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Abstract

In NLP, fine-tuning LLMs is effective for
various applications but requires high-quality
annotated data. However, manual annotation
of data is labor-intensive, time-consuming,
and costly. Therefore, LLMs are increasingly
used to automate the process, often employing
in-context learning (ICL) in which some
examples related to the task are given in the
prompt for better performance. However,
manually selecting context examples can
lead to inefficiencies and suboptimal
model performance. This paper presents
comprehensive experiments comparing several
LLMs, considering different embedding
models, across various datasets for the Named
Entity Recognition (NER) task. The evaluation
encompasses models with approximately 7B
and 70B parameters, including both proprietary
and non-proprietary models. Furthermore,
leveraging the success of Retrieval-Augmented
Generation (RAG), it also considers a method
that addresses the limitations of ICL by
automatically retrieving contextual examples,
thereby enhancing performance. The results
highlight the importance of selecting the
appropriate LLM and embedding model,
understanding the trade-offs between LLM
sizes and desired performance, and the
necessity to direct research efforts towards
more challenging datasets. The code,
submitted as Supplementary Material, will be
made publicly available after acceptance.

1 Introduction

Data annotation plays a crucial role in training
machine learning (ML) models, especially in the
era of Natural Language Processing (NLP). In NLP,
data annotation typically involves annotating text
data with relevant information, such as named
entities, parts of speech, sentiment, intent, text
classification, etc. The data annotation carries even
more significance for fine-grained NLP tasks like
token classification, where each token of a sentence

has to be tagged with a gold label. In specialized
domains such as Human Resource Management
(HRM) or medical, organizations often possess
large datasets that can be leveraged to enhance
decision-making and operational efficiency through
the use of LLM-based NLP approaches (Urlana
et al., 2024). However, for these organizations
to fully harness the power of LLMs through fine-
tuning, they need high-quality annotated datasets.
Traditional data annotation is a labor-intensive
and costly process, especially when applied to
large corpora. For example, in the case of HRM,
annotating a dataset of 10,000 resumes for an
information extraction task can be prohibitively
time-consuming and requires significant human
effort (Feng et al., 2021).

Nowadays, pre-trained LLMs (Devlin et al.,
2019; Liu et al., 2019) can be cost-effectively
fine-tuned on downstream tasks. These fine-
tuned models are frequently used in scenarios
where continuous LLM usage for inference is
too expensive, such as when using API provided
by propriety services (OpenAl, 2023; Team,
2024a), or when there is the need for tailored
models to meet strict performance standards while
maintaining the privacy of sensitive information,
such as in specialized fields (Strohmeier, 2022;
Karabacak and Margetis, 2023). With the advent
of advanced LLMs such as GPT-4 (OpenAl,
2023), Qwen (Team, 2024b), and Llama (Touvron
et al., 2023), researchers and practitioners are
increasingly leveraging these models to enhance
the data annotation process (Tan et al., 2024).
Pre-trained on massive corpora, LLMs offer
unprecedented capabilities for automating and
streamlining annotation, improving scalability, and
reducing costs (Wang et al., 2021).

Recent studies have demonstrated that
LLMs (Wang et al., 2023; Naraki et al., 2024) can
achieve performance comparable to human level in



data annotation for Named Entity Recognition Task
(NER). However, most of these evaluations are
conducted on widely used benchmark datasets such
as CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003) and WNUT-17 (Derczynski et al., 2017).
For instance, between 2023 and 2025, the CoNLL-
2003 dataset has been utilized in 191 studies, while
WNUT-17 has been considered in 45. In contrast,
more complex datasets like SKILLSPAN (Zhang
et al., 2022a) and GUM (Zeldes, 2017) have been
used significantly less frequently, in only 9 and 4
studies!, respectively. The results presented in this
paper suggest that to gain a more comprehensive
understanding of model performance regarding
data annotation via LLMs in NER task, it is crucial
to extend evaluations to more challenging datasets,
which better reflect the complexities of real-world
applications.

From a technical perspective, in the recent
literature, prompting (He et al., 2024a) and in-
context learning (ICL) (Dong et al., 2024) are
common approaches to leverage the LLMs for
data annotation (Tan et al., 2024). ICL, which
is a technique where some solved examples of
the task are given within the prompt for better7
performance, is generally proven to be more
effective. However, selecting the right and relevant
examples to use as context for LLMs continues
to be a challenging task (Zhang et al., 2022b).
Manually choosing examples for each query
creates labor overhead, and more significantly, the
use of incorrect context examples may lead LLMs
to produce hallucinations (Yao et al., 2024) or
inaccurate outputs.

To address the above mentioned challenges, this
paper presents the following contributions:

1. Comprehensive Evaluation of LLMs and
Embeddings. It provides a comprehensive
assessment of LLMs for data annotation in
NER tasks, examining two distinct embedding
models, as well as different techniques such
as ICL and RAG, while utilizing datasets
of varying complexity. It compares five
models including proprietary models, such as
gpt-40-mini, and open-source alternatives
with approximately 7B and 70B parameters
scale.

'The statistics regarding the datasets usage is collected
from https://paperswithcode.com/dataset/

2. Trade-off Between LLM Sizes and
Performances. The trade-off between LLM
sizes and performance is demonstrated,
which is further verified by the statistical
tests. In fact, with the appropriate LLM and
embedding models, there are no statistically
significant differences in results between
certain 7B and 70B models.

3. A RAG-Based Annotation Approach. To
improve annotation quality and address the
limitations of manual context selection in
ICL, this paper considers a RAG based
approach (Lewis et al., 2020). Instead of
manually crafting in-context examples, the
proposed method retrieves the most relevant
samples based on similarity scores, enabling
LLMs to generate more accurate annotations.

2 Related Work

In the recent past, there have been efforts
by researchers to leverage the LLMs for data
annotation (Tan et al., 2024). Wang et al. (2021)
introduced the use of GPT-3 (Brown et al., 2020)
for data annotation. The authors evaluated the
quality of data generated by the GPT-3 against
the human-labeled data. For each sentence to be
annotated by the model, they construct a prompt
consisting of several human-labeled examples
along with the target sentence. They evaluate the
performance in n-shot settings. Also, the authors
report the performance of text classification and
data generation tasks. Likewise, He et al. (2024a)
leveraged the use of GPT-3.5 based models to
annotate data. In comparison to the previous
approach presented by Wang et al. (2021), the
authors introduced the concept of chain-of-thought
(CoT) (Wei et al., 2023) reasoning to annotate data.
The authors simulate the human reasoning process
to induce GPT-3.5 to motivate the annotated
examples. They present the task description,
specific examples, and the corresponding gold
labels to GPT-3.5, and then ask the model to
explain whether/why the given label is appropriate
for that example. This enables the model to
explain its choice of a specific label for the target
sentence. Then, the authors construct the few-shot
CoT prompts using the explanations generated by
the model for data annotation.

To leverage the GPT model for the Named
Entity Recognition (NER) task, Wang et al.



(2023) proposed a GPT-NER model. The main
contribution introduced by the authors is to
transform the NER into a text-generation task.
The authors used prompt engineering, where
prompts consist of three parts: (i) task description;
(ii) few-shot examples; and (iii) input sentence.
To choose few-shot context examples, they used
two different strategies: (i) random retrieval; and
(if) k-NN based retrieval from training data.

In this work, the authors propose a retrieval-
based approach for selecting context examples.
Specifically, for each training instance, the method
iterates through all tokens in a sentence to identify
the k-nearest neighbor (k-NN) tokens. The top
k retrieved tokens are then selected, and their
corresponding sentences are used as context. The
context examples are retrieved from the entire
training dataset. = Furthermore, for sentences
containing multiple entities, the algorithm runs
multiple times to ensure the extraction of all entities
within the sentence.

Following the work of Wang et al. (2021) and Wang
et al. (2023), Naraki et al. (2024) also proposed a
LLMs based annotation for NER task. The authors
used the LLMs to clean noise and inconsistencies in
the NER dataset, and then they merged the cleaned
NER dataset with the original dataset to generate
a more robust and diverse set of annotations. It is
worth mentioning that, in merging the annotations
from LLM with human labels, preference is given
to human-annotated examples compared to the
LLM annotations. In addition, Bogdanov et al.
(2024) used the LLMs to create a general dataset
for NER tasks with a broad range of entity types.
The authors demonstrate a procedure that consists
of annotating raw data with an LLM to train a
task-specific foundation model for NER. Goel et al.
(2023) uses the same concept of data annotation
using LLLMs, however, they do a case study on a
medical domain where they leverage the LLMs
for accelerating the annotation process along with
human input.

The research discussed above highlights the strong
interest in using LL.Ms for dataset annotation,
with most approaches relying on ICL. However,
systematic evaluation on complex datasets remains
limited, and selecting appropriate context examples
for ICL is still a challenge. This study provides a
comprehensive evaluation of LLMs for NER data
annotation.

3 Methodology
3.1 Problem Definition

Given a dataset D = {S;}" ;, where S; represents
the ¢-th sentence, with training, validation and
test split given as Dirgin, Dyalia and Diest. We
divide Dy,.qiy, into two disjoint subsets: X’ (we call
as sample space), from which we sample context
examples, and 7, which will be annotated by the
LLM. Formally, let X C Dipqin be a subset of
size x, where © < n, and T = Dyqin \ X be the
remaining subset containing ¢ sentences, where
t =n — z. From X, we select m examples, where
m < x, to form the context set M. The LLM
uses all the m examples in M as input context to
annotate the ¢ sentences in 7.

