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Abstract
In NLP, fine-tuning LLMs is effective for001
various applications but requires high-quality002
annotated data. However, manual annotation003
of data is labor-intensive, time-consuming,004
and costly. Therefore, LLMs are increasingly005
used to automate the process, often employing006
in-context learning (ICL) in which some007
examples related to the task are given in the008
prompt for better performance. However,009
manually selecting context examples can010
lead to inefficiencies and suboptimal011
model performance. This paper presents012
comprehensive experiments comparing several013
LLMs, considering different embedding014
models, across various datasets for the Named015
Entity Recognition (NER) task. The evaluation016
encompasses models with approximately 7B017
and 70B parameters, including both proprietary018
and non-proprietary models. Furthermore,019
leveraging the success of Retrieval-Augmented020
Generation (RAG), it also considers a method021
that addresses the limitations of ICL by022
automatically retrieving contextual examples,023
thereby enhancing performance. The results024
highlight the importance of selecting the025
appropriate LLM and embedding model,026
understanding the trade-offs between LLM027
sizes and desired performance, and the028
necessity to direct research efforts towards029
more challenging datasets. The code,030
submitted as Supplementary Material, will be031
made publicly available after acceptance.032

1 Introduction033

Data annotation plays a crucial role in training034

machine learning (ML) models, especially in the035

era of Natural Language Processing (NLP). In NLP,036

data annotation typically involves annotating text037

data with relevant information, such as named038

entities, parts of speech, sentiment, intent, text039

classification, etc. The data annotation carries even040

more significance for fine-grained NLP tasks like041

token classification, where each token of a sentence042

has to be tagged with a gold label. In specialized 043

domains such as Human Resource Management 044

(HRM) or medical, organizations often possess 045

large datasets that can be leveraged to enhance 046

decision-making and operational efficiency through 047

the use of LLM-based NLP approaches (Urlana 048

et al., 2024). However, for these organizations 049

to fully harness the power of LLMs through fine- 050

tuning, they need high-quality annotated datasets. 051

Traditional data annotation is a labor-intensive 052

and costly process, especially when applied to 053

large corpora. For example, in the case of HRM, 054

annotating a dataset of 10, 000 resumes for an 055

information extraction task can be prohibitively 056

time-consuming and requires significant human 057

effort (Feng et al., 2021). 058

Nowadays, pre-trained LLMs (Devlin et al., 059

2019; Liu et al., 2019) can be cost-effectively 060

fine-tuned on downstream tasks. These fine- 061

tuned models are frequently used in scenarios 062

where continuous LLM usage for inference is 063

too expensive, such as when using API provided 064

by propriety services (OpenAI, 2023; Team, 065

2024a), or when there is the need for tailored 066

models to meet strict performance standards while 067

maintaining the privacy of sensitive information, 068

such as in specialized fields (Strohmeier, 2022; 069

Karabacak and Margetis, 2023). With the advent 070

of advanced LLMs such as GPT-4 (OpenAI, 071

2023), Qwen (Team, 2024b), and Llama (Touvron 072

et al., 2023), researchers and practitioners are 073

increasingly leveraging these models to enhance 074

the data annotation process (Tan et al., 2024). 075

Pre-trained on massive corpora, LLMs offer 076

unprecedented capabilities for automating and 077

streamlining annotation, improving scalability, and 078

reducing costs (Wang et al., 2021). 079

Recent studies have demonstrated that 080

LLMs (Wang et al., 2023; Naraki et al., 2024) can 081

achieve performance comparable to human level in 082
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data annotation for Named Entity Recognition Task083

(NER). However, most of these evaluations are084

conducted on widely used benchmark datasets such085

as CoNLL-2003 (Tjong Kim Sang and De Meulder,086

2003) and WNUT-17 (Derczynski et al., 2017).087

For instance, between 2023 and 2025, the CoNLL-088

2003 dataset has been utilized in 191 studies, while089

WNUT-17 has been considered in 45. In contrast,090

more complex datasets like SKILLSPAN (Zhang091

et al., 2022a) and GUM (Zeldes, 2017) have been092

used significantly less frequently, in only 9 and 4093

studies1, respectively. The results presented in this094

paper suggest that to gain a more comprehensive095

understanding of model performance regarding096

data annotation via LLMs in NER task, it is crucial097

to extend evaluations to more challenging datasets,098

which better reflect the complexities of real-world099

applications.100

From a technical perspective, in the recent101

literature, prompting (He et al., 2024a) and in-102

context learning (ICL) (Dong et al., 2024) are103

common approaches to leverage the LLMs for104

data annotation (Tan et al., 2024). ICL, which105

is a technique where some solved examples of106

the task are given within the prompt for better7107

performance, is generally proven to be more108

effective. However, selecting the right and relevant109

examples to use as context for LLMs continues110

to be a challenging task (Zhang et al., 2022b).111

Manually choosing examples for each query112

creates labor overhead, and more significantly, the113

use of incorrect context examples may lead LLMs114

to produce hallucinations (Yao et al., 2024) or115

inaccurate outputs.116

To address the above mentioned challenges, this117

paper presents the following contributions:118

1. Comprehensive Evaluation of LLMs and119

Embeddings. It provides a comprehensive120

assessment of LLMs for data annotation in121

NER tasks, examining two distinct embedding122

models, as well as different techniques such123

as ICL and RAG, while utilizing datasets124

of varying complexity. It compares five125

models including proprietary models, such as126

gpt-4o-mini, and open-source alternatives127

with approximately 7B and 70B parameters128

scale.129

1The statistics regarding the datasets usage is collected
from https://paperswithcode.com/dataset/

2. Trade-off Between LLM Sizes and 130

Performances. The trade-off between LLM 131

sizes and performance is demonstrated, 132

which is further verified by the statistical 133

tests. In fact, with the appropriate LLM and 134

embedding models, there are no statistically 135

significant differences in results between 136

certain 7B and 70B models. 137

3. A RAG-Based Annotation Approach. To 138

improve annotation quality and address the 139

limitations of manual context selection in 140

ICL, this paper considers a RAG based 141

approach (Lewis et al., 2020). Instead of 142

manually crafting in-context examples, the 143

proposed method retrieves the most relevant 144

samples based on similarity scores, enabling 145

LLMs to generate more accurate annotations. 146

2 Related Work 147

In the recent past, there have been efforts 148

by researchers to leverage the LLMs for data 149

annotation (Tan et al., 2024). Wang et al. (2021) 150

introduced the use of GPT-3 (Brown et al., 2020) 151

for data annotation. The authors evaluated the 152

quality of data generated by the GPT-3 against 153

the human-labeled data. For each sentence to be 154

annotated by the model, they construct a prompt 155

consisting of several human-labeled examples 156

along with the target sentence. They evaluate the 157

performance in n-shot settings. Also, the authors 158

report the performance of text classification and 159

data generation tasks. Likewise, He et al. (2024a) 160

leveraged the use of GPT-3.5 based models to 161

annotate data. In comparison to the previous 162

approach presented by Wang et al. (2021), the 163

authors introduced the concept of chain-of-thought 164

(CoT) (Wei et al., 2023) reasoning to annotate data. 165

The authors simulate the human reasoning process 166

to induce GPT-3.5 to motivate the annotated 167

examples. They present the task description, 168

specific examples, and the corresponding gold 169

labels to GPT-3.5, and then ask the model to 170

explain whether/why the given label is appropriate 171

for that example. This enables the model to 172

explain its choice of a specific label for the target 173

sentence. Then, the authors construct the few-shot 174

CoT prompts using the explanations generated by 175

the model for data annotation. 176

To leverage the GPT model for the Named 177

Entity Recognition (NER) task, Wang et al. 178
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(2023) proposed a GPT-NER model. The main179

