
Tracing Back the Malicious Clients in Poisoning
Attacks to Federated Learning

Yuqi Jia Minghong Fang Hongbin Liu
Duke University University of Louisville Duke University

yuqi.jia@duke.edu minghong.fang@louisville.edu hongbin.liu@duke.edu

Jinghuai Zhang Neil Gong
University of California, Los Angeles Duke University

jinghuai1998@g.ucla.edu neil.gong@duke.edu

Abstract

Poisoning attacks compromise the training phase of federated learning (FL) such
that the learned global model misclassifies attacker-chosen inputs called target
inputs. Existing defenses mainly focus on protecting the training phase of FL
such that the learnt global model is poison free. However, these defenses often
achieve limited effectiveness when the clients’ local training data is highly non-
iid or the number of malicious clients is large, as confirmed in our experiments.
In this work, we propose FLForensics, the first poison-forensics method for FL.
FLForensics complements existing training-phase defenses. In particular, when
training-phase defenses fail and a poisoned global model is deployed, FLForensics
aims to trace back the malicious clients that performed the poisoning attack after
a misclassified target input is identified. We theoretically show that FLForensics
can accurately distinguish between benign and malicious clients under a formal
definition of poisoning attack. Moreover, we empirically show the effectiveness
of FLForensics at tracing back both existing and adaptive poisoning attacks on
five benchmark datasets. Our code and data are available at: https://github.
com/jyqhahah/FLForensics.

1 Introduction

Federated learning (FL) [32] is a distributed learning paradigm, allowing many clients jointly train a
global model without sharing raw data. Specifically, in each round the server broadcasts the current
model, clients update it on their private data, and the server aggregates the updates [32]. FL has been
widely deployed in various real-world applications, such as credit risk prediction [2] and next-word
prediction [1]. However, FL’s distributed updates make it prone to poisoning attacks: malicious
clients can submit crafted updates that the server accepts [16, 4, 37, 40, 8, 19]. The resulting global
model maps an attacker-chosen target input to an attacker-chosen target label while leaving other
predictions intact. This target input may be any sample carrying an injected trigger (a backdoor) or
even a clean sample without a trigger.

Existing defenses [42, 7, 33, 17, 43, 20, 21] against poisoning attacks to FL focus on protecting
the training phase. Robust aggregators such as Trim, Median [42], FLTrust [7], and FLAME [33]
try to filter potentially malicious updates, while detectors like FLDetector detects clients whose
updates are inconsistent across multiple rounds [43]. However, these training-phase defenses are
insufficient. In particular, when data are highly non-IID or attackers control many clients, malicious
and benign updates become hard to distinguish, as shown in our experiments. Consequently, even
if these training-phase defenses are adopted, the learnt global model may still be poisoned and the
poisoned global model is deployed.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/jyqhahah/FLForensics
https://github.com/jyqhahah/FLForensics

Our work: In this work, we propose FLForensics, the first poison-forensics method for FL. Unlike
training-phase defenses, FLForensics aims to trace back the malicious clients that performed the
poisoning attack after the attack has happened, i.e., after training-phase defenses fail, a poisoned
global model has been deployed, and a misclassified target input has been identified. Identifying
such a misclassified input—e.g., via manual inspection or automatic tools [22, 14, 31]—is orthogo-
nal to FLForensics. For instance, we show that our FLForensics can be adapted to detect whether a
misclassified input is a misclassified target input or not in Appendix G. FLForensics consists of two
major steps: calculating influence scores and detecting malicious clients. Step I assigns each client
an influence score for the misclassified target input, and Step II uses these scores to distinguish
malicious from benign clients.

Calculating influence scores. To quantify the misclassification of a target input, we measure each
client’s effect by the change it causes in the global model’s cross-entropy loss on the misclassified
target input across all rounds. One challenge is that clients’ local training data are often non-iid.
Specifically, some benign clients (denoted as Category I) have a large amount of local training
examples with the target label, while other benign clients (Category II) do not. As a result, both
malicious clients and Category I benign clients have large influence scores, making it challenging to
distinguish them. To separate them, the server also tests every client on a random non-target input
with the target label, yielding another influence score. Thus client i receives a two-dimensional
score (si, s

′
i) from the target and non-target inputs, respectively.

Detecting malicious clients. We observe that malicious clients have large si but small s′i, Category
I benign clients have large (si, s′i), and Category II benign clients have small (si, s′i). Based on such
observations, we detect malicious clients by clustering their 2-D scores with HDBSCAN [6], which
needs no preset cluster count. We further use a scaled Euclidean distance, which normalizes the two
dimensions of a two-dimensional influence score to have the same, comparable scale. Clusters with
positive mean si become potentially malicious. However, these clusters may also include Category
I benign clients. To address the challenge, our key observation is that the influence-score gap s′i− si
of a malicious client is smaller than that of a Category I benign client. FLForensics leverages this to
pinpoint the truly malicious clients inside each cluster.

Theoretical and empirical evaluation. Theoretically, we show the security of FLForensics against
poisoning attacks. In particular, based on a formal definition of poisoning attacks and mild assump-
tions, we show that 1) both malicious clients and Category I benign clients have larger influence
scores si than Category II benign clients, and 2) a malicious client has a smaller influence-score
gap s′i − si than a benign client. Empirically, we comprehensively evaluate FLForensics on five
benchmark datasets. Our results show that FLForensics can accurately trace back malicious clients
under various existing and adaptive attacks. We note that training-phase defenses are ineffective for
most attack scenarios in our evaluation.

We summarize our main contributions as follows:

• We propose the first poison-forensics method called FLForensics to trace back malicious
clients in FL.

• We theoretically show the security of FLForensics against poisoning attacks.
• We empirically evaluate FLForensics on five benchmark datasets against existing and adap-

tive poisoning attacks.

2 Preliminaries and Related Work

Federated learning (FL): FL enables n clients to collaboratively train a shared global model under
a central server’s coordination. Each client updates the global model using its local data and sends
a model update to the server, which aggregates them (e.g., via FedAvg [32]) to update the global
model:

wt+1 = wt + αt ·Agg(g
(1)
t , g

(2)
t , · · · , g(n)t), (1)

where αt is the learning rate. In practice, only a subset of clients is selected per round. Many FL
variants [32, 42, 7, 33, 28, 11, 39, 43, 18] differ primarily in their aggregation rules.

Poisoning attacks to FL: Poisoning attacks aim to corrupt the training process so that the resulting
global model is compromised. In targeted poisoning attacks [3, 37], the model misclassifies attacker-

2

Training

Client

Server

FLForensics

Malicious

Misclassified
target input

Randomly
generated

input

Check points
…

wt1wt2 wtk…

Tracing back

Benign

Server

Check points

…

wt1

wt2

wtk

…,g
(1)
t1

, ,g
(n)
t1

…

…

,g
(1)
t2

, ,g
(n)
t2

,g
(1)
tk

, ,g
(n)
tk

Training

Client

Server

FLForensics

Malicious

Misclassified
target input

Randomly
generated

input

Check points
…

wt1wt2 wtk…

Tracing back

Benign

Server

Check points

…

wt1

wt2

wtk

…,g
(1)
t1

, ,g
(n)
t1

…

…

,g
(1)
t2

, ,g
(n)
t2

,g
(1)
tk

, ,g
(n)
tk

Training
Client

Server

Misclassified
target input

Poison Forensics

Malicious

FLForensics

Benign Benign

.

Benign

Figure 1: Overview of FLForensics. During training, the server stores the intermediate global mod-
els and clients’ model updates in some training rounds called check points. Given a misclassified
target input detected after deploying the poisoned global model, the server uses FLForensics to trace
back the malicious clients that performed the poisoning attack.

chosen inputs into a target label while maintaining overall accuracy. We refer to these simply as
poisoning attacks. Some attacks use trigger-embedded target inputs (i.e., backdoor attacks [4, 3]),
where any input with a trigger is misclassified. Others use triggerless target inputs [37], which are
naturally occurring but mislabeled edge cases. In both cases, malicious clients manipulate their local
data or model updates to implant the attack during training. Details are deferred to Appendix A.1.

Training-phase defenses: Most defenses aim to secure the training phase to prevent a poisoned
global model. Some approaches improve the aggregation rule to tolerate malicious updates, e.g.,
Trimmed Mean, Median [42], FLTrust [7], and FLAME [33]. Others [9, 11] offer provable guaran-
tees by training multiple global models and using ensemble prediction. See Appendix A.2 for more
details. Furthermore, some defenses focus on detection and recovery from attacks. FLDetector [43]
detects clients with inconsistent model updates, and FedRecover [10] reconstructs a clean model
without retraining from scratch.