The NER task can be defined as the problem of
learning an approximation function fy that closely
matches the real function f : Sy x V — C, where
Sy represents the set of all the possible sentences
composed only by words w in the vocabulary
V, and C represents the set of possible entity
categories. The real function f given: (i) a sentence
S; € Sy, and (ii) a word w € V), assigns w to its
corresponding category ¢ € C.

3.2 Data Annotation via LLMs

The methodology adopted in the proposed RAG
approach is shown in Figure 1. This section
discusses the steps followed in the proposed
study. Section 3.2.1 explains the prompt template
formation, while Section 3.2.2 presents the baseline
approach, followed by ICL method in Section 3.2.3.
Section 3.2.4 presents the proposed RAG technique,
whereas the importance of structured outputs for
NER task is discussed in Section 3.2.5.

3.2.1 Prompt Formation

In NLP, crafting an effective prompt for LLMs is a
crucial task, as an ill-formed prompt could lead to
poor performance. Different LLMs, whether open-
source or proprietary, tend to respond differently
to variations in prompt (Errica et al., 2024). This
work adopts a similar approach to prompt design
presented in (He et al., 2024b; Wang et al., 2023),
i.e. structuring our prompts around three key
components, also visible in Figure 1: (i) Task
Description. This component clearly defines the
task the LLM is expected to perform; (ii) Context.
This component provides task-related examples
that help the LLM to better understand the problem,
while also clarifying the expected input/output
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Figure 1: Workflow of the proposed approach. D;,4;, denotes the training data, X’ denotes the few human annotated
examples, whereas 7 denotes the training instances to be annotated by LLM. For each entry 7; € T, we extract M
context examples from a vector store using a retriever module. Then, given an input sentence, the final prompt to
LLM consists of the task description, the context examples in M, and input sentence.

format; and (iii) Input. This final component
presents the LLM with the specific examples to
be annotated. The prompt structures adopted
in the experiments are outlined in Appendix G,
while several prompt examples are reported in
Appendix H.

3.2.2 Zero-shot Data Annotation

In the zero-shot setting (refers to the baseline),
the LLM receives only task descriptions and
entity categories from the dataset. The task
description explains the task, whereas entity
categories provide information about the classes
that the LLM has to use for annotation. Providing
entity categories in the prompt allows the LLM
to produce consistent output annotation as in the
training set. For instance, in the CoNLL-2003
dataset, person and organization categories are
labelled as PER and ORG respectively. Thus, the
prompt to the LLM includes PER and ORG to
annotate entities in the person and organization
categories, respectively. However, in zero-shot
data annotation, the lack of context examples
hinders the model’s understanding, often leading to
suboptimal performance. Nonetheless, this setting
allows to evaluate the general knowledge of LLM
on a task.

3.2.3 In-Context Learning

In ICL, the prompts given to LLMs are enhanced
by including not only a task description and entity
categories but also contextual examples. These

examples aid the models in better understanding
the task at hand. As detailed in Section 3.1, Dirgin
is is split into X and 7. From X, the selection of
M can be approached in two ways: either through
manual cherry-picking or by random sampling.
However, manually selecting M can be both time-
consuming and subjective, which contradicts the
rationale of the proposed study. Therefore, we
opt to randomly sample M from &, although it
does not guarantee whether the selected context
examples M are semantically close to the input
text 7;, which is a limitation of this approach.

3.2.4 Retrieval-Based Approach

To overcome the limitations of the previously
mentioned approaches, this paper introduces a
retrieval-based method for automatically selecting
relevant context examples. As outlined in
Section 3.1, the proposed RAG-based approach
first generates embedding representations for all
examples in X, which are then stored in a vector
database (Douze et al., 2024) for subsequent
retrieval, as illustrated in Figure 1. Subsequently,
for each sentence 7; € 7T, its embedding
representation is generated, and the most similar
M examples are retrieved from X stored in the
vector database. M is then used as context for the
LLM to provide the most relevant examples for
annotating the input text 7;.



3.2.5 Structured Output from LLMs

For a label-sensitive task like NER, getting a
structured output from a LLM is a crucial step.
In the NER task, as defined in Section 3.1,
each token in a sentence is tagged with a
corresponding label. Hence, preserving the token-
label correspondence in the output is necessary for
the LLMs. The most recent LLMs are based on a
decoder architecture that, while being suitable for
sequence-to-sequence tasks, encounters challenges
when tackling the NER task due to the potential
misalignment between tokens and labels (Ul Haq
et al., 2024). In fact, recent studies on NER (Li
et al., 2024; Liu et al., 2024; Wang et al., 2023)
have shown that the decoder architecture presents
structural inconsistencies in the output. Recently,
OpenAl (OpenAl, 2023) released a feature for the
latest GPT-4 based models which guarantees to
follow the structured output format?. To solve the
token-label misalignment problem, in this study,
we leverage the latest feature of StructuredOutput
released by OpenAl. However, it is important to
note that despite the inclusion of such features in
the latest LL.Ms, including Qwen (Team, 2024b)
and Llama (Touvron et al., 2023) based models,
they still exhibit inconsistencies in their output,
unlike the gpt-40-mini-2024-07-18.

4 Experimental Setup
4.1 Datasets

In this study, to evaluate the performance of the
proposed methodology and assess the capabilities
of LLMs, four datasets are considered, with their
statistics summarized in Table 1 of Appendix A.
Each dataset presents unique challenges for LLMs
in performing NER tasks, allowing this study to
comprehensively analyze the ability of LLMs to
handle diverse entity types, from well-structured
entities to complex, ambiguous, and domain-
specific annotations.

CoNLL-2003 The  CoNLL-2003  (Tjong
Kim Sang and De Meulder, 2003) dataset consists
of four general entity types. Entities in this dataset
typically follow structured patterns, making them
relatively easier for LLMs to identify and classify.

WNUT-17 The WNUT-17 (Derczynski et al.,
2017) dataset contains six categories of rare entities.
This dataset is particularly challenging due to its

2https://openai.com/index/
introducing-structured-outputs-in-the-api

noisy text, sparse entity occurrences, and limited
labeled examples per category. Improving recall
on this dataset remains a significant challenge for
LLMs.

GUM The GUM (Zeldes, 2017) dataset is a
richly annotated corpus designed for multiple
NLP tasks, including NER. It captures linguistic
phenomena across various domains and genres,
making it a valuable resource for evaluating model
performance. The dataset includes eleven distinct
named entity types. Compared to CoNLL-2003
and WNUT-17, GUM presents a higher level of
complexity by incorporating a diverse set of entity
types spanning multiple domains.

SKILLSPAN The SKILLSPAN (Zhang et al.,
2022a) dataset is composed of a single entity
type. Unlike traditional entities, soft skills do
not follow a fixed syntactic or semantic structure,
making them inherently ambiguous. These
entities can range from single tokens to multi-
token expressions, increasing the complexity of
annotation and information extraction tasks for
LLM:s.

4.2 Approaches Under Study

In the empirical assessment of the datasets
annotated by LL.Ms, the zero-shot data annotation
approach is chosen as the baseline since it provides
no context about the task to the LLM. This zero-
shot setting allows the evaluation of the LLM’s
general knowledge of the task. Moreover, ICL and
RAG-based approaches, detailed in Section 3.2.3
and Section 3.2.4 respectively, are considered.
For both, experiments are conducted with three
different numbers of context examples: (i) 25,
(ii) 50, and (iii) 75. Experiments are conducted
on a 30% sample of the training set Dyin, While
the ablation study in Appendix D examines the
effects of 10% and 20% sample sizes.

This paper considers five different LLMs?:
(i) gpt-40-mini-2024-07-18, (ii) Qwen2.5-
72B-Instruct, (iii) Llama3.5-70B-Instruct,
(iv) Qwen2.5-7B-Instruct, and (v) Llama3.1-
8B-Instruct, and two embeddings models:
(i) the text-embedding-3-large model*, and
(ii) the sentence transformer all-MinilM-L6-
v2 model (Reimers and Gurevych, 2019).

3The models are referred to by their base names, such as
Qwen2.5-72B for Qwen2.5-72B-Instruct, and so on.
*https://platform.openai.com/docs/guides/embeddings
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Throughout the remainder of the paper,
text-embedding-3-large will be referred
to as OpenAl, and sentence transformer

all-MinilLM-L6-v2 will be referred to as ST.
Implementation details of results are reported
Appendix B.

4.3 NER Evaluation Process

To assess the quality of annotations generated by
LLMs, the RoBERTa model (Liu et al., 2019) is
fine-tuned on LLM-annotated datasets, leveraging
its proven effectiveness in NER tasks (Zhou et al.,
2022; Zhang et al., 2022a). Initially, an LLM is
employed to automatically annotate sentences in
T C Dirain, using strategies from Section 3.2.
This process generates annotations for 7, resulting
in a new training set, 7, with |7] = |7|. This
annotated set is then used to fine-tune the ROBERTa
model (Liu et al.,, 2019). Model selection is
performed on the validation set, D,,;4, and the
final evaluation results are based on the test set,
Dyest- To ensure robustness and mitigate the impact
of random initialization, we average the results
across five different seed values. The F} score is
used to assess the performances of the models.

