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ABSTRACT

The rapid increase in multimodal data availability has sparked significant interest in cross-
modal knowledge distillation (KD) techniques, where richer “teacher” modalities transfer
information to weaker ”student” modalities during model training to improve performance.
However, despite successes across various applications, cross-modal KD does not always
result in improved outcomes, primarily due to a limited theoretical understanding that
could inform practice. To address this gap, we introduce the Cross-modal Complemen-
tarity Hypothesis (CCH): we propose that cross-modal KD is effective when the mutual
information between teacher and student representations exceeds the mutual information
between the student representation and the labels. We theoretically validate the CCH
in a joint Gaussian model and further confirm it empirically across diverse multimodal
datasets, including image, text, video, audio, and cancer-related omics data. Our study
establishes a novel theoretical framework for understanding cross-modal KD and offers
practical guidelines based on the CCH criterion to select optimal teacher modalities for
improving the performance of weaker modalities.

1 INTRODUCTION

Knowledge distillation (KD) transfers knowledge from a well-performing teacher” model to a smaller,
simpler “’student” model in order to reduce computational costs at prediction time(Camilli et al., 2023}
Maillard et al.,|2024; |Gou et al., 2021} (Choi et al., 2023 |Cheng et al.,|2020; Huang et al., [2022; Tang et al.,
2020). In standard KD, teacher and student networks have access to the same type of input data (Mishra
and Marr, [2017); however, with the increasing availability of multimodal data, cross-modal KD has become
increasingly popular (Liu et al.| 2023).

Cross-modal KD enables a student network, typically operating on a less informative modality, to benefit
from richer representations provided by a teacher network trained on a more informative modality (Gupta
et al., 2016} Dai et al.| 2021; |/Ahmad et al., 2024} |Nair and Hansch, [2024). Such methods are particularly
valuable in scenarios where richer auxiliary modalities, such as video, audio, or text, are available during
training, but only a single limited modality is accessible during testing (Du et al.,[2021}; |Kim et al., [2024;
Z/hao et al.| [2024; Radevski et al.| [2022). Another prominent example is medical diagnostics, where costly
procedures like tissue biopsies or genomic sequencing may be available for a subset of patients, while more
standard analyses are available for much larger cohorts. Cross-modal KD in principle enables a teacher
trained with these privileged datasets to effectively guide a student model that relies solely on routine inputs
(Jiang et al.| |2021; Zhang et al.| 2023).

While attractive in principle, the theoretical foundations of cross-modal KD are still not well understood, and,
alongside success stories, there are also reports of instances where cross-modal KD fails to improve or even
degrades student performance (Croitoru et al., 2021} [Lee et al.,|2023)). Previous research primarily attributes
these negative effects to the modality gap, differences between modalities that obstruct knowledge transfer
and result in misaligned supervisory signals (Yuzhe et al.,2024; |Huo et al.,|2024). Various approaches have



Under review as a conference paper at ICLR 2026

aimed to mitigate these issues through complex fusion strategies or bespoke loss functions (Thoker and Gall,
2019;|Wang et al., 2023} |Bano et al.,|2024; |Li et al., [2024), but the general applicability of these solutions
remains unclear.

Theoretical studies on cross-modal KD have so far been limited. |Vapnik and Vashist (2009) introduced
“privileged information,” a theoretical concept demonstrating that extra training-only data can improve
model robustness. Building on this idea, |Lopez-Paz et al.| (2015)) developed the “generalized distillation”
framework, demonstrating that distilling knowledge from privileged information reduces the student’s sample
complexity and accelerates training convergence. More recently, |Xue et al|(2023)) empirically showed that
the effectiveness of cross-modal KD significantly depends on the degree of label-relevant information shared
between teacher and student modalities. Despite these insights, existing research has yet to determine a
quantifiable criterion for successful cross-modal KD.

To address this gap, we introduce the Cross-modal Complementarity Hypothesis (CCH), a simple criterion
based on mutual information which enables the user to a priori decide on whether cross-modal KD can be
successful. We prove the validity of the CCH criterion in simplified scenarios, and test it empirically across a
number of data sets. The primary contributions of this paper are as follows:

¢ Introduction of the Cross-modal Complementarity Hypothesis (CCH), proposing conditions under
which cross-modal KD yields performance gains based on mutual information criteria.

* Proof of the validaty of the CCH criterion in the latent (jointly) Gaussian case.

» Extensive empirical validation through diverse experiments on multimodal datasets, including image,
text, video, audio, and cancer-related omics data, confirming the practical utility of the proposed
CCH criterion and providing actionable guidance for selecting effective teacher modalities.

2 RELATED WORK

2.1 UNIMODAL KD

KD is a powerful technique for transferring the detailed class information learned by a large teacher model to
a smaller student model. Formally, consider a supervised K -class classification problem where both teacher
and student classifiers receive the same input modality X and produce logits over the K classes. Let zg, (X)
and zp, (X)) denote the pre-softmax logits of the teacher and student, respectively. Given a temperature T, we
define the softened outputs

fo,(X;T) = softmax(zg, (X)/T).

The student is trained to minimize a weighted combination of the cross-entropy loss with respect to the
ground-truth labels Y and the distillation loss:

L= (1-X)CE(Y, fo,(X;1)) + NT*KL(fo, (X; T) || fo, (X;T)), (D)

where A € [0, 1] balances learning directly from labels with learning from the teacher’s predictions. The factor
T? compensates for smaller gradients at higher temperatures, and the softened teacher outputs fj, (X;7)
convey richer inter-class relationships than one-hot labels alone (Hinton et al., [2015).

2.2 CROSS-MobAL KD

Cross-modal KD generalizes the unimodal framework to heterogeneous modalities, allowing a teacher with
access to a stronger modality to guide a student with a weaker one. Consider two distinct modalities, denoted
by X; and X», processed by the teacher and student models, respectively. The training objective extends
Eq. equation[I] by appropriately substituting these distinct inputs (Liu et al., 2021):

L= (1= CE(Y, fo,(X2;1)) + AT*KL(fo, (X15T) || fo,(X2;T)). 2)
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Modality gaps Cross-modal KD encounters substantial obstacles due to the inherent modality gap between
the teacher and student data representations. These disparities arise because modalities like images, text, and
audio capture and encode information through fundamentally distinct physical processes and mathematical
formalisms (Hu et al.| [2023; Sarkar and Etemad, [2024} Wang et al.,|2025)). Previous research indicates that
modality gaps lead to both modality imbalance—the disparity in predictive power across modalities—and soft
label misalignment—where the teacher’s outputs do not align with the student’s feature space. Consequently,
these issues severely hinder effective knowledge transfer, thereby diminishing the efficacy of distillation (Huo
et al.,|2024). To mitigate these challenges, several studies have framed cross-modal KD as an information-
maximization problem, proposing that effective transfer is achieved by maximizing the mutual information
between the teacher’s and student’s representations or outputs (Ahn et al.L|2019;|Chen et al.} 2021} [Shrivastava
et al.} 2023 X1a et al., 2023 \Sh1 et al., 2024} L1 et al., [2024).