contribution introduced by the authors is to180

transform the NER into a text-generation task.181

The authors used prompt engineering, where182

prompts consist of three parts: (i) task description;183

(ii) few-shot examples; and (iii) input sentence.184

To choose few-shot context examples, they used185

two different strategies: (i) random retrieval; and186

(ii) k-NN based retrieval from training data.187

In this work, the authors propose a retrieval-188

based approach for selecting context examples.189

Specifically, for each training instance, the method190

iterates through all tokens in a sentence to identify191

the k-nearest neighbor (k-NN) tokens. The top192

k retrieved tokens are then selected, and their193

corresponding sentences are used as context. The194

context examples are retrieved from the entire195

training dataset. Furthermore, for sentences196

containing multiple entities, the algorithm runs197

multiple times to ensure the extraction of all entities198

within the sentence.199

Following the work of Wang et al. (2021) and Wang200

et al. (2023), Naraki et al. (2024) also proposed a201

LLMs based annotation for NER task. The authors202

used the LLMs to clean noise and inconsistencies in203

the NER dataset, and then they merged the cleaned204

NER dataset with the original dataset to generate205

a more robust and diverse set of annotations. It is206

worth mentioning that, in merging the annotations207

from LLM with human labels, preference is given208

to human-annotated examples compared to the209

LLM annotations. In addition, Bogdanov et al.210

(2024) used the LLMs to create a general dataset211

for NER tasks with a broad range of entity types.212

The authors demonstrate a procedure that consists213

of annotating raw data with an LLM to train a214

task-specific foundation model for NER. Goel et al.215

(2023) uses the same concept of data annotation216

using LLMs, however, they do a case study on a217

medical domain where they leverage the LLMs218

for accelerating the annotation process along with219

human input.220

The research discussed above highlights the strong221

interest in using LLMs for dataset annotation,222

with most approaches relying on ICL. However,223

systematic evaluation on complex datasets remains224

limited, and selecting appropriate context examples225

for ICL is still a challenge. This study provides a226

comprehensive evaluation of LLMs for NER data227

annotation.228

3 Methodology 229

3.1 Problem Definition 230

Given a dataset D = {Si}ni=1, where Si represents 231

the i-th sentence, with training, validation and 232

test split given as Dtrain, Dvalid and Dtest. We 233

divide Dtrain into two disjoint subsets: X (we call 234

as sample space), from which we sample context 235

examples, and T , which will be annotated by the 236

LLM. Formally, let X ⊂ Dtrain be a subset of 237

size x, where x < n, and T = Dtrain \ X be the 238

remaining subset containing t sentences, where 239

t = n− x. From X , we select m examples, where 240

m < x, to form the context set M. The LLM 241

uses all the m examples in M as input context to 242

annotate the t sentences in T . 243

The NER task can be defined as the problem of 244

learning an approximation function f̃θ that closely 245

matches the real function f : SV × V → C, where 246

SV represents the set of all the possible sentences 247

composed only by words w in the vocabulary 248

V , and C represents the set of possible entity 249

categories. The real function f given: (i) a sentence 250

Si ∈ SV , and (ii) a word w ∈ V , assigns w to its 251

corresponding category c ∈ C. 252

3.2 Data Annotation via LLMs 253

The methodology adopted in the proposed RAG 254

approach is shown in Figure 1. This section 255

discusses the steps followed in the proposed 256

study. Section 3.2.1 explains the prompt template 257

formation, while Section 3.2.2 presents the baseline 258

approach, followed by ICL method in Section 3.2.3. 259

Section 3.2.4 presents the proposed RAG technique, 260

whereas the importance of structured outputs for 261

NER task is discussed in Section 3.2.5. 262

3.2.1 Prompt Formation 263

In NLP, crafting an effective prompt for LLMs is a 264

crucial task, as an ill-formed prompt could lead to 265

poor performance. Different LLMs, whether open- 266

source or proprietary, tend to respond differently 267

to variations in prompt (Errica et al., 2024). This 268

work adopts a similar approach to prompt design 269

presented in (He et al., 2024b; Wang et al., 2023), 270

i.e. structuring our prompts around three key 271

components, also visible in Figure 1: (i) Task 272

Description. This component clearly defines the 273

task the LLM is expected to perform; (ii) Context. 274

This component provides task-related examples 275

that help the LLM to better understand the problem, 276

while also clarifying the expected input/output 277
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Figure 1: Workflow of the proposed approach. Dtrain denotes the training data, X denotes the few human annotated
examples, whereas T denotes the training instances to be annotated by LLM. For each entry Ti ∈ T , we extract M
context examples from a vector store using a retriever module. Then, given an input sentence, the final prompt to
LLM consists of the task description, the context examples in M, and input sentence.

format; and (iii) Input. This final component278

presents the LLM with the specific examples to279

be annotated. The prompt structures adopted280

in the experiments are outlined in Appendix G,281

while several prompt examples are reported in282

Appendix H.283

3.2.2 Zero-shot Data Annotation284

In the zero-shot setting (refers to the baseline),285

the LLM receives only task descriptions and286

entity categories from the dataset. The task287

description explains the task, whereas entity288

categories provide information about the classes289

that the LLM has to use for annotation. Providing290

entity categories in the prompt allows the LLM291

to produce consistent output annotation as in the292

training set. For instance, in the CoNLL-2003293

dataset, person and organization categories are294

labelled as PER and ORG respectively. Thus, the295

prompt to the LLM includes PER and ORG to296

annotate entities in the person and organization297

categories, respectively. However, in zero-shot298

data annotation, the lack of context examples299

hinders the model’s understanding, often leading to300

suboptimal performance. Nonetheless, this setting301

allows to evaluate the general knowledge of LLM302

on a task.303

3.2.3 In-Context Learning304

In ICL, the prompts given to LLMs are enhanced305

by including not only a task description and entity306

categories but also contextual examples. These307

examples aid the models in better understanding 308

the task at hand. As detailed in Section 3.1, Dtrain 309

is is split into X and T . From X , the selection of 310

M can be approached in two ways: either through 311

manual cherry-picking or by random sampling. 312

However, manually selecting M can be both time- 313

consuming and subjective, which contradicts the 314

rationale of the proposed study. Therefore, we 315

opt to randomly sample M from X , although it 316

does not guarantee whether the selected context 317

examples M are semantically close to the input 318

text Ti, which is a limitation of this approach. 319

3.2.4 Retrieval-Based Approach 320

To overcome the limitations of the previously 321

mentioned approaches, this paper introduces a 322

retrieval-based method for automatically selecting 323

relevant context examples. As outlined in 324

Section 3.1, the proposed RAG-based approach 325

first generates embedding representations for all 326

examples in X , which are then stored in a vector 327

database (Douze et al., 2024) for subsequent 328

retrieval, as illustrated in Figure 1. Subsequently, 329

for each sentence Ti ∈ T , its embedding 330

representation is generated, and the most similar 331

M examples are retrieved from X stored in the 332

vector database. M is then used as context for the 333

LLM to provide the most relevant examples for 334

annotating the input text Ti. 335
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3.2.5 Structured Output from LLMs336