However, these training-phase defenses suffer from a few key limitations. Robust FL methods still
struggle when malicious clients are numerous or client data is highly non-iid. Moreover, FLDetec-
tor cannot detect data poisoning attacks where malicious clients poison data but follow protocol.
Consequently, a poisoned model may still be deployed. In our work, we assume a poisoned global
model is already deployed. Given a misclassified target input detected post-deployment, our goal is
to trace back the malicious clients responsible for the attack.

Poison forensics for centralized learning: Poison forensics methods [36, 25, 13] trace the source
of misclassification in centralized learning. PF [36] and GAS [25] identify poisoned training data
responsible for a misclassification, while Beagle [13] recovers triggers from multiple poisoned in-
puts. These methods assume centralized access to training data and do not generalize well to FL,
as shown in our experiments. In contrast, our FLForensics is the first poison-forensics method tai-
lored to FL, capable of identifying malicious clients post-deployment. Interestingly, our method
also performs well in centralized settings with unbalanced data, where existing methods degrade
(see Appendix G).

3 Threat Model

Poisoning attacks: We assume an attacker compromises the FL training by controlling a set of
malicious clients, which may be fake or compromised genuine ones. These clients craft model
updates that poison the global model, while the server remains honest. After training, the poisoned
model is deployed for real-world use. In this work, we focus on targeted poisoning attacks, where
the model misclassifies attacker-chosen target inputs as an attacker-specified target label, while
behaving normally on other inputs. Appendix I provides discussion of untargeted poisoning attacks.

Poison forensics: We adopt a standard poison-forensics setting [36, 25, 13]: a misclassified target
input in a poisoning attack is detected after model deployment. Detection can be done automati-
cally [22, 14, 31] or manually by users observing application errors caused by the misclassification.

3

0.6 0.4 0.2 0.0 0.2 0.4 0.6
si

(a)

0.0002 0.0001 0.0000 0.0001
Non-scaled si

0.04

0.02

0.00

0.02

0.04

0.06

No
n-

sc
al

ed
 s
′ i

(b)

0.50 0.25 0.00 0.25
Scaled si

0.4

0.2

0.0

0.2

0.4

0.6

Sc
al

ed
 s
′ i

(c)
Figure 2: (a) Influence scores si and (b–c) clustering results in one of our experiments using Eu-
clidean and scaled Euclidean distance. Dots represent clients: red (malicious), green (Category I
benign), and blue (Category II benign). Different markers represent different HDBSCAN clusters.

Given such a misclassified target input, the goal is to trace back the malicious clients responsible for
the attack. In Section 7, we further show that FLForensics can help determine whether a misclassi-
fied input is indeed a target input.

4 Our FLForensics

4.1 Overview

During training, FLForensics stores intermediate global models and client updates as check points.
When a target input is misclassified, FLForensics proceeds in two steps: (1) it computes each client’s
influence score from the stored check points, and (2) it detects malicious clients via clustering the
influence scores. Figure 1 shows the workflow and Algorithm 1 provides the pseudo-code.

4.2 Calculating Influence Scores

Quantifying a misclassification: We denote a target input as x, which is misclassified as the target
label y by the poisoned global model w. To measure a client’s contribution to misclassification, we
use the cross-entropy loss ℓCE(x, y;w) of the poisoned global model w. Denote wt as the global
model in training round t, where t = 1, 2, · · · , R, then w0 is the initial global model and wR is the
final model after R rounds. The overall loss change is ℓCE(x, y;w0) − ℓCE(x, y;wR), which we
attribute to clients’ model updates across rounds.

Expanding the training process: Since the loss change is accumulated over the R training rounds,
we expand them to measure the influence of each client on the loss change. Specifically, ac-
cording to Taylor expansion, for training round t, we have ℓCE(x, y;wt+1) ≈ ℓCE(x, y;wt) +
∇ℓCE(x, y;wt)

⊤(wt+1 − wt). Therefore, by summing over R training rounds, we have:

ℓCE(x, y;w0)− ℓCE(x, y;wR) ≈ −
R∑︂

t=1

∇ℓCE(x, y;wt)
⊤(wt+1 − wt). (2)

Assigning influence scores: If a client is selected in training round t, we quantify its contribution
to the model difference wt+1 − wt. Then we obtain an influence score for it by summing over such
contributions over multiple training rounds that involve this client. Let Ct be the set of selected
clients in round t. If we we assume the global model is updated as if using only the model update
g
(i)
t of client i, then wt+1 − wt ≈ αt · g(i)t , and i’s influence score is:

si = −
∑︂

t s.t. i∈Ct

αt∇ℓCE(x, y;wt)
⊤g

(i)
t . (3)

Using check points to save space and computation: If FLForensics uses all training rounds to
calculate the influence scores, the server needs to save global models and clients’ updates in all
training rounds, which incurs substantial space and computation overhead. To reduce overhead, we
compute influence scores using a subset of k check points Ω = {t1, ..., tk}:

si = −
∑︂

t∈Ω s.t. i∈Ct

αt∇ℓCE(x, y;wt)
⊤g

(i)
t . (4)

4

Algorithm 1 FLForensics

Input: Misclassified target input x, target label y, non-target input x′, check points Ω =
{t1, t2, · · · , tk}, global models {wt}t∈Ω in the check points, selected clients Ct in each check
point t ∈ Ω, and clients’ model updates {g(i)t }t∈Ω,i∈Ct

.
Output: Predicted malicious clientsM.
1: //Calculating influence scores
2: for i = 1 to n do
3: si = −

∑︁
t∈Ω s.t. i∈Ct

αt∇ℓCE(x, y;wt)
⊤g

(i)
t ;

4: s′i = −
∑︁

t∈Ω s.t. i∈Ct
αt∇ℓCE(x

′, y;wt)
⊤g

(i)
t ;

5: end for
6: I ← {(s1, s′1), (s2, s′2), · · · , (sn, s′n)};
7: //Detecting malicious clients
8: c1, · · · , cm, coutlier ← HDBSCAN(I); ▷ coutlier is a set that contains all outliers if any.
9: cp1 , cp2 , · · · , cpv ← clusters with average si > 0; ▷ Get potential malicious clusters.

10: threshold←
∑︁v

j=1

∑︁
i∈cpj

s′i/
∑︁v

j=1

∑︁
i∈cpj

si;

11: M = ∅;
12: for j = 1 to v do
13: thresholdj ←

∑︁
i∈cpj

s′i/
∑︁

i∈cpj
si;

14: if thresholdj ≤ threshold thenM =M∪ cpj ;
15: end if
16: end for
17: for i in coutlier do
18: thresholdi ← s′i/si;
19: if thresholdi ≤ threshold thenM =M∪ {i};
20: end if
21: end for
22: returnM;

The space cost is linear to the model size, number of check points, and active clients per round.

Using a non-target input to augment clients’ influence scores: Due to non-iid data, some benign
clients (denoted as Category I) may have many examples labeled y and thus yield high si, similar
to malicious clients. Other benign clients (Category II) do not, and yield lower scores. In particular,
our theoretical analysis in Appendix B shows that malicious clients and Category I benign clients
both have larger influence scores than Category II benign clients. Figure 2a shows the influence
scores si of malicious, Category I benign, and Category II benign clients in an experiment. To
differentiate them, we compute a second influence score using a non-target input x′:

s′i = −
∑︂

t∈Ω s.t. i∈Ct

αt∇ℓCE(x
′, y;wt)

⊤g
(i)
t . (5)

x′ can be either a random or true input, and we show in Appendix G that both choices yield similar
performance. This gives each client a two-dimensional influence score (si, s

′
i). Typically, Category

I benign clients have both scores large, while malicious clients have a large si but a small s′i.

4.3 Detecting Malicious Clients

Our method is based on two observations: (I) Both malicious and Category I benign clients have
larger si than Category II clients. (II) Malicious clients have smaller gaps s′i−si than benign clients.
We provide theoretical justification for these observations in Appendix B.

Clustering the clients via HDBSCAN with scaled Euclidean distance: Let I =
{(s1, s′1), ..., (sn, s′n)} denote client scores. We cluster clients using HDBSCAN [6], which does
not require specifying the number of clusters and handles outliers. To account for differences in
score scales, we normalize each score dimension by its range and compute scaled Euclidean dis-
tance, i.e., si as si/(maxnj=1 sj −minnj=1 sj), and s′i as s′i/(maxnj=1 s

′
j −minnj=1 s

′
j). Figures 2b

and 2c show the improved separation using this distance metric.