Theoretical foundations |Vapnik and Vashist (2009) introduced the concept of privileged information” as
data available only during training. This provides a theoretical reason why additional inputs—often from
a different modality—can improve model robustness. This idea naturally applies to cross-modal transfer,
where the teacher’s modality acts as privileged information for the student. Building on this idea, later work
Lopez-Paz et al.| (2015)) unified knowledge distillation with the privileged information framework, providing
both theoretical and causal insights. Recent hypotheses further suggest that the success of cross-modal KD
largely depends on the proportion of label-relevant information shared between teacher and student modalities
(Xue et al., 2023)). Another related hypothesis proposes that domain gaps mainly affect student performance
through errors in non-target classes. Theoretical analyses based on VC theory show that reducing divergence
in these off-target predictions improves student performance (Chen et al.| |2024). Despite these advances, no
previous work has explicitly defined conditions based on mutual information to determine when cross-modal
KD is feasible.

3 THE CROSS-MODAL COMPLEMENTARITY HYPOTHESIS

We study cross-modal KD in settings where the teacher and student models access modalities of unequal
predictive power. Let X; and X denote two data modalities whose intrinsic capacities differ, and let Y be the
ground-truth label. Concretely, we assume X to be the inputs to the teacher network, i.e. the data associated
with the strong modality which is highly predictive of the output labels, while X5 is the weak modality
supplied to the student. The primary goal of cross-modal KD in this context is to transfer the label-relevant
representations from the strong modality X to the weak modality X5, thereby augmenting the student’s
performance. This raises a fundamental question: under what conditions can a teacher operating on a strong
modality effectively compensate for the insufficiencies of a weak modality?

Denote H;, H to be the represenation of X, Xo. Our intuition is that if the mutual information between H;
and Hoy, denoted by I(H;; Hs), exceeds the mutual information between Hs and Y, denoted by I(H»;Y),
the first term in contains more information than the second term, and thus the teacher modality X can provide
the complementary, label-relevant information that X lacks. Also, a large I(H;; H2) indicates substantial
overlap between the modalities, suggesting that the student is capable of interpreting the teacher’s guidance.
This condition ensures that the teacher’s knowledge is sufficiently aligned with the student’s domain to
improve prediction accuracy through distillation.

We thus propose the following Cross-modal Complementarity Hypothesis:

Cross-modal Complementarity Hypothesis (CCH): For cross-modal knowledge distilla-
tion, if

I(Hy;Hy) > I(HyY),
then the teacher modality can supply compensatory information, leading to improved
student performance, where Hy, H5 are teacher and student representations,

In the rest of this section, we support mathematically this intuition in a simple but tractable case.
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Assume that the dataset {(z1;, 2, ¥;) }7, is jointly Gaussian distributed:
L1 " iid Y11 Y12 Ya3
To; N0, | B Bae Yo , 3
Yi i=1 oy B35 a3
where x1;, x2; € RP and y € R. We consider the limit n, p — oo with % — k and the operation norm of
each X;; (1 <4,j < 3) is bounded by a constant.
The associated learning task is a multi-modal (linear) regression problem with data D = {z1;, x2;, ¥i }7;.

The outputs of the teacher and student networks for the i-th sample are w7 21; and w3 x4;, respectively, where
wj and ws are the trainable parameters The cross-modal objective for training the student is given by

2
T
—|— /\E Hw2 o — W] T1j

; “)

w2 .erL

where the first term measures the dlscrepancy between the ground—truth label and the student’s predictions,
and the second term, weighted by )\, enforces alignment between teacher and student outputs.

The excess risk is given by

R()‘v ’LU1) = Em,m,y[(y - (w)Tx2)2] - 027 )
which is regarded as a function of the teacher weights w; (with bounded norm) and the regularization strength
A. We then define Ry := R(0, w1 ) to be the baseline performance, where the teacher is absent and obviously
Ry does not depend on w;. Then we have the following theorem.

Theorem 1. Assume that & > 1 and w¥'S 1w, < Y33, wT X153 > 0. Suppose that I(wizy, (w*)Tzy) >
I((w*)Txy,y), where w* := X5, Sog is the optimal student weight, then we have

R()\, wl) < Ry (6)
asymptotically for small .

Note that wlTlewl < 333, wlTZlg > 0 are mild assumptions that the teacher weights should not be too
large or too misleading. Notably the optimal teacher weight 21_11 X135 satisfies these two assumptions.

Theorem [T suggests that knowledge distillation is beneficial when the mutual information between teacher
and student representations are larger than the mutual information between student representations and the
teacher. It is proved in Appendix [A] For the following we provide an explanation in a non-linear setting. The
training objective for the student network is

N N
Sy = FwTe) | + A |[f(wlz20) — fwTzw)|, (7)
n=1 n=1

which can be equivalently expressed as

:

N
ZHH%(ynJrAf(wlT:vm)) ~ fwiwa)

This formulation can be viewed as substituting the original label y, with the new label +>\ (yn +

A f(w{ z1,)). This new label is more “accurate* if

I(f(w{X1), S5X2) > I(Y, $3Xs). ®)
By applying data processing inequalities, one obtains
I(w]{ X1, $3,X5) > I(f(w] X1), £55X0) > I(Y, $5,X,), ©)

which is the CCH criterion.
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4 EXPERIMENTS

To validate the proposed Cross-modal Complementarity Hypothesis (CCH), we conducted extensive experi-
ments across various datasets, including synthetic data, image, text, video, audio, and cancer-related omics
datasets. To systematically assess how mutual information influences the effectiveness of cross-modal KD, the
teacher and student networks were intentionally configured to have identical architectures in all experiments.
This design choice facilitates a clear and unbiased comparison, isolating mutual information as the primary
variable affecting knowledge transfer effectiveness.

4.1 SYNTHETIC DATA

We generate synthetic data for a regression task by drawing n i.i.d. samples from a zero-mean multivariate
Gaussian model (cf. Eq. [3) over a teacher modality X; € R™*P, a student modality X5 € R™*P_ and a scalar
target Y € R™. To enable controlled analyses, we specialize the Gaussian model by parameterizing all
cross-covariances as scalar multiples of the identity. Specifically,

Yo =012dp, i3 =o013lp, Yoz =o093l,, Var(Y)=1,

where each 0;; € (—1, 1) governs the corresponding pairwise correlation. Under this parameterization,

n

x1i I, o12dp o131y
Toj ~NJ|O0, | o121, I, o231, , (10)
Ys i1 013 1; 0923 1;: 1

so that 1(X1; X5), I(X1;Y), and I(X2;Y") are monotone in 012, 013, and 023, respectively.

