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ABSTRACT

The rapid increase in multimodal data availability has sparked significant interest in cross-
modal knowledge distillation (KD) techniques, where richer ”teacher” modalities transfer
information to weaker ”student” modalities during model training to improve performance.
However, despite successes across various applications, cross-modal KD does not always
result in improved outcomes, primarily due to a limited theoretical understanding that
could inform practice. To address this gap, we introduce the Cross-modal Complemen-
tarity Hypothesis (CCH): we propose that cross-modal KD is effective when the mutual
information between teacher and student representations exceeds the mutual information
between the student representation and the labels. We theoretically validate the CCH
in a joint Gaussian model and further confirm it empirically across diverse multimodal
datasets, including image, text, video, audio, and cancer-related omics data. Our study
establishes a novel theoretical framework for understanding cross-modal KD and offers
practical guidelines based on the CCH criterion to select optimal teacher modalities for
improving the performance of weaker modalities.

1 INTRODUCTION

Knowledge distillation (KD) transfers knowledge from a well-performing ”teacher” model to a smaller,
simpler ”student” model in order to reduce computational costs at prediction time(Camilli et al., 2023;
Maillard et al., 2024; Gou et al., 2021; Choi et al., 2023; Cheng et al., 2020; Huang et al., 2022; Tang et al.,
2020). In standard KD, teacher and student networks have access to the same type of input data (Mishra
and Marr, 2017); however, with the increasing availability of multimodal data, cross-modal KD has become
increasingly popular (Liu et al., 2023).

Cross-modal KD enables a student network, typically operating on a less informative modality, to benefit
from richer representations provided by a teacher network trained on a more informative modality (Gupta
et al., 2016; Dai et al., 2021; Ahmad et al., 2024; Nair and Hänsch, 2024). Such methods are particularly
valuable in scenarios where richer auxiliary modalities, such as video, audio, or text, are available during
training, but only a single limited modality is accessible during testing (Du et al., 2021; Kim et al., 2024;
Zhao et al., 2024; Radevski et al., 2022). Another prominent example is medical diagnostics, where costly
procedures like tissue biopsies or genomic sequencing may be available for a subset of patients, while more
standard analyses are available for much larger cohorts. Cross-modal KD in principle enables a teacher
trained with these privileged datasets to effectively guide a student model that relies solely on routine inputs
(Jiang et al., 2021; Zhang et al., 2023).

While attractive in principle, the theoretical foundations of cross-modal KD are still not well understood, and,
alongside success stories, there are also reports of instances where cross-modal KD fails to improve or even
degrades student performance (Croitoru et al., 2021; Lee et al., 2023). Previous research primarily attributes
these negative effects to the modality gap, differences between modalities that obstruct knowledge transfer
and result in misaligned supervisory signals (Yuzhe et al., 2024; Huo et al., 2024). Various approaches have
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aimed to mitigate these issues through complex fusion strategies or bespoke loss functions (Thoker and Gall,
2019; Wang et al., 2023; Bano et al., 2024; Li et al., 2024), but the general applicability of these solutions
remains unclear.

Theoretical studies on cross-modal KD have so far been limited. Vapnik and Vashist (2009) introduced
”privileged information,” a theoretical concept demonstrating that extra training-only data can improve
model robustness. Building on this idea, Lopez-Paz et al. (2015) developed the ”generalized distillation”
framework, demonstrating that distilling knowledge from privileged information reduces the student’s sample
complexity and accelerates training convergence. More recently, Xue et al. (2023) empirically showed that
the effectiveness of cross-modal KD significantly depends on the degree of label-relevant information shared
between teacher and student modalities. Despite these insights, existing research has yet to determine a
quantifiable criterion for successful cross-modal KD.

To address this gap, we introduce the Cross-modal Complementarity Hypothesis (CCH), a simple criterion
based on mutual information which enables the user to a priori decide on whether cross-modal KD can be
successful. We prove the validity of the CCH criterion in simplified scenarios, and test it empirically across a
number of data sets. The primary contributions of this paper are as follows:

• Introduction of the Cross-modal Complementarity Hypothesis (CCH), proposing conditions under
which cross-modal KD yields performance gains based on mutual information criteria.

• Proof of the validaty of the CCH criterion in the latent (jointly) Gaussian case.

• Extensive empirical validation through diverse experiments on multimodal datasets, including image,
text, video, audio, and cancer-related omics data, confirming the practical utility of the proposed
CCH criterion and providing actionable guidance for selecting effective teacher modalities.

2 RELATED WORK

2.1 UNIMODAL KD

KD is a powerful technique for transferring the detailed class information learned by a large teacher model to
a smaller student model. Formally, consider a supervised K-class classification problem where both teacher
and student classifiers receive the same input modality X and produce logits over the K classes. Let zθ1(X)
and zθ2(X) denote the pre-softmax logits of the teacher and student, respectively. Given a temperature T , we
define the softened outputs

fθi(X;T ) = softmax
(
zθi(X)/T

)
.

The student is trained to minimize a weighted combination of the cross-entropy loss with respect to the
ground-truth labels Y and the distillation loss:

L = (1− λ) CE
(
Y, fθ2(X; 1)

)
+ λT 2 KL

(
fθ1(X;T ) ∥ fθ2(X;T )

)
, (1)

where λ ∈ [0, 1] balances learning directly from labels with learning from the teacher’s predictions. The factor
T 2 compensates for smaller gradients at higher temperatures, and the softened teacher outputs fθ1(X;T )
convey richer inter-class relationships than one-hot labels alone (Hinton et al., 2015).

2.2 CROSS-MODAL KD

Cross-modal KD generalizes the unimodal framework to heterogeneous modalities, allowing a teacher with
access to a stronger modality to guide a student with a weaker one. Consider two distinct modalities, denoted
by X1 and X2, processed by the teacher and student models, respectively. The training objective extends
Eq. equation 1 by appropriately substituting these distinct inputs (Liu et al., 2021):

L = (1− λ) CE
(
Y, fθ2(X2; 1)

)
+ λT 2 KL

(
fθ1(X1;T ) ∥ fθ2(X2;T )

)
. (2)
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Modality gaps Cross-modal KD encounters substantial obstacles due to the inherent modality gap between
the teacher and student data representations. These disparities arise because modalities like images, text, and
audio capture and encode information through fundamentally distinct physical processes and mathematical
formalisms (Hu et al., 2023; Sarkar and Etemad, 2024; Wang et al., 2025). Previous research indicates that
modality gaps lead to both modality imbalance—the disparity in predictive power across modalities—and soft
label misalignment—where the teacher’s outputs do not align with the student’s feature space. Consequently,
these issues severely hinder effective knowledge transfer, thereby diminishing the efficacy of distillation (Huo
et al., 2024). To mitigate these challenges, several studies have framed cross-modal KD as an information-
maximization problem, proposing that effective transfer is achieved by maximizing the mutual information
between the teacher’s and student’s representations or outputs (Ahn et al., 2019; Chen et al., 2021; Shrivastava
et al., 2023; Xia et al., 2023; Shi et al., 2024; Li et al., 2024).