5 Results and Analysis

This section presents the quantitative results of this
study, as well as its analysis. Qualitative results are
reported in Appendix F, while Appendix E reports
the statistical tests to support the findings.

5.1 Quantitative Results

Figure 2 presents the overall results of the
experiments, while the corresponding detailed
outcomes are reported in Appendix C. Specifically,
the heatmaps present the £ scores obtained on the
test set for different datasets, comparing several
models and methods used in the proposed study.

The CoNLL-2003 dataset, which contains named
entities like persons, organizations, and locations,
is relatively well-structured, making it easier for
LLMs to generate high-quality annotations. The
gpt-40-mini model with OpenAl embeddings
emerges as the top performer (also shows statistical
significance over other models as detailed in
Appendix E), achieving an Fj score of 89.72 with
75 context examples, which is just 2.7% below
human-level annotation. Among the ~ 70B
models, Qwen2.5-72B with OpenAl embeddings
performs comparably to gpt-4o-mini with an

Fy score of 89.34, while Llama3.5-70B with
ST embeddings lags slightly behind with an F}
score of 87.33. At the ~ 7B scale, Qwen2.5-7B
with ST embeddings significantly outperforms
its counterparts, achieving an F7 score of 87.94,
while Llama3.1-8B with OpenAl embeddings
scores 84.91. This suggests that smaller models
can still perform competitively when paired with
appropriate embedding methods. Interestingly,
the heatmap reveals that context size plays
a crucial role—gpt-40-mini and Qwen2.5-70B
benefit significantly from larger context sizes of
75 examples, while L1ama3.5-70B performs best
at a slightly lower context size. This suggests that
different models have varying levels of context
saturation, where additional examples may not
always improve performance linearly.

The WNUT-17 dataset, which focuses on low-
frequency and emerging entities, presents a
significant challenge due to limited training
samples for each entity. However, Qwen2.5-70B
with OpenAl embeddings achieves the highest
Fy score of 53.72, slightly outperforming
gpt-40-mini, which attains an Fj score of 53.43.
The Llama3.5-7@0B model exhibits inconsistent
performance, scoring 51.18 with ICL at 75 context
examples, suggesting that it struggles to generalize
well for rare entity detection. At the ~ 7B
scale, Qwen2.5-7B with ST embeddings achieves
an F} score of 49.48, significantly outperforming
L1lama3.1-8B, which scores 44.42. This highlights
that ST embeddings provide a crucial advantage
for smaller models. Compared to human-level
annotation, which achieves an F} score of 54.93,
the best-performing LLM reduces the gap to just
1.21%, which is the smallest performance gap
between human and LLM annotation across all
datasets used in the experiments. This suggests
that RAG-based annotation is highly effective in
adapting to rare entity recognition, particularly
when combined with larger models and strong
embeddings.

The GUM dataset presents a unique challenge
due to its diverse entity types, requiring models
to generalize across various linguistic structures.
Qwen2.5-70B with ST embeddings achieves the
best Fy score of 55.11, significantly surpassing
gpt-4o0-mini, which attains an I score of 52.28,
and Llama3.5-70B with OpenAl embeddings,
which achieves an Fj score of 48.33. At the ~
7B scale, Qwen2.5-7B with OpenAl embeddings
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Figure 2: Heatmaps of the F} scores across four datasets. The color scale represents performance, with red indicating
higher scores reaching human-level, and blue indicating lower scores starting from the lowest performing model

achieves an F) score of 44.48, outperforming
Llama3.1-8B, which scores 43.91. However, both
models show a notable performance drop compared
to their larger counterparts, suggesting that smaller

models struggle with datasets with diverse entities.

The 3.15% gap between the best-performing LLM
and human-level annotation highlights that GUM
remains a challenging dataset for LLMs. The
heatmap further suggests that model performance
fluctuates significantly depending on context size
and embedding choice.

The SKILLSPAN dataset is the most difficult
among those evaluated, as it requires understanding

nuanced skill mentions across various job contexts.

gpt-4o0-mini with OpenAl embeddings performs
the best, achieving an F) score of 34.06 with
75 context examples, but this is still far from
human-level annotation. At the ~ 70B scale,
Qwen2.5-70B with ST embeddings achieves an
Fy score of 32.35 with 50 context examples,
outperforming L1ama3.5-70B, which achieves an
Fy score of 27.55. Among ~ 7B models,
Qwen2.5-7B with OpenAl embeddings achieves
an I score of 29.67, significantly surpassing
Llama3.1-8B, which scores 22.88. This suggests
that embedding choice plays a crucial role in
skill extraction tasks. Notably, the gap between

human annotation and the best-performing LLM
is much larger in this dataset compared to
others, indicating that LLMs struggle with skill-
based entity recognition. This could be due to
the complexity of contextual skill interpretation,
requiring deeper domain knowledge and better
understanding capabilities.

5.2 Different Sample Space Choices

This section examines the impact of sample space
choices, denoted as & in Section 3.1, using
the proposed RAG-based approach as overall it
performs better than ICL. The experiments are
conducted on the SKILLSPAN dataset with the
gpt-40-mini model and OpenAl embeddings. As
shown in Figure 3, for smaller dataset splits, the
RAG-based approach exhibits greater variability,
similar to the behavior seen with ICL. This suggests
that as the sample space for selecting context
examples decreases, the performance of the RAG-
based approach converges more closely with that
of ICL. More detailed results are reported in
Appendix D.

6 Discussion

Performance of LLMs The performance of
different LLMs in our study reveals interesting
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Figure 3: F} scores for different context sizes (25, 50,
and 75) and sample spaces (10% and 20%) for the
RAG and ICL approach on the SKILLSPAN dataset,
using the gpt-40-mini model. The plot indicates that
with a smaller sample size, the RAG approach performs
comparably to ICL.

insights. Across all datasets, RAG-based
approaches improve annotation quality, with
gpt-40-mini and OpenAl embeddings achieving
the best results. In contrast, ICL struggles
in datasets with sparse or ambiguous entities,
particularly SKILLSPAN. While all models
perform well on CoNLL-2003, performance
declines as entity structures become more complex,
such as in GUM and SKILLSPAN.

Effect of Embeddings The choice of
embeddings for retrieval of context for LLMs
plays a crucial role in annotation quality in
retrieval-based methods. OpenAl embeddings lead
to better F; scores compared to smaller-scale ST
embeddings especially for gpt-4o-mini model.
This effect is particularly evident in WNUT-17 and
GUM, where entity distributions are more diverse,
and high-quality embeddings improve retrieval
effectiveness. In contrast, SKILLSPAN remains
challenging across all embedding strategies,
suggesting that current embedding techniques
struggle with soft skill representation due to the
abstract nature of the entities.

Effect of Model Size Larger models generally
perform better, but retrieval quality is equally
critical. Qwen2.5-7B slightly outperforms
Llama3.1-8B and performs comparably to
Llama3.5-70B  with  proper embeddings,
indicating that architecture and training data
impact annotation beyond parameter count.
Statistical tests in Appendix E support this finding.

Effect of Dataset Complexity Breaking down
results per dataset, CoNLL-2003 shows minimal
variance across methods, as structured entities
are well-represented in training data. WNUT-17
benefits the most from retrieval-based methods,

as rare entities require additional context for
accurate recognition. GUM’s diverse entity
types pose a challenge for ICL, but RAG-
based methods significantly improve performance.
Finally, SKILLSPAN remains the most difficult
dataset, with lower performance across all
methods, underscoring the limitations of LLMs
and embeddings in capturing the semantics of soft
skills.

7 Conclusions and Future Works

This study systematically evaluates the
effectiveness of LLMs for data annotation
across four diverse datasets—CoNLL-2003,
WNUT-17, GUM, and SKILLSPAN of varying
complexity. It compares RAG in different
embedding strategies, ICL, and a baseline
approach. The results demonstrate that RAG-based
methods consistently outperform both ICL and the
baseline across all datasets, significantly reducing
the performance gap with human-level annotation.

A key finding is that dataset complexity plays
a crucial role in model performance. For
structured datasets like CoNLL-2003, LLMs
perform exceptionally well, with models such as
gpt-40-mini and Qwen2.5-72B achieving results
within 3% of human-level annotation. Conversely,
performance deteriorates as dataset complexity
increases. The SKILLSPAN dataset, which
requires nuanced skill recognition, presents the
greatest challenge, with LLMs struggling to
capture implicit skill mentions.

Our analysis also highlights the importance
of context size and embedding choice in
retrieval-augmented annotation.  We observe
that larger models such as Qwen2.5-72B and
gpt-4o-mini benefit from larger context sizes,
while smaller models like Qwen2.5-7B can still
perform competitively when paired with high-
quality sentence embeddings. However, models
exhibit context saturation effects, where additional
examples do not always lead to linear performance
improvements.

Future works will focus on enhancing the
performance of LLMs for complex datasets,
particularly in specialized domains. In addition,
future works will expand the study to more LL.Ms
and to different NLP tasks.



Limitations

In this study, we evaluate LLMs for data annotation
tasks and introduce a RAG-based approach
with different embedding models to enhance
performance on NER datasets. However, our
work has several limitations that highlight areas
for future research.