5

Identifying malicious clients and Category I benign clients based on Observation I: We treat
clusters with positive average si as potentially malicious, since both malicious and Category I benign
clients can fall into this category. For instance, in Figure 2c, both red clusters (malicious) and the
green cluster (Category I benign) are potential malicious clusters.

Distinguishing between malicious clients and Category I benign clients based on Observation
II: To further separate malicious and Category I benign clients, we compute the ratio of average s′i
to si in each potential malicious cluster. Based on Observation II, a cluster is classified as malicious
if this ratio is below a threshold. We set it to the mean ratio across all such clusters. Furthermore,
HDBSCAN may output some clients as outliers that do not belong to any cluster. Outlier clients
are handled similarly by comparing their s′i/si to the same threshold. Figure 2c illustrates how this
approach identifies the red clusters as malicious.

5 Experiments

5.1 Experimental Setup

Datasets: We conduct our experiments using five diverse benchmark datasets: four image datasets
(CIFAR-10, Fashion-MNIST, MNIST, and ImageNet-Fruits) and one text dataset (Sentiment140).
Detailed descriptions of these datasets are provided in Section C in Appendix.

FL training settings: Following [7, 16], we model FL with 100 clients. For CIFAR-10,
Fashion-MNIST, MNIST, and ImageNet-Fruits we create non-IID partitions using the method
of [16] (Appendix F shows the details). Since Sentiment140 already exhibits user-level non-IID,
we simply group users uniformly at random into 100 clients. We train a ResNet-20 [26] for CIFAR-
10, a CNN (Table 4 in Appendix) for Fashion-MNIST and MNIST, a LSTM [27] for Sentiment140,
and a ResNet-50 [26] for ImageNet-Fruits. Default hyper-parameters (learning rate, batch size,
global rounds, local epochs) are listed in Table 5 in Appendix. By default, every round involves all
clients and the server aggregates via FedAvg [32]. We will also conduct experiments to vary the
client fraction and the aggregation rule to test FLForensics.

Poisoning attacks to FL: We consider three popular poisoning attacks to FL, i.e., Scaling [3], A
little is enough (ALIE) [4], and Edge [37] attacks. Scaling and ALIE use trigger-embedded target
inputs, while Edge uses triggerless target inputs. The description of those attacks are shown in
Appendix D. By default, we assume there are 20% malicious clients, who perform attacks in each
training round. We will also explore the impact of the fraction of malicious clients and fraction of
attacked training rounds on FLForensics.

Evaluation metrics: We evaluate with detection accuracy (DACC), false positive rate (FPR), and
false negative rate (FNR). DACC is the fraction of clients correctly classified; FPR the fraction of
benign clients classified as malicious; FNR the fraction of malicious clients missed. Higher DACC
and lower FPR/FNR indicate a better method. We report the attack success rate (ASR) in Table 9,
which means the fraction of target inputs that the poisoned model predicts as the target label.

Poison-forensics settings: For each dataset we randomly choose a misclassified target input.
FLForensics also requires a non-target input. Because the server may lack real data, it synthesizes
a non-target input: image pixels are sampled i.i.d. from U(0, 1), and text is a random tweet of the
same length. Results in Appendix G also show that using a true input instead can slightly improves
FLForensics. By default, the server saves the global model and clients’ updates every 10 rounds.
Each update g

(i)
t is ℓ2-normalized before computing influence scores in Equations 4 and 5 to offset

scale differences. Unless stated otherwise, we report results on CIFAR-10 under Scaling attack. All
the experiments are finished on one single Quadro RTX 6000 GPU with 24GB memory.

5.2 Compared methods

We compare FLForensics with the following methods including variants of FLForensics.

Poison Forensics (PF) [36]. PF is designed for centralized learning. To apply it in FL, we assume
the server can access clients’ local data. PF identifies poisoned training examples, and a client is
classified as malicious if its fraction of detected poisoned samples exceeds the average across clients.

6

Table 1: DACC/FPR/FNR of FLDetector, a training-phase method to detect malicious clients.
Attack MNIST Fashion-MNIST CIFAR-10 Sentiment140 ImageNet-Fruits

Scaling 0.960/0.038/0.050 0.870/0.138/0.100 0.400/0.538/0.850 0.020/0.975/1.000 0.475/0.438/0.875

ALIE 0.000/1.000/1.000 0.000/1.000/1.000 0.000/1.000/1.000 0.010/0.988/1.000 0.075/0.906/1.000

Edge 0.160/0.800/1.000 0.390/0.563/0.800 0.160/0.800/1.000 0.080/0.900/1.000 0.750/0.281/0.250

Table 2: Results of FLForensics and compared poison-forensics methods.

Attack Method
Dataset (DACC/FPR/FNR)

MNIST Fashion-MNIST CIFAR-10 Sentiment140 ImageNet-Fruits

Scaling

PF 0.900/0.125/0.000 0.900/0.125/0.000 0.900/0.125/0.000 0.990/0.013/0.000 0.600/0.375/0.500
FLForensics-G 0.480/0.413/0.950 0.740/0.100/0.900 0.900/0.125/0.000 0.990/0.013/0.000 0.600/0.313/0.750
FLForensics-A 0.900/0.125/0.000 1.000/0.000/0.000 0.900/0.125/0.000 0.900/0.125/0.000 0.900/0.125/0.000
FLForensics 1.000/0.000/0.000 1.000/0.000/0.000 1.000/0.000/0.000 0.980/0.025/0.000 1.000/0.000/0.000

ALIE

PF 0.740/0.325/0.000 0.900/0.125/0.000 0.900/0.125/0.000 0.760/0.275/0.100 1.000/0.000/0.000
FLForensics-G 0.520/0.363/0.950 0.740/0.100/0.900 0.900/0.125/0.000 0.980/0.025/0.000 0.525/0.406/0.750
FLForensics-A 0.900/0.125/0.000 1.000/0.000/0.000 0.900/0.125/0.000 0.900/0.125/0.000 0.875/0.156/0.000
FLForensics 1.000/0.000/0.000 1.000/0.000/0.000 1.000/0.000/0.000 1.000/0.000/0.000 1.000/0.000/0.000

Edge

PF 0.920/0.100/0.000 1.000/0.000/0.000 0.820/0.225/0.000 0.970/0.038/0.000 0.850/0.188/0.000
FLForensics-G 0.930/0.088/0.000 0.920/0.100/0.000 0.920/0.100/0.000 0.940/0.075/0.000 0.700/0.125/1.000
FLForensics-A 0.920/0.100/0.000 0.920/0.100/0.000 0.910/0.113/0.000 0.920/0.100/0.000 0.800/0.125/0.500
FLForensics 1.000/0.000/0.000 1.000/0.000/0.000 0.980/0.000/0.100 0.970/0.038/0.000 0.950/0.031/0.125

FLForensics-G (GAS [25] + FLForensics). GAS computes influence scores for training examples
in centralized learning. However, it lacks a detection step. We extend it to FL (with access to local
data) and combine it with FLForensics as an end-to-end method. Specifically, we compute influence
scores using GAS and then detect poisoned examples using HDBSCAN (details in Appendix E).
Similar to PF, clients are marked as malicious based on their fraction of detected poisoned examples.

FLForensics-A. This is a variant of FLForensics that uses only a target input x. The server computes
influence scores si for each client (Equation 4), clusters clients with HDBSCAN, and treats clusters
with positive average scores as malicious. We include this variant to highlight the limitations of
using only a target input.

5.3 Experimental Results

Training-phase defenses are insufficient: Training-phase defenses rely on robust aggregation or
attacker detection to prevent poisoning attacks. However, Table 9 in Appendix shows robust FL
methods, such as Trim, Median [42], FLTrust [7], and FLAME [33], still leave high attack-success
rates. Table 1 further shows that FLDetector often misses malicious clients. Non-iid data blur the
line between benign and malicious updates, so these defenses remain vulnerable.

FLForensics is effective and outperforms baselines: Table 2 shows the results of FLForensics and
compared poison-forensics methods. FLForensics accurately traces attackers across all datasets and
attacks: its DACC is always 1 or close to 1, while both FPR and FNR remain at 0 or below 3% in only
a few Scaling and Edge attack cases. Furthermore, FLForensics outperforms all compared forensics
methods. FLForensics-A, which relies solely on the target input, mislabels >10% of benign clients
on CIFAR-10. This shows that using only target input x cannot effectively distinguish between
malicious and Category I benign clients. PF and FLForensics-G, even when given the unfair
advantage of direct access to local data, still trail behind FLForensics. When using clients’ updates,
as shown in Table 10 in Appendix, FLForensics-G performs worse, while PF achieves nearly the
same accuracy it attains with direct access to local data.