For a label-sensitive task like NER, getting a337

structured output from a LLM is a crucial step.338

In the NER task, as defined in Section 3.1,339

each token in a sentence is tagged with a340

corresponding label. Hence, preserving the token-341

label correspondence in the output is necessary for342

the LLMs. The most recent LLMs are based on a343

decoder architecture that, while being suitable for344

sequence-to-sequence tasks, encounters challenges345

when tackling the NER task due to the potential346

misalignment between tokens and labels (Ul Haq347

et al., 2024). In fact, recent studies on NER (Li348

et al., 2024; Liu et al., 2024; Wang et al., 2023)349

have shown that the decoder architecture presents350

structural inconsistencies in the output. Recently,351

OpenAI (OpenAI, 2023) released a feature for the352

latest GPT-4 based models which guarantees to353

follow the structured output format2. To solve the354

token-label misalignment problem, in this study,355

we leverage the latest feature of StructuredOutput356

released by OpenAI. However, it is important to357

note that despite the inclusion of such features in358

the latest LLMs, including Qwen (Team, 2024b)359

and Llama (Touvron et al., 2023) based models,360

they still exhibit inconsistencies in their output,361

unlike the gpt-4o-mini-2024-07-18.362

4 Experimental Setup363

4.1 Datasets364

In this study, to evaluate the performance of the365

proposed methodology and assess the capabilities366

of LLMs, four datasets are considered, with their367

statistics summarized in Table 1 of Appendix A.368

Each dataset presents unique challenges for LLMs369

in performing NER tasks, allowing this study to370

comprehensively analyze the ability of LLMs to371

handle diverse entity types, from well-structured372

entities to complex, ambiguous, and domain-373

specific annotations.374

CoNLL-2003 The CoNLL-2003 (Tjong375

Kim Sang and De Meulder, 2003) dataset consists376

of four general entity types. Entities in this dataset377

typically follow structured patterns, making them378

relatively easier for LLMs to identify and classify.379

WNUT-17 The WNUT-17 (Derczynski et al.,380

2017) dataset contains six categories of rare entities.381

This dataset is particularly challenging due to its382

2https://openai.com/index/
introducing-structured-outputs-in-the-api

noisy text, sparse entity occurrences, and limited 383

labeled examples per category. Improving recall 384

on this dataset remains a significant challenge for 385

LLMs. 386

GUM The GUM (Zeldes, 2017) dataset is a 387

richly annotated corpus designed for multiple 388

NLP tasks, including NER. It captures linguistic 389

phenomena across various domains and genres, 390

making it a valuable resource for evaluating model 391

performance. The dataset includes eleven distinct 392

named entity types. Compared to CoNLL-2003 393

and WNUT-17, GUM presents a higher level of 394

complexity by incorporating a diverse set of entity 395

types spanning multiple domains. 396

SKILLSPAN The SKILLSPAN (Zhang et al., 397

2022a) dataset is composed of a single entity 398

type. Unlike traditional entities, soft skills do 399

not follow a fixed syntactic or semantic structure, 400

making them inherently ambiguous. These 401

entities can range from single tokens to multi- 402

token expressions, increasing the complexity of 403

annotation and information extraction tasks for 404

LLMs. 405

4.2 Approaches Under Study 406

In the empirical assessment of the datasets 407

annotated by LLMs, the zero-shot data annotation 408

approach is chosen as the baseline since it provides 409

no context about the task to the LLM. This zero- 410

shot setting allows the evaluation of the LLM’s 411

general knowledge of the task. Moreover, ICL and 412

RAG-based approaches, detailed in Section 3.2.3 413

and Section 3.2.4 respectively, are considered. 414

For both, experiments are conducted with three 415

different numbers of context examples: (i) 25, 416

(ii) 50, and (iii) 75. Experiments are conducted 417

on a 30% sample of the training set Dtrain, while 418

the ablation study in Appendix D examines the 419

effects of 10% and 20% sample sizes. 420

This paper considers five different LLMs3: 421

(i) gpt-4o-mini-2024-07-18, (ii) Qwen2.5- 422

72B-Instruct, (iii) Llama3.5-70B-Instruct, 423

(iv) Qwen2.5-7B-Instruct, and (v) Llama3.1- 424

8B-Instruct, and two embeddings models: 425

(i) the text-embedding-3-large model4, and 426

(ii) the sentence transformer all-MiniLM-L6- 427

v2 model (Reimers and Gurevych, 2019). 428

3The models are referred to by their base names, such as
Qwen2.5-72B for Qwen2.5-72B-Instruct, and so on.

4https://platform.openai.com/docs/guides/embeddings
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Throughout the remainder of the paper,429

