemed as DeformConv(shm). We place the performance benchmark at Tab. 1. For high-resolution
scenery, We also re-implement DeformConv(DCNv4) in Triton-lang as DeformConv(Triton-lang) to
leverage the strengths of compiler [32, 33] to find suitable hyperparameters.

4.1 32x32 CIFAR Dataset

The CIFAR10 dataset[35], comprising 50,000 32x32 small-resolution images from 10 distinct class
categories, is considered an ideal benchmark to validate the design of our MultiScale deformable
block due to its relatively small scale. We select SiT-S/2 as a comparison baseline, as it also leverages
the flow-matching framework. For sampling, we employ the Euler stochastic solver with 1000
sampling steps to generate images. We report the FID [36], sFID [37], and Inception Score [38] as
the primary metrics to evaluate the performance of our model.

Compare with baseline SiT. We summarise the metrics of our FlowDCN and SiT in Tab. 2a. Our
FlowDCN achieves 5.47 fid, surpassing its counterpart SiT with 2.0 fid margins. Additionally, our
model performs slightly better in terms of sFID and Inception Scores, further demonstrating its
superiority.

Group-wise multiscale design. As showed in Tab. 2a, we denote the variant of FlowDCN that
uses vanilla deformable convolution instead of Multiscale deformable convolution as w/o MultiScale.
Notably, the absence of group-wise multiscale deformable convolution leads to a 0.25 FID perfor-
mance degradation. This result demonstrates the effectiveness and power of our proposed group-wise
multiscale mechanism.
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Prior initialization. By default, we manually initialize the direction priors with predefined grids
{(−1,−1), (−1, 0), ...(0, 0), ...(1, 1)}, and initialize the scale priors with linearly increased scale
along group axis. We also experiment with randomly initialized direction and scale priors in Tab. 2a,
donated as w/o PriorInit. Random initialization shows slight performance degradation.

Sampling points. In Tab. 2b, We train FlowDCN with varying kernel sizes K and observe that
the performance consistently improves as the number increases. Specifically, using 32 points to
aggregate features, FlowDCN achieves a FID score of 5.13 and an sFID score of 4.43. However,
to maintain a relatively sparse pattern, we choose K = 9 as the default setting, striking a balance
between performance and computational efficiency.

Fixed direction priors. In Tab. 2c, we present the results of training FlowDCN with different prior
learning settings. Notably, we find that the fixed direction prior pk in Eq. (9) achieves better results
compared to the learnable direction prior. We hypothesize that the learnable direction prior may cause
the learning of the deformable field to become unstable, leading to inferior performance.

Learnable relative scale. In the s(x) column of Tab. 2c, the notation "learn" indicates that we
predict a relative scale of the deformable fields in addition to the learnable scale priors sg0 ( WT

s x in
Eq. (10)), whereas "fixed" does not predict the relative scales s(x) in the deformable field. Learning
a relative scale for each feature in Tab. 2c achieves better results of 5.47 FID.

4.2 256×256 ImageNet Dataset

Based on our analysis, we select the MultiScale deformable convolution with a kernel size of K = 9
as the basic block for our Imagenet experiments. Our default setting involves fixing the direction
priors and learning relative scales from the deformable field. We manually initialize the direction
priors with predefined grids and initialize the scale priors with linearly increased scales. To generate
images, we employ an Euler-Maruyama solver with 250 steps for stochastic sampling. We report the
FID, sFID, Inception Score, and Precision & Recall as the primary metrics to evaluate the performance
of our model.

Model FLOPs (G) Params (M) Latency(ms) FID↓ sFID↓ IS↑
SiT-S/2 6.06 33 0.026 57.64 9.05 24.78
SiT-S/2 † 6.06 33 0.026 57.9 8.72 24.64
FlowDCN-S/2 4.36 (-28%) 30.3 (-8.1%) 0.027 54.6 8.8 26.4

SiT-B/2 23.01 130 0.084 33.5 6.46 43.71
SiT-B/2 † 23.01 130 0.084 37.3 6.55 40.6
FlowDCN-B/2 17.87 (-22%) 120 (-7.6%) 0.076 28.5 6.09 51
w/o RMS & SwiGLU 17.88 (-22%) 120 (-7.6%) 0.072 29.1 6.13 50.4