First, our experiments focus solely on NER
tasks. While this provides a solid foundation
for evaluation, extending the analysis to other
NLP tasks, such as text classification or question
answering, would offer a more comprehensive
understanding of the proposed methodology’s
applicability and generalizability.

Second, for the proof of concept, we employ a
naive RAG approach for context selection. Future
work could explore more sophisticated retrieval
techniques, such as adaptive retrieval strategies,
re-ranking mechanisms, or hybrid approaches
combining dense and sparse retrieval, to further
optimize performance.

Third, our study does not explicitly examine the
biases introduced by LLMs in the data annotation
process. Given the growing concerns about fairness
and model biases, a deeper investigation into how
LLMs influence annotation patterns, especially
in diverse and underrepresented datasets, could
provide valuable insights.
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A Datasets Statistics

Table 1: Statistics of the datasets considered in this study. The average entity length refers to the average number of
tokens for each entity.

Sentences Tokens

Dataset Avg. Entity Length
Train Validation Test Train Validation Test

CoNLL-2003 14041 3250 3453 203621 51362 46435 1.60

WNUT-2017 3394 1008 1287 62730 15734 23394 1.73

GUM 1435 615 805 29392 12688 17437 3.15

SKILLSPAN 3074 1396 1522 92621 39923 42541 4.72

Table 1 highlights the complexity of entity mentions across different datasets, as reflected in their average
entity length. CoNLL-2003 and WNUT-2017 contain relatively short entities, with average lengths of
1.60 and 1.73 tokens, respectively, indicating that most entities are single-token mentions. In contrast,
GUM exhibits greater complexity, with an average entity length of 3.15 tokens, suggesting the presence
of multi-token entities. SKILLSPAN is the most complex dataset, with an average entity length of 4.72
tokens, implying more intricate entity structures that require advanced modeling techniques for accurate
recognition.

Moreover, we discuss below the entity information for each dataset.

CoNLL-2003 The CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) dataset consists of general
entity types: (i) PERSON ; (ii) ORGANIZATION; (éii) LOCATION; and (iv) MISCELLANEOUS.
Entities in this dataset typically follow structured patterns, making them relatively easier for LLMs
to identify and classify.

WNUT-17 The WNUT-17 (Derczynski et al., 2017) dataset contains six categories of rare entities:
(i) PERSON; (ii) CORPORATION; (iii) LOCATION; (iv) CREATIVE_WORK; (v) GROUP; and
(vi) PRODUCT. This dataset is particularly challenging due to its noisy text, sparse entity occurrences,
and limited labeled examples per category.

GUM The GUM (Zeldes, 2017) dataset is a richly annotated corpus designed for multiple NLP tasks,
including NER. The dataset includes eleven distinct named entity types: (i) ABSTRACT; (i) ANIMAL,;
(iti) EVENT; (iv) OBJECT; (v) ORGANIZATION; (vi) PERSON; (vii) PLACE; (viii) PLANT;
(ix) QUANTITY; (x) SUBSTANCE; and (xi) TIME.

SKILLSPAN The SKILLSPAN (Zhang et al., 2022a) dataset is composed of a single entity type,
SOFTSKILLS, extracted from job descriptions. Unlike traditional entities, soft skills do not follow a fixed
syntactic or semantic structure, making them inherently ambiguous.

B Implementation Details

To perform experiments for data annotation with gpt-4o-mini, the model is accessed via the API service
provided by OpenAl. To ensure reproducible results, the temperature is set to 0 and a seed value of 42
is used. Furthermore, the system fingerprint fp_1bb46167f9 is reported as noted during API access.
For data annotation generation using Qwen (Team, 2024b) and Llama (Touvron et al., 2023) based
models, the HuggingFace (Hugging Face, 2023) implementation is utilized. The instructed fine-tuned
variants of the open-source models are employed in the proposed study. The models are used only for
inference, with 4-bit quantization (Jacob et al., 2018). The experiments with billion scale models are
conducted on an A100 GPU with a seed value of 42. All experiments to fine-tune NER task are performed
with the ROBERTa model, available via HuggingFace (Hugging Face, 2023), are conducted in a python
environment, on an RTX A5000 GPU. The experiments are performed using the following five seed
values: [23112, 13215, 6465, 42, 5634]. Moreover, the statistical significance tests are performed with the
help of scikit-posthocs (Terpilowski, 2019) library available in python.
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Table 2: The Fy, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #EX. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

CoNLL2003 WNUT-17 GUM SKILLSPAN
#Ex.  Method
P R Fq P R F1 ) R F1 | R Fi
Human 91.0940.49 93.17+0.17 92.1240.33 65.2142.32 47.48+1.83 54.93+1.67 55.07+0.31 61.86+0.44 58.2640.19 54.30+1.60 55.38+1.75 54.7910.26
gpt-40-mini-2024-07-18
Baseline 64.65i0A85 80.37i0A50 71.66i0A41 47~35i246 55.18i2,84 50.88i1A14 20-32i526 13~93i276 16.42i3434 11~09i0497 17.83i2A02 13.59i0A52
ICL 76.4840.43 82.06+0.35 79.17+0.25 53.1843.22 52.2442.73 52.5810.78 44.064+0.69 52.04+1.57 47.71+0.79 21.23+1.46 45.26+1.72 28.86+1.24
25 RAG w/ST 84.484+1.04 88.99+0.65 86.68+0.85 51.4249.63 50.98+1.52 H1.1441.01 46.09+0.66 54.38+1.07 49.89+0.70 20.2940.78 49.47+1.80 28.77+0.93
RAG W/OpenAI 87-35:t0.65 90.71i0,34 89.00:{:0,29 52.26:‘:2,24 49.75:{:1,51 50.93j:0.93 47.04i0,23 57.56:{:1,44 51-77:t0.66 21.26:{:1‘69 56.74i1,37 30.91i1,94
ICL 79.77+0.34 82.6440.49 81.1840.29 55.75+2.80 49.53+3.07 52.33+0.97 45.1240.82 54.3542.02 49.2840.88 20.5640.89 47.424201 28.66+0.85
50 RAG w/ST 86.73+1.03 89.2940.84 87.9910.90 53.7443.00 48.7444.44 50.9041 34 46.4641.34 55.46+1.21 50.56+1.29 22.2241.47 52.6041.41 31.2041.32
RAG w/OpenAl 87.4310.48 91.3940.16 89.3610.27 56.534+2.35 50.294264 53.14410.75 47.3240.92 58.441121 52.28 10565 23.88+1.09 54.28+2.26 33.1310.77
ICL 78.7441.02 83.17+0.55 80.89+0.66 51.9044.29 52.854+1.95 52.2441.76 44.4040.63 53.89+1.79 48.67+0.69 20.844+1.59 52.06+1.01 29.73+1.58
75 RAG W/ST 86.91i0,31 89.25i0,44 88.06:‘:0,26 53.80i1,75 5179:{:1488 52.73j:0,80 47-22:|:0.98 55.57:{:0_43 51.05:{:0460 21-39:!:0487 52.85i1,10 30.43:{:0_73

RAG w/OpenAI 88.07i0,35 91-44i0.28 89.72i0,25 55.72i422 51.71i3,34 53.43i0,54 47-O4i1'29 58.19i1,18 52.02i1A15 24.66i1434 55.39i3A19 34-06i0.88
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Table 3: The Fy, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #Ex. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