Unless otherwise stated, we set n = 10000 and p = 100. To study how student performance varies with
cross-modal dependence, we fix the teacher—label correlation at 013 = 0.9 and the student-label correlation
at 093 = 0.4, and vary 012 € [0,0.7] to maintain positive semidefiniteness of the covariance.

Figure E] summarizes the results. Panel E] reports the student test mean squared error (MSE) as 012
varies; each point averages ten random seeds. Panel shows mutual information (MI) between learned
representations: I(Hi; Hy) for teacher X; and student X, and I(Ho;Y) for the student and the label.
We extract representations H; and Hs from each network’s feature extractor and estimate MI using the
latentmi estimator (Gowri et al.,[2024).

Empirically, knowledge distillation (KD) reduces MSE precisely when I (H1; Ho) > I(H2;Y') and provides
no benefit otherwise. This pattern supports the Cross-modal Complementarity Hypothesis (CCH): the teacher
contributes complementary, label-relevant information when its representation shares more information with
the student than the student shares with the label. Additional experiments across distillation weights A
(Appendix [B)) corroborate this trend.

4.2 IMAGE DATA

We conduct classification experiments on the MNIST (LeCun et al.,|1998) and MNIST-M datasets (Ganin and
Lempitsky}, 2015). MNIST is a standard benchmark of 70,000 handwritten digits (0-9), each a 28 x 28-pixel
grayscale image with a corresponding label. MNIST-M is derived by blending the binarized MNIST digits
onto random natural-image patches from the BSDS500 dataset (Martin et al., 2001); thus, it represents a
distinct modality while sharing identical labels with MNIST (see Figure[6|in Appendix [C).

We treat MNIST as the teacher modality and MNIST-M as the student modality. First, we compute the mutual
information between the teacher and student representations, I7s = I (H MNiIsT; H; MNIST_M), and between

the student represntations and labels, Ig;, = 1 (HMNIST_M; Y), using the latentmi estimator (Gowri
et all[2024). We then follow the protocol in Algorithm [T| (Appendix [C)). During distillation, we systematically
vary Irgs by applying Gaussian blur with standard deviation +y to the teacher inputs, and assess whether the
student’s accuracy gains correspond to the CCH condition I7s > Igr..
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(a) Student MSE vs. o12. (b) Representation MI vs. o12.

Figure 1: Synthetic regression experiments. When I(Hy; H) exceeds I(Ho;Y), the KD-trained student
achieves lower test MSE than a non-distilled student; otherwise, KD provides no improvement.
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Figure 2: Relationship between student accuracy and mutual information under varying Gaussian blur. (a) Test
accuracy of the MNIST-M student trained with (solid line) and without (dashed line) distillation as a function
of Gaussian blur standard deviation  applied to MNIST teacher inputs. (b) Mutual information I7g =
I(Hynist; HyvNist-m) (red) and Isy, = I(HynistMm; Y) (purple) versus «. Accuracy improvements align
with the region where I7s > Igy,. For reference, I, = I(Hynist; Y) = 2.0485, and the teacher network
attains a test accuracy of 0.981.

Figure 2] illustrates the impact of varying Gaussian blur intensity -y on both the student’s test accuracy and
the corresponding mutual information when the distillation temperature is at 7" = 3 (see additional results
in Appendix [C)). Results are averaged over five independent runs. Panel (a) compares the test accuracy of
students trained with and without distillation; panel (b) plots I7s and I, as functions of . We observe that
whenever ITg > Isr, knowledge distillation improves accuracy relative to the baseline, in agreement with
the CCH. For v > 2.5, I1g falls below Igy,, leading to a collapse in the distilled student’s performance.
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Table 1: Mutual-information gap and student accuracy differ under varying blur and
temperature.

5 MI GAP (nats) Student Acc. Diff. (£ SE)

T=1 T=2 T=3 T=4

0.0 0.4399 0.0010 + 0.0040 0.0146 + 0.0035 0.0318 + 0.0040 0.0350 + 0.0046
05 0.2662 0.0069 + 0.0054 0.0152 4 0.0055 0.0296 + 0.0031 0.0353 4 0.0028
L5 0.0199 0.0002 4 0.0089 0.0149 4 0.0034 0.0156 4 0.0042 0.0091 =+ 0.0051
2.5 —0.0032 —0.1190 £ 0.0165  —0.1627 £ 0.0101  —0.1757 £0.0219  —0.1516 + 0.0154
35 —0.1590 —0.2797 £ 0.0126  —0.4597 + 0.0041  —0.4623 £ 0.0209  —0.4364 + 0.0137

Table 2: Mutual information estimates between CMU-MOSEI modality representations and the label using
three estimators (mean =+ std over 50 runs).

Estimator I(Htext§ Hvision) I(Htext§ Haudio) I(Htext; Y) I(Hvision; Y) I(Haudio; Y)

latentmi 1.3543 £0.0052 1.4160 4+ 0.0038 0.4681 £ 0.0090 0.0816 #+ 0.0084 0.1054 £ 0.0088
mine 0.7955 £+ 0.0019  1.1817 £0.0023 0.3202 £ 0.0055 0.0409 4+ 0.0026  0.0631 + 0.0026
ksg 0.3788 £ 0.0056  0.6606 4= 0.0056 0.1628 £ 0.0083 0.0647 4+ 0.0014 0.0934 £ 0.0018

Table 3: Student performance versus mutual information on CMU-MOSEI with text as teacher. The teacher
achieves test accuracy 0.7190 =+ 0.0098 and weighted F1 0.7189 £ 0.0098; I ( Hext; Y') = 0.4681 £ 0.0090.
Mutual information is estimated with latentmi.

Student Without KD Student With KD
I(Hyeacher; Hstudent) I(Hstudcnt 5 Y)

Acc Weighted F1 Acc Weighted F1

Text (teacher)
Vision (student)

Text.(teacher) 1.4160 £ 0.0038 0.1054 £+ 0.0088  0.5937 +0.0048 0.5931 +0.0043 0.6167 = 0.0030 0.6161 £ 0.0031
Audio (student)

1.3543 £ 0.0052 0.0816 £0.0084  0.6233 £ 0.0027  0.6204 £ 0.0030  0.6343 £ 0.0013  0.6315 % 0.0022

We further explore the effect of the distillation temperature 7' € {1,2, 3,4} in Table Here, MI GAP denotes
Irs — Isy, and Student Acc. Diff- is the difference in test accuracy between the distilled and baseline students.
SE denotes the standard error estimated from five independent runs. Across all blur levels and temperatures,
the sign of the Student Acc. Diff. matches that of the MI GAP, reinforcing the CCH. We remark the very
non-linear behaviour of the student’s accuracy w.r.t. the MI GAP; while the gain remains modest for positive
MI GAP, as soon as the MI GAP changes sign we document a very large drop in student accuracy.