Theoretical foundations Vapnik and Vashist (2009) introduced the concept of ”privileged information” as
data available only during training. This provides a theoretical reason why additional inputs—often from
a different modality—can improve model robustness. This idea naturally applies to cross-modal transfer,
where the teacher’s modality acts as privileged information for the student. Building on this idea, later work
Lopez-Paz et al. (2015) unified knowledge distillation with the privileged information framework, providing
both theoretical and causal insights. Recent hypotheses further suggest that the success of cross-modal KD
largely depends on the proportion of label-relevant information shared between teacher and student modalities
(Xue et al., 2023). Another related hypothesis proposes that domain gaps mainly affect student performance
through errors in non-target classes. Theoretical analyses based on VC theory show that reducing divergence
in these off-target predictions improves student performance (Chen et al., 2024). Despite these advances, no
previous work has explicitly defined conditions based on mutual information to determine when cross-modal
KD is feasible.

3 THE CROSS-MODAL COMPLEMENTARITY HYPOTHESIS

We study cross-modal KD in settings where the teacher and student models access modalities of unequal
predictive power. Let X1 and X2 denote two data modalities whose intrinsic capacities differ, and let Y be the
ground-truth label. Concretely, we assume X1 to be the inputs to the teacher network, i.e. the data associated
with the strong modality which is highly predictive of the output labels, while X2 is the weak modality
supplied to the student. The primary goal of cross-modal KD in this context is to transfer the label-relevant
representations from the strong modality X1 to the weak modality X2, thereby augmenting the student’s
performance. This raises a fundamental question: under what conditions can a teacher operating on a strong
modality effectively compensate for the insufficiencies of a weak modality?

Denote H1, H2 to be the represenation of X1, X2. Our intuition is that if the mutual information between H1

and H2, denoted by I(H1;H2), exceeds the mutual information between H2 and Y , denoted by I(H2;Y ),
the first term in contains more information than the second term, and thus the teacher modality X1 can provide
the complementary, label-relevant information that X2 lacks. Also, a large I(H1;H2) indicates substantial
overlap between the modalities, suggesting that the student is capable of interpreting the teacher’s guidance.
This condition ensures that the teacher’s knowledge is sufficiently aligned with the student’s domain to
improve prediction accuracy through distillation.

We thus propose the following Cross-modal Complementarity Hypothesis:

Cross-modal Complementarity Hypothesis (CCH): For cross-modal knowledge distilla-
tion, if

I(H1;H2) > I(H2;Y ),

then the teacher modality can supply compensatory information, leading to improved
student performance, where H1, H2 are teacher and student representations,

In the rest of this section, we support mathematically this intuition in a simple but tractable case.
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Assume that the dataset {(x1i, x2i, yi)}ni=1 is jointly Gaussian distributed:{(
x1i

x2i

yi

)}n

i=1

i.i.d.∼ N

0,

 Σ11 Σ12 Σ13

ΣT
12 Σ22 Σ23

ΣT
13 ΣT

23 Σ33

 , (3)

where x1i, x2i ∈ Rp and y ∈ R. We consider the limit n, p → ∞ with n
p → κ and the operation norm of

each Σij (1 ≤ i, j ≤ 3) is bounded by a constant.

The associated learning task is a multi-modal (linear) regression problem with data D = {x1i, x2i, yi}ni=1.
The outputs of the teacher and student networks for the i-th sample are wT

1 x1i and wT
2 x2i, respectively, where

w1 and w2 are the trainable parameters. The cross-modal objective for training the student is given by

ŵ := argmin
w2

n∑
i=1

∥∥∥yi − wT
2 x2i

∥∥∥2 + λ

n∑
i=1

∥∥∥wT
2 x2i − wT

1 x1i

∥∥∥2, (4)

where the first term measures the discrepancy between the ground-truth label and the student’s predictions,
and the second term, weighted by λ, enforces alignment between teacher and student outputs.

The excess risk is given by

R(λ,w1) := Ex1,x2,y[(y − (ŵ)Tx2)
2]− σ2, (5)

which is regarded as a function of the teacher weights w1 (with bounded norm) and the regularization strength
λ. We then define R0 := R(0, w1) to be the baseline performance, where the teacher is absent and obviously
R0 does not depend on w1. Then we have the following theorem.
Theorem 1. Assume that κ > 1 and wT

1 Σ11w1 ≤ Σ33, wT
1 Σ13 ≥ 0. Suppose that I(wT

1 x1, (w
∗)Tx2) >

I((w∗)Tx2, y), where w∗ := Σ−1
22 Σ23 is the optimal student weight, then we have

R(λ,w1) < R0 (6)

asymptotically for small λ.

Note that wT
1 Σ11w1 ≤ Σ33, wT

1 Σ13 ≥ 0 are mild assumptions that the teacher weights should not be too
large or too misleading. Notably the optimal teacher weight Σ−1

11 Σ13 satisfies these two assumptions.

Theorem 1 suggests that knowledge distillation is beneficial when the mutual information between teacher
and student representations are larger than the mutual information between student representations and the
teacher. It is proved in Appendix A.

4 EXPERIMENTS

To validate the proposed Cross-modal Complementarity Hypothesis (CCH), we conducted extensive experi-
ments across various datasets, including synthetic data, image, text, video, audio, and cancer-related omics
datasets. To systematically assess how mutual information influences the effectiveness of cross-modal KD, the
teacher and student networks were intentionally configured to have identical architectures in all experiments.
This design choice facilitates a clear and unbiased comparison, isolating mutual information as the primary
variable affecting knowledge transfer effectiveness.