CoNLL2003 WNUT-17 GUM SKILLSPAN
#Ex.  Method
P R Fq | R F. P R Fq | R Fq
Human 91-09i0,49 93~17i0417 92-12i0.33 65.21i2.32 47~48i1.83 54~93i1.67 55.07i0431 61.86i0_44 58.261019 54-3Oi1.60 55.38i1,75 54-79i0,26
Qwen2.5-72B-Instruct
Baseline 2697:!:0.28 60.80:{:1_25 37'36;{:0430 16.40;{:1.30 41.19:‘:1,23 23.43i1.42 6.32:]:0,21 27.46i0,97 10.28:‘:0.35 4‘89:&0,41 13.79:{:2,15 7-21:t0.69
ICL 74.5710.79 83.57+0.82 78.8110.30 45.58 44966 59.47+3.00 51.4910.92 41.69+1.10 55.80+1.00 47.73+1.06 17.0642.18 31.17+1.63 22.01+2.13
25 RAG w/ST 81.87+0.72 89.90+0.46 85.69+0.56 46.554+2.70 45.68+1.43 46.06+1.33 47.79+1.05 60.15+0.99 53.26+0.89 18.2542.05 47.934+2.08 26.404+2.37
RAG w/OpenAl 84.81+1.16 91.6840.64 88.1110.82 48.33+2.82 49.88+1.89 49.05+1.86 47.1640.46 59.83+0.64 52.7440.16 18.23+1.90 50.07+4.49 26.63+1.90
ICL 77.4840.51 83.3440.53 80.30+0.43 45.0441.78 59.31+1.71 51174116 44.30+1.09 57.69+1.35 50.1241 14 17.5140.85 33.824+1.01 23.06+0.86
50 RAG W/ST 84.30j:0.98 91-49j:0.85 87.74;{:0477 45~60j:2.82 56.63i1,52 50.45j:1.14 48.83:{:1_45 60.55i1,05 54.06i1,25 21~32:I:1.82 55~79:I:4.56 30.84i2,52
RAG w/OpenAI 85.96i1_44 92~32i0.30 89-02i0A66 48.66i2,91 57.09i242 52.46i123 47~33i0.81 61.23i044 53.38i053 23-44i2.19 52-32i2.82 32.35i2,54
ICL 77.50+0.68 83.60+0.74 80.43+0.67 52.1442.27 55.6243.11 53.72+0.80 47.60+0.77 57.08+1.22 51.914+0.80 20.8141.15 48.26+2.80 29.05+1.26
75 RAG w/ST 87.46+0.30 91.9540.29 89.65+0.31 48.36+3.25 55.5141.88 51.5841.04 50.2949.27 60.9710.51 55.1140.17 20.9949.12 49.9941 .23 29.5215.10
RAG W/OpenAI 86.77;{:0,54 92.05:&0,72 89-3410.61 48456:(:2_08 60.22i1,52 53.72i0,71 47.24:&1,27 60.34i0,57 52-9810.76 1949510_74 50474:&1_47 28.62:&0,77
Llama3.5-70B-Instruct
Baseline 23.564+0.10 63.2540.17 34.33+0.15 16.3510.74 54.6510.42 25.1610.84 6.4440.08 27.79+0.35 10.46+0.13 3.5140.08 24.304064 6.1410.12
ICL 73.5940.78 78.73+1.03 76.06+0.41 48. 774200 47.664+5.18 48.00+2.14 18.264+2.80 41.83+0.98 25.3442.68 17.0440.52 45.864+2.86 24.84+0.95
25 RAG w/ST 83.1541.42 86.37+0.00 84.7210.54 36.68+1.32 49.1043.77 41.89+0.99 43.09+1.10 50.8842.31 46.6310.89 19.6241.44 46.4741.7¢ 27.554+1.21
RAG w/OpenAI 68.32i399 87-50i1.82 76.65i2‘19 43.52i4,33 44-71i3A86 43.82i129 42.46i1,75 48.87i4A60 45.29i1A50 19.59i1,52 42.16i1,49 26-73i1.65
ICL 76.13+11.12 76.7941.24 76.44410.30 50.24419.81 48.9012.24 49.48 1 s 35.67+1.83 48.794319 41.12471.07 16.094+0.97 44.1544.16 23.51+0.71
50 RAG w/ST 83.87+0.69 88.57+0.88 86.15+0.08 42.924 503 48.79+2.99 45.57+0.76 43.764+1.50 50.244+2.00 46.73+0.49 17.69+0.66 46.114+463 25.50+0.54
RAG W/OpCIlAI 68.36i1,53 89.083:0,75 77‘35:!:0497 44.14:{:1,97 51.28:‘:2,94 4736;(:0,64 43.703:2,43 49»70:i:1.83 46.45i1,40 18.37:{:2,42 44.41:{:4,44 25.77:{:1,75
ICL 74.9441.03 75.151+1.03 75.0410.70 50.7841.74 51.6942.43 51.1841.05 39.6241.64 47.8843.05 43.30+1.39 17.5541.05 51.80+1.68 26.1941.14
75 RAG w/ST 85.70:5:0‘50 89.03:“)‘55 87.33;}:023 47~41:|:3.89 51.36;};197 49.18;|;1A61 45.84:|:1A19 50.36:}:112 47~98i0A68 18.87i1,35 51.175;2,05 27.52:5‘18
RAG w/OpenAl 76.9941.57 87.461+1.39 81.8710.67 49.43 4407 48.164599 48.3945.17 44.4610.61 52.96+1.65 48.3310.64 9514165 47.744351 15.8342.47
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Table 4: The F;, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #Ex. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

CoNLL2003 WNUT-17 M KILLSPA
#Ex.  Method 0 cv SKILLSPAN
| R F. P R F. | R Fq P R Fq
Human 91-09i0,49 93~17i0.17 92~12i0433 65.21i2‘32 47.48i1.33 54~93i1467 55.07i0431 61.8610_44 58.2610,19 54~30i1.60 55.38i1,75 54-79i0.26
Qwen2.5-7B-Instruct
Baseline 21«79:I:1,28 62.11i0,44 32-24j:1.44 20-95j:2.83 4408:!:3.68 28.36j:3.17 3.27i0,22 14‘10:‘:1,03 5.31:{:0437 5.41;{:1,05 35.29i2,73 9-35;!:1.58
ICL 70.2241.45 75.9641.49 72.9540.30 47.7943.40 47.0242.78 47.294163 28.31+1.01 44.0140.97 34.43+0.57 14.1240.88 54.89+1.48 22.4441.08
25 RAG w/ST 83.81+0.67 89.68+0.57 86.64+0.45 37.8243.45 49.68+312 42.8142.14 35.90+1.86 50.09+2.04 41.804+1 65 15.9940.38 55.06+0.93 24.77+0.42
RAG w/OpenAl  84.05+1.15 90.85+0.31 87.3240.65 50.2243.43 41.75+4.88 45.30+1.73 34.63+1.09 49.97+1.00 40.89+0.52 20.45+1.35 54.60+4.83 29.67+1.29
ICL 72.55i1,01 78.54i0,32 75.42i0‘57 47~95i3418 49.36i3,94 48-54i251 33-51i0476 43-59i1A18 37.88i056 15.13i0A90 52-64i2.98 23.47i1_01
50 RAG w/ST 85.78i0,69 90-21i0.38 87.94i0,43 52.14;{:4‘79 44.00:|:3,95 47-41j:0.49 39.38:{:1‘31 4985:‘:1.69 43-97:|:0.44 1736;&1.08 51-O6j:2.65 25.87i1,02
RAG w/OpenAI 80.90i1,79 91~55i0A36 85.89i1,13 41~97i2487 48.62i5.64 44~75i0.98 34.63i1‘32 50-61i1A67 41.11i1A40 18.12i094 56.68i3,93 27.41i0‘73
ICL 81.36+1.19 75.72+1.00 78.43+0.63 47.90+5.76¢ 47.78+3.57 47.51+1.97 34.2342.14 46.40+1.10 39.39+1.77 12.98+1.17 51.2346.20 20.68+1.81
75 RAG w/ST 86.54+1.03 88.40+1.15 87.4441087 52.394473 47.17+1.99 49.48411.30 40.1441.39 48.154+1.09 43.76+0.73 18.3440.46 46.3243.08 26.2510.76
RAG w/OpenAI 81.67:{:1,51 90.96i0,30 86.06:&0,88 48.733:1,31 4748512_49 4825:[:1,30 39.56:&1,25 50.87i1,25 44.48:[:0,55 14-07:t0.80 61-0710.86 22.86:‘:1,06
Llama-3.1-8B-Instruct
Baseline 22.984+0.67 74.87+10.48 35.17+0.83 11.0642.70 36.38+10.40 16.88141¢ 6.9840.03 28.2210.18 11.1940.05 3.03+0.21 20.37+5.76 5.2240.32
ICL 63.86+0.95 75.71+1.61 69.26+0.69 35.944354 51.58+42.70 42.231238 33.95+1.97 41.7443.02 37.39+1.85 12.4040.85 33.63+6.65 17.93+0.66
25 RAG w/ST 78.444+1.18 86.16+0.88 82.114+0.86 36.8214.64 43.86+7.20 39.38+2.96 39.941903 46.480.96 42.92411.20 14.9541 .88 42.2546.45 21.87+1.51
RAG w/OpenAI 69.03i1,02 86.41i227 76.73i1.02 32.83i3,20 48.82i7,41 38~89i2.78 40~77i1.82 49-07i280 44.45i0_54 12.16i0A97 41.55i3_20 18.79i131
ICL 67.78+1.48 76.79+0.69 72.0141.13 40.49+1.76 48.8242.88 44.204+1.03 36.43+1.51 42.534+2.12 39.2241.32 12944113 35.4542.12 18.90+1.01
50 RAG w/ST 79.2943.86 86.851+2.00 82.8217 41 40.0444.26 48.60+4.26 43.59+1.04 39.734+1.81 46.5442.12 42.8140.99 15.1310.96 47.1341.48 22.8810.99
RAG w/OpenAI 69.98:(:1,50 87.05i2,15 77-56;{:0.74 39-75:!:1.82 49«53:&2.63 44.03;{:0,76 40.89:{:1,62 46.96i2,27 43.66i0,67 12-09:t1.18 42.63i3,13 18.76i1,19
ICL 71444902 77.861+2.41 74.471+1.00 39.13+1.16 48.7042.37 43.35+0.84 34.33+1.27 41.3012.37 37.4310.53 13.37+1.12 37.83+4.68 19.67+1.20
75 RAG W/ST 82.36j:2,15 87.69:(:1370 84.91i0A88 39.92:[:209 50.34i3,12 44.42i()‘59 41.14:|:1A47 43-71i3A36 42.30:(:157 12.77:}:(]‘10 45-34:5:080 19'92:|:0408
RAG w/OpenAl 74.58 1251 85.2110.99 79.5141.02 41.854950 47.1716.92 43.9612 54 41.9941.01 46.134268 43.9110.03 10.4240.06 49.9843.64 17.2241 .29




D Further Results on Different Sample Space Choices

Tables 5 examine the influence of sample space X and context size M on entity recognition performance
using the best-performing model, gpt-40-mini, on the SKILLSPAN dataset. Increasing the context
size from 25 to 75 generally improves the Fj score, though gains diminish beyond 50 examples. RAG
consistently outperforms ICL in recall and F} score, demonstrating its effectiveness in leveraging external
knowledge, while ICL achieves higher precision but lower recall, suggesting a more conservative prediction
approach. At a 10% sample space, ICL delivers competitive results, but as it increases to 20%, RAG
maintains a clear advantage, achieving the highest I score of 32.39% at a context size of 75. Notably,
for smaller dataset splits, RAG exhibits greater variability, similar to ICL, suggesting that when fewer
examples are available, their performances converge. These findings underscore the importance of context
size and external knowledge availability in optimizing RAG-based methods.