text-embedding-3-large will be referred430

to as OpenAI, and sentence transformer431

all-MiniLM-L6-v2 will be referred to as ST.432

Implementation details of results are reported433

Appendix B.434

4.3 NER Evaluation Process435

To assess the quality of annotations generated by436

LLMs, the RoBERTa model (Liu et al., 2019) is437

fine-tuned on LLM-annotated datasets, leveraging438

its proven effectiveness in NER tasks (Zhou et al.,439

2022; Zhang et al., 2022a). Initially, an LLM is440

employed to automatically annotate sentences in441

T ⊂ Dtrain, using strategies from Section 3.2.442

This process generates annotations for T , resulting443

in a new training set, T̂ , with |T̂ | = |T |. This444

annotated set is then used to fine-tune the RoBERTa445

model (Liu et al., 2019). Model selection is446

performed on the validation set, Dvalid, and the447

final evaluation results are based on the test set,448

Dtest. To ensure robustness and mitigate the impact449

of random initialization, we average the results450

across five different seed values. The F1 score is451

used to assess the performances of the models.452

5 Results and Analysis453

This section presents the quantitative results of this454

study, as well as its analysis. Qualitative results are455

reported in Appendix F, while Appendix E reports456

the statistical tests to support the findings.457

5.1 Quantitative Results458

Figure 2 presents the overall results of the459

experiments, while the corresponding detailed460

outcomes are reported in Appendix C. Specifically,461

the heatmaps present the F1 scores obtained on the462

test set for different datasets, comparing several463

models and methods used in the proposed study.464

The CoNLL-2003 dataset, which contains named465

entities like persons, organizations, and locations,466

is relatively well-structured, making it easier for467

LLMs to generate high-quality annotations. The468

gpt-4o-mini model with OpenAI embeddings469

emerges as the top performer (also shows statistical470

significance over other models as detailed in471

Appendix E), achieving an F1 score of 89.72 with472

75 context examples, which is just 2.7% below473

human-level annotation. Among the ∼ 70B474

models, Qwen2.5-72B with OpenAI embeddings475

performs comparably to gpt-4o-mini with an476

F1 score of 89.34, while Llama3.5-70B with 477

ST embeddings lags slightly behind with an F1 478

score of 87.33. At the ∼ 7B scale, Qwen2.5-7B 479

with ST embeddings significantly outperforms 480

its counterparts, achieving an F1 score of 87.94, 481

while Llama3.1-8B with OpenAI embeddings 482

scores 84.91. This suggests that smaller models 483

can still perform competitively when paired with 484

appropriate embedding methods. Interestingly, 485

the heatmap reveals that context size plays 486

a crucial role—gpt-4o-mini and Qwen2.5-70B 487

benefit significantly from larger context sizes of 488

75 examples, while Llama3.5-70B performs best 489

at a slightly lower context size. This suggests that 490

different models have varying levels of context 491

saturation, where additional examples may not 492

always improve performance linearly. 493

The WNUT-17 dataset, which focuses on low- 494

frequency and emerging entities, presents a 495

significant challenge due to limited training 496

samples for each entity. However, Qwen2.5-70B 497

with OpenAI embeddings achieves the highest 498

F1 score of 53.72, slightly outperforming 499

gpt-4o-mini, which attains an F1 score of 53.43. 500

The Llama3.5-70B model exhibits inconsistent 501

performance, scoring 51.18 with ICL at 75 context 502

examples, suggesting that it struggles to generalize 503

well for rare entity detection. At the ∼ 7B 504

scale, Qwen2.5-7B with ST embeddings achieves 505

an F1 score of 49.48, significantly outperforming 506

Llama3.1-8B, which scores 44.42. This highlights 507

that ST embeddings provide a crucial advantage 508

for smaller models. Compared to human-level 509

annotation, which achieves an F1 score of 54.93, 510

the best-performing LLM reduces the gap to just 511

1.21%, which is the smallest performance gap 512

between human and LLM annotation across all 513

datasets used in the experiments. This suggests 514

that RAG-based annotation is highly effective in 515

adapting to rare entity recognition, particularly 516

when combined with larger models and strong 517

embeddings. 518

The GUM dataset presents a unique challenge 519

due to its diverse entity types, requiring models 520

to generalize across various linguistic structures. 521

Qwen2.5-70B with ST embeddings achieves the 522

best F1 score of 55.11, significantly surpassing 523

gpt-4o-mini, which attains an F1 score of 52.28, 524

and Llama3.5-70B with OpenAI embeddings, 525

which achieves an F1 score of 48.33. At the ∼ 526

7B scale, Qwen2.5-7B with OpenAI embeddings 527
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Figure 2: Heatmaps of the F1 scores across four datasets. The color scale represents performance, with red indicating
higher scores reaching human-level, and blue indicating lower scores starting from the lowest performing model

achieves an F1 score of 44.48, outperforming528

Llama3.1-8B, which scores 43.91. However, both529

models show a notable performance drop compared530

to their larger counterparts, suggesting that smaller531

models struggle with datasets with diverse entities.532

The 3.15% gap between the best-performing LLM533

and human-level annotation highlights that GUM534

remains a challenging dataset for LLMs. The535

heatmap further suggests that model performance536

fluctuates significantly depending on context size537

and embedding choice.538

The SKILLSPAN dataset is the most difficult539

among those evaluated, as it requires understanding540

nuanced skill mentions across various job contexts.541

gpt-4o-mini with OpenAI embeddings performs542

the best, achieving an F1 score of 34.06 with543

75 context examples, but this is still far from544

human-level annotation. At the ∼ 70B scale,545

Qwen2.5-70B with ST embeddings achieves an546

F1 score of 32.35 with 50 context examples,547

outperforming Llama3.5-70B, which achieves an548

F1 score of 27.55. Among ∼ 7B models,549

Qwen2.5-7B with OpenAI embeddings achieves550

an F1 score of 29.67, significantly surpassing551

Llama3.1-8B, which scores 22.88. This suggests552

that embedding choice plays a crucial role in553

skill extraction tasks. Notably, the gap between554

human annotation and the best-performing LLM 555

is much larger in this dataset compared to 556

others, indicating that LLMs struggle with skill- 557

based entity recognition. This could be due to 558

the complexity of contextual skill interpretation, 559

requiring deeper domain knowledge and better 560

understanding capabilities. 561

5.2 Different Sample Space Choices 562

This section examines the impact of sample space 563

choices, denoted as X in Section 3.1, using 564

the proposed RAG-based approach as overall it 565

performs better than ICL. The experiments are 566

conducted on the SKILLSPAN dataset with the 567

gpt-4o-mini model and OpenAI embeddings. As 568

shown in Figure 3, for smaller dataset splits, the 569

RAG-based approach exhibits greater variability, 570

similar to the behavior seen with ICL. This suggests 571

that as the sample space for selecting context 572

examples decreases, the performance of the RAG- 573

based approach converges more closely with that 574

of ICL. More detailed results are reported in 575

Appendix D. 576

6 Discussion 577

Performance of LLMs The performance of 578

different LLMs in our study reveals interesting 579
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Figure 3: F1 scores for different context sizes (25, 50,
and 75) and sample spaces (10% and 20%) for the
RAG and ICL approach on the SKILLSPAN dataset,
using the gpt-4o-mini model. The plot indicates that
with a smaller sample size, the RAG approach performs
comparably to ICL.