4.3 CMU-MOSEI DATASET

We evaluate the CCH on the CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
dataset (Zadeh et al. [2018). CMU-MOSEI is a large-scale benchmark for multimodal sentiment analysis
comprising 23,453 annotated video segments with time-aligned text, vision, and audio streams drawn from
1,000 speakers across 250 topics.

The task is binary sentiment classification. Following standard practice, we binarize the original integer
sentiment scores into positive and negative labels. Each utterance is converted into synchronized, fixed-
length sequences for all three modalities using a uniform preprocessing pipeline; full details are provided in

Appendix

To operationalize the CCH, we estimate mutual information (MI) between (i) each pair of modality rep-
resentations and (ii) each modality representation and the label. We employ three complementary estima-
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Table 4: Student weighted F1 versus mutual information on the CMU-MOSEI dataset under varying levels of
Gaussian noise (text teacher, vision student).

Noise level  I(Hteacher; Hstudent ) I(Hstudent; Y) Student KD F1 Student No-KD F1

0% 1.3543 £ 0.0052 0.0816 +0.0084  0.6204 £ 0.0030  0.6315 £ 0.0022
20% 0.0034 £ 0.0040 0.0816 £ 0.0084  0.6204 £ 0.0030  0.6192 £ 0.0062
40% —0.0007 £ 0.0045 0.0816 +0.0084  0.6204 £ 0.0030  0.6189 £ 0.0039
60% —0.0056 £ 0.0058 0.0816 £ 0.0084  0.6204 £ 0.0030  0.6184 £ 0.0022
80% —0.0060 £ 0.0053 0.0816 +0.0084  0.6204 £ 0.0030  0.6156 £ 0.0033

Table 5: Student weighted F1 vs. mutual information on BRCA under varying Gaussian noise levels (feacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.7459 and I (Hteacher; Y) = 1.1081. “MI
Gap” denotes Itg — Igy,; “Student F1 Difference” denotes (Student KD F1) — (Student No-KD F1).

Noise Level  I(Hieacher; Hstudent) I(Hstudent;Y) Student KD F1  Student No-KD F1 ~ MI GAP  Student F1 Differ

0% 0.5005 0.2757 0.5038 0.4561 0.2248 0.0477
20% 0.4554 0.2757 0.4917 0.4561 0.1797 0.0356
40% 0.3687 0.2757 0.4953 0.4561 0.0930 0.0392
60% 0.2147 0.2757 0.4276 0.4561 -0.061 -0.0285
80% 0.1325 0.2757 0.4343 0.4561 -0.1432 -0.0218

tors—latentmi (Gowri et al.,[2024), mine (Belghazi et al.,|2018)), and ksg (Ross, 2014)—and average
results over 50 independent runs (Appendix [F). As shown in Table[2] absolute MI values vary by estimator,
but the relative ordering is consistent.

The MI patterns in Table [2| identify text as the most predictive modality, since I(Hiext;Y) is largest.
Accordingly, we designate text as the teacher and treat vision and audio as student modalities. As reported in
Table [3| KD yields significant gains over the no-KD baseline for both students. Moreover, Table [2| shows
that I( Hiext; Hvision) > I(Hyision; Y) and I( Hyext; Haudio) > I(Haudio; Y'), satisfying the CCH condition.
Taken together, these observations support the CCH. The improvement is larger for audio, consistent with its
greater MI gap Itg — Ig1, (teacher—student vs. student—label MI of representations), suggesting a positive
association between the gap magnitude and KD efficacy.

To further probe the CCH, we conduct a controlled degradation experiment on the text (teacher) —vision (stu-
dent) setting. We inject Gaussian noise into the teacher input to systematically reduce I(Hyeacher; Hstudent )
while holding I (Hggudent; Y') fixed. As predicted, the benefit of KD disappears once I(Hieacher; Hstudent) <
I(Hstudent; Y) (Table E])

4.4 CANCER DATA

We analyze three The Cancer Genome Atlas (TCGA) cohorts (Colaprico et al., 2016)): breast invasive
carcinoma (BRCA), pan-kidney (KIPAN), and liver hepatocellular carcinoma (LIHC). For each cohort, we
consider three omics modalities—mRNA expression (mRNA), copy number variation (CNV), and reverse-
phase protein arrays (RPPA)—and retain only cases with complete data across all three. The learning task is
subtype classification; Table [I9]in Appendix [E|reports class distributions. To reduce noise and dimensionality,
we preprocess each modality independently and select the top 100 features from the original sets of 60,660
(mRNA), 60,623 (CNV), and 487 (RPPA) using the minimum-redundancy maximum-relevance (mRMR)
criterion (Ding and Peng| 2005)).

We first set mRNA as the teacher and CNV as the student and estimate

Its=I(Hwmrnas Honv), Is=1I(HenvysY),
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Table 6: Student weighted F1 vs. mutual information on KIPAN under varying Gaussian noise levels (feacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.9516 and I (Hieacher; Y) = 1.0458.

Noise Level  I(Hieacher; Hstudent) I (Hstudent;Y) Student KD F1  Student No-KD F1 ~ MIGAP  Student F1 Differ

0% 0.7898 0.6994 0.8826 0.8667 0.0904 0.0159
20% 0.7198 0.6994 0.8721 0.8667 0.0204 0.0054
40% 0.6771 0.6994 0.8517 0.8667 -0.0223 -0.0150
60% 0.6209 0.6994 0.8477 0.8667 -0.0785 -0.0190
80% 0.6389 0.6994 0.8544 0.8667 -0.0605 -0.0123

Table 7: Student weighted F1 vs. mutual information on LIHC under varying Gaussian noise levels (teacher:
mRNA; student: CNV). The teacher achieves test weighted F1 of 0.9430 and I(Hieacher; Y) = 0.9055.

Noise Level  I(Hieacher; Hstudent) I (Hstudent;Y) Student KD F1  Student No-KD F1 ~ MIGAP  Student F1 Differ

0% 0.0914 0.0781 0.5795 0.5548 0.0133 0.0247
20% 0.0825 0.0781 0.5692 0.5548 0.0044 0.0144
40% 0.0699 0.0781 0.5368 0.5548 -0.0082 -0.0180
60% 0.0736 0.0781 0.5259 0.5548 -0.0045 -0.0289
80% 0.0409 0.0781 0.5080 0.5548 -0.0372 -0.0468
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Figure 3: Multimodal fusion architectures: direct fusion (left) and Fusion+KD (right).