Table 5: Study comparing RAG and ICL methods at different size of sample spaces (10% and 20%) and context
sizes (25, 50, and 75). Experiments were conducted on the SKILLSPAN dataset using the gpt-40-mini-2024-07-18
model. The results are presented with standard deviations, showing how performance metrics vary across sampling
choices and context sizes for both methods.

Sample Space  Context Size  Precision Recall F1 Score
RAG
25 21.8311.00 56.9447.17 31.53471.18
10% 50 22441135 56.464246 32.0741.13
75 22.821058 55.8211.40 32.3410.11
25 20.26;};155 54.46j:3.71 29.45:‘:1‘29
20% 50 21.00+0.81 57.40+1.57 30.7410.86
75 22.6910.46 56.3142.06 32.3910.60
ICL
25 22.57+1.49 48.7243.05 30.74+0.87
10% 50 23.6240.85 50.73+1.33 32.211067
75 23.1241.16  51.09+4.10 31.7610.89
25 19.3541.57 45.83+14.74  27.0510.66
20% 50 22.021156 51.17+1.15 30.7641.39
75 22.8911.11 49.784289 31.3210.99

E Statistical Significance Test

This study evaluated various large language models across multiple datasets, considering different
embeddings and examples as context. While some models clearly outperformed others in the results,
the differences in predictions might not be statistically significant for certain models. Therefore, to
determine the statistical significance of our findings, we conducted a non-parametric test. This test helps
us assess whether there are significant differences among the models and, if so, identify which models
differ statistically from each other.

The Friedman test (Pereira et al., 2015) is a non-parametric statistical test used to detect differences in
performance across multiple related samples — in this case, different models evaluated over multiple
datasets. It ranks the performance scores among datasets and assesses whether the rank distributions differ
significantly among models. Let IV be the number of datasets, K the number of models, and R; be the
sum of ranks for each model j. The Friedman test statistic chi%, which follows a chi-square distribution,
is calculated as follows:

12N

k
2 _ _ 2 _
XE = ikt ) ;RJ SN(k+1). M

If the test statistic exceeds the critical value for a significance level o = 0.01, we reject the null hypothesis,
indicating that there are significant differences in performance among the models. If significant differences
are found, the post-hoc Conover (Conover, 1999) test is performed to discover pair-wise statistical
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Critical Difference Diagram of Average Score Ranks
2 4 6 8 10 12 14

gpt-40-mini-OpenAl (1.9) (14) Llama-3.1-8B-ICL
gpt-40-mini-ST (3.8)}———— ——————(11) Qwen2.5-7B-ICl
Qwen2.5-72B-ST (4.3 L—————(11) Llama-3.1-8B-ST
gpt-40-mini-ICL (5 5<
Qwen2.5-72B-ICL (6.8 ’9.7; Llama3.5-70B-OpenAl

(8.6) Qwen2.5-7B-OpenAl
(8.4) Qwen2.5-7B-S

Figure 4: Critical Difference diagram of average score ranks. The models connected with horizontal line shows no
statistical difference. The models with lower ranks shows superior performance than those of higher ranks.

differences among models while adjusting for multiple comparisons. This test evaluates whether specific
models differ significantly in performance.

Given that the Friedman test produces a test statistic of 114.42 with a p-value of 7.71~'®, we reject the null

hypothesis, suggesting that at least one model shows a statistically significant difference in performance.
Consequently, we conducted the post-hoc Conover test. Figure 4 presents the statistical significance of
the model rankings, with significant pairwise differences highlighted accordingly. The x-axis indicates
the average rank of each model, where lower ranks closer to the left signify better performance. Each
colored node corresponds to a particular model, labeled with its respective rank, while the black horizontal
bars connecting multiple nodes highlight groups of models that do not show statistically significant
differences at the specified confidence level. The top-performing combination is gpt4omini-OpenAl,
with an average rank of 1.9, indicating it consistently outperformed other approaches. Other strong
performers include Qwen2.5-72B-0penAl (3), gpt-40-mini-ST (3.8), and Qwen2.5-72B-ST (4.3). These
models have lower rankings and are clustered towards the left. In contrast, L1ama3.1-8B-ICL (14),
Llama3.1-8B-0penAl (13), and Qwen2.5-7B-ICL (11) have the highest ranks, suggesting they performed
the worst in comparison. These models do not overlap with the higher-ranked ones, highlighting their
statistically inferior performance. Interestingly, L1ama3. 1-8B-ST shows no statistical differences when
compared to L1ama3. 5-70B, whether using ICL or RAG with OpenAl embedding. Similarly, Qwen2.5-7B,
when utilizing RAG with either OpenAl or ST embeddings, exhibits no statistical differences compared to
Llama3.5-70B using ST embeddings and Qwen2.5-72B using ICL. These tests highlight a crucial aspect:
a trade-off when addressing the NER task. Indeed, larger models, such as those with 70B parameters, may
not necessarily offer better performance than smaller models like Llama3.1-8B-ST or Qwen2.5-7B. This
suggests that the additional computational resources required for bigger models might not always justify
their use, especially if smaller models can achieve statistically similar results.

F Qualitative Analysis

This study broadly explores the efficacy of LLMs for data annotation tasks. Four different datasets of
varying complexity are chosen. From Table 2, it is observed that the performance of LLMs decreases
as dataset complexity increases. The performance of LLMs on the SKILLSPAN dataset is significantly
lower than human annotation, suggesting that even the latest available LLMs struggle to annotate data
when the task is complex. For instance, soft skills lack clear or distinct definitions, making the task more
challenging. Similarly, the GUM dataset also poses challenges for LLMs due to its entity diversity. On
the other hand, in the case of the WNUT-17 and CoNLL-2003 datasets, which consist of simpler entities
(more details are reported in Section 4.1), annotations are easier to extract for an LLM given its prior
knowledge. Furthermore, the quality of context in LLMs plays a major role, particularly in data annotation
tasks, as indicated by Tables 2, 3, and 4, where the RAG-based approach significantly outperforms its
counterpart. Moreover, for simpler datasets, the RAG-based approach achieves performance comparable
to human annotation.

To gain better insights into the performance of the proposed RAG-based approach, Table 6 presents the
qualitative results for the SKILLSPAN dataset annotated by gpt-4o-mini. In this dataset, data annotation
performance remains far below human-level, suggesting that the LLM struggles to extract sufficient
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Table 6: Qualitative analysis of soft skills annotations on dataset samples using gpt-40-mini-2024-07-18. The
output of the best-performing model is reported. The highlighted texts in the first column are gold labels, while
those in the other columns are the corresponding LLM-generated annotations.

Ne Human Baseline ICL RAG

1. Very good understanding Very good understanding Very good understanding Very good understanding
of test automation  of test automation  of test automation  of test automation
frameworks. frameworks. frameworks. frameworks.

2. Must have excellent verbal =~ Must have excellent verbal Must have excellent verbal ~Must have excellent verbal
and written skills being and written skills being and written skills being and written skills being
able to communicate able to communicate able to communicate able to communicate
effectively on both a effectively on both a effectively on both a effectively on both a
technical and business technical and business technical and business technical and business
level Ability to work under level Ability to work under  Jeye] Ability to work under  level Ability to work under
pressure to resolve issues ~ pressure to resolve isspes pressure to resolve issues pressure to resolve issues
affecting the production affecting the production affecting the production affecting the production
services. services. services. services.

3. Must have excellent work  Must have excellent work  Must have excellent work Must have excellent work
ethic and be detail oriented  ethic and be detail oriented ethic and be detail oriented ethic and be detail oriented
and be able to work and be able to work and be able to work and be able to work
independently. independently. independently. independently.

4.  Technical Skills Core Java.  Technical Skills Core Java.  Technical Skills Core Java.  Technical Skills Core Java.

5. You will work with You will work with You will work with You will work with
the business to define the business to define the business to define the business to define
requirements and have requirements and have requirements and have requirements and have

excellent communication
skills to interpret these into
consolidated development
scopes.

excellent communication
skills to interpret these into
consolidated development
scopes.

excellent communication
skills to interpret these into
consolidated development
scopes.

excellent communication
skills to interpret these into
consolidated development
scopes.

information from the context examples when the task is difficult. From Tables 2, 3, and 4, it is observed
that LLM-generated annotations improve recall, whereas precision is compromised. Table 6 shows that in
examples 1 and 4, the LLM incorrectly annotates soft skills that are not identified by human annotators,
whereas in examples 2 and 3, the annotations are nearly identical to human annotations. In Example 5,
the RAG-based approach performs comparably to human annotation, while both the baseline and ICL fail
to do so.