DiT-L/2 80.71 458 0.291 23.3 - -
SiT-L/2 80.71 458 0.291 18.8 5.29 72.02
FlowDCN-L/2 63.51 (-21%) 421 (-8.0%) 0.254 13.8 4.69 85

DiT-XL/2 118.64 675 0.387 19.5 - -
SiT-XL/2 118.64 675 0.387 17.2 5.07 76.52
FlowDCN-XL/2 93.24 (-21%) 618 (-8.4%) 0.303 11.3 4.85 97

Table 3: Image generation metrics comparisons between SiT [23], DiT [12] under 400k training
steps budgets. All metrics are calculated from the sampled 50k images under 250 Euler SDE sampling steps
without classifier-free guidance. †: reproduced result. Latency(ms) is the 1-NFE latency and collected from
Nvidia A10 GPU with 16 batchsize under float32.

Metrics comparison with baseline SiT. We present the performances of different-size models
at 400K training steps in Tab. 8. From Small to XL-size models, our FlowDCN model family
consistently outperforms its counterpart DiT [12] and SiT [23] with significant margins. Without
RMS/SwiGLU, our FlowDCN-B/2 degrades with 0.6 FID gains but still surpasses SiT by a large
margin. In addition to its superior performance and convergence speed, our FlowDCN also boasts a
remarkable 8% reduction in parameters and at least 20% reduction in FLOPs compared to DiT/SiT.
This demonstrates that our FlowDCN surpasses vision transformer-based generation models in
multiple aspects.
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Figure 3: Visualization Comparison with SiT. Best viewed zoomed-in. We sample both our FlowDCN-
XL/2 and SiT-XL/2 with Euler ODE solver under 2, 3, 4, 5, 8, 10 steps using the same latent noise. At the fewer
steps sampling scenery, our FlowDCN generates slightly clearer and higher-quality images.

ImageNet 256×256 Benchmark

Generative Models Long Total Total FID ↓ sFID ↓ IS ↑ P ↑ R ↑
Residuals Images(M) GFLOPs

ADM-U [10] ✓ 507 3.76× 1011 7.49 5.13 127.49 0.72 0.63
CDM [39] ✓ - - 4.88 - 158.71 - -
LDM-4 [40] ✓ 213 2.22× 1010 10.56 - 103.49 0.71 0.62
DiT-XL/2 [12] ✗ 1792 2.13× 1011 9.62 6.85 121.50 0.67 0.67
DiffusionSSM-XL[16] ✗ 660 1.85× 1011 9.07 5.52 118.32 0.69 0.64
SiT-XL/2[23] ✗ 1792 2.13× 1011 8.61 6.32 131.65 0.68 0.67
FlowDCN-XL/2 ✗ 384 3.57× 1010 8.36 5.39 122.5 0.69 0.65

Classifier-free Guidance

ADM-U[10] ✓ 507 3.76× 1012 3.60 - 247.67 0.87 0.48
LDM-4 [40] ✓ 213 2.22× 1010 3.95 - 178.22 0.81 0.55
U-ViT-H/2 [11] ✓ 512 6.81× 1010 2.29 - 247.67 0.87 0.48
DiT-XL/2 [12] ✗ 1792 2.13× 1011 2.27 4.60 278.24 0.83 0.57
DiffusionSSM-XL [16] ✗ 660 1.85× 1011 2.28 4.49 259.13 0.86 0.56
SiT-XL/2[23] ✗ 1792 2.13× 1011 2.06 4.50 270.27 0.82 0.59
FiT-XL/2[18] ✗ 450 - 4.27 9.99 249.72 0.84 0.51
FlowDCN-XL/2 (cfg=1.375; ODE) ✗ 384 3.57× 1010 2.13 4.30 243.46 0.81 0.57
FlowDCN-XL/2 (cfg=1.375; SDE) ✗ 384 3.57× 1010 2.08 4.38 257.53 0.82 0.57
FlowDCN-XL/2 (cfg=1.375; ODE) ✗ 486 4.52× 1010 2.01 4.33 254.36 0.81 0.58
FlowDCN-XL/2 (cfg=1.375; SDE) ✗ 486 4.52× 1010 2.00 4.37 263.16 0.82 0.58

Table 4: Image generation quality evaluation of and existing approaches on ImageNet 256× 256.
Total images by training steps × batch size as reported, and total GFLOPs by Total Images × GFLOPs/Image. P
refers to Precision and R refers to Recall.