insights. Across all datasets, RAG-based580

approaches improve annotation quality, with581

gpt-4o-mini and OpenAI embeddings achieving582

the best results. In contrast, ICL struggles583

in datasets with sparse or ambiguous entities,584

particularly SKILLSPAN. While all models585

perform well on CoNLL-2003, performance586

declines as entity structures become more complex,587

such as in GUM and SKILLSPAN.588

Effect of Embeddings The choice of589

embeddings for retrieval of context for LLMs590

plays a crucial role in annotation quality in591

retrieval-based methods. OpenAI embeddings lead592

to better F1 scores compared to smaller-scale ST593

embeddings especially for gpt-4o-mini model.594

This effect is particularly evident in WNUT-17 and595

GUM, where entity distributions are more diverse,596

and high-quality embeddings improve retrieval597

effectiveness. In contrast, SKILLSPAN remains598

challenging across all embedding strategies,599

suggesting that current embedding techniques600

struggle with soft skill representation due to the601

abstract nature of the entities.602

Effect of Model Size Larger models generally603

perform better, but retrieval quality is equally604

critical. Qwen2.5-7B slightly outperforms605

Llama3.1-8B and performs comparably to606

Llama3.5-70B with proper embeddings,607

indicating that architecture and training data608

impact annotation beyond parameter count.609

Statistical tests in Appendix E support this finding.610

Effect of Dataset Complexity Breaking down611

results per dataset, CoNLL-2003 shows minimal612

variance across methods, as structured entities613

are well-represented in training data. WNUT-17614

benefits the most from retrieval-based methods,615

as rare entities require additional context for 616

accurate recognition. GUM’s diverse entity 617

types pose a challenge for ICL, but RAG- 618

based methods significantly improve performance. 619

Finally, SKILLSPAN remains the most difficult 620

dataset, with lower performance across all 621

methods, underscoring the limitations of LLMs 622

and embeddings in capturing the semantics of soft 623

skills. 624

7 Conclusions and Future Works 625

This study systematically evaluates the 626

effectiveness of LLMs for data annotation 627

across four diverse datasets—CoNLL-2003, 628

WNUT-17, GUM, and SKILLSPAN of varying 629

complexity. It compares RAG in different 630

embedding strategies, ICL, and a baseline 631

approach. The results demonstrate that RAG-based 632

methods consistently outperform both ICL and the 633

baseline across all datasets, significantly reducing 634

the performance gap with human-level annotation. 635

A key finding is that dataset complexity plays 636

a crucial role in model performance. For 637

structured datasets like CoNLL-2003, LLMs 638

perform exceptionally well, with models such as 639

gpt-4o-mini and Qwen2.5-72B achieving results 640

within 3% of human-level annotation. Conversely, 641

performance deteriorates as dataset complexity 642

increases. The SKILLSPAN dataset, which 643

requires nuanced skill recognition, presents the 644

greatest challenge, with LLMs struggling to 645

capture implicit skill mentions. 646

Our analysis also highlights the importance 647

of context size and embedding choice in 648

retrieval-augmented annotation. We observe 649

that larger models such as Qwen2.5-72B and 650

gpt-4o-mini benefit from larger context sizes, 651

while smaller models like Qwen2.5-7B can still 652

perform competitively when paired with high- 653

quality sentence embeddings. However, models 654

exhibit context saturation effects, where additional 655

examples do not always lead to linear performance 656

improvements. 657

Future works will focus on enhancing the 658

performance of LLMs for complex datasets, 659

particularly in specialized domains. In addition, 660

future works will expand the study to more LLMs 661

and to different NLP tasks. 662
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Limitations663

In this study, we evaluate LLMs for data annotation664

tasks and introduce a RAG-based approach665

with different embedding models to enhance666

performance on NER datasets. However, our667

work has several limitations that highlight areas668

for future research.669

First, our experiments focus solely on NER670

tasks. While this provides a solid foundation671

for evaluation, extending the analysis to other672

NLP tasks, such as text classification or question673

answering, would offer a more comprehensive674

understanding of the proposed methodology’s675

applicability and generalizability.676

Second, for the proof of concept, we employ a677

naïve RAG approach for context selection. Future678

work could explore more sophisticated retrieval679

techniques, such as adaptive retrieval strategies,680

re-ranking mechanisms, or hybrid approaches681

combining dense and sparse retrieval, to further682

optimize performance.683

Third, our study does not explicitly examine the684

biases introduced by LLMs in the data annotation685

process. Given the growing concerns about fairness686

and model biases, a deeper investigation into how687

LLMs influence annotation patterns, especially688

in diverse and underrepresented datasets, could689

provide valuable insights.690
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A Datasets Statistics888

Table 1: Statistics of the datasets considered in this study. The average entity length refers to the average number of
tokens for each entity.

Dataset Sentences Tokens Avg. Entity Length
Train Validation Test Train Validation Test

CoNLL-2003 14041 3250 3453 203621 51362 46435 1.60
WNUT-2017 3394 1008 1287 62730 15734 23394 1.73
GUM 1435 615 805 29392 12688 17437 3.15
SKILLSPAN 3074 1396 1522 92621 39923 42541 4.72

Table 1 highlights the complexity of entity mentions across different datasets, as reflected in their average889

entity length. CoNLL-2003 and WNUT-2017 contain relatively short entities, with average lengths of890

1.60 and 1.73 tokens, respectively, indicating that most entities are single-token mentions. In contrast,891

GUM exhibits greater complexity, with an average entity length of 3.15 tokens, suggesting the presence892

of multi-token entities. SKILLSPAN is the most complex dataset, with an average entity length of 4.72893

tokens, implying more intricate entity structures that require advanced modeling techniques for accurate894

recognition.895

Moreover, we discuss below the entity information for each dataset.896

CoNLL-2003 The CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) dataset consists of general897

entity types: (i) PERSON ; (ii) ORGANIZATION; (iii) LOCATION; and (iv) MISCELLANEOUS.898

Entities in this dataset typically follow structured patterns, making them relatively easier for LLMs899

to identify and classify.900

WNUT-17 The WNUT-17 (Derczynski et al., 2017) dataset contains six categories of rare entities:901

(i) PERSON; (ii) CORPORATION; (iii) LOCATION; (iv) CREATIVE_WORK; (v) GROUP; and902

(vi) PRODUCT. This dataset is particularly challenging due to its noisy text, sparse entity occurrences,903

and limited labeled examples per category.904

GUM The GUM (Zeldes, 2017) dataset is a richly annotated corpus designed for multiple NLP tasks,905

including NER. The dataset includes eleven distinct named entity types: (i) ABSTRACT; (ii) ANIMAL;906

(iii) EVENT; (iv) OBJECT; (v) ORGANIZATION; (vi) PERSON; (vii) PLACE; (viii) PLANT;907

(ix) QUANTITY; (x) SUBSTANCE; and (xi) TIME.908

SKILLSPAN The SKILLSPAN (Zhang et al., 2022a) dataset is composed of a single entity type,909

SOFTSKILLS, extracted from job descriptions. Unlike traditional entities, soft skills do not follow a fixed910

syntactic or semantic structure, making them inherently ambiguous.911

B Implementation Details912

To perform experiments for data annotation with gpt-4o-mini, the model is accessed via the API service913

provided by OpenAI. To ensure reproducible results, the temperature is set to 0 and a seed value of 42914

is used. Furthermore, the system fingerprint fp_1bb46167f9 is reported as noted during API access.915