Other experiments: We conduct additional studies to evaluate the robustness and versatility of
FLForensics. Details are shown in Appendix G. First, we compare using a random input versus a
true target-class input as the non-target input in FLForensics; results are generally comparable, with
slightly lower FPRs when using a true input. Second, we apply FLForensics to clean-label attacks,

7

10% 20% 30% 40%
0.0

0.2

0.4

0.6

0.8

1.0

Fraction of Malicious Clients

DACC FPR FNR

(a) Fraction of malicious clients

0.1 0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

Degree of Non-IID

DACC FPR FNR

(b) Degree of non-iid

Trim Median FLTrust FLAME0.0

0.2

0.4

0.6

0.8

1.0

Aggregation Rules

DACC FPR FNR

(c) Aggregation rules
Figure 3: Ablation-study results for FLForensics. Figure 7 in the Appendix shows additional studies
(e.g., check points, client fraction, and scaling factor).

1 2 5 100.0

0.2

0.4

0.6

0.8

1.0

Attack Frequency

1.0 0.8 0.5 0.20.0

0.2

0.4

0.6

0.8

1.0

Attack Probability

UR LR UL LL Random0.0

0.2

0.4

0.6

0.8

1.0

Trigger Location

0.0

0.2

0.4

0.6

0.8

1.0

Trigger Value

2x2 3x3 5x5 10x100.0

0.2

0.4

0.6

0.8

1.0

Trigger Size

Figure 4: Results of FLForensics for adaptive attacks.

where poisoned samples retain their original labels. Even in this setting, FLForensics performs well
(e.g., DACC=0.95, FPR=0.06, FNR=0.0 on CIFAR-10). Lastly, we show that FLForensics can be
adapted to centralized learning by treating each training example as a pseudo-client. On imbalanced
datasets, it outperforms existing poison-forensics baselines, similar to the FL case with non-iid data.

5.4 Ablation Studies

This section presents several ablation studies for FLForensics, including the impact of (i) the fraction
of malicious clients, (ii) degree of non-IID data, and (iii) aggregation rules. Appendix H further
shows the impact of the number of check points, scaling factor, and fraction of selected clients.

Impact of fraction of malicious clients: Figure 3a shows that FLForensics works well even when a
large fraction of clients (e.g., 40%) are malicious. Specifically, FLForensics achieves the FNR≤5%
and FPR=0 for attacker fractions varies from 10% to 40%. We consider at least 10% of malicious
clients because the attacks themselves become ineffective [16] when the fraction is small.

Impact of degree of non-iid: Based on Figure 3b, FLForensics works well across different degrees
of non-iid. In particular, FLForensics achieves 0 FPR and at most 15% FNR, confirming its design
for non-IID data. Note that 0.1 degree of non-iid represents the iid setting.

Impact of aggregation rule: Figure 3c shows that FLForensics still identifies malicious clients
when the server uses Byzantine-robust aggregation rules. Although these rules alone cannot stop the
attacks (as shown in Table 9), pairing them with FLForensics provides strong defense. FLForensics
achieves slightly higher FPR under FLAME because Scaling attack is less effective for FLAME,
causing a few Category I clients to be misclassified as malicious.

8

6 Adaptive Attacks

Our theoretical analysis in Appendix B proves FLForensics resilient to any (adaptive) poisoning
attack that meets our formal definition. Attacks that violate this definition can hurt FLForensics’s
detection but usually decrease their own ASR. We thus test several such adaptive variants under
default settings, e.g., CIFAR-10, 150 check points, and all clients participate in each round.

Attack frequency and probability: To evade detection, malicious clients may attack only inter-
mittently. First, they can strike every e training rounds. As shown in the subfigures on the first row
of Figure 4, when e ≤ 5, attacks remain effective (high ASR) and FLForensics is still effective;
once e ≥ 10, ASR falls below 12% and FLForensics’s performance drops because the threat itself
is weak. Second, clients may attack each round with probability p. As shown in Figure 4, when p
declines, ASR and FLForensics’s recall both decrease, but FLForensics stays effective for p ≥ 0.5
with a FPR less than 1.25%. Even at p = 0.2, while the ASR is 20%, FLForensics misses some
malicious clients but misclassifies at most one benign client. This means if an attacker aims to evade
FLForensics, its attack becomes less or not effective.

Trigger location, value, and size: Subfigures on the second row of Figure 4 evaluate FLForensics
under the Scaling attack as we vary the trigger’s location, value, and size. Attacks with triggers
placed at fixed locations—UR, LR, UL, and LL—achieve high ASRs, where these denote the upper
right, lower right, upper left, and lower left corners of the image, respectively. The trigger in these
experiments is the same as in [3]. In these cases, FLForensics identifies all malicious clients. When
the trigger is at random locations, the attack is less effective, leading to some missed detections
(FNR around 30%). Furthermore, altering the RGB value shows a similar pattern: once the attack
is effective—e.g., white (255, 255, 255) or gray (204, 204, 204) squares—FLForensics traces every
malicious client, whereas an all-black trigger, which fails to poison the model (ASR=0), leaves them
undetected. Finally, we find that increasing trigger size boosts ASR: a 2×2 square is ineffective
and hampers detection, but sizes larger than 3×3 already let FLForensics catch every malicious
client even when ASR is only 14.2%. Overall, FLForensics succeeds whenever the trigger is large,
distinctly colored, or consistently placed enough to mount a meaningful attack, and it degrades only
when the attack itself has little impact.

7 Discussion

Recovering from attacks after FLForensics: After FLForensics detects malicious clients, the
server can discard their updates and re-train the global model. On CIFAR-10 under Edge attack, the
case with highest FNR, test accuracy improves from 81.9% to 82.8%, while ASR drops from 17.4%
to 5.6%. This recovery can be made communication-efficient with methods like FedRecover [10].

Detecting misclassified target input: FLForensics assumes the given misclassified sample is a
target input. If it is not, the real attackers may not contribute to it and thus escape detection. We
adapt FLForensics to first decide whether a misclassified sample is a target input. For a misclas-
sified input x and a non-target input x′, we compute each client’s influence scores (si, s′i) and run
FLForensics to form potential malicious clusters cpj

. Our intuition is that if all potential mali-
cious clusters have nearly identical mean si and s′i, making x and x′ indistinguishable in influ-
ence, we label the misclassified input x as non-target. If every such cluster satisfies cpj satisfies
α ≤

∑︁
i∈cpj

s′i/
∑︁

i∈cpj
si ≤ 1

α for some α < 1, we judge x to be a non-target input; otherwise,
we treat it as a target input. With α = 0.2, we evaluate the method on 50 randomly chosen target
samples and 50 misclassified non-target samples. It correctly labeled 96% of the target inputs and
98% of the non-target inputs.

8 Conclusion and Future Work
In this work, we propose FLForensics, the first poison-forensics method to trace back malicious
clients in FL. We theoretically show the security of FLForensics against (adaptive) poisoning attacks
under a formal definition of poisoning attack. Moreover, our empirical evaluation results on multiple
benchmark datasets show that FLForensics can accurately trace back malicious clients against both
state-of-the-art and adaptive poisoning attacks. An interesting future work is to extend FLForensics

9

to untargeted poisoning attacks and explore the security of FLForensics against strategically crafted
misclassified target input.

Acknowledgement

We thank the anonymous reviewers for their constructive comments. This work was supported by
NSF under grant no. 2131859, 2125977, 2112562, and 1937787.

References
[1] Federated Learning: Collaborative Machine Learning without Centralized Training Data.

[2] Utilization of FATE in Risk Management of Credit in Small and Micro Enterprises.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In AISTATS, 2020.

[4] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. In NeurIPS, 2019.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[6] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on
hierarchical density estimates. In PAKDD, 2013.

[7] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust
federated learning via trust bootstrapping. In NDSS, 2021.

[8] Xiaoyu Cao and Neil Zhenqiang Gong. Mpaf: Model poisoning attacks to federated learning
based on fake clients. In CVPR Workshops, 2022.

[9] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Provably secure federated learning against
malicious clients. In AAAI, 2021.

[10] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. Fedrecover: Recovering
from poisoning attacks in federated learning using historical information. In IEEE Symposium
on Security and Privacy, 2023.

[11] Xiaoyu Cao, Zaixi Zhang, Jinyuan Jia, and Neil Zhenqiang Gong. Flcert: Provably secure
federated learning against poisoning attacks. In IEEE Transactions on Information Forensics
and Security, 2022.

[12] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In CVPR, 2022.

[13] Siyuan Cheng, Guanhong Tao, Yingqi Liu, Shengwei An, Xiangzhe Xu, Shiwei Feng,
Guangyu Shen, Kaiyuan Zhang, Qiuling Xu, Shiqing Ma, et al. Beagle: Forensics of deep
learning backdoor attack for better defense. In NDSS, 2023.