Table 8: Overall multimodal performance of direct fusion and Fusion+KD on KIPAN, reported with mutual
information of modality representations (teacher—label, teacher—student, student—label).

Mutual Information Fusion Fusion+KD

Teacher—Label ~Teacher—Student  Student-Label Acc AUC  MacroF1  Weighted F1 Acc AUC  Macro F1 = Weighted F1

mRNA (teacher)

CNV (student) 1.0458 0.7898 0.6994 0.9610 0.9851  0.9219 0.9591 0.9740 0.9872  0.9293 0.9725
RPPA (teacher)
CNV (student) 1.1609 0.6893 0.6994 0.9740 0.9995  0.9333 0.9721 0.9610 0.9971 0.9225 0.9595

using the latentmi estimator. To modulate ITg, we add zero-mean Gaussian noise to the teacher inputs.
Tables [5H7|report student weighted F1 and mutual information as functions of the noise level (means over
five runs). Across cohorts, whenever the MI Gap is positive (Ig > Igr,), distillation improves the student’s
weighted F1; when the gap becomes negative, the benefit vanishes or reverses, in line with the CCH.

To extend from single-student distillation to multimodal learning, we compare two fusion strategies—direct
fusion and fusion with knowledge distillation (Fusion+KD; Fig. [3). On KIPAN (Table [8} additional results in
Appendix [E), mRNA as teacher yields I1g > I, and Fusion+KD outperforms direct fusion. In contrast,
with RPPA as teacher we have It < Ig1,, and direct fusion is superior. These results suggest a practical
design rule: incorporate KD in fusion only when Itg > Igy,.
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5 CONCLUSION

This paper introduced the Cross-modal Complementarity Hypothesis (CCH), a framework for explaining
when cross-modal knowledge distillation (KD) improves performance in multimodal learning. The CCH
offers a tractable, a priori criterion for success: distillation is beneficial when the mutual information between
teacher and student representations exceeds that between the student representation and the labels. We
validated the hypothesis with a theoretical analysis in a joint Gaussian model and with experiments spanning
synthetic Gaussian data and diverse real-world modalities—image, text, video, and audio—as well as three
cancer omics datasets.

Our results highlight mutual information as a reliable predictor of cross-modal KD efficacy, yielding both
theoretical insight and practical guidance for selecting teacher modalities to strengthen weaker ones.

10
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REPRODUCIBILITY STATEMENT

The source code underpinning the experiments and analyses presented in this manuscript has been made
accessible via an anonymized GitHub repository:

https://anonymous.4open.science/r/test-111/.

All experiment details are presented in Appendices
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A THEORETICAL ANALYSIS

Here we prove a more complete version of Theorem I}

Theorem 2. For k > 1 and almost every )\, there exists wy such that R(A\, w) < R(\,0) asymptotically.
Moreover, for \ small enough, we have R(\, W) < Ry asymptotically if wi 11wy < Y33, wl ¥13 > 0 and
I(wlzy, (w)Tze) > I(w*) T xg,y).

Proof. The optimization problem eq. () is equivalent to

n 2
b = arglgizn;\ G — whaa (11)
where the effective label is given by
i 1
Yi = m(yz + )\w{mli). (12)
It satisfies 7j; = wT z9; + N(0,52), where
1 -
W = 1+7)\2221(223 + AZT5w1) (13)
and
52 = E[§?] — 0 Loomw. (14)
According to Theorem 3 of Chang et al.| (2021), the estimator w can be expressed asymptotically as
o172
=+ o—2-9_ (15)
p(k—1)
where g ~ N (0, I,,). Thus the asymptotics of R(\, wy) is
_ 1
R\ w1) = (0 — w*) Lo (0 — w*) + &2 .
K —
A2 —1yT T —152T *
= m(zzz Eipwr — w")" Bap (g, Xipwr — w')
1 1 " X * -
+ 72[233 — (w )TZQQU) + 2)\1{],{(213 — 212’11] ) + )\211){(211 — 21222212{2)11)1],
k—1(14+X)
(16)
where we denote w* = 2521223 to be the optimal weight. Here “asymptotics” means that

limy, oo P (sup‘|w1||<M IR\, wy) — R\, wy)| > 6) = 0 for any € > 0. Taking the derivative of R
w.r.t. w1, we have that the optimal w; is given by

(X153 — X1w”). (17)

_ 1 _ .
A {2{22221212 + ﬁ(zu — 21222212{2)] wy, = )\Z{Qw — ﬁ

This gives an optimal w; for almost every A. The optimal w; is non-zero and different from the optimal
teacher weight w* for almost every A. For the special case X135 — 21222_21223 = 0 (i.e. 1 and y are
independent conditioned on x3), the optimal surrogate weight is given by

wy = (k= 1)(S11 + (k — 2)81255, 1) 7' S hw, (18)

which does not depend on .
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Moreover, for small )\, we have

_ 1 1

2\
R()\, wl) = (233 — (w*)TEQQUJ*) + 711)?(213 — Zlgw*) + O()\2), (19)

k—1(1+A)2 Kk—1
and thus R(\,w;) < R(0,w;) for small \ if
T (D13 — 12855 Y3) — (B33 — (w*) T Boow™) < 0. (20)

Now we define the correlation between wyx; and w*zs to be

T *
« wl Zlgw
plwrzy, way) = . 21
\/wale \/(w*)TEQQU/*
Similarly we define
T
wl 213
p(wiz,y) = (22)
\/U){le’wl \/(’LU*)TEQQ'U}*
and .
* E * TE *
o'z, y) = — i) 22 V) Yo (23)
V (w*)TEgow* /X33 Vi3s3
Then the condition equation [20] becomes
1— * 2 )
p(wiz, wss) > p(wixby) N p(l:/ 2,Y) T 24)
p(w any) p(w T2, y) Vwi Xiiwg
Therefore, if I(w?zy, (w*)Tze) > I((w*)Txq,y) we have
. . 1 1 — p(w*za, y)?
p(wizy, w'es) > p(w as,y) = —— - p(* 29)
p(w*zs,y) p(w*az,y) 25)

S Plwzny) 1 —plw*za,y)®>  VZs3

~ plwrze,y) p(w*z2,y) /T Sw;

Thus the condition equation20]is satisfied and we have R(\, w;) < R(0,wy ). For the first inequality we use
I(A,B) = —%log(1 — p(A, B)?) for Gaussian variables A, B and the fact that p(w*z2,y), p(w121,y) > 0

if w{ X153 > 0. The last inequality is from p(w;z1,7) < 1 and W VTE“ < 1. This finishes the proof. [

wy Euwl

For completeness we also prove that knowledge distillation might help in the overparameterization regime.
Theorem 3. For k < 1 and almost every A, there also exists wy such that R(\,w1) < R(), 0) asymptotically.