For data annotation generation using Qwen (Team, 2024b) and Llama (Touvron et al., 2023) based916

models, the HuggingFace (Hugging Face, 2023) implementation is utilized. The instructed fine-tuned917

variants of the open-source models are employed in the proposed study. The models are used only for918

inference, with 4-bit quantization (Jacob et al., 2018). The experiments with billion scale models are919

conducted on an A100 GPU with a seed value of 42. All experiments to fine-tune NER task are performed920

with the RoBERTa model, available via HuggingFace (Hugging Face, 2023), are conducted in a python921

environment, on an RTX A5000 GPU. The experiments are performed using the following five seed922

values: [23112, 13215, 6465, 42, 5634]. Moreover, the statistical significance tests are performed with the923

help of scikit-posthocs (Terpilowski, 2019) library available in python.924
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C Complete Results 925
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Table 2: The F1, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #Ex. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

#Ex. Method
CoNLL2003 WNUT-17 GUM SKILLSPAN

P R F1 P R F1 P R F1 P R F1

Human 91.09±0.49 93.17±0.17 92.12±0.33 65.21±2.32 47.48±1.83 54.93±1.67 55.07±0.31 61.86±0.44 58.26±0.19 54.30±1.60 55.38±1.75 54.79±0.26

gpt-4o-mini-2024-07-18

Baseline 64.65±0.85 80.37±0.50 71.66±0.41 47.35±2.46 55.18±2.84 50.88±1.14 20.32±5.26 13.93±2.76 16.42±3.34 11.09±0.97 17.83±2.02 13.59±0.52

25
ICL 76.48±0.43 82.06±0.35 79.17±0.25 53.18±3.22 52.24±2.73 52.58±0.78 44.06±0.69 52.04±1.57 47.71±0.79 21.23±1.46 45.26±1.72 28.86±1.24

RAG w/ST 84.48±1.04 88.99±0.65 86.68±0.85 51.42±2.63 50.98±1.52 51.14±1.01 46.09±0.66 54.38±1.07 49.89±0.70 20.29±0.78 49.47±1.80 28.77±0.93

RAG w/OpenAI 87.35±0.65 90.71±0.34 89.00±0.29 52.26±2.24 49.75±1.51 50.93±0.93 47.04±0.23 57.56±1.44 51.77±0.66 21.26±1.69 56.74±1.37 30.91±1.94

50
ICL 79.77±0.34 82.64±0.49 81.18±0.29 55.75±2.80 49.53±3.07 52.33±0.97 45.12±0.82 54.35±2.02 49.28±0.88 20.56±0.89 47.42±2.01 28.66±0.85

RAG w/ST 86.73±1.03 89.29±0.84 87.99±0.90 53.74±3.02 48.74±4.44 50.90±1.34 46.46±1.34 55.46±1.21 50.56±1.29 22.22±1.47 52.60±1.41 31.20±1.32

RAG w/OpenAI 87.43±0.48 91.39±0.16 89.36±0.27 56.53±2.35 50.29±2.64 53.14±0.75 47.32±0.92 58.44±1.21 52.28±0.65 23.88±1.09 54.28±2.26 33.13±0.77

75
ICL 78.74±1.02 83.17±0.55 80.89±0.66 51.90±4.29 52.85±1.95 52.24±1.76 44.40±0.63 53.89±1.79 48.67±0.69 20.84±1.59 52.06±1.01 29.73±1.58

RAG w/ST 86.91±0.31 89.25±0.44 88.06±0.26 53.80±1.75 51.79±1.88 52.73±0.80 47.22±0.98 55.57±0.43 51.05±0.60 21.39±0.87 52.85±1.10 30.43±0.73

RAG w/OpenAI 88.07±0.35 91.44±0.28 89.72±0.25 55.72±4.22 51.71±3.34 53.43±0.54 47.04±1.29 58.19±1.18 52.02±1.15 24.66±1.34 55.39±3.19 34.06±0.88
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Table 3: The F1, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #Ex. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

#Ex. Method
CoNLL2003 WNUT-17 GUM SKILLSPAN

P R F1 P R F1 P R F1 P R F1

Human 91.09±0.49 93.17±0.17 92.12±0.33 65.21±2.32 47.48±1.83 54.93±1.67 55.07±0.31 61.86±0.44 58.26±0.19 54.30±1.60 55.38±1.75 54.79±0.26

Qwen2.5-72B-Instruct

Baseline 26.97±0.28 60.80±1.25 37.36±0.30 16.40±1.30 41.19±1.23 23.43±1.42 6.32±0.21 27.46±0.97 10.28±0.35 4.89±0.41 13.79±2.15 7.21±0.69

25
ICL 74.57±0.79 83.57±0.82 78.81±0.30 45.58±2.66 59.47±3.09 51.49±0.92 41.69±1.10 55.80±1.00 47.73±1.06 17.06±2.18 31.17±1.63 22.01±2.13

RAG w/ST 81.87±0.72 89.90±0.46 85.69±0.56 46.55±2.70 45.68±1.43 46.06±1.33 47.79±1.05 60.15±0.99 53.26±0.89 18.25±2.05 47.93±2.08 26.40±2.37

RAG w/OpenAI 84.81±1.16 91.68±0.64 88.11±0.82 48.33±2.82 49.88±1.89 49.05±1.86 47.16±0.46 59.83±0.64 52.74±0.16 18.23±1.90 50.07±4.49 26.63±1.90

50
ICL 77.48±0.51 83.34±0.53 80.30±0.43 45.04±1.78 59.31±1.71 51.17±1.16 44.30±1.09 57.69±1.35 50.12±1.14 17.51±0.85 33.82±1.01 23.06±0.86

RAG w/ST 84.30±0.98 91.49±0.85 87.74±0.77 45.60±2.82 56.63±1.52 50.45±1.14 48.83±1.45 60.55±1.05 54.06±1.25 21.32±1.82 55.79±4.56 30.84±2.52

RAG w/OpenAI 85.96±1.44 92.32±0.30 89.02±0.66 48.66±2.91 57.09±2.42 52.46±1.23 47.33±0.81 61.23±0.44 53.38±0.63 23.44±2.19 52.32±2.82 32.35±2.54

75
ICL 77.50±0.68 83.60±0.74 80.43±0.67 52.14±2.27 55.62±3.11 53.72±0.80 47.60±0.77 57.08±1.22 51.91±0.80 20.81±1.15 48.26±2.80 29.05±1.26

RAG w/ST 87.46±0.39 91.95±0.29 89.65±0.31 48.36±3.25 55.51±1.88 51.58±1.04 50.29±0.27 60.97±0.51 55.11±0.17 20.99±2.12 49.99±1.23 29.52±2.10

RAG w/OpenAI 86.77±0.54 92.05±0.72 89.34±0.61 48.56±2.08 60.22±1.52 53.72±0.71 47.24±1.27 60.34±0.57 52.98±0.76 19.95±0.74 50.74±1.47 28.62±0.77

Llama3.5-70B-Instruct

Baseline 23.56±0.10 63.25±0.17 34.33±0.15 16.35±0.74 54.65±0.42 25.16±0.84 6.44±0.08 27.79±0.35 10.46±0.13 3.51±0.08 24.30±0.64 6.14±0.12