[14] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized univer-
sal attacks against deep learning systems. In S&P Workshops, 2020.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[16] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to
byzantine-robust federated learning. In USENIX Security Symposium, 2020.

[17] Minghong Fang, Jia Liu, Neil Zhenqiang Gong, and Elizabeth S Bentley. Aflguard: Byzantine-
robust asynchronous federated learning. In ACSAC, 2022.

10

[18] Minghong Fang, Seyedsina Nabavirazavi, Zhuqing Liu, Wei Sun, Sundararaja Sitharama Iyen-
gar, and Haibo Yang. Do we really need to design new byzantine-robust aggregation rules? In
NDSS, 2025.

[19] Minghong Fang, Minghao Sun, Qi Li, Neil Zhenqiang Gong, Jin Tian, and Jia Liu. Data
poisoning attacks and defenses to crowdsourcing systems. In The Web Conference, 2021.

[20] Minghong Fang, Xilong Wang, and Neil Zhenqiang Gong. Provably robust federated rein-
forcement learning. In The Web Conference, 2025.

[21] Minghong Fang, Zifan Zhang, Hairi, Prashant Khanduri, Jia Liu, Songtao Lu, Yuchen Liu, and
Neil Gong. Byzantine-robust decentralized federated learning. In CCS, 2024.

[22] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya
Nepal. Strip: A defence against trojan attacks on deep neural networks. In ACSAC, 2019.

[23] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant super-
vision. CS224N project report, Stanford, 2009.

[24] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. In IEEE Access, 2019.

[25] Zayd Hammoudeh and Daniel Lowd. Identifying a training-set attack’s target using renormal-
ized influence estimation. In CCS, 2022.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural computation,
1997.

[28] Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyacheslav Kungurtsev, Neil Zhenqiang
Gong, and Yiran Chen. Unlocking the potential of federated learning: The symphony of dataset
distillation via deep generative latents. In European Conference on Computer Vision, pages
18–33. Springer, 2024.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[30] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. Available:
http://yann. lecun. com/exdb/mnist, 1998.

[31] Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The “beatrix”
resurrections: Robust backdoor detection via gram matrices. In NDSS, 2023.

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS,
2017.

[33] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, et al.
Flame: Taming backdoors in federated learning. In USENIX Security Symposium, 2022.

[34] Fruit Ripening. Banana ripening process dataset. https://universe.roboflow.com/
fruit-ripening/banana-ripening-process.

[35] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Du-
mitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. In NeurIPS, 2018.

[36] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. Poison forensics: Trace-
back of data poisoning attacks in neural networks. In USENIX Security Symposium, 2022.

11

 https://universe.roboflow.com/fruit-ripening/banana-ripening-process
 https://universe.roboflow.com/fruit-ripening/banana-ripening-process

[37] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really
can backdoor federated learning. In NeurIPS, 2020.

[38] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, 2017.

[39] Yueqi Xie, Minghong Fang, and Neil Zhenqiang Gong. Fedredefense: Defending against
model poisoning attacks for federated learning using model update reconstruction error. In
International Conference on Machine Learning, 2024.

[40] Yueqi Xie, Minghong Fang, and Neil Zhenqiang Gong. Model poisoning attacks to federated
learning via multi-round consistency. In Proceedings of the Computer Vision and Pattern
Recognition Conference, 2025.

[41] Huan Xiong. Dpcd: Discrete principal coordinate descent for binary variable problems. In
AAAI, 2022.

[42] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. In ICML, 2018.

[43] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Fldetector: Defending
federated learning against model poisoning attacks via detecting malicious clients. In KDD,
2022.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly summarize the proposed method and
the paper’s contributions, which are well supported by the technical content.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

13

Justification: All theoretical results are presented with clearly stated assumptions and
proofs in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full experimental details in Section 5 and Appendix C–G, includ-
ing datasets, model architectures, and hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All datasets are public, and we will release our code and implementation upon
publication to support reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes comprehensive details on training/testing setups, model
architectures, attack methods, and FL parameters (Section 5 and Appendix C–F).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While we do not report formal error bars, we report results across five
datasets, three types of poisoning attacks, and ablation studies across key factors, demon-
strating consistent trends that validate statistical robustness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these information in Section 5. The experiments can be run on
one single Quadro RTX 6000 GPU with 24GB memory and don’t require more compute
than we reported in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our study adheres to the NeurIPS Code of Ethics and does not involve human
subjects or private user data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive societal impacts of our work in Appendix J.

Guidelines:

16

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release models or data posing high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used datasets and models (e.g., CIFAR-10) are cited with proper attribu-
tion and used under their respective public licenses (Appendix C).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

17

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new dataset or model asset in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects and thus does not require IRB
approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

18

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve large language models as a core methodological
component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Appendix

A Related Work

A.1 Details of Poisoning Attacks in FL

Trigger-embedded poisoning attacks (backdoor attacks): These attacks treat any input embed-
ded with a specific trigger as a target input. In the Scaling attack [3], malicious clients duplicate
local data, embed a trigger into these examples, relabel them to the target label, and amplify the
resulting model update with a scaling factor λ before sending it to the server.

The ALIE attack [4] follows a similar data manipulation strategy, but constructs adversarial updates
by solving an optimization problem to maximize the malicious effect.

Triggerless poisoning attacks: These attacks target specific inputs without any trigger. For exam-
ple, in the Edge-case attack [37], the attacker injects out-of-distribution samples (edge cases) into
the local training set of malicious clients and labels them with the target label. These inputs become
target inputs post-training due to label manipulation.

A.2 Details of Training-phase Defenses

Robust aggregation: Byzantine-robust methods like Trimmed Mean and Median [42] filter out
extreme updates to resist outliers. FLTrust [7] anchors updates to a trusted reference dataset.
FLAME [33] incorporates client reputation into aggregation to downweight suspect clients.

Provably robust FL: FLCert [11] trains multiple global models using subsets of clients, providing
an ensemble-based lower bound on test accuracy even under strong attacks.

Client detection: FLDetector [43] tracks consistency in model updates over time to identify ma-
licious clients. FedRecover [10] recovers a clean global model by filtering out detected malicious
updates, avoiding the need to retrain from scratch.

B Theoretical Analysis

FLForensics builds on Observations I and II (Section 4.3). In this section, we provide theoretical
justification for these observations under a formal definition of poisoning attacks and several mild
assumptions. While these assumptions may not always hold in practice, we empirically validate the
effectiveness of FLForensics in Section 5.3.

B.1 Setup and Assumptions

We first formalize poisoning attacks in FL. Malicious clients aim to make the global model predict
the target label y on any target input x, minimizing ℓCE(x, y;w), while benign clients aim to main-
tain accuracy on non-target inputs x′. This leads to the following assumptions (see Appendix B.2
for formal definitions):

• Local Linearity: Cross-entropy loss is approximately linear in a small neighborhood
around the global model.

• Behavioral Difference: Malicious clients tend to decrease ℓCE(x, y;w) but not
ℓCE(x

′, y;w), while benign clients do the opposite.
• Label-rich Advantage: Category I benign clients, who have more data with target label,

are more likely to behave like malicious clients on target inputs than Category II clients.

B.2 Formal Definitions and Assumptions

Definition 1 (Poisoning Attack to FL). In a poisoning attack, malicious clients aim to poison the
global model w such that it predicts target label y for any target input x, i.e., the loss ℓCE(x, y;w)
is small; and benign clients aim to learn the global model such that it is accurate for non-target

20

true inputs, i.e., the loss ℓCE(x
′, y;w) is small. Therefore, in a training round, a malicious client’s

model update does not increase the loss ℓCE(x, y;w) for a target input, while a benign client’s
model update does not decrease such loss. On the contrary, a malicious client’s model update does
not decrease the loss ℓCE(x

′, y;w), while a benign client’s model update does not increase such
loss. Formally, for any check-point training round t ∈ Ω, malicious client i, and benign client j, we
have the following assumptions to characterize the training process:

ℓCE(x
′, y;wt + g

(j)
t) ≤ ℓCE(x

′, y;wt + g
(i)
t), (6)

ℓCE(x, y;wt + g
(j)
t) ≥ ℓCE(x, y;wt + g

(i)
t), (7)

where wt + g
(i)
t and wt + g

(j)
t respectively are the global models after training round t if only the

model updates of clients i and j were used to update the global model.
Assumption 1 (Local Linearity). We assume the cross-entropy losses ℓCE(x

′, y;wt) and
ℓCE(x, y;wt) are locally linear in the region around wt. In particular, based on first-order Tay-
lor expansion, we have the following:

ℓCE(x
′, y;wt + δ) = ℓCE(x

′, y;wt) +∇ℓCE(x
′, y;wt)

⊤δ,

ℓCE(x, y;wt + δ) = ℓCE(x, y;wt) +∇ℓCE(x, y;wt)
⊤δ.