Comparison with other generative models. We report the final metrics of FlowDCN-XL/2 at Tab. 4.
Our FlowDCN achieves much faster convergence speed with nearly 1

5 total images compared its
No-Long-residuals counterparts. Additionally, using Euler ODE solver and classifier-free guidance
with 1.375, our FlowDCN obtains SoTA 4.30 sFID and 2.13 FID results. Training for extra 400k steps,
FlowDCN will be further improved to 2.00 FID. As sFID reflects the spatial structure quality [37],
better sFID shows our FlowDCN captures better structure distributions. We notice that the IS metric
is lower than other models, however, there is an improvement trend along with training iterations.

Visual quality comparison with baseline SiT. We sample both our FlowDCN-XL/2 and SiT-XL/2
with Euler ODE solver for 2, 3, 4, 5, 8, 10 steps, employing the same latent noise for both models.
Notably, at the fewer steps sampling scenario, our FlowDCN generates slightly clearer and higher-
quality images. We place the generated images at Fig. 3 and Appendix.

4.3 512 × 512 ImageNet Dataset

As training on high-resolution images consumes much more resources, we opt to fine-tune 100k
steps from the same model trained on 256 × 256 resolution setting of 1.5M steps (corresponding to
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Class-Conditional ImageNet 512×512
Model FID↓ sFID↓ IS↑ Precision↑ Recall↑
BigGAN-deep [6] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [7] 2.41 4.06 267.75 0.77 0.52

ADM [10] 23.24 10.19 58.06 0.73 0.60
ADM-U [10] 9.96 5.62 121.78 0.75 0.64
ADM-G [10] 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U 3.85 5.86 221.72 0.84 0.53
DiT-XL/2 [12] 12.03 7.12 105.25 0.75 0.64
DiT-XL/2-G [12] (cfg=1.50) 3.04 5.02 240.82 0.84 0.54
SiT-XL/2-G [23] (cfg=1.50) 2.62 4.18 252.21 0.84 0.57
FlowDCN-XL/2(cfg=1.375, ODE-50) 2.76 5.29 240.6 0.83 0.51
FlowDCN-XL/2(cfg=1.375, SDE-250) 2.44 4.53 252.8 0.84 0.54

Table 5: Benchmarking class-conditional image generation on ImageNet 512×512. Our FlowDCN-
XL/2 is fine-tuned for 100k steps from the same model trained on 256 × 256 resolution setting of 1.5M
steps

with Smax Adjustment without Smax Adjustment

Figure 4: Visualization Comparison about Smax Adjustment. Here are the 512× 512, 256× 512 and
512× 256, three type resolution images. We employ the same latent noise as start, sampling with Euler SDE
solver for 250 steps. With Smax Adjustment, sampled images consistently looks better.

FlowDCN with 384M training images of Tab. 4). Although fine-tuned with limited 100k steps, our
FlowDCN demonstrated powerful performance.

Comparison with other generative models. We report the final metrics of FlowDCN-XL/2 on 512
× 512 ImageNet Dataset at Tab. 5. Our FlowDCN achieves much better FID and sFID performance
compared to its counterparts. Using Euler SDE solver with 250 steps and classifier-free guidance
with 1.375, our FlowDCN obtains 4.53 sFID and 2.44 FID results. Using Euler ODE solver with
50 steps and classifier-free guidance with 1.375, our FlowDCN obtains 5.29 sFID and 2.76 FID
result. As shown in Tab. 5, our FlowDCN achieves better sFID and captures better spatial structure
distributions.

4.4 Arbitrary Resolution Extension

For the resolution extrapolation evaluation, we follow the setting in FiT. We select 320x320 and
224x448 as the evaluation arbitrary resolution. It is worth noting that our FlowDCN can handle
arbitrary resolution within a reasonable range, the reasonable range is determined by the training
setting and training dataset. As our primary goal is to explore DCN-like architectures in universal
image generation, we do not intend to enhance the resolution extrapolation nature by data processing.
Therefore, we do not employ any multiple aspect ratio training techniques like FiT[18]. Instead,
we directly use the FlowDCN model trained on the center-cropped 256x256 ImageNet dataset for
arbitrary resolution extension experiments, showcasing the model’s inherent capabilities. Moreover,
we provide resolution extension experiments with various aspect ratio training techniques in the
Appendix.