25
ICL 73.59±0.78 78.73±1.03 76.06±0.41 48.77±2.20 47.66±5.18 48.00±2.14 18.26±2.80 41.83±0.98 25.34±2.68 17.04±0.52 45.86±2.86 24.84±0.95

RAG w/ST 83.15±1.42 86.37±0.90 84.72±0.54 36.68±1.32 49.10±3.77 41.89±0.99 43.09±1.10 50.88±2.31 46.63±0.89 19.62±1.44 46.47±1.76 27.55±1.21

RAG w/OpenAI 68.32±3.99 87.50±1.82 76.65±2.19 43.52±4.33 44.71±3.86 43.82±1.29 42.46±1.75 48.87±4.60 45.29±1.50 19.59±1.52 42.16±1.49 26.73±1.65

50
ICL 76.13±1.12 76.79±1.24 76.44±0.30 50.24±2.81 48.90±2.24 49.48±1.08 35.67±1.83 48.79±3.19 41.12±1.07 16.09±0.97 44.15±4.16 23.51±0.71

RAG w/ST 83.87±0.69 88.57±0.88 86.15±0.28 42.92±2.03 48.79±2.99 45.57±0.76 43.76±1.50 50.24±2.00 46.73±0.49 17.69±0.66 46.11±4.63 25.50±0.54

RAG w/OpenAI 68.36±1.53 89.08±0.75 77.35±0.97 44.14±1.97 51.28±2.94 47.36±0.64 43.70±2.43 49.70±1.83 46.45±1.40 18.37±2.42 44.41±4.44 25.77±1.75

75
ICL 74.94±1.03 75.15±1.03 75.04±0.70 50.78±1.74 51.69±2.43 51.18±1.05 39.62±1.64 47.88±3.05 43.30±1.39 17.55±1.05 51.80±1.68 26.19±1.14

RAG w/ST 85.70±0.60 89.03±0.55 87.33±0.23 47.41±3.89 51.36±1.97 49.18±1.61 45.84±1.19 50.36±1.12 47.98±0.68 18.87±1.35 51.17±2.06 27.52±1.18

RAG w/OpenAI 76.99±1.57 87.46±1.39 81.87±0.67 49.43±4.27 48.16±5.99 48.39±2.17 44.46±0.61 52.96±1.65 48.33±0.64 9.51±1.65 47.74±3.51 15.83±2.47
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Table 4: The F1, precision and recall along with standard deviation are reported on the test set. The values are averaged over five different random initializations. #Ex. represents
the number of context examples used. Baseline refers to the use of LLM with no context examples.

#Ex. Method
CoNLL2003 WNUT-17 GUM SKILLSPAN

P R F1 P R F1 P R F1 P R F1

Human 91.09±0.49 93.17±0.17 92.12±0.33 65.21±2.32 47.48±1.83 54.93±1.67 55.07±0.31 61.86±0.44 58.26±0.19 54.30±1.60 55.38±1.75 54.79±0.26

Qwen2.5-7B-Instruct

Baseline 21.79±1.28 62.11±0.44 32.24±1.44 20.95±2.83 44.08±3.68 28.36±3.17 3.27±0.22 14.10±1.03 5.31±0.37 5.41±1.05 35.29±2.73 9.35±1.58

25
ICL 70.22±1.45 75.96±1.49 72.95±0.30 47.79±3.40 47.02±2.78 47.29±1.63 28.31±1.01 44.01±0.97 34.43±0.57 14.12±0.88 54.89±1.48 22.44±1.08

RAG w/ST 83.81±0.67 89.68±0.57 86.64±0.45 37.82±3.45 49.68±3.12 42.81±2.14 35.90±1.86 50.09±2.04 41.80±1.65 15.99±0.38 55.06±0.93 24.77±0.42

RAG w/OpenAI 84.05±1.15 90.85±0.31 87.32±0.65 50.22±3.43 41.75±4.88 45.30±1.73 34.63±1.09 49.97±1.00 40.89±0.52 20.45±1.35 54.60±4.83 29.67±1.29

50
ICL 72.55±1.01 78.54±0.32 75.42±0.57 47.95±3.18 49.36±3.94 48.54±2.51 33.51±0.76 43.59±1.18 37.88±0.56 15.13±0.90 52.64±2.98 23.47±1.01

RAG w/ST 85.78±0.69 90.21±0.38 87.94±0.43 52.14±4.79 44.00±3.95 47.41±0.49 39.38±1.31 49.85±1.69 43.97±0.44 17.36±1.08 51.06±2.65 25.87±1.02

RAG w/OpenAI 80.90±1.79 91.55±0.36 85.89±1.13 41.97±2.87 48.62±5.64 44.75±0.98 34.63±1.32 50.61±1.67 41.11±1.40 18.12±0.94 56.68±3.93 27.41±0.73

75
ICL 81.36±1.19 75.72±1.00 78.43±0.63 47.90±5.76 47.78±3.57 47.51±1.97 34.23±2.14 46.40±1.10 39.39±1.77 12.98±1.17 51.23±6.20 20.68±1.81

RAG w/ST 86.54±1.93 88.40±1.15 87.44±0.87 52.39±4.73 47.17±1.99 49.48±1.30 40.14±1.39 48.15±1.09 43.76±0.73 18.34±0.46 46.32±3.08 26.25±0.76

RAG w/OpenAI 81.67±1.51 90.96±0.30 86.06±0.88 48.73±1.31 47.85±2.49 48.25±1.30 39.56±1.25 50.87±1.25 44.48±0.55 14.07±0.80 61.07±0.86 22.86±1.06

Llama-3.1-8B-Instruct

Baseline 22.98±0.67 74.87±0.48 35.17±0.83 11.06±2.70 36.38±10.40 16.88±4.16 6.98±0.03 28.22±0.18 11.19±0.05 3.03±0.21 20.37±5.76 5.22±0.32

25
ICL 63.86±0.95 75.71±1.61 69.26±0.69 35.94±3.54 51.58±2.70 42.23±2.38 33.95±1.97 41.74±3.02 37.39±1.85 12.40±0.85 33.63±6.65 17.93±0.66

RAG w/ST 78.44±1.18 86.16±0.88 82.11±0.86 36.82±4.64 43.86±7.22 39.38±2.26 39.94±2.23 46.48±0.96 42.92±1.20 14.95±1.88 42.25±6.45 21.87±1.51

RAG w/OpenAI 69.03±1.02 86.41±2.27 76.73±1.02 32.83±3.20 48.82±7.41 38.89±2.78 40.77±1.82 49.07±2.80 44.45±0.54 12.16±0.97 41.55±3.20 18.79±1.31

50
ICL 67.78±1.48 76.79±0.69 72.01±1.13 40.49±1.76 48.82±2.88 44.20±1.03 36.43±1.51 42.53±2.12 39.22±1.32 12.94±1.13 35.45±2.12 18.90±1.01