G Prompt

This section presents the prompts used to generate the response of LLMs. These prompts are carefully
synthesized to encompass all the components required to get structured output for both: (i) baseline, and
(ii) in-context learning models.
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Baseline Prompt Structure

Task Description
You are an advanced Named-Entity Recognition (NER) system.
Your task is to analyze the given sentence or passage, identify, extract, and classify specific named entities according to
the following predefined entity types:
* {labels}
For each sentence:
» Label each word in the text with the appropriate entity type if it matches the specified categories.
» Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation.
In entities, label the word exactly as in the text. All the text is case-sensitive.

Input
{input_text}

Context Prompt Structure

Task Description
You are an advanced Named-Entity Recognition (NER) system.
Your task is to analyze the given sentence or passage, identify, extract, and classify specific named entities according to
the following predefined entity types:
¢ {labels}
For each sentence:
» Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation.
In entities, label the word exactly as in the text. All the text is case-sensitive.

Examples
{context_examples}

Input
{input_text}

\.

H Examples

This section provides examples of prompts from the training data for different datasets used in this study.
For visual purposes, we used only only top5 examples in context. Follows several prompt examples for
the: (i) CoNLL-2003, (ii) WNUT-17, (iii) SKILLSPAN datasets, and (iv) GUM datasets.

Example 1-CoNLL-2003

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’PER’, ’ORG’, ’LOC’, "MISC’]

For each sentence:
» Label each word in the text with the appropriate entity type if it matches the specified categories.
» Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples
["A South African boy is writing back to an American girl whose message in a

bottle he found washed up on President Nelson Mandela ’s old prison island
", [{’ Entity °: ’South African’, ’Label’: 'MISC’}, {’Entity ’: ’American’,
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>Label ’: "MISC’}, {’Entity ’: ’“Nelson Mandela’, ’Label’: 'PER’}]]

[’A rottweiler dog belonging to an elderly South African couple savaged to

death their two-year—old grandson who was visiting , police said on
Thursday .’ , [{ Entity ’: ’South African’, ’Label’: 'MISC’}]]

[*The princess , who has carved out a major role for herself as a helper of
the sick and needy , is said to have turned to Mother Teresa for guidance
as her marriage crumbled to heir to the British throne Prince Charles .’,
[{’ Entity ’: ’Mother Teresa’, ’Label’: ’PER’}, {’Entity ’: ’British >, ’Label
>: "MISC’}, {’Entity ’: ’Prince Charles’, ’Label’: 'PER’}]]

[*South African answers U.S. message in a bottle .’, [{ Entity ’: ’South
African’, ’Label’: *MISC’}, {’Entity ’: 'U.S.’, ’Label’: 'LOC’}]]

["But Carlo Hoffmann , an ll-year—old jailer ’s son who found the bottle on
the beach at Robben Island off Cape Town after winter storms , will send
his letter back by ordinary mail on Thursday , the post office said .",
[{”Entity ’: ’Carlo Hoffmann’, ’Label’: ’PER’}, {’Entity *: ’Robben Island’,
>Label ’: 'LOC’}, {’Entity ’: ’Cape Town’, ’Label’: ’LOC’}]]

Input

Revered skull of S. Africa king is Scottish woman ’s .

Response
[Entity: S. Africa, Label: LOC, Entity: Scottish, Label: MISC]

Example 2-CoNLL-2003

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’PER’,’ORG’, ’LOC’, "MISC’]

For each sentence:
* Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[’Rwanda said on Saturday that Zaire had expelled 28 Rwandan Hutu refugees
accused of being " trouble -makers " in camps in eastern Zaire .’ , [{’
Entity ’: ’Rwanda’, ’Label’: 'LOC’}, {’Entity ’: ’Zaire’, ’Label’: 'LOC’},
{’ Entity ’: ’Rwandan’, ’Label’: 'MISC’}, {’Entity *: ’Hutu’, ’Label’: *MISC
>}, {7 Entity ’: ’Zaire’, ’Label ’: 'LOC’ }]]

[’ Repatriation of 1.1 million Rwandan Hutu refugees announced by Zaire and
Rwanda on Thursday could start within the next few days , an exiled
Rwandan Hutu lobby group said on Friday .’, [{’Entity ’: ’Rwandan Hutu’, °
Label ’: °MISC’}, {’Entity ’: ’Zaire’, ’Label’: 'LOC’}, {’Entity ’: ’Rwanda’,

>Label ’: "LOC’}, {’Entity ’: Rwandan Hutu’, ’Label’: "MISC’}]]

[’Innocent Butare , executive secretary of the Rally for the Return of
Refugees and Democracy in Rwanda ( RDR ) which says it has the support of
Rwanda \’s exiled Hutus , appealed to the international community to deter
the two countries from going ahead with what it termed a " forced and
inhuman action " .’, [{’Entity ’: ’Innocent Butare’, ’Label’: ’PER’}, {’
Entity : “Rally for the Return of Refugees and Democracy in Rwanda’, °
Label ’: "ORG’}, {’Entity ’: ’RDR’, ’Label’: 'ORG’}, {’Entity ’: °*Rwanda’, °’
Label ’: °LOC’}, {’Entity ’: ’Hutus’, ’Label’: 'MISC’}]]
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[’Rwanda says Zaire expels 28 Rwandan refugees .’, [{’Entity : ’Rwanda’, °’
Label °: "LOC’}, {’Entity ’: ’Zaire’, ’Label’: 'LOC’}, {’Entity ’: ’Rwandan’,
>Label ’: "MISC’ } 1]
[’Rwandan group says expulsion could be imminent .’, [{’Entity ’: 'Rwandan’, °
Label ’: °MISC’ }]]

Input

Captain Firmin Gatera , spokesman for the Tutsi-dominated Rwandan army , told Reuters in Kigali that 17 of the 28
refugees handed over on Friday from the Zairean town of Goma had been soldiers in the former Hutu army which fled
to Zaire in 1994 after being defeated by Tutsi forces in Rwanda ’s civil war .

Response

[Entity: Captain Firmin Gatera, Label: PER, Entity: Rwandan, Label: MISC, Entity: Reuters, Label: ORG, Entity:
Kigali, Label: LOC, Entity: Zairean, Label: MISC, Entity: Goma, Label: LOC, Entity: Hutu, Label: MISC, Entity:
Zaire, Label: LOC, Entity: Tutsi, Label: MISC, Entity: Rwanda, Label: LOC]

Example 3-WNUT-17

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’corporation’, ’creative-work’, ’group’, ’location’, ’person’, product’]

For each sentence:
* Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[’ @justinbieber i just wanna say you make me smile everyday :) thanks for

smiling because when u smile i smile ! :)’, []]

["@joeymcintyre I heart you . Even if I haven’t seen u in months ... SEND A
PIC !", []]

[ @lovable_sin OMG OMG OMG ! Thank you for " tumblring " it to me , I so wasn
\’t expecting them today . OMG !’, []]

[’RT @aplusk : This made me laugh today http ://bit.ly/bjOhom &lt; ——— courtesy

of splurb . What made you laugh ?’, []]

[’RT @Sn0O0ki : Haha yes !!! I love that you knew that :) RT @trishamelissa
@Sn00ki Is phenomenal the word of the day ?°, []]

Input

@jimmyfallon is following me ! OMG ! My life is now complete ! I heart you JF and have for years ! Thank you for
making me laugh everyday !

Response
[Entity: @jimmyfallon, Label: person, Entity: JF, Label: person]

J

Example 4-WNUT-17

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:
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[’corporation’, ’creative-work’, ’group’, ’location’, ’person’, product’]

For each sentence:
» Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[’We are one step closer to our new kitchens . We chose a maker and had
official measurements taken today !’, []]

[’We were all enjoying a glass of wine in the office when a fudge delivery

showed up . I love my job . And I love Fridays .’, []]

[’800 miles to see clients , 3 ACC candidate/commissioner meetings , big press
release , making it to Friday .. PRICELESS !’, []]

["I hope the weeks keep flying . It ’s actually fantastic the way none of the
days dragged this week .... like NONE . :D", []]

[’ Feeling really good after great week in our SF and LA offices . Glad to kick
back on AMerican flight back to NYC’, [{’ Entity ’: °*SF’, ’Label’: ~’
location ’}, {’Entity ’: 'LA’, ’Label’: ’location ’}, {’Entity ’: ’AMerican’,
"Label ’: ’corporation ’}, {’Entity ’: 'NYC’, ’Label’: ’location ’}]]

Input

Great week in the Optimise office, another new client on board and we are close to signing a new team member

Response
[Entity: Optimise, Label: corporation]

J

Example 5S-SKILLSPAN

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’Skill’]

For each sentence:
* Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[’Hands on experience with automated testing using Java .’ , []]

’

[ Experience with automation systems framework design/use and deployment .’

(1]

5

[*Good understanding of Agile methodologies and Continuous Delivery .’ , []]

)

[’ Demonstrate clear understanding of automation and orchestration principles

11

[*Good exposure to Ul Frameworks like Angular Proficiency in SQL and Database
development .’ , []]
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["Ability to understand and use efficient Defect management regular view of
test coverage to identify gaps and provide improvements Personal
Specification 5+ years of relevant IT/quality assurance work experience
Bachelor ’s degree in Computer Science or related field of study or
equivalent relevant experience; demonstrated experience within the quality
assurance / testing arena; demonstrated skills in quality assurance
methods/processes and practices .", [{’Entity *: “understand and use
efficient Defect management’, ’Label ’: ’*Skill *}, {’Entity ’: ’identify gaps
>, ’Label *: ’Skill *}]]

Input

Very good understanding of test automation frameworks.