Proof. For k < 1 we are in the overparameterization case and thus we consider the minimal norm estimator

A . 1
w= argmuin{“m P2 I i el ) — wle* = 0}. (26)
i=1
We can rewrite it as
. O . "o T 2
= — : —Y; — % =0 ) 27
w Uargrrgn{llwl ;\|5y W’z } 27)

where we recall that the effective label satisfies 23; = Zw” z2; + N (0, 02).
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Then we can use (Ildiz et al.,[2024, Theorem 4) for the function f(z) = HZééz(gx — w*)||? to obtain the
following asymptotic excess risk

R()\, wl) :(’LUS — w*)T91T22201 (ws — ’LU*) + 'y(wS)Egt [9522292]

(28)
+ ’U)*(I — 91)T§]22(I — Gl)w* — 2(w*)T(I - 91)T§]2201(w5 - w*),
where we denote w, := Zw and 7 to be the solution of x = %tr((Zgg +71)7189),
o _ o —1vw1/2 Gt
th = ;(222+TI) 'S99, O = ;(222+7'I) 1224 %’ 29
and g; ~ N(0, I,,). Moreover, v(ws) is given by
o 024725 (S 4 7I) w2
Y (ws) =k 1 —ov2 (30)
1-— Etr((Zgg + TI) 222)
The results can be simplified to
_ 52 . B o 0% 024 72|20 (San + 7) L2
R(\ wy) :E(ws—w )25, (Bag + 7I) "2 (ws — w )—i—;ﬂ 22179
(31)

o, . _ o .
- 2;(10 )82, (Ban + 71) 7% (Sog 4+ 71 — 5222)(105 —w")
o
+ w*(ZQQ + 71 — 5222)2(222 + TI)_QEQQ’U)*,

where we denote 2 := Ltr((Sg + 71)72%3,). Therefore, the optimal wy is given by the saddle points of
equation [31] where

o N _
ws;z(fiiﬁé(w + A5 Yiowy ) (32)
and )
o= m 0'2 + 2/\10?(213 — 21211)*) —+ )\211}{(211 — 21222_212,{2)101. (33)
O

B EXPERIMENTAL DETAILS AND RESULTS FOR SYNTHETIC DATA

We evaluate the Cross-modal Complementarity Hypothesis (CCH) on a controlled synthetic regression
benchmark. We generate n i.i.d. samples {(X7 ;, X2, Y;)}™ , as follows:

Y; ~ N(0,1),
Xo,i | Yi ~ N(o23Yi 1, (1— U%a)lp)»
X1 | X2, Y5 NN(GXQ,i +0Y;, vIp)a
where

2 2
012 — 013023 013 — 012023 v717012+013*2012013023

bp=1-02, a= p , b= 9 , P

Both teacher and student use the fully connected architecture in Table 9] We train on 10000 samples and
hold out 1000 for testing. Models are optimized with Adam (learning rate 0.01) for 300 epochs; full settings

appear in Table
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Figure 4: Test MSE on synthetic regression data for varying distillation weight \. Orange dashed curves:

student with KD; blue dashed curves: student without KD.

Figure @] reports test mean-squared error (MSE) as a function of the inter-modality correlation o1 for distilla-
tion weights A € {0.2,0.5,0.7,0.8}. Because varying only A does not change the learned representations’
mutual information (MI), the MI curves coincide with those obtained at A = 0.3 (see Fig.[T). From Fig. 4]
when o5 is large (e.g., 012 = 0.7, indicating strong teacher—student alignment), distillation improves the
student provided two conditions hold: (i) the CCH criterion I(H1; Hs) > I(H2;Y') and (ii) a sufficiently
small X to avoid over-regularizing toward the teacher. This behavior is consistent with Theorem T}

Table 9: Network architecture for synthetic experiments.

# Units

Activation

Layer

Input 100
Linear 64
Linear

ReLU

To directly address the more realistic setting where the teacher has higher capacity than the student, we have
now performed an additional synthetic experiment in which the teacher network is strictly larger than the

student.
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Table 10: Training configuration and dataset details for synthetic experiments.

Item Value

Training dataset ~ Synthetic Gaussian
Train/Test split 10,000 / 5,000

Optimizer Adam
Learning rate 0.01
Epochs 300

The detailed architectures of the teacher and student networks are reported in Tables[T1|and[I2] respectively,
and the training configuration is summarized in Table [[3] As shown, the teacher is a wider multilayer
perceptron with hidden layers of sizes 128 and 64, while the student uses significantly smaller hidden layers
of sizes 32 and 16.

Table 11: Teacher network architecture for synthetic experiments.

Layer Units  Activation
Input layer 100 -
Linear layer 128 ReLU
Linear layer 64 ReLU
Linear layer 1 -

Table 12: Student network architecture for synthetic experiments.

Layer Units  Activation
Input layer 100 -
Linear layer 32 ReLU
Linear layer 16 ReLU
Linear layer 1 -

The results are reported in Figure] Panel[bd shows the student test MSE with and without KD as a function
of the teacher-student correlation o2, while Panel[5D|reports the corresponding mutual information between
representations, I(Hy; Ho) and I(Ho;Y'). Consistent with our Cross-modal Complementarity Hypothesis
(CCH), we again observe that KD is beneficial precisely in the regime where I[(Hy; Hy) > I(H;Y).
Moreover, comparing these results with the equal-architecture setting, we find that when the teacher has
higher capacity than the student, the performance gains from KD are larger: the KD-trained student achieves
a more pronounced reduction in test MSE relative to its no-KD counterpart. This indicates that our CCH-
based criterion continues to predict KD effectiveness even when teacher and student have different capacities,
and that a higher-capacity teacher can further amplify the benefits of cross-modal distillation rather than
being an artifact of using identical architectures.

C EXPERIMENTAL DETAILS AND RESULTS FOR IMAGE DATA

We evaluate our approach using the MNIST (LeCun et al.l|1998)) and MNIST-M (Ganin and Lempitskyl [2015))
datasets. MNIST comprises 70,000 28 x 28 grayscale images of handwritten digits (0-9). MNIST-M adapts
these digits by blending them onto natural-image backgrounds sampled from the BSDS500 dataset (Martin
et al., [2001)), resulting in colored images with identical labels (Figure |§[) Below, we detail the MNIST-M
construction, the network architecture, training configuration, and additional results for varying blending
coefficients.
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Table 13: Training configuration and dataset details for synthetic experiments.