We note that the local linearity assumption was also used in the machine learning community [5, 41].
Assumption 2 (Label-rich Advantage). According to the definitions of Category I and Category II
benign clients, a Category I benign client possesses a larger fraction of local training examples with
the target label y compared to a Category II benign client. Therefore, given any target input x with
target label y, we assume that the local model of a Category I benign client is more likely to predict
x as y than that of a Category II benign client. Formally, for any check-point training round t ∈ Ω,
Category I benign client j1, and Category II benign client j2, we make the following assumption:

ℓCE(x, y;wt + g
(j1)
t) ≤ ℓCE(x, y;wt + g

(j2)
t), (8)

where wt + g
(j1)
t is the local model of Category I benign client j1 and wt + g

(j2)
t is the local model

of Category II benign client j2 in the training round t.

B.3 Guarantee for Observation I

We show that under these assumptions, malicious clients and Category I benign clients have higher
influence scores si on target inputs than Category II benign clients. Theorem 1 and 2 together show
that Observation I holds.
Theorem 1. Suppose the server picks all clients in each check-point training round, i.e., Ct =
{1, 2, · · · , n} for t ∈ Ω, and FLForensics uses a true non-target input with target label y. Based on
the poisoning attack definition and Assumption 1, we have that the influence score si of a malicious
client i is no smaller than the influence score sj of a Category II benign client j. Concretely, we
have si ≥ sj , where si and sj are computed based on Equation 4.

Proof. By setting δ = g
(i)
t in Assumption 1, we have the following for each check-point training

round t:

ℓCE(x, y;wt + g
(i)
t) = ℓCE(x, y;wt) +∇ℓCE(x, y;wt)

⊤g
(i)
t . (9)

Similarly, by setting δ = g
(j)
t in Assumption 1, we have:

ℓCE(x, y;wt + g
(j)
t) = ℓCE(x, y;wt) +∇ℓCE(x, y;wt)

⊤g
(j)
t . (10)

By combining Equation 7, 9, and 10, we have:

∇ℓCE(x, y;wt)
⊤g

(i)
t ≤ ∇ℓCE(x, y;wt)

⊤g
(j)
t . (11)

Since the learning rate αt > 0 and Ct = {1, 2, · · · , n} in each check-point training round, we have
the following by summing over the check-point training rounds on both sides of Equation 11:∑︂

t∈Ω

αt∇ℓCE(x, y;wt)
⊤g

(i)
t ≤

∑︂
t∈Ω

αt∇ℓCE(x, y;wt)
⊤g

(j)
t (12)

21

⇐⇒ −si ≤ −sj . (13)

Therefore, we have si ≥ sj , which completes the proof.

Theorem 2. Suppose the server picks all clients in each check-point training round, i.e., Ct =
{1, 2, · · · , n} for t ∈ Ω, and FLForensics uses a true non-target input with target label y. Based on
Assumption 1 and Assumption 2, we have that the influence score sj1 of a Category I benign client
j1 is no smaller than the influence score sj2 of a Category II benign client j2. Specifically, we have
sj1 ≥ sj2 , where sj1 and sj2 are computed based on Equation 4.

Proof. According to Assumption 2, we have:

ℓCE(x, y;wt + g
(j1)
t) ≤ ℓCE(x, y;wt + g

(j2)
t). (14)

By setting δ = g
(j1)
t and δ = g

(j2)
t in Assumption 1, we can get:

ℓCE(x, y;wt + g
(j1)
t) = ℓCE(x, y;wt) +∇ℓCE(x, y;wt)

⊤g
(j1)
t , (15)

ℓCE(x, y;wt + g
(j2)
t) = ℓCE(x, y;wt) +∇ℓCE(x, y;wt)

⊤g
(j2)
t . (16)

By combining Equation 14, 15, and 16, we have:

∇ℓCE(x, y;wt)
⊤g

(j1)
t ≤ ∇ℓCE(x, y;wt)

⊤g
(j2)
t . (17)

Since the learning rate αt > 0 and Ct = {1, 2, · · · , n} in each check-point training round, we have
the following by summing over the check-point training rounds on both sides of Equation 17:∑︂

t∈Ω

αt∇ℓCE(x, y;wt)
⊤g

(j1)
t ≤

∑︂
t∈Ω

αt∇ℓCE(x, y;wt)
⊤g

(j2)
t (18)

⇐⇒ −sj1 ≤ −sj2 , (19)

which gives sj1 ≥ sj2 and completes the proof.

B.4 Guarantee for Observation II

We show that influence score gaps s′i − si are smaller for malicious clients than for benign ones.
Theorem 3. Suppose the server picks all clients in each check-point training round, i.e., Ct =
{1, 2, · · · , n} for t ∈ Ω, and FLForensics uses a true non-target input with target label y. Based
on the poisoning attack definition and Assumption 1, we have the influence score gap s′i − si of a
malicious client i is no larger than the influence score gap s′j − sj of a benign client j. Formally,
we have s′i − si ≤ s′j − sj , where si and sj are computed based on Equation 4, while s′i and s′j are
computed based on Equation 5.

Proof. By setting δ = g
(i)
t in Assumption 1, we have the following for each check-point training

round t:

ℓCE(x
′, y;wt + g

(i)
t) = ℓCE(x

′, y;wt) +∇ℓCE(x
′, y;wt)

⊤g
(i)
t . (20)

Similarly, by setting δ = g
(j)
t in Assumption 1, we have:

ℓCE(x
′, y;wt + g

(j)
t) = ℓCE(x

′, y;wt) +∇ℓCE(x
′, y;wt)

⊤g
(j)
t . (21)

By combining Equation 6, 20, and 21, we have:

∇ℓCE(x
′, y;wt)

⊤g
(i)
t ≥ ∇ℓCE(x

′, y;wt)
⊤g

(j)
t . (22)

Since the learning rate αt > 0 and Ct = {1, 2, · · · , n} in each check-point training round, we have
the following by summing over the check-point training rounds on both sides of Equation 22:∑︂

t∈Ω

αt∇ℓCE(x
′, y;wt)

⊤g
(i)
t ≥

∑︂
t∈Ω

αt∇ℓCE(x
′, y;wt)

⊤g
(j)
t (23)

⇐⇒ −s′i ≥ −s′j . (24)

By combining Equations 13 and 24, we have s′i − si ≤ s′j − sj , which completes the proof.

22

Table 3: Dataset statistics.

Dataset # Training # Testing # Classes

CIFAR-10 50,000 10,000 10
Fashion-MNIST 60,000 10,000 10

MNIST 60,000 10,000 10
Sentiment140 72,491 358 2

ImageNet-Fruits 13,000 500 10

Table 4: CNN architecture for Fashion-MNIST and MNIST.
Layer Size
Input 28× 28× 1

Convolution + ReLU 3× 3× 30
Max Pooling 2× 2

Convolution + ReLU 3× 3× 50
Max Pooling 2× 2

Fully Connected + ReLU 100
Softmax 10

Table 5: Default parameter setting. Since ImageNet-Fruits only has 40 clients and 8 malicious
clients, and “min cluster size” is set to 7, when performing clustering using HDBSCAN, we dupli-
cate the influence scores of all clients before clustering, resulting in a total of 80 influence scores.

Parameter CIFAR-10 Fashion-MNIST MNIST Sentiment140 ImageNet-Fruits
clients 100 40

malicious clients 20 8
rounds 1500 2000 2000 1500 1000

local training epochs 1
Batch size 64 32 32 32 64

Learning rate 1 × 10−2 6 × 10−3 3 × 10−4 1 × 10−1 (decay at the 800th
epoch with factor 0.5)

1 × 10−2

check points 150 200 200 150 100
min cluster size 7

Corollary 1. Given a malicious client i and a benign client j, if the influence scores si > 0 and

sj > 0, then the influence score ratios satisfy: s′i
si
≤ s′j

sj
.

Proof. From Equation 13 and Equation 24, we have s′i ≤ s′j and si ≥ sj . Since si > 0 and sj > 0,
we have:

s′i
si
≤ s′i

sj
≤

s′j
sj

, (25)

which completes the proof.

This directly implies the following:

Corollary 2. If si, sj > 0, then s′i
si
≤ s′j

sj
.