4.1 SYNTHETIC DATA

We generate synthetic data for a regression task by drawing n i.i.d. samples from a zero-mean multivariate
Gaussian model (cf. Eq. 3) over a teacher modality X1∈Rn×p, a student modality X2∈Rn×p, and a scalar
target Y ∈ Rn. To enable controlled analyses, we specialize the Gaussian model by parameterizing all
cross-covariances as scalar multiples of the identity. Specifically,

Σ12 = σ12Ip, Σ13 = σ13Ip, Σ23 = σ23Ip, Var(Y ) = 1,

4
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where each σij ∈ (−1, 1) governs the corresponding pairwise correlation. Under this parameterization,
x1i

x2i

yi


n

i=1

∼ N

0,

 Ip σ12Ip σ13 1p

σ12Ip Ip σ23 1p

σ13 1
⊤
p σ23 1

⊤
p 1

 , (7)

so that I(X1;X2), I(X1;Y ), and I(X2;Y ) are monotone in σ12, σ13, and σ23, respectively.

Unless otherwise stated, we set n = 10000 and p = 100. To study how student performance varies with
cross-modal dependence, we fix the teacher–label correlation at σ13 = 0.9 and the student–label correlation
at σ23 = 0.4, and vary σ12 ∈ [0, 0.7] to maintain positive semidefiniteness of the covariance.

Figure 1 summarizes the results. Panel 1a reports the student test mean squared error (MSE) as σ12

varies; each point averages ten random seeds. Panel 1b shows mutual information (MI) between learned
representations: I(H1;H2) for teacher X1 and student X2, and I(H2;Y ) for the student and the label.
We extract representations H1 and H2 from each network’s feature extractor and estimate MI using the
latentmi estimator (Gowri et al., 2024).

Empirically, knowledge distillation (KD) reduces MSE precisely when I(H1;H2) > I(H2;Y ) and provides
no benefit otherwise. This pattern supports the Cross-modal Complementarity Hypothesis (CCH): the teacher
contributes complementary, label-relevant information when its representation shares more information with
the student than the student shares with the label. Additional experiments across distillation weights λ
(Appendix B) corroborate this trend.
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Figure 1: Synthetic regression experiments. When I(H1;H2) exceeds I(H2;Y ), the KD-trained student
achieves lower test MSE than a non-distilled student; otherwise, KD provides no improvement.

4.2 IMAGE DATA

We conduct classification experiments on the MNIST (LeCun et al., 1998) and MNIST-M datasets (Ganin and
Lempitsky, 2015). MNIST is a standard benchmark of 70,000 handwritten digits (0–9), each a 28× 28-pixel
grayscale image with a corresponding label. MNIST-M is derived by blending the binarized MNIST digits
onto random natural-image patches from the BSDS500 dataset (Martin et al., 2001); thus, it represents a
distinct modality while sharing identical labels with MNIST (see Figure 5 in Appendix C).

We treat MNIST as the teacher modality and MNIST-M as the student modality. First, we compute the mutual
information between the teacher and student representations, ITS = I

(
HMNIST;HMNIST-M

)
, and between

the student represntations and labels, ISL = I
(
HMNIST-M;Y

)
, using the latentmi estimator (Gowri

et al., 2024). We then follow the protocol in Algorithm 1 (Appendix C). During distillation, we systematically
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Figure 2: Relationship between student accuracy and mutual information under varying Gaussian blur. (a) Test
accuracy of the MNIST–M student trained with (solid line) and without (dashed line) distillation as a function
of Gaussian blur standard deviation γ applied to MNIST teacher inputs. (b) Mutual information ITS =
I(HMNIST;HMNIST-M) (red) and ISL = I(HMNIST-M;Y ) (purple) versus γ. Accuracy improvements align
with the region where ITS > ISL. For reference, ITL = I(HMNIST;Y ) = 2.0485, and the teacher network
attains a test accuracy of 0.981.

Table 1: Mutual-information gap and student accuracy differ under varying blur and
temperature.

γ MI GAP (nats) Student Acc. Diff. (±SE)

T = 1 T = 2 T = 3 T = 4

0.0 0.4399 0.0010 ± 0.0040 0.0146 ± 0.0035 0.0318 ± 0.0040 0.0350 ± 0.0046
0.5 0.2662 0.0069 ± 0.0054 0.0152 ± 0.0055 0.0296 ± 0.0031 0.0353 ± 0.0028
1.5 0.0199 0.0002 ± 0.0089 0.0149 ± 0.0034 0.0156 ± 0.0042 0.0091 ± 0.0051
2.5 −0.0032 −0.1190 ± 0.0165 −0.1627 ± 0.0101 −0.1757 ± 0.0219 −0.1516 ± 0.0154
3.5 −0.1590 −0.2797 ± 0.0126 −0.4597 ± 0.0041 −0.4623 ± 0.0209 −0.4364 ± 0.0137

vary ITS by applying Gaussian blur with standard deviation γ to the teacher inputs, and assess whether the
student’s accuracy gains correspond to the CCH condition ITS > ISL.

Figure 2 illustrates the impact of varying Gaussian blur intensity γ on both the student’s test accuracy and
the corresponding mutual information when the distillation temperature is at T = 3 (see additional results
in Appendix C). Results are averaged over five independent runs. Panel (a) compares the test accuracy of
students trained with and without distillation; panel (b) plots ITS and ISL as functions of γ. We observe that
whenever ITS > ISL, knowledge distillation improves accuracy relative to the baseline, in agreement with
the CCH. For γ ≥ 2.5, ITS falls below ISL, leading to a collapse in the distilled student’s performance.

We further explore the effect of the distillation temperature T ∈ {1, 2, 3, 4} in Table 1. Here, MI GAP denotes
ITS − ISL, and Student Acc. Diff. is the difference in test accuracy between the distilled and baseline students.
SE denotes the standard error estimated from five independent runs. Across all blur levels and temperatures,
the sign of the Student Acc. Diff. matches that of the MI GAP, reinforcing the CCH. We remark the very
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Table 2: Mutual information estimates between CMU-MOSEI modality representations and the label using
three estimators (mean ± std over 50 runs).

Estimator I(Htext;Hvision) I(Htext;Haudio) I(Htext;Y ) I(Hvision;Y ) I(Haudio;Y )

latentmi 1.3543± 0.0052 1.4160± 0.0038 0.4681± 0.0090 0.0816± 0.0084 0.1054± 0.0088
mine 0.7955± 0.0019 1.1817± 0.0023 0.3202± 0.0055 0.0409± 0.0026 0.0631± 0.0026
ksg 0.3788± 0.0056 0.6606± 0.0056 0.1628± 0.0083 0.0647± 0.0014 0.0934± 0.0018

Table 3: Student performance versus mutual information on CMU-MOSEI with text as teacher. The teacher
achieves test accuracy 0.7190± 0.0098 and weighted F1 0.7189± 0.0098; I(Htext;Y ) = 0.4681± 0.0090.
Mutual information is estimated with latentmi.