Training Parameter Value
Dataset Synthetic data
Train/Test split 10,000 / 5,000
Optimizer Adam
Learning rate 0.02
Epochs 300
(013=0.9, 023=0.4, A=0.5) Representation-level mutual information
0.0100 -#- student (No KD) —k— HH1;H2)
Student (with KD) 0.4 Hz:Y)
0.0098 A o
0.0096 1 | | <03
% 0.0094 - lé
I I e e e, et -9 -——-9 £ 02
0.0092 £
0.0090 - | 2014 ®
0.0088 k/’f’/
0.0+
0:0 0.‘1 0.‘2 0:3 0:4 0.‘5 0.‘6 O.I7 0.‘0 0:1 0.'2 0.‘3 0.‘4 0.‘5 0.‘6 0:7

(a) Student MSE vs. o12. (b) Representation MI vs. o12.

Figure 5: Regression results on synthetic data when the architectures of teacher network is larger than that
of student network. Results demonstrate that when the correlation between teacher modality and student
modality (o13) surpasses the correlation between student modality and label (23 = 0.4), the student network
trained with KD achieves consistently lower test MSE compared to training without KD.

2
&
o
7
0
9
#
f(

SR Y ) — —
BXRY &% W

&5 L
NIST MNIST-M

Figure 6: Sample images from MNIST (left) and MNIST-M (right).
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Algorithm 1: Cross-modal knowledge distillation protocol for image data

Input: MNIST and MNIST-M datasets

Output: Test accuracy of student with and without distillation

1: Teacher pretraining: Train a teacher network on MNIST;

2: Student baseline: Train a student network on MNIST-M using only ground-truth labels;
3: Distillation:;

4:  Freeze teacher parameters;

5:  for each Gaussian blur level ~y do

L 6: Apply Gaussian blur of intensity ~y to teacher inputs;

7 Obtain soft targets from the frozen teacher;
8: Train a new student on MNIST-M using both labels and soft targets (Eq. ;

9: Evaluation: Evaluate both student models on the MNIST-M test set;

To generate each MNIST-M image, we first binarize the original MNIST digit via thresholding and replicate
the resulting single-channel image across the red, green, and blue channels, ensuring compatibility with
RGB-based network architectures while preserving the digit’s grayscale silhouette. We apply a luminance-
preserving transformation to convert BSDS500 patches to grayscale, matching the teacher modality. We then
extract a random 28 x 28 patch Iggpg from the processed BSDS500 images and compute:

Ivnist™m = o Innist + (1 — o) Igsps,

where o € [0, 1] controls the digit’s prominence over the background. Having specified the MNIST-M
construction, we conduct training and evaluation according to Algorithm |1} For the experiments in Figure
and Table[T] we set a = 0.2.

Both teacher and student models share the architecture listed in Table 14| and the training parameters in
Table [I3] We train using stochastic gradient descent (learning rate 0.002, 100 epochs) with a distillation
temperature of 7' = 3 and a loss weight A = 0.5. All experiments were executed on an NVIDIA A100 GPU.

Table 14: Network architecture for image experiments.

Operation Size  Activation
Input — Linear layer 1024 LeakyReLU
Linear layer 256  LeakyReLU
Linear layer 10 -

Table 15: Training configuration and dataset details for image experiments.

Training Dataset MNIST / MNIST-M

Train/Test Split 60000 / 10000
Optimizer SGD
Learning Rate 0.002
Epochs 100

T 3

A 0.5

Table [16] presents results for @ = 0.18 under the same settings. First, the sign of the student accuracy
difference (Student Acc Diff) precisely matches that of the mutual-information gap (MI GAP), thereby
confirming the CCH. Second, compared to the a = 0.2 setting shown in Figure 2] the lower blending weight
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reduces the mutual information shared between the MNIST (teacher) and MNIST-M (student) modalities.
This reduction in shared information corresponds to a diminished—sometimes negative—distillation gain,
demonstrating that student performance declines as the teacher—student mutual information decreases.

Table 16: Experimental results for the MNIST/MNIST-M dataset for o = 0.18. MNIST is the teacher
modality and MNIST-M is the student modality. The teacher network achieves a test accuracy score of
0.9812 + 0.0003 and I (Hieacher; Y) = 1.9095.

Gamma Level  I(Hieacher; Hstudent) {(Hstudent;Y) Student KD Acc  Student No-KD Acc  MIGAP  Student Acc Diff

0 1.3956 1.2685 0.8484 £ 0.0019 0.8338 £+ 0.0034 0.1271 0.0146 + 0.0052
0.5 1.2949 1.2685 0.8425 + 0.0042 0.8338 £ 0.0034 0.0264 0.0087 £ 0.0070
L5 1.2533 1.2685 0.8296 £ 0.0017 0.8338 £ 0.0034 -0.0152  —0.0042 £ 0.0034
2.5 0.9472 1.2685 0.6216 £ 0.0243 0.8338 4 0.0034 -0.3213  —0.2122 £ 0.0232
35 0.7817 1.2685 0.3325 £ 0.0179 0.8338 4+ 0.0034 -0.4868  —0.5013 £ 0.0190

D EXPERIMENTAL DETAILS FOR CMU-MOSEI DATA

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset contains 23,453
video segments annotated for sentiment and emotion. Each segment includes time-aligned transcriptions,

audio, and visual data, providing three distinct modalities. Our preprocessing protocol for these modalities is
detailed in the Algorithm 2]

Algorithm 2: MOSEI Preprocessing Protocol

Input : CMU-MOSEI utterance-level dataset: text; time-aligned audio & visual feature streams.
Data & splits: Use the official train/validation/test partition.
Text: Tokenize texts and map tokens to pretrained word embeddings; treat one token = one timestep.
foreach utterance u in the dataset do
Temporal alignment: Find the first non-padding token index s in text(u); slice text/audio/vision to
start at s (text defines the time base).
Length control: For each modality, truncate to at most L=50 steps, then right-pad with zeros to
exactly L.
Labels: For classification, set y=1 if sentiment score >0, else y=0.
Batching: Collate as (vision, audio, text, label) to form shapes (B, L, D,,), (B, L, D,,), (B, L, D;);
labels (B, 1); here D,, = 713, D, = 74 and D; = 300.

The network architecture is identical for all three modalities and is specified in Table[I7] The architecture
includes a temporal mean-pooling layer, which operates as follows: for a given batch of sequences X €
RE*LXD "the layer averages feature vectors across the time dimension L to produce an output Z € RB*D,
where:

L
1
Zyg = Z;X*”l’d (b=1,...,B;d=1,...,D).