Remark. This explains why FLForensics can use the ratio s′i/si to distinguish malicious clients
from Category I benign clients when both fall into the same high-si cluster.

C Dataset Description

We conduct our experiments using five diverse benchmark datasets: four image datasets (CIFAR-
10, Fashion-MNIST, MNIST, and ImageNet-Fruits) and one text dataset (Sentiment140). Table 3
summarizes their key statistics.

23

(a) MNIST (b) ImageNet-
Fruits

Figure 5: Triggers in MNIST and ImageNet-Fruits datasets.

CIFAR-10 [29]. This is a commonly employed dataset in image classification task, comprising
50,000 training examples and 10,000 testing examples. Each input is a 3-channel color image of
32×32 pixels in size and belongs to one of ten classes. Model: ResNet-20 [26], implemented
using MXNet. License: Apache License 2.0. Dataset License: MIT License. https: // www.
cs. toronto. edu/ ~ kriz/ cifar. html

Fashion-MNIST [38]. This dataset consists of 70,000 grayscale images of fashion items, divided
into 60,000 training examples and 10,000 testing examples. Each input is of 28×28 pixels in
size and belongs to one of ten classes. Model: A custom CNN architecture implemented using
MXNet (Table 4). Dataset License: MIT License. https: // github. com/ zalandoresearch/
fashion-mnist

MNIST [30]. Like Fashion-MNIST, MNIST also contains 70,000 1-channel grayscale images, split
into 60,000 training examples and 10,000 testing examples. Each input is a 28×28 pixel image of a
handwritten digit. The dataset includes ten classes with each class corresponding to a digit from 0 to
9. Model: Same CNN architecture as Fashion-MNIST, implemented using MXNet. Dataset License:
Creative Commons Attribution-Share Alike 3.0. http: // yann. lecun. com/ exdb/ mnist/

Sentiment140 [23]. This is a two-class text classification dataset for sentiment analysis. The dataset
is collected from Twitter users. In our experiments, we adopt users with at least 50 tweets, which
results in 927 users. Each user has a pre-defined set of training and testing tweets. For our con-
sidered users, we have 72,491 training tweets and 358 testing tweets in total. Model: LSTM [27],
implemented using MXNet. License: Apache License 2.0. Dataset License: Other (academic use
only). https: // huggingface. co/ datasets/ stanfordnlp/ sentiment140

ImageNet-Fruits [12]. This is an image classification dataset comprising 128×128 pixel color
images. It represents a subset of the larger ImageNet-1k [15] dataset, specifically curated to include
ten fruit categories. Model: ResNet-50 [26], implemented using MXNet. License: Apache License
2.0. Dataset License: ImageNet terms (non-commercial research only). https: // image-net.
org/ download

D Poisoning Attack Description

Scaling [3]. Following [3], malicious clients duplicate their local data, embed a trigger, relabel these
copies with the target label, and train on the mix of original and duplicated samples. Furthermore,
malicious clients scale their updates by a factor γ before sending them to the server. We set γ = 1
by default, since it is stealthy yet still effective. Triggers follow [3] for CIFAR-10 and [24] for
Fashion-MNIST; those for MNIST and ImageNet-Fruits appear in Fig. 5a and Fig. 5b. For Senti-
ment140 we insert the phrase ‘debug FLpoisoning’ in place of two consecutive words. Target labels
are 2 for CIFAR-10, 0 for Fashion-MNIST and MNIST, ‘negative’ for Sentiment140, and 2 for
ImageNet-Fruits.

A little is enough (ALIE) [4]. The attacker in ALIE attack uses the same strategy as that in Scaling
attack to embed the triggers into duplicated local training inputs and set their labels as target labels on
the malicious clients. However, instead of scaling the model updates, the malicious clients carefully
craft their model updates via solving an optimization problem.

Edge [37]. The attacker in Edge attack injects some training examples (called edge-case examples)
labeled as the target label into the malicious clients’ local training data, which are from a distri-
bution different from that of the learning task’s overall training data. Each malicious client trains
its local model using the original local training examples and the edge-case ones following the FL

24

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://yann.lecun.com/exdb/mnist/
https://huggingface.co/datasets/stanfordnlp/sentiment140
https://image-net.org/download
https://image-net.org/download

algorithm. In our experiments, for CIFAR-10 and Sentiment140 datasets, we use the edge-case
examples respectively designed for CIFAR-10 and Sentiment140 datasets in [37]. For the Fashion-
MNIST and MNIST datasets, we use the edge-case examples designed for EMNIST dataset in [37].
For ImageNet-Fruits dataset, we use unripe banana images from [34] as edge-case examples and
label them as ‘cucumber’. The target inputs are from the same dataset as the edge-case examples.

E Extending GAS to FL

Since the total number of training examples possessed by all clients is much larger than the number
of clients, when we detect malicious training examples, we use HDBSCAN to divide the examples
into a big cluster (size is at least half of the whole training dataset size) and outliers with respect to
their influence scores by setting “min cluster size” as |D|/2 + 1, where |D| is the whole training
dataset size. Unlike FLForensics, we adopt the Euclidean distance metric for HDBSCAN since
GAS only has one-dimensional influence score, for which scaling is meaningless. We then use the
outliers to determine the threshold since the big cluster corresponds to the majority clean training
examples. Specifically, HDBSCAN outputs a confidence level (a number between 0 and 1) for each
outlier, which indicates the confidence HDBSCAN has at predicting an input as outlier. We adopt
a confidence level of 95%, which is widely used in statistics. Specifically, we treat the outliers
whose confidence levels are at least 95% and whose influence scores are positive as “true” outliers.
Moreover, we set the smallest influence score of such true outliers as the threshold.

F Simulating Non-iid Setting in FL

Following previous works [7, 16], to simulate the non-iid data distribution across clients, we ran-
domly partition all clients into C groups, where C is the number of classes. We then assign each
training example with label y to the clients in one of these C groups with a probability. In particular,
a training example with label y is assigned to clients in group y with a probability of ρ, and to clients
in any other groups with an equal probability of 1−ρ

C−1 , where ρ ∈ [0.1, 1.0]. Within the same group,
the training example is uniformly distributed among the clients. Therefore, ρ controls the degree of
non-iid. When ρ = 0.1, the local training data follows an iid distribution in our datasets; otherwise,
the clients’ local training data is non-iid. A higher value ρ implies a higher degree of non-iid.

G Details of Other Experiments

Using true input as non-target input: In our experiments, we use a random input (e.g., a random
image) as a non-target input in FLForensics. When a true input with the target label is available, the
server can also use it as the non-target input. Table 6 compares the results when FLForensics uses
a random input or true input as the non-target input on the five datasets and three attacks. We find
that random inputs and true inputs achieve comparable results in most cases, except several cases,
for which true inputs achieve slightly lower FPRs. These results indicate that if a true input with
the target label from the learning task’s data distribution is available, the server can use it as the
non-target input.

Forensics for clean-label targeted attacks: We focus on dirty-label attacks, where poisoned sam-
ples are relabeled to the target label. However, we find that FLForensics also works well for clean-
label attacks, where labels remain unchanged, since it relies on clients’ model updates rather than
training data. Once those updates are backdoored, FLForensics can still trace back. We test this
using the clean-label attack [35] on CIFAR-10 with FedAvg, training ’cat’ images to resemble
’dog’ features while keeping their original labels. Under default settings, FLForensics achieves
DACC=0.95, FPR=0.06, and FNR=0.0, confirming its effectiveness.

Extending FLForensics to centralized learning: FLForensics can also be extended to centralized
learning by treating each training example as a client.’ In this setting, wt in Equation 4 is the model at
the tth mini-batch, and g

(i)
t is the gradient of the loss of wt on the ith example. Table 7 shows results

on the dataset sampled from CIFAR-10, where we inject triggers (as in our FL setup) into 10% of
training data with target label 1. FLForensics-True denotes the use of a true input as the non-target
input. Class distributions are shown in Figure 6. When the dataset is imbalanced, which is similar

25

Table 6: Results of FLForensics when using a random or true input as a non-target input.

Dataset Non-target input
Scaling attack ALIE attack Edge attack

DACC FPR FNR DACC FPR FNR DACC FPR FNR

CIFAR-10
Random 1.000 0.000 0.000 1.000 0.000 0.000 0.980 0.000 0.100

True 1.000 0.000 0.000 1.000 0.000 0.000 0.970 0.013 0.100

Fashion-MNIST
Random 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

True 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

MNIST
Random 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

True 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

Sentiment140
Random 0.980 0.025 0.000 1.000 0.000 0.000 0.970 0.038 0.000

True 0.990 0.013 0.000 1.000 0.000 0.000 0.990 0.013 0.000

ImageNet-Fruits
Random 1.000 0.000 0.000 1.000 0.000 0.000 0.950 0.031 0.125

True 1.000 0.000 0.000 1.000 0.000 0.000 0.950 0.031 0.125

0 1 2 3 4 5 6 7 8 9
Class

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f t
ra

in
in

g
ex

am
pl

es

Figure 6: Number of training examples for each class, where class distribution is roughly a power-
law. We sample the unbalanced dataset from CIFAR-10. We have 20,431 training examples in total.