I(Hteacher;Hstudent) I(Hstudent;Y )
Student Without KD Student With KD

Acc Weighted F1 Acc Weighted F1

Text (teacher)
Vision (student) 1.3543± 0.0052 0.0816± 0.0084 0.6233± 0.0027 0.6204± 0.0030 0.6343± 0.0013 0.6315± 0.0022

Text (teacher)
Audio (student) 1.4160± 0.0038 0.1054± 0.0088 0.5937± 0.0048 0.5931± 0.0043 0.6167± 0.0030 0.6161± 0.0031

Table 4: Student weighted F1 versus mutual information on the CMU-MOSEI dataset under varying levels of
Gaussian noise (text teacher, vision student).

Noise level I(Hteacher;Hstudent) I(Hstudent;Y ) Student KD F1 Student No-KD F1

0% 1.3543± 0.0052 0.0816± 0.0084 0.6204± 0.0030 0.6315± 0.0022
20% 0.0034± 0.0040 0.0816± 0.0084 0.6204± 0.0030 0.6192± 0.0062
40% −0.0007± 0.0045 0.0816± 0.0084 0.6204± 0.0030 0.6189± 0.0039
60% −0.0056± 0.0058 0.0816± 0.0084 0.6204± 0.0030 0.6184± 0.0022
80% −0.0060± 0.0053 0.0816± 0.0084 0.6204± 0.0030 0.6156± 0.0033

non-linear behaviour of the student’s accuracy w.r.t. the MI GAP; while the gain remains modest for positive
MI GAP, as soon as the MI GAP changes sign we document a very large drop in student accuracy.

4.3 CMU-MOSEI DATASET

We evaluate the CCH on the CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
dataset (Zadeh et al., 2018). CMU-MOSEI is a large-scale benchmark for multimodal sentiment analysis
comprising 23,453 annotated video segments with time-aligned text, vision, and audio streams drawn from
1,000 speakers across 250 topics.

The task is binary sentiment classification. Following standard practice, we binarize the original integer
sentiment scores into positive and negative labels. Each utterance is converted into synchronized, fixed-
length sequences for all three modalities using a uniform preprocessing pipeline; full details are provided in
Appendix D.

To operationalize the CCH, we estimate mutual information (MI) between (i) each pair of modality rep-
resentations and (ii) each modality representation and the label. We employ three complementary estima-
tors—latentmi (Gowri et al., 2024), mine (Belghazi et al., 2018), and ksg (Ross, 2014)—and average
results over 50 independent runs (Appendix F). As shown in Table 2, absolute MI values vary by estimator,
but the relative ordering is consistent.
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Table 5: Student weighted F1 vs. mutual information on BRCA under varying Gaussian noise levels (teacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.7459 and I(Hteacher;Y ) = 1.1081. “MI
Gap” denotes ITS − ISL; “Student F1 Difference” denotes (Student KD F1) − (Student No-KD F1).

Noise Level I(Hteacher;Hstudent) I(Hstudent;Y ) Student KD F1 Student No-KD F1 MI GAP Student F1 Differ

0% 0.5005 0.2757 0.5038 0.4561 0.2248 0.0477
20% 0.4554 0.2757 0.4917 0.4561 0.1797 0.0356
40% 0.3687 0.2757 0.4953 0.4561 0.0930 0.0392
60% 0.2147 0.2757 0.4276 0.4561 -0.061 -0.0285
80% 0.1325 0.2757 0.4343 0.4561 -0.1432 -0.0218

Table 6: Student weighted F1 vs. mutual information on KIPAN under varying Gaussian noise levels (teacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.9516 and I(Hteacher;Y ) = 1.0458.

Noise Level I(Hteacher;Hstudent) I(Hstudent;Y ) Student KD F1 Student No-KD F1 MI GAP Student F1 Differ

0% 0.7898 0.6994 0.8826 0.8667 0.0904 0.0159
20% 0.7198 0.6994 0.8721 0.8667 0.0204 0.0054
40% 0.6771 0.6994 0.8517 0.8667 -0.0223 -0.0150
60% 0.6209 0.6994 0.8477 0.8667 -0.0785 -0.0190
80% 0.6389 0.6994 0.8544 0.8667 -0.0605 -0.0123

The MI patterns in Table 2 identify text as the most predictive modality, since I(Htext;Y ) is largest.
Accordingly, we designate text as the teacher and treat vision and audio as student modalities. As reported in
Table 3, KD yields significant gains over the no-KD baseline for both students. Moreover, Table 2 shows
that I(Htext;Hvision) > I(Hvision;Y ) and I(Htext;Haudio) > I(Haudio;Y ), satisfying the CCH condition.
Taken together, these observations support the CCH. The improvement is larger for audio, consistent with its
greater MI gap ITS − ISL (teacher–student vs. student–label MI of representations), suggesting a positive
association between the gap magnitude and KD efficacy.

To further probe the CCH, we conduct a controlled degradation experiment on the text (teacher) →vision (stu-
dent) setting. We inject Gaussian noise into the teacher input to systematically reduce I(Hteacher;Hstudent)
while holding I(Hstudent;Y ) fixed. As predicted, the benefit of KD disappears once I(Hteacher;Hstudent) <
I(Hstudent;Y ) (Table 4).

4.4 CANCER DATA

We analyze three The Cancer Genome Atlas (TCGA) cohorts (Colaprico et al., 2016): breast invasive
carcinoma (BRCA), pan-kidney (KIPAN), and liver hepatocellular carcinoma (LIHC). For each cohort, we
consider three omics modalities—mRNA expression (mRNA), copy number variation (CNV), and reverse-
phase protein arrays (RPPA)—and retain only cases with complete data across all three. The learning task is
subtype classification; Table 16 in Appendix E reports class distributions. To reduce noise and dimensionality,
we preprocess each modality independently and select the top 100 features from the original sets of 60,660
(mRNA), 60,623 (CNV), and 487 (RPPA) using the minimum-redundancy maximum-relevance (mRMR)
criterion (Ding and Peng, 2005).

We first set mRNA as the teacher and CNV as the student and estimate

ITS=I
(
HmRNA;HCNV

)
, ISL=I

(
HCNV;Y

)
,

using the latentmi estimator. To modulate ITS, we add zero-mean Gaussian noise to the teacher inputs.
Tables 5–7 report student weighted F1 and mutual information as functions of the noise level (means over
five runs). Across cohorts, whenever the MI Gap is positive (ITS > ISL), distillation improves the student’s
weighted F1; when the gap becomes negative, the benefit vanishes or reverses, in line with the CCH.
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Table 7: Student weighted F1 vs. mutual information on LIHC under varying Gaussian noise levels (teacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.9430 and I(Hteacher;Y ) = 0.9055.