Response

[Entity: test automation frameworks, Label: Skill]

J

Example 6-SKILLSPAN

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’Skill’]

For each sentence:
» Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[*Strong communication skills including the ability to express complex
technical concepts to different audiences in writing and conference calls

.7, [{’ Entity ’: ’communication skills >, ’Label ’: ’>Skill ’}, {’Entity ’: °’
express complex technical concepts to different audiences’, ’Label’: ~’
Skill *}1]

[ Excellent organizational verbal and written communication skills .’ , [{’
Entity ’: ’organizational verbal and written communication skills >, ’Label
>: 7 Skill ?} ]

[*Excellent organizational verbal and written communication skills .’ , [{’
Entity ’: ’organizational verbal and written communication skills >, ’Label
>: 7 Skill ”}]]

[*The ability to work within a team and in collaboration with others is
critical to this position and excellent communication skills verbal and

written are essential .’, [{’Entity *: ’work within a team and in
collaboration with others ’, ’Label’: ’Skill >}, {’Entity ’: ’communication
skills >, ’Label *: ’Skill *}]]

[ This role requires a wide variety of strengths and capabilities including
Ability to work collaboratively in teams and develop meaningful
relationships to achieve common goals Strong organizational skills Ability
to multi—task and deliver to a tight deadline Excellent written and
verbal communication skills Experience developing Ul components in Angular

Good experience in using design patterns UML OO concepts .’ , [{  Entity ’:
work collaboratively in teams’, ’Label’: ’Skill *}, {’Entity ’: ’develop

meaningful relationships ’, ’“Label’: *Skill °}, {’Entity ’: “achieve common
goals ’, ’Label ’: ’Skill >}, {’Entity ’: ’organizational skills ’, ’Label’: ~
Skill *}, {’Entity ’: ’multi—-task ’, *Label ’: ’Skill ’}, {’Entity ’: ’“deliver
to a tight deadline ’, ’Label’: ’Skill ’}, {’Entity ’: ’communication skills
>, ’Label’: ’Skill ’}, {’Entity ’: ’developing Ul components’, ’“Label’: ~’
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Skill *}, {’Entity ’: ’using design patterns ’, ’Label’: ’Skill "}]]

Input

Must have excellent verbal and written skills being able to communicate effectively on both a technical and business
level Ability to work under pressure to resolve issues affecting the production services .

Response

[Entity: verbal and written skills, Label: Skill, Entity: communicate effectively on both a technical and business level,
Label: Skill, Entity: work under pressure, Label: Skill, Entity: resolve issues affecting the production services, Label:
Skill]

Example 7-GUM

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’abstract’, animal’, ’event’, ’object’, >organization’, ’person’, ’place’, ’plant’, ’quantity’, ’substance’, ’time’]

For each sentence:
* Label each word in the text with the appropriate entity type if it matches the specified categories.
 Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ The 131-page document was found on Castlefrank Road in Kanata , Ontario in
a rain-stained , tire —marked brown envelope by a passerby’, ’Entities ’:
[{ Entity *: ’The 131-page document was found on Castlefrank Road in Kanata
, Ontario in a rain-stained , tire —marked brown envelope by a passerby’,
’Label ’: ’event ’}]]

)

[*Also the language is important in writing and in literature ’, ’Entities
[{” Entity : ’the language’, ’Label’: ’abstract’}, {’Entity ’: ’“writing ’,
Label ’: ’abstract ’}, {’Entity ’: ’literature ’, ’Label’: ’abstract ’}]]

)

s

[’Ingredients Basil comes in many different varieties , each of which have a

unique flavor and smell’, “Entities : [{ Entity ’: ’Ingredients ’, ’Label *:
>object ’}, {’Entity ’: ’*Basil’, ’Label’: ’plant’}, {’Entity ’: ’many
different varieties >, ’Label’: ’“abstract’}, {’ Entity ’: ’each of which’, ~’
Label ’: ’abstract’}, {’Entity ’: ’a unique flavor and smell’, ’Label’: °’

abstract ’}]]

[’We do not want to just traffic in the same 24 hour news cycle’, ’Entities ":
[{>Entity ’: We do not want to just traffic in the same 24 hour news cycle
>, ’Label ’: ’abstract ’}]]

[’You go through quite a bit’, *Entities : [{’Entity : “You’, ’Label’: ’person
>}, {7 Entity ’: ’quite a bit’, ’Label’: ’quantity ’}]]

Input

If you are just visiting York for the day , using a Park and Ride [ 1 ] costs a lot less than trying to park in or near the city
centre , and there are five sites dotted around the Outer Ring Road

Response

[’Entity’: *York’, ’Label’: ’place’, *Entity’: ’the day’, ’Label’: "time’, ’Entity’: ’a Park and Ride’, Label’: ’object’,
’Entity’: “the city centre’, ’Label’: ’place’, "Entity’: ’five sites’, ’Label’: *quantity’, ’Entity’: ’the Outer Ring Road’,
’Label’: ’place’]
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Example 8-GUM

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’abstract’, animal’, ’event’, *object’, ’organization’, ’person’, ’place’, ’plant’, ’quantity’, ’substance’, ’time’]

For each sentence:
* Label each word in the text with the appropriate entity type if it matches the specified categories.
» Extract multiple entities of the same class if they exist.
The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[’" NASA Administrator Charles Bolden announces where four space shuttle
orbiters will be permanently displayed at the conclusion of the Space
Shuttle Program during an event commemorating the 30th anniversay of the
first shuttle launch on April 12 , 2011°, ’*Entities *: [{  Entity ’: ’'NASA
Administrator Charles Bolden’, ’Label’: ’person’}, {’Entity ’: ’where four
space shuttle orbiters will be permanently displayed’, ’Label’: ’place’},
{”Entity >: ’the conclusion of the Space Shuttle Program’, ’Label’: ’event
>}, {7 Entity ’: ‘an event’, ’Label’: ’event’}, {’Entity ’: ’30th anniversay
of the first shuttle launch’, ’Label’: ’event’}, {’Entity ’: *April 12 ,
2011, *Label’: ’time ’}]]

['NASA celebrated the launch of the first space shuttle Tuesday at an event at
the Kennedy Space Center ( KSC ) in Cape Canaveral , Florida’, ’Entities

>t [{’ Entity *: ’NASA’, ’Label’: ’organization '}, {’Entity ’: ’the launch of
the first space shuttle ’, ’Label’: ’event’}, {’Entity ’: ’Tuesday’, ’Label
>: time ’}, {’Entity ’: ’an event’, ’Label’: ’event’}, {’Entity ’: ’Kennedy
Space Center’, ’Label’: ’place’}, {’Entity >: °KSC’, ’Label’: ’place’}, {’
Entity ’: “Cape Canaveral , Florida’, ’Label’: ’place ’}]]

[*Looking back : Space Shuttle Columbia lifts off on STS-1 from Launch Pad 39A
at the Kennedy Space Center on April 12 , 1981°, *Entities *: [{  Entity ’:
>Space Shuttle Columbia’, ’Label ’: ’object’}, {’Entity >: ’STS-1’, ’Label *:
event ’}, {’Entity ’: ’Launch Pad 39A’, ’Label’: ’place’}, {’Entity ’: ~’
Kennedy Space Center’, ’Label’: ’place’}, {’Entity ’: *April 12 , 1981’, ~’
Label ’: ’time ’}]]

[*At the ceremony , NASA Administrator Charles Bolden announced the locations
that would be given the three remaining Space Shuttle orbiters following
the end of the Space Shuttle program’, ’“Entities ’: [{  Entity ’: ’the
ceremony ', ’Label’: ’event’}, {’Entity ’: °'NASA Administrator Charles
Bolden’, ’'Label’: ’person’}, {’Entity ’: ’the locations ’, ’Label’: ’place
>}, {7 Entity ’: ’the three remaining Space Shuttle orbiters ', ’“Label’: ’
object ’}, {’Entity ’: ’the end of the Space Shuttle program’, ’Label’: ~
event ’ }]]

[’On April 12 , 1981 , Space Shuttle Columbia lifted off from the Kennedy
Space Center on STS-1 , the first space shuttle mission’, ’Entities *: [{’
Entity *: *April 12 , 1981, ’Label ’: ’“time’}, {’ Entity ’: ’Space Shuttle
Columbia’, ’Label’: ’object’}, { Entity ’: ’“Kennedy Space Center’, ’Label ":
>place ’}, {’Entity ’: °STS-1’, ’Label’: ’event’}, {’Entity ’: ’the first
space shuttle mission’, ’Label’: ‘event’}]]

Input

Tuesday , September 22 , 2015 Discovery is undergoing decommissioning and currently being prepped for display by
removing toxic materials from the orbiter

Response
[’Entity’: "Tuesday’, ’Label’: ’time’, "Entity’: *September 22 , 2015, Label’: "time’, Entity’: *Discovery’, 'Label’:
’object’, "Entity’: ’"decommissioning’, 'Label’: "event’, ’Entity’: ’display’, 'Label’: "event’, ’Entity’: ’toxic materials’,
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[ ’Label’: ’substance’, ’Entity’: ’the orbiter’, ’Label’: "object’]
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