Metric comparsion. We report the evaluation results on Tab. 6. For Base-size models, our FlowDCN-
B/2 achieves much better results on 320x320 resolution, with 34.4 FID and 35.7 FID using Smax
adjustment, outperforming FiT and DiT with a large margin. On 224x448 resolution, our FlowDCN-
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Method 320×320 (1:1) 224×448 (1:2)
FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑

DiT-B 95.5 108.7 18.4 109.1 110.7 14.0
DiT-BEI 81.5 62.3 21.0 133.2 72.5 11.1
DiT-BPI 72.5 54.0 24.2 133.4 70.3 11.7

FiT-B 61.4 30.7 31.0 44.7 24.1 37.1
FiT-BvYaRN 44.8 38.0 44.7 41.9 42.8 45.9
FiT-BvNTK 57.3 31.3 34.0 43.8 26.3 39.2

FlowDCN-B/2 34.4 27.2 52.2 71.7 62.0 23.7
+ Smax Adjust 35.7 29.3 51.2 81.1 40.2 21.1

(a) Metrics Results on Base-Size Models

Method 320×320 (1:1) 224×448 (1:2)
FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑

ADM-G,U [10] 9.39 9.01 162 11.34 14.5 146
LDM-4 [40] 6.24 13.21 220 8.55 17.62 186

UViT-H/2 [11] 7.65 16.30 208 67.1 42.92 45.5
MDT-G [41] 383 136 4.24 365 142.8 4.91
DiT-XL/2 [12] 9.98 23.57 225 94.94 56.06 35.7
FiT-XL/2 [18] 5.42 15.41 252 7.9 19.63 215
FlowDCN-L/2 5.99 9.71 238 12.8 17.9 168
FlowDCN-XL/2 5.86 13.5 275 12.9 20.6 184

(b) Metrics Results on Large-Size Models

Table 6: Benchmarking resolution extrapolations on ImageNet dataset. On the Base-size Models
benchmark, our FlowDCN achieves much better results on 320x320 resolution and comparable results on
224x448 resolution. On the Large-Size Models benchmark, our flowDCN shows comparable extrapolation
performance to SoTA models.

B/2 achieves comparable results. Note our FlowDCN not employs any various aspect ratio training
in Tab. 6, so we believe our FlowDCN-B/2 can achieve better results when incorporating such
training augmentations. For large-size models, we report our FlowDCN-L/2 and FlowDCN-XL/2
with Smax adjustment in Tab. 6b, our model shows comparable results to SoTA models. Meanwhile,
we notice that FiT performs poorly on 256x256 resolution in Tab. 4, which we hypothesize is due
to resolution-related data augmentation hurting the fitting power of original resolution distributions.
Furthermore, as FiT employs the 256× 256 reference statistics from ADM Eval Suite[10] to evaluate
all resolution(even for 224× 448), we suspect this evaluation paradigm is unreasonable.

Visual quality comparison of Smax. In Tab. 6a, We notice FlowDCN-B/2 with Smax adjustment
does not exhibit better results than directly generating images, we hypothesize that FID and sFID are
low level visual quality assessments, not reflecting semantic visual quality. So we also provide the
visualization comparisons of our FlowDCN-XL/2 with and without Smax Adjustment in Fig. 4 and
Appendix. With Smax Adjustment, generated images consistently look better. But not all the cases
demand Smax Adjustment, some images like the bubble and the husky case in Fig. 4, still look good
even without Smax Adjustment. More comparison examples can be found in the Appendix.

5 Conclusion

In this paper, we have presented FlowDCN, a novel deformable convolutional network for arbitrary-
resolution image generation. Our FlowDCN model leverages the strengths of both group-wise
multiscale deformable convolutions and linear flow to generate high-quality images of various
resolutions with high flexibility. Through extensive experiments, we demonstrate that FlowDCN
outperforms the state-of-the-art transformer-based counterparts in terms of performance, convergence
speed, and computational efficiency. Additionally, our model exhibits strong resolution extrapolation
capabilities, achieving comparable results to previous models on arbitrary resolution without any
additional training techniques. We believe that FlowDCN has a great potential to become a powerful
tool for a wide range of image generation tasks and applications.