Noise Level I(Hteacher;Hstudent) I(Hstudent;Y ) Student KD F1 Student No-KD F1 MI GAP Student F1 Differ

0% 0.0914 0.0781 0.5795 0.5548 0.0133 0.0247
20% 0.0825 0.0781 0.5692 0.5548 0.0044 0.0144
40% 0.0699 0.0781 0.5368 0.5548 -0.0082 -0.0180
60% 0.0736 0.0781 0.5259 0.5548 -0.0045 -0.0289
80% 0.0409 0.0781 0.5080 0.5548 -0.0372 -0.0468

Modality 1
(teacher)

Modality 2
(student)

Fusion
Module Prediction

𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

(a) Direct fusion

Modality 1
(teacher)

Modality 2
(student)

distillation
Fusion

Module Prediction

𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 + 𝜆	𝑳𝒅𝒊𝒔𝒕𝒊𝒍𝒍𝒂𝒕𝒐𝒏

(b) Fusion with KD

Figure 3: Multimodal fusion architectures: direct fusion (left) and Fusion+KD (right).

Table 8: Overall multimodal performance of direct fusion and Fusion+KD on KIPAN, reported with mutual
information of modality representations (teacher–label, teacher–student, student–label).

Mutual Information Fusion Fusion+KD

Teacher–Label Teacher–Student Student–Label Acc AUC Macro F1 Weighted F1 Acc AUC Macro F1 Weighted F1

mRNA (teacher)
CNV (student) 1.0458 0.7898 0.6994 0.9610 0.9851 0.9219 0.9591 0.9740 0.9872 0.9293 0.9725
RPPA (teacher)
CNV (student) 1.1609 0.6893 0.6994 0.9740 0.9995 0.9333 0.9721 0.9610 0.9971 0.9225 0.9595

To extend from single-student distillation to multimodal learning, we compare two fusion strategies—direct
fusion and fusion with knowledge distillation (Fusion+KD; Fig. 3). On KIPAN (Table 8; additional results in
Appendix E), mRNA as teacher yields ITS > ISL and Fusion+KD outperforms direct fusion. In contrast,
with RPPA as teacher we have ITS < ISL, and direct fusion is superior. These results suggest a practical
design rule: incorporate KD in fusion only when ITS > ISL.

5 CONCLUSION

This paper introduced the Cross-modal Complementarity Hypothesis (CCH), a framework for explaining
when cross-modal knowledge distillation (KD) improves performance in multimodal learning. The CCH
offers a tractable, a priori criterion for success: distillation is beneficial when the mutual information between
teacher and student representations exceeds that between the student representation and the labels. We
validated the hypothesis with a theoretical analysis in a joint Gaussian model and with experiments spanning
synthetic Gaussian data and diverse real-world modalities—image, text, video, and audio—as well as three
cancer omics datasets.

Our results highlight mutual information as a reliable predictor of cross-modal KD efficacy, yielding both
theoretical insight and practical guidance for selecting teacher modalities to strengthen weaker ones.
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REPRODUCIBILITY STATEMENT

The source code underpinning the experiments and analyses presented in this manuscript has been made
accessible via an anonymized GitHub repository:

https://anonymous.4open.science/r/test-111/.

All experiment details are presented in Appendices B-F.
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A THEORETICAL ANALYSIS

Here we prove a more complete version of Theorem 1.
Theorem 2. For κ > 1 and almost every λ, there exists w1 such that R(λ, w̃) < R(λ, 0) asymptotically.
Moreover, for λ small enough, we have R(λ, w̃) < R0 asymptotically if wT

1 Σ11w1 ≤ Σ33, w
T
1 Σ13 ≥ 0 and

I(wT
1 x1, (w

∗)Tx2) > I((w∗)Tx2, y).

Proof. The optimization problem eq. (4) is equivalent to

ŵ := argmin
w2

n∑
i=1

∥∥∥ỹi − wT
2 x2i

∥∥∥2, (8)

where the effective label is given by

ȳi :=
1

1 + λ
(yi + λwT

1 x1i). (9)

It satisfies ȳi = w̄Tx2i +N (0, σ̄2), where

w̄ :=
1

1 + λ
Σ−1

22 (Σ23 + λΣT
12w1) (10)

and
σ̃2 := E[ȳ2n]− w̄TΣ22w̄. (11)

According to Theorem 3 of Chang et al. (2021), the estimator ŵ can be expressed asymptotically as

ŵ = w̄ + σ̄
Σ

−1/2
22 g√
p(κ− 1)

, (12)

where g ∼ N (0, Ip). Thus the asymptotics of R(λ,w1) is

R̄(λ,w1) = (w̄ − w∗)Σ22(w̄ − w∗) + σ̃2 1

κ− 1

=
λ2

(1 + λ)2
(Σ−1

22 Σ
T
12w1 − w∗)TΣ22(Σ

−1
22 Σ

T
12w1 − w∗)

+
1

κ− 1

1

(1 + λ)2
[Σ33 − (w∗)TΣ22w

∗ + 2λwT
1 (Σ13 − Σ12w

∗) + λ2wT
1 (Σ11 − Σ12Σ

−1
22 Σ

T
12)w1],

(13)
where we denote w∗ = Σ−1

22 Σ23 to be the optimal weight. Here ”asymptotics” means that

limn,p→∞ P
(
sup||w1||<M |R(λ,w1)− R̄(λ,w1)| > ϵ

)
= 0 for any ϵ > 0. Taking the derivative of R̄

w.r.t. w1, we have that the optimal w1 is given by

λ

[
ΣT

12Σ
−1
22 Σ12 +

1

κ− 1
(Σ11 − Σ12Σ

−1
22 Σ

T
12)

]
w1 = λΣT

12w
∗ − 1

κ− 1
(Σ13 − Σ12w

∗). (14)

This gives an optimal w1 for almost every λ. The optimal w1 is non-zero and different from the optimal
teacher weight w∗ for almost every λ. For the special case Σ13 − Σ12Σ

−1
22 Σ23 = 0 (i.e. x1 and y are

independent conditioned on x2), the optimal surrogate weight is given by

w1 = (κ− 1)(Σ11 + (κ− 2)Σ12Σ
−1
22 Σ

T
12)