The training configuration details are consistent across all models and are summarized in Table [T§]

E EXPERIMENTAL DETAILS AND RESULTS FOR CANCER DATA

For cancer data, Table [T9] summarizes the subtype distributions. For the experiments of Tables the
teacher and student networks share the same architecture used in the synthetic data experiments (see Table [9).
Table [20[ summarizes the training configurations and dataset splits for the three cancer cohorts.
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Table 17: Network architecture for the CMU-MOSEI experiments.

Operation Size Activation
Input (Bx Lx D) — Temporal Mean-Pool — Flatten BxXxLxD — BxD -
Linear Layer D — 256 ReLU
BatchNorm1d + Dropout (p=0.3) - -
Linear Layer 256 — 128 ReLU
BatchNorm1d + Dropout (p=0.3) - -
Linear Layer (Classifier Head) 128 — 2 -

Table 18: Training configuration and dataset details for CMU-MOSEI experiments.

Training Dataset CMU-MOSEI
Train/Validation/Test Split 70% 1 10% / 20%

Optimizer AdamW

Learning Rate 0.0005

LR Schedule CosineAnnealingLR (T1,ax = epochs, Nyin = 0)
Epochs 100

Temperature (1) 4.5

Distillation Weight (\) 0.5

We evaluated two multimodal fusion strategies: direct fusion and fusion with knowledge distillation (Fu-
sion + KD) (Table[8)). Both strategies adopt the architecture in Table [2I] which uses separate encoders for
each modality followed by feature concatenation (see Figure [3); each encoder comprises 64 units. In the
cross-modal distillation protocol (Tables [5H7), we pretrained the teacher network on its modality and then
used its soft targets to guide the student (Algorithm[I)). By contrast, the fusion experiments train both encoders
jointly—without teacher pretraining—while applying a distillation loss to transfer knowledge. Table 22]lists
the corresponding training parameters.

To demonstrate the generality of our approach beyond the KIPAN cohort, we also conducted experiments
on BRCA data. Table 23|reports the performance metrics for direct fusion and Fusion + KD, and Table [24]
lists the corresponding training settings. Across all teacher—student pairs, the mutual information between
teacher and student representations consistently exceeds that between student representations and labels, and
the Fusion+KD strategy outperforms direct fusion, thereby corroborating the CCH.

We further consider a three-modality fusion setting that jointly uses mRNA, RPPA, and CNV. On BRCA, mRNA
exhibits the highest mutual information with the label, whereas CNV has the lowest. Guided by the CCH, we
therefore apply KD only from mRNA to CNV (treating mRNA as the teacher and CNV as the student), while
all three modalities are fused at prediction time. The resulting performance is reported in Table 23] These
reults are also align with the CCH.

F METHODS FOR MUTUAL INFORMATION ESTIMATION

Mutual information quantifies the dependency between random variables, but its estimation remains chal-
lenging, especially when the underlying probability distributions are unknown. Exact mutual information
computation is tractable only for small datasets with known distributions. To address this limitation, Kraskov:
et al.|(2004)) introduced a k-nearest neighbors (kNN) estimator for mutual information between continuous
random variables. This estimator was further extended by |Ross|(2014) to handle cases where one variable is
discrete and the other continuous—a critical adaptation given that many real-world datasets involve mixed
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Table 19: Subtype distribution for the BRCA, KIPAN, and LIHC cohorts.

BRCA KIPAN LIHC
Normal-like: 44
Basal-like: 129 KICH: 63 Blast-Like: 39
Subtypes HER2-enriched: 49  KIRC: 492 CHOL-Like: 18
Luminal A: 338 KIRP: 212  Liver-Like: 113

Luminal B: 267

Table 20: Training configuration and dataset details for cross-modal distillation experiments on BRCA, LIHC

cancer data.

Training Dataset BRCA, LIHC
Train/Test Split 90% / 10%
Optimizer

Learning Rate

Epochs

Temperature (1)
Distillation Weight (\)

data types. More recent approaches, such as Mutual Information Neural Estimation (MINE) (Belghazi et al.,
2018)), leverage neural networks to estimate mutual information between high-dimensional continuous vari-
ables. Additionally, a novel method known as latent mututal information (LMI) has been developed (Gowri
et al.} 2024), which applies a nonparametric mutual information estimator to low-dimensional representations
extracted by a theoretically motivated model architecture.

Table 21: Layer-by-layer specification for multimodal fusion experiments on cancer data.

Branch Layer /0 Act.  Notes

Modality 1 Linear NinputMod1 — Nenc ReLU  FC projection
BatchNorm1d Nenc — Nenc — Normalization
Dropout TNenc — p=0.25

Modality 2 Linear NinputMod2 —* Nenc ReLU FC projection
BatchNorm1d Tenc — Menc — Normalization
Dropout Tenc — p=0.25

Fusion & Classification Concat 2 Nenc — Merge embeddings

Linear (fusion)
Linear (modality)

2 Nenc —7 Nclasses
Tenc =7 Nclasses

Joint-feature logits
Modality-specific logits
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Table 22: Training configuration and dataset details for multimodal fusion experiments on KIPAN data.

Training Dataset KIPAN
Train/Test Split 90% / 10%
Optimizer Adam
Learning Rate 0.007
Epochs 200
Temperature (1) 1
Distillation Weight (\) 0.5

Table 23: Overall multimodal performance of direct fusion and Fusion+KD on BRCA, reported with mutual
information of modality representations (teacher—label, teacher—student, student—label).

Mutual Information Fusion Fusion+KD

Teacher-Label ~Teacher-Student Student-Label — Acc AUC  MacroF1  Weighted F1 Acc AUC  MacroF1  Weighted F1

mRNA (teacher)
CNV (student) 1.1081 0.5057 0.2757 0.7711 09157  0.6432 0.7563 0.8434 0.8610  0.6533 0.8225
RPPA (teacher)
CNV (student) 0.7328 0.3367 0.2757 0.5663 0.7844  0.5604 0.5715 0.6024 0.7929  0.5897 0.6103

Table 24: Training configuration and dataset details for multimodal fusion experiments on BRCA.

Training Dataset MNIST / MNIST-M
Train/Test Split 90% / 10%
Optimizer Adam
Learning Rate 0.04
Epochs 200
Temperature (1" 4
Distillation Weight (\) 0.5
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Table 25: Performance of direct fusion and Fusion+KD on BRCA when fusing three modalities (mRNA,
CNYV, and RPPA). KD is applied only from mRNA (teacher) to CNV (student).

Fusion Fusion+KD
Acc  AUC MacroF1 Weighted F1  Acc  AUC MacroF1  Weighted F1

mRNA (teacher)
CNV (student) 0.855 0.861 0.668 0.83 0.868 0.875 0.673 0.832
RPPA
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