Limitations and Future Works
Our current implementation of deformable convolution backward is inefficient to be on par with
Attention. Our primary focus remains on optimizing the training speed. Once we have made
significant strides in training optimization, we plan to scale up our FlowDCN to accommodate larger
model parameters and higher training resolution, paving the way for more advanced explorations.
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A. Model Details

Model Layers N Hidden size d Groups

FlowDCN-S 12 384 6
FlowDCN-B 12 768 12
FlowDCN-L 24 1024 16
FlowDCN-XL 28 1152 16

Table 7: Details of FlowDCN models. We follow DiT for the Small (S), Base (B), Large (L) and XLarge
(XL) model configurations.

B. Comparisons between FlowCNN and FlowDCN on ImageNet 256× 256

The relationship between DCN and common CNN. As Eq. (6) states, DCN introduces a deformable
field ∆p(x) and dynamic weight w(x). When all features shares the same static weight instead of dy-
namic, and deformable field ∆p(x) degrades to zeros, DCN degenerates to common CNN.Therefore,
in most scenarios, DCN-like architectures are more powerful than common CNNs. Furthermore, the
fix pk in Tab. 2cindicates that we freeze the pk (not the deformable field ∆p(x)) and initialize it with
a predefined grid.

Why not try a common CNN architecture. In many computer vision tasks, traditional CNNs have
been outperformed by transformers, so we opted to explore the modern, advanced CNN variant,
Deformable Convolutional Networks (DCN). Additionally, we conducted a small experiment where
we replaced the DCN block in FlowDCN with standard 3x3 and 5x5 group-wise convolution blocks.

Model layers groups channels Params (M) FID sFID IS

SiT-S/2 12 6 384 33.0 57.64 9.05 24.78
FlowCNN-3x3 12 8 512 49.1 59.0 10.7 27.4
FlowCNN-5x5 12 6 384 33.1 63.0 10.9 23.6
FlowDCN-S/2 12 6 384 30.3 54.6 8.8 26.4

Table 8: Image generation metrics comparisons between SiT, FlowDCN and FlowCNN under
400k training steps budgets.

Method 256×256 (1:1) 320×320 (1:1) 224×448 (1:2) 160×480 (1:3)
FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑

DiT-B 44.83 8.49 32.05 95.47 108.68 18.38 109.1 110.71 14.00 143.8 122.81 8.93
DiT-B + EI 44.83 8.49 32.05 81.48 62.25 20.97 133.2 72.53 11.11 160.4 93.91 7.30
DiT-B + PI 44.83 8.49 32.05 72.47 54.02 24.15 133.4 70.29 11.73 156.5 93.80 7.80

FiT-B 36.36 11.08 40.69 61.35 30.71 31.01 44.67 24.09 37.1 56.81 22.07 25.25
FiT-B + VisionYaRN 36.36 11.08 40.69 44.76 38.04 44.70 41.92 42.79 45.87 62.84 44.82 27.84
FiT-B + VisionNTK 36.36 11.08 40.69 57.31 31.31 33.97 43.84 26.25 39.22 56.76 24.18 26.40

FlowDCN-B 28.5 6.09 51 34.4 27.2 52.2 71.7 62.0 23.7 211 111 5.83
FlowDCN-B (+VAR) 23.6 7.72 62.8 29.1 15.8 69.5 31.4 17.0 62.4 44.7 17.8 35.8
+ Smax Adjust 23.6 7.72 62.8 30.7 19.4 68.5 37.8 22.8 54.4 53.3 22.6 31.5

Table 9: Benchmarking resolution extrapolations on ImageNet with various aspect ratio training.
VAR indicates various aspect ratios training. We follow the same evaluation pipeline of FiT without using CFG.

C. Resolution Extension with Various Aspect Ratios Training

While FlowDCN, trained on fixed-resolution images, is capable of generating images of arbitrary
resolution within a reasonable aspect ratio range, its performance can be improved by adopting
variable aspect ratio (VAR) training instead of a fixed 256x256 resolution. To ensure a fair comparison
with FiT, which inherently uses VAR, we train a FlowDCN-B/2 model from scratch using VAR
techniques. We evaluate our model using the same pipeline and reference batch as FiT, without CFG.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We plan to opensource our code and implementation later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Running experiments demands a lot of resources and time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Current models are only trained on small datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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