−1ΣT
12w

∗, (15)

which does not depend on λ.
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Moreover, for small λ, we have

R̄(λ,w1) =
1

κ− 1

1

(1 + λ)2
(Σ33 − (w∗)TΣ22w

∗) +
2λ

κ− 1
wT

1 (Σ13 − Σ12w
∗) +O(λ2), (16)

and thus R̄(λ,w1) < R̄(0, w1) for small λ if

ŵT (Σ13 − Σ12Σ
−1
22 Σ23)− (Σ33 − (w∗)TΣ22w

∗) < 0. (17)

Now we define the correlation between w1x1 and w∗x2 to be

ρ(w1x1, w
∗x2) :=

wT
1 Σ12w

∗√
wT

1 Σ11w1

√
(w∗)TΣ22w∗

. (18)

Similarly we define

ρ(w1x1, y) :=
wT

1 Σ13√
wT

1 Σ11w1

√
(w∗)TΣ22w∗

(19)

and

ρ(w∗x2, y) :=
(w∗)TΣ23√

(w∗)TΣ22w∗
√
Σ33

=

√
(w∗)TΣ22w∗
√
Σ33

. (20)

Then the condition equation 17 becomes

ρ(w1x1, w
∗x2) >

ρ(w1x1, y)

ρ(w∗x2, y)
− 1− ρ(w∗x2, y)

2

ρ(w∗x2, y)

√
Σ33√

wT
1 Σ11w1

. (21)

Therefore, if I(wT
1 x1, (w

∗)Tx2) > I((w∗)Tx2, y) we have

ρ(w1x1, w
∗x2) > ρ(w∗x2, y) =

1

ρ(w∗x2, y)
− 1− ρ(w∗x2, y)

2

ρ(w∗x2, y)

≥ ρ(w1x1, y)

ρ(w∗x2, y)
− 1− ρ(w∗x2, y)

2

ρ(w∗x2, y)

√
Σ33√

wT
1 Σ11w1

.

(22)

Thus the condition equation 17 is satisfied and we have R̄(λ,w1) < R̄(0, w1). For the first inequality we use
I(A,B) = − 1

2 log(1− ρ(A,B)2) for Gaussian variables A,B and the fact that ρ(w∗x2, y), ρ(w1x1, y) ≥ 0

if wT
1 Σ13 ≥ 0. The last inequality is from ρ(w1x1, y) ≤ 1 and

√
Σ33√

wT
1 Σ11w1

≤ 1. This finishes the proof.

For completeness we also prove that knowledge distillation might help in the overparameterization regime.
Theorem 3. For κ < 1 and almost every λ, there also exists w1 such that R(λ,w1) < R(λ, 0) asymptotically.

Proof. For κ < 1 we are in the overparameterization case and thus we consider the minimal norm estimator

ŵ = argmin
w

{
||w|| :

n∑
i=1

|| 1

1 + λ
(yi + λwT

1 x1i)− wTx2i||2 = 0

}
. (23)

We can rewrite it as

ŵ =
σ̄

σ
argmin

w

{
||w|| :

n∑
i=1

||σ
σ̄
ȳi − wTx2i||2 = 0

}
, (24)

where we recall that the effective label satisfies σ
σ̄ ȳi =

σ
σ̄ w̄

Tx2i +N (0, σ2).

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Then we can use (Ildiz et al., 2024, Theorem 4) for the function f(x) = ||Σ1/2
22 ( σ̄σx− w∗)||2 to obtain the

following asymptotic excess risk

R̄(λ,w1) =(ws − w∗)T θT1 Σ22θ1(ws − w∗) + γ(ws)Egt [θ
T
2 Σ22θ2]

+ w∗(I − θ1)
TΣ22(I − θ1)w

∗ − 2(w∗)T (I − θ1)
TΣ22θ1(ws − w∗),

(25)

where we denote ws :=
σ
σ̄ w̄ and τ to be the solution of κ = 1

p tr((Σ22 + τI)−1Σ22),

θ1 :=
σ̄

σ
(Σ22 + τI)−1Σ22, θ2 :=

σ̄

σ
(Σ22 + τI)−1Σ

1/2
22

gt√
p
, (26)

and gt ∼ N (0, Ip). Moreover, γ(ws) is given by

γ2(ws) = κ−1σ
2 + τ2||Σ1/2

22 (Σ22 + τI)−1ws||2

1− 1
n tr((Σ22 + τI)−2Σ2

22)
. (27)

The results can be simplified to

R̄(λ,w1) =
σ̄2

σ2
(ws − w∗)Σ3

22(Σ22 + τI)−2(ws − w∗) +
σ̄2

σ2
Ω
σ2 + τ2||Σ1/2

22 (Σ22 + τI)−1ws||2

1− Ω

− 2
σ̄

σ
(w∗)TΣ2

22(Σ22 + τI)−2(Σ22 + τI − σ̄

σ
Σ22)(ws − w∗)

+ w∗(Σ22 + τI − σ̄

σ
Σ22)

2(Σ22 + τI)−2Σ22w
∗,

(28)

where we denote Ω := 1
n tr((Σ22 + τI)−2Σ2

22). Therefore, the optimal w1 is given by the saddle points of
equation 28, where

ws :=
σ

(1 + λ)σ̄
(w∗ + λΣ−1

22 Σ
T
12w1) (29)

and
σ̄ :=

1

1 + λ

√
σ2 + 2λwT

1 (Σ13 − Σ12w∗) + λ2wT
1 (Σ11 − Σ12Σ

−1
22 Σ

T
12)w1. (30)

B EXPERIMENTAL DETAILS AND RESULTS FOR SYNTHETIC DATA

We evaluate the Cross-modal Complementarity Hypothesis (CCH) on a controlled synthetic regression
benchmark. We generate n i.i.d. samples {(X1,i, X2,i, Yi)}ni=1 as follows:

Yi ∼ N (0, 1),

X2,i | Yi ∼ N
(
σ23Yi 1p, (1− σ2

23)Ip
)
,

X1,i | X2,i, Yi ∼ N
(
aX2,i + b Yi, v Ip

)
,

where

ϕ = 1− σ2
23, a =

σ12 − σ13σ23

ϕ
, b =

σ13 − σ12σ23

ϕ
, v = 1− σ2

12 + σ2
13 − 2σ12σ13σ23

ϕ
.