Table 7: Results for centralized learning. The class distributions are shown in Figure 6.
Method DACC FPR FNR

PF 0.831 0.189 0.000
FLForensics-G 0.828 0.191 0.000
FLForensics-A 0.826 0.194 0.000

FLForensics 0.992 0.008 0.005
FLForensics-True 0.998 0.002 0.000

Table 8: Storage overhead of FLForensics.

Dataset
check
points

clients
Storage

overhead (GB)

CIFAR-10 150 100 15.22
Fashion-MNIST 200 100 10.43

MNIST 200 100 10.43
Sentiment140 150 100 3.02

ImageNet-Fruits 100 40 22.20

to non-IID data in FL, and the target label belongs to a majority class, FLForensics significantly
outperforms existing poison-forensics methods.

H Other Ablation Studies

In this Section, we provide other ablation studies for FLForensics.

Impact of number of check points and storage overhead: Figure 7a shows the impact of the
number of check points on FLForensics. We observe a trade-off between storage overhead and
poison-forensics performance. In particular, when a server saves more check points, which incurs
more storage overhead, the server can more accurately detect the malicious clients. We also note

26

10 50 150
0.0

0.2

0.4

0.6

0.8

1.0

Number of Check Points

DACC FPR FNR

(a) Number of check points

0.1 0.2 0.4 0.6 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fraction of Selected Clients

DACC FPR FNR

(b) Fraction of selected clients

0.5 1.0 5.0 15.0 40.0
0.0

0.2

0.4

0.6

0.8

1.0

Scaling Factor

DACC FPR FNR

(c) Scaling factor
Figure 7: Results of other ablation studies for FLForensics.

that the storage overhead is acceptable for a powerful server to achieve good poison-forensics per-
formance. Table 8 shows the storage overhead for different datasets in our default settings. For
instance, saving 150 check points for CIFAR-10 requires 15.22GB storage, which is acceptable for
a powerful server like a data center.

Impact of fraction of selected clients: Based on Figure 7b, FLForensics works well even if the
server selects a small fraction of clients in each training round. The reason is that once a malicious
client appears in multiple check-point training rounds, FLForensics can accumulate its influences to
distinguish it with benign clients. Note that in this experiment, we save all training rounds as check
points so a malicious client appears in multiple of them.

Impact of scaling factor γ: Based on the results in Figure 7c, we observe that FLForensics works
well for a wide range of scaling factors used by the Scaling attack. The reason is that once the
Scaling attack is effective, FLForensics can identify the malicious clients. Previous work [3] shows
that the higher the scaling factor, the more effective the attack, but it also makes the attack more
susceptible to detection. We can observe that our FLForensics can detect all the malicious clients
even when the scaling factor is close to 1. In such cases, methods (e.g., FLDetector) that rely on the
magnitudes of clients’ model updates to detect malicious clients often fail.

I Limitation

Forensics for untargeted poisoning attacks: This work focuses on forensics for targeted poison-
ing attacks. A promising direction for future work is extending FLForensics to handle untargeted
attacks [16], where the poisoned model misclassifies many clean inputs, resulting in low test accu-
racy. Our current method is less effective in this setting, as the misclassified input in an untargeted
poisoning attack is also a non-target input.

J Broader Impact

Our work proposes FLForensics, the first method to trace back malicious clients in poisoning at-
tacks to FL. It addresses a critical gap in existing defenses, which primarily focus on preventing
attacks during training. FLForensics provides a complementary line of defense by enabling post-
deployment forensics, which is especially important when training-phase defenses fail.

This contribution has positive societal impact, as it helps increase accountability in collaborative
learning systems deployed in sensitive domains such as healthcare, finance, and mobile platforms.
By identifying malicious participants after attack-induced misclassifications, FLForensics promotes
the development of more trustworthy and robust federated systems.

27

Table 9: Test accuracy (TACC) and attack success rate (ASR) of different FL aggregation rules under
different attacks. For the Trim aggregation rule, the trim parameter is set to the number of malicious
clients. The server in FLTrust holds a small and clean root dataset. In our experiments, the size of
the root dataset is set to 50, and the root dataset is drawn from the same distribution as that of the
learning task’s overall training data. For the FLAME aggregation rule, we use the same parameters
as in [33]. We do not show ASR when there is no attack (i.e., “—”) because different attacks use
different triggers.

(a) CIFAR-10

Attack
FedAvg Trim Median FLTrust FLAME

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack 0.837 — 0.769 — 0.755 — 0.811 — 0.774 —
Scaling attack 0.831 0.682 0.777 0.950 0.780 0.930 0.816 0.642 0.776 0.644
ALIE attack 0.843 0.956 0.814 0.754 0.809 0.980 0.806 0.968 0.780 0.958
Edge attack 0.819 0.174 0.761 0.337 0.762 0.352 0.794 0.056 0.789 0.087

(b) Fashion-MNIST

Attack
FedAvg Trim Median FLTrust FLAME

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack 0.900 — 0.856 — 0.864 — 0.880 — 0.887 —
Scaling attack 0.887 0.953 0.870 0.892 0.841 0.043 0.874 0.037 0.890 0.024
ALIE attack 0.889 0.941 0.809 0.113 0.764 0.040 0.876 0.038 0.886 0.020
Edge attack 0.886 0.990 0.862 1.000 0.856 1.000 0.861 0.990 0.883 0.990

(c) MNIST

Attack
FedAvg Trim Median FLTrust FLAME

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack 0.960 — 0.948 — 0.943 — 0.926 — 0.948 —
Scaling attack 0.958 0.950 0.921 0.013 0.936 0.010 0.926 0.006 0.954 0.005
ALIE attack 0.958 0.944 0.788 0.045 0.929 0.013 0.927 0.007 0.953 0.005
Edge attack 0.953 0.990 0.938 0.980 0.939 0.960 0.919 0.580 0.953 0.070

(d) SENT140

Attack
FedAvg Trim Median FLTrust FLAME

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack 0.660 — 0.684 — 0.673 — 0.494 — 0.589 —
Scaling attack 0.659 0.995 0.616 0.985 0.645 1.000 0.494 1.000 0.592 0.232
ALIE attack 0.687 1.000 0.654 1.000 0.531 0.801 0.494 1.000 0.651 0.122
Edge attack 0.564 0.600 0.567 0.683 0.609 0.858 0.494 1.000 0.581 0.175

(e) ImageNet-fruits

Attack
FedAvg Trim Median FLTrust FLAME

TACC ASR TACC ASR TACC ASR TACC ASR TACC ASR

No attack 0.517 — 0.537 — 0.509 — 0.480 — 0.492 —
Scaling attack 0.494 0.881 0.465 0.749 0.467 0.842 0.473 0.108 0.494 0.102
ALIE attack 0.488 1.000 0.486 0.113 0.469 0.132 0.482 0.115 0.502 0.952
Edge attack 0.514 0.283 0.529 0.279 0.502 0.219 0.490 0.377 0.470 0.465

Table 10: Results of PF and FLForensics-G when they use the clients’ model updates.

Method
Scaling attack ALIE attack Edge attack

DACC FPR FNR DACC FPR FNR DACC FPR FNR

PF 0.900 0.125 0.000 0.900 0.125 0.000 0.920 0.100 0.000
FLForensics-G 0.850 0.150 0.150 0.880 0.150 0.000 0.880 0.138 0.050

28

	Introduction
	Preliminaries and Related Work
	Threat Model
	Our FLForensics
	Overview
	Calculating Influence Scores
	Detecting Malicious Clients

	Experiments
	Experimental Setup
	Compared methods
	Experimental Results
	Ablation Studies

	Adaptive Attacks
	Discussion
	Conclusion and Future Work
	Related Work
	Details of Poisoning Attacks in FL
	Details of Training-phase Defenses

	Theoretical Analysis
	Setup and Assumptions
	Formal Definitions and Assumptions
	Guarantee for Observation I
	Guarantee for Observation II

	Dataset Description
	Poisoning Attack Description
	Extending GAS to FL
	Simulating Non-iid Setting in FL
	Details of Other Experiments
	Other Ablation Studies
	Limitation
	Broader Impact