Both teacher and student use the fully connected architecture in Table 9. We train on 10000 samples and
hold out 1000 for testing. Models are optimized with Adam (learning rate 0.01) for 300 epochs; full settings
appear in Table 10.
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Figure 4: Test MSE on synthetic regression data for varying distillation weight λ. Orange dashed curves:
student with KD; blue dashed curves: student without KD.

Figure 4 reports test mean-squared error (MSE) as a function of the inter-modality correlation σ12 for distilla-
tion weights λ ∈ {0.2, 0.5, 0.7, 0.8}. Because varying only λ does not change the learned representations’
mutual information (MI), the MI curves coincide with those obtained at λ = 0.3 (see Fig. 1). From Fig. 4,
when σ12 is large (e.g., σ12 = 0.7, indicating strong teacher–student alignment), distillation improves the
student provided two conditions hold: (i) the CCH criterion I(H1;H2) > I(H2;Y ) and (ii) a sufficiently
small λ to avoid over-regularizing toward the teacher. This behavior is consistent with Theorem 1.

Table 9: Network architecture for synthetic experiments.

Layer # Units Activation
Input 100 –
Linear 64 ReLU
Linear 1 –

C EXPERIMENTAL DETAILS AND RESULTS FOR IMAGE DATA

We evaluate our approach using the MNIST (LeCun et al., 1998) and MNIST-M (Ganin and Lempitsky, 2015)
datasets. MNIST comprises 70,000 28× 28 grayscale images of handwritten digits (0–9). MNIST-M adapts
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Table 10: Training configuration and dataset details for synthetic experiments.

Item Value
Training dataset Synthetic Gaussian
Train/Test split 10,000 / 5,000
Optimizer Adam
Learning rate 0.01
Epochs 300

these digits by blending them onto natural-image backgrounds sampled from the BSDS500 dataset (Martin
et al., 2001), resulting in colored images with identical labels (Figure 5). Below, we detail the MNIST-M
construction, the network architecture, training configuration, and additional results for varying blending
coefficients.

MNIST MNIST-M

Figure 5: Sample images from MNIST (left) and MNIST-M (right).

Algorithm 1: Cross-modal knowledge distillation protocol for image data
Input: MNIST and MNIST-M datasets
Output: Test accuracy of student with and without distillation
1: Teacher pretraining: Train a teacher network on MNIST;
2: Student baseline: Train a student network on MNIST-M using only ground-truth labels;
3: Distillation:;
4: Freeze teacher parameters;
5: for each Gaussian blur level γ do

6: Apply Gaussian blur of intensity γ to teacher inputs;
7: Obtain soft targets from the frozen teacher;
8: Train a new student on MNIST-M using both labels and soft targets (Eq. 2);

9: Evaluation: Evaluate both student models on the MNIST-M test set;

To generate each MNIST-M image, we first binarize the original MNIST digit via thresholding and replicate
the resulting single-channel image across the red, green, and blue channels, ensuring compatibility with
RGB-based network architectures while preserving the digit’s grayscale silhouette. We apply a luminance-
preserving transformation to convert BSDS500 patches to grayscale, matching the teacher modality. We then
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extract a random 28× 28 patch IBSDS from the processed BSDS500 images and compute:

IMNISTM = α IMNIST + (1− α) IBSDS,

where α ∈ [0, 1] controls the digit’s prominence over the background. Having specified the MNIST-M
construction, we conduct training and evaluation according to Algorithm 1. For the experiments in Figure 2
and Table 1, we set α = 0.2.

Both teacher and student models share the architecture listed in Table 11 and the training parameters in
Table 12. We train using stochastic gradient descent (learning rate 0.002, 100 epochs) with a distillation
temperature of T = 3 and a loss weight λ = 0.5. All experiments were executed on an NVIDIA A100 GPU.

Table 11: Network architecture for image experiments.

Operation Size Activation
Input → Linear layer 1024 LeakyReLU
Linear layer 256 LeakyReLU
Linear layer 10 –

Table 12: Training configuration and dataset details for image experiments.

Training Dataset MNIST / MNIST-M
Train/Test Split 60000 / 10000
Optimizer SGD
Learning Rate 0.002
Epochs 100
T 3
λ 0.5

Table 13 presents results for α = 0.18 under the same settings. First, the sign of the student accuracy
difference (Student Acc Diff) precisely matches that of the mutual-information gap (MI GAP), thereby
confirming the CCH. Second, compared to the α = 0.2 setting shown in Figure 2, the lower blending weight
reduces the mutual information shared between the MNIST (teacher) and MNIST-M (student) modalities.
This reduction in shared information corresponds to a diminished—sometimes negative—distillation gain,
demonstrating that student performance declines as the teacher–student mutual information decreases.

Table 13: Experimental results for the MNIST/MNIST-M dataset for α = 0.18. MNIST is the teacher
modality and MNIST-M is the student modality. The teacher network achieves a test accuracy score of
0.9812± 0.0003 and I(Hteacher;Y ) = 1.9095.

Gamma Level I(Hteacher;Hstudent) I(Hstudent;Y ) Student KD Acc Student No-KD Acc MI GAP Student Acc Diff

0 1.3956 1.2685 0.8484± 0.0019 0.8338± 0.0034 0.1271 0.0146± 0.0052
0.5 1.2949 1.2685 0.8425± 0.0042 0.8338± 0.0034 0.0264 0.0087± 0.0070
1.5 1.2533 1.2685 0.8296± 0.0017 0.8338± 0.0034 -0.0152 −0.0042± 0.0034
2.5 0.9472 1.2685 0.6216± 0.0243 0.8338± 0.0034 -0.3213 −0.2122± 0.0232
3.5 0.7817 1.2685 0.3325± 0.0179 0.8338± 0.0034 -0.4868 −0.5013± 0.0190

D EXPERIMENTAL DETAILS FOR CMU-MOSEI DATA

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset contains 23,453
video segments annotated for sentiment and emotion. Each segment includes time-aligned transcriptions,
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Algorithm 2: MOSEI Preprocessing Protocol
Input :CMU-MOSEI utterance-level dataset: text; time-aligned audio & visual feature streams.
Data & splits: Use the official train/validation/test partition.
Text: Tokenize texts and map tokens to pretrained word embeddings; treat one token = one timestep.
foreach utterance u in the dataset do

Temporal alignment: Find the first non-padding token index s in text(u); slice text/audio/vision to
start at s (text defines the time base).

Length control: For each modality, truncate to at most L=50 steps, then right-pad with zeros to
exactly L.

Labels: For classification, set y=1 if sentiment score >0, else y=0.
Batching: Collate as (vision, audio, text, label) to form shapes (B,L,Dv), (B,L,Da), (B,L,Dt);
labels (B, 1); here Dv = 713, Da = 74 and Dt = 300.

audio, and visual data, providing three distinct modalities. Our preprocessing protocol for these modalities is
detailed in the Algorithm 2.

The network architecture is identical for all three modalities and is specified in Table 14. The architecture
includes a temporal mean-pooling layer, which operates as follows: for a given batch of sequences X ∈
RB×L×D, the layer averages feature vectors across the time dimension L to produce an output Z ∈ RB×D,
where:

Zb,d =
1

L

L∑
l=1

Xb,l,d (b = 1, . . . , B; d = 1, . . . , D).

Table 14: Network architecture for the CMU-MOSEI experiments.

Operation Size Activation
Input (B×L×D)→ Temporal Mean-Pool → Flatten B×L×D → B×D –
Linear Layer D → 256 ReLU
BatchNorm1d + Dropout (p=0.3) – –
Linear Layer 256 → 128 ReLU
BatchNorm1d + Dropout (p=0.3) – –
Linear Layer (Classifier Head) 128 → 2 –

The training configuration details are consistent across all models and are summarized in Table 15.

Table 15: Training configuration and dataset details for CMU-MOSEI experiments.

Training Dataset CMU-MOSEI
Train/Validation/Test Split 70% / 10% / 20%
Optimizer AdamW
Learning Rate 0.0005
LR Schedule CosineAnnealingLR (Tmax = epochs, ηmin = 0)
Epochs 100
Temperature (T ) 4.5
Distillation Weight (λ) 0.5
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E EXPERIMENTAL DETAILS AND RESULTS FOR CANCER DATA

For cancer data, Table 16 summarizes the subtype distributions. For the experiments of Tables 5–7, the
teacher and student networks share the same architecture used in the synthetic data experiments (see Table 9).
Table 17 summarizes the training configurations and dataset splits for the three cancer cohorts.

Table 16: Subtype distribution for the BRCA, KIPAN, and LIHC cohorts.

BRCA KIPAN LIHC

Subtypes

Normal-like: 44
Basal-like: 129
HER2-enriched: 49
Luminal A: 338
Luminal B: 267

KICH: 63
KIRC: 492
KIRP: 212

Blast-Like: 39
CHOL-Like: 18
Liver-Like: 113

Table 17: Training configuration and dataset details for cross-modal distillation experiments on BRCA, LIHC
cancer data.

Training Dataset BRCA, LIHC
Train/Test Split 90% / 10%
Optimizer Adam
Learning Rate 0.01
Epochs 200
Temperature (T ) 2
Distillation Weight (λ) 0.5

We evaluated two multimodal fusion strategies: direct fusion and fusion with knowledge distillation (Fu-
sion + KD) (Table 8). Both strategies adopt the architecture in Table 18, which uses separate encoders for
each modality followed by feature concatenation (see Figure 3); each encoder comprises 64 units. In the
cross-modal distillation protocol (Tables 5–7), we pretrained the teacher network on its modality and then
used its soft targets to guide the student (Algorithm 1). By contrast, the fusion experiments train both encoders
jointly—without teacher pretraining—while applying a distillation loss to transfer knowledge. Table 19 lists
the corresponding training parameters.

Table 18: Layer-by-layer specification for multimodal fusion experiments on cancer data.

Branch Layer I/O Act. Notes

Modality 1 Linear ninputMod1→nenc ReLU FC projection
BatchNorm1d nenc→nenc — Normalization
Dropout nenc — p = 0.25

Modality 2 Linear ninputMod2→nenc ReLU FC projection
BatchNorm1d nenc→nenc — Normalization
Dropout nenc — p = 0.25

Fusion & Classification Concat 2nenc — Merge embeddings
Linear (fusion) 2nenc→nclasses — Joint-feature logits
Linear (modality) nenc→nclasses — Modality-specific logits

To demonstrate the generality of our approach beyond the KIPAN cohort, we also conducted experiments
on BRCA data. Table 20 reports the performance metrics for direct fusion and Fusion + KD, and Table 21
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Table 19: Training configuration and dataset details for multimodal fusion experiments on KIPAN data.

Training Dataset KIPAN
Train/Test Split 90% / 10%
Optimizer Adam
Learning Rate 0.007
Epochs 200
Temperature (T ) 1
Distillation Weight (λ) 0.5

lists the corresponding training settings. Across all teacher–student pairs, the mutual information between
teacher and student representations consistently exceeds that between student representations and labels, and
the Fusion+KD strategy outperforms direct fusion, thereby corroborating the CCH.

Table 20: Overall multimodal performance of direct fusion and Fusion+KD on BRCA, reported with mutual
information of modality representations (teacher–label, teacher–student, student–label).

Mutual Information Fusion Fusion+KD

Teacher–Label Teacher–Student Student–Label Acc AUC Macro F1 Weighted F1 Acc AUC Macro F1 Weighted F1

mRNA (teacher)
CNV (student) 1.1081 0.5057 0.2757 0.7711 0.9157 0.6432 0.7563 0.8434 0.8610 0.6533 0.8225
RPPA (teacher)
CNV (student) 0.7328 0.3367 0.2757 0.5663 0.7844 0.5604 0.5715 0.6024 0.7929 0.5897 0.6103

Table 21: Training configuration and dataset details for multimodal fusion experiments on BRCA.

Training Dataset MNIST / MNIST-M
Train/Test Split 90% / 10%
Optimizer Adam
Learning Rate 0.04
Epochs 200
Temperature (T ) 4
Distillation Weight (λ) 0.5

F METHODS FOR MUTUAL INFORMATION ESTIMATION

Mutual information quantifies the dependency between random variables, but its estimation remains chal-
lenging, especially when the underlying probability distributions are unknown. Exact mutual information
computation is tractable only for small datasets with known distributions. To address this limitation, Kraskov
et al. (2004) introduced a k-nearest neighbors (kNN) estimator for mutual information between continuous
random variables. This estimator was further extended by Ross (2014) to handle cases where one variable is
discrete and the other continuous—a critical adaptation given that many real-world datasets involve mixed
data types. More recent approaches, such as Mutual Information Neural Estimation (MINE) (Belghazi et al.,
2018), leverage neural networks to estimate mutual information between high-dimensional continuous vari-
ables. Additionally, a novel method known as latent mututal information (LMI) has been developed (Gowri
et al., 2024), which applies a nonparametric mutual information estimator to low-dimensional representations
extracted by a theoretically motivated model architecture.
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