RAG w/ST 79.29±3.86 86.85±2.00 82.82±1.41 40.04±4.26 48.60±4.26 43.59±1.04 39.73±1.81 46.54±2.12 42.81±0.99 15.13±0.96 47.13±1.48 22.88±0.99

RAG w/OpenAI 69.98±1.50 87.05±2.15 77.56±0.74 39.75±1.82 49.53±2.63 44.03±0.76 40.89±1.62 46.96±2.27 43.66±0.67 12.09±1.18 42.63±3.13 18.76±1.19

75
ICL 71.44±2.02 77.86±2.41 74.47±1.00 39.13±1.16 48.70±2.37 43.35±0.84 34.33±1.27 41.30±2.37 37.43±0.53 13.37±1.12 37.83±4.68 19.67±1.20

RAG w/ST 82.36±2.15 87.69±1.70 84.91±0.88 39.92±2.09 50.34±3.12 44.42±0.59 41.14±1.47 43.71±3.36 42.30±1.57 12.77±0.10 45.34±0.80 19.92±0.08

RAG w/OpenAI 74.58±2.51 85.21±0.99 79.51±1.02 41.85±2.52 47.17±6.92 43.96±2.54 41.99±1.01 46.13±2.68 43.91±0.93 10.42±0.96 49.98±3.64 17.22±1.29
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D Further Results on Different Sample Space Choices 926

Tables 5 examine the influence of sample space X and context size M on entity recognition performance 927

using the best-performing model, gpt-4o-mini, on the SKILLSPAN dataset. Increasing the context 928

size from 25 to 75 generally improves the F1 score, though gains diminish beyond 50 examples. RAG 929

consistently outperforms ICL in recall and F1 score, demonstrating its effectiveness in leveraging external 930

knowledge, while ICL achieves higher precision but lower recall, suggesting a more conservative prediction 931

approach. At a 10% sample space, ICL delivers competitive results, but as it increases to 20%, RAG 932

maintains a clear advantage, achieving the highest F1 score of 32.39% at a context size of 75. Notably, 933

for smaller dataset splits, RAG exhibits greater variability, similar to ICL, suggesting that when fewer 934

examples are available, their performances converge. These findings underscore the importance of context 935

size and external knowledge availability in optimizing RAG-based methods. 936

Table 5: Study comparing RAG and ICL methods at different size of sample spaces (10% and 20%) and context
sizes (25, 50, and 75). Experiments were conducted on the SKILLSPAN dataset using the gpt-4o-mini-2024-07-18
model. The results are presented with standard deviations, showing how performance metrics vary across sampling
choices and context sizes for both methods.

Sample Space Context Size Precision Recall F1 Score

RAG

10%
25 21.83±1.22 56.94±1.17 31.53±1.18

50 22.44±1.32 56.46±2.46 32.07±1.13

75 22.82±0.58 55.82±1.40 32.34±0.41

20%
25 20.26±1.55 54.46±3.71 29.45±1.29

50 21.00±0.81 57.40±1.57 30.74±0.86

75 22.69±0.46 56.31±2.06 32.39±0.60

ICL

10%
25 22.57±1.49 48.72±3.95 30.74±0.87

50 23.62±0.85 50.73±1.33 32.21±0.67

75 23.12±1.16 51.09±4.19 31.76±0.89

20%
25 19.35±1.57 45.83±4.74 27.05±0.66

50 22.02±1.56 51.17±1.15 30.76±1.39

75 22.89±1.11 49.78±2.89 31.32±0.99

E Statistical Significance Test 937

This study evaluated various large language models across multiple datasets, considering different 938

embeddings and examples as context. While some models clearly outperformed others in the results, 939

the differences in predictions might not be statistically significant for certain models. Therefore, to 940

determine the statistical significance of our findings, we conducted a non-parametric test. This test helps 941

us assess whether there are significant differences among the models and, if so, identify which models 942

differ statistically from each other. 943

The Friedman test (Pereira et al., 2015) is a non-parametric statistical test used to detect differences in 944

performance across multiple related samples — in this case, different models evaluated over multiple 945

datasets. It ranks the performance scores among datasets and assesses whether the rank distributions differ 946

significantly among models. Let N be the number of datasets, K the number of models, and Rj be the 947

sum of ranks for each model j. The Friedman test statistic chi2F , which follows a chi-square distribution, 948

is calculated as follows: 949

χ2
F =

12N

k(k + 1)

k∑
j=1

R2
j − 3N(k + 1). (1) 950

If the test statistic exceeds the critical value for a significance level α = 0.01, we reject the null hypothesis, 951

indicating that there are significant differences in performance among the models. If significant differences 952

are found, the post-hoc Conover (Conover, 1999) test is performed to discover pair-wise statistical 953
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Figure 4: Critical Difference diagram of average score ranks. The models connected with horizontal line shows no
statistical difference. The models with lower ranks shows superior performance than those of higher ranks.

differences among models while adjusting for multiple comparisons. This test evaluates whether specific954

models differ significantly in performance.955

Given that the Friedman test produces a test statistic of 114.42 with a p-value of 7.71−18, we reject the null956

hypothesis, suggesting that at least one model shows a statistically significant difference in performance.957

Consequently, we conducted the post-hoc Conover test. Figure 4 presents the statistical significance of958

the model rankings, with significant pairwise differences highlighted accordingly. The x-axis indicates959

the average rank of each model, where lower ranks closer to the left signify better performance. Each960

colored node corresponds to a particular model, labeled with its respective rank, while the black horizontal961

bars connecting multiple nodes highlight groups of models that do not show statistically significant962

differences at the specified confidence level. The top-performing combination is gpt4omini-OpenAI,963

with an average rank of 1.9, indicating it consistently outperformed other approaches. Other strong964

performers include Qwen2.5-72B-OpenAI (3), gpt-4o-mini-ST (3.8), and Qwen2.5-72B-ST (4.3). These965

models have lower rankings and are clustered towards the left. In contrast, Llama3.1-8B-ICL (14),966

Llama3.1-8B-OpenAI (13), and Qwen2.5-7B-ICL (11) have the highest ranks, suggesting they performed967

the worst in comparison. These models do not overlap with the higher-ranked ones, highlighting their968

statistically inferior performance. Interestingly, Llama3.1-8B-ST shows no statistical differences when969

compared to Llama3.5-70B, whether using ICL or RAG with OpenAI embedding. Similarly, Qwen2.5-7B,970

when utilizing RAG with either OpenAI or ST embeddings, exhibits no statistical differences compared to971

Llama3.5-70B using ST embeddings and Qwen2.5-72B using ICL. These tests highlight a crucial aspect:972

a trade-off when addressing the NER task. Indeed, larger models, such as those with 70B parameters, may973

not necessarily offer better performance than smaller models like Llama3.1-8B-ST or Qwen2.5-7B. This974

suggests that the additional computational resources required for bigger models might not always justify975

their use, especially if smaller models can achieve statistically similar results.976

F Qualitative Analysis977

This study broadly explores the efficacy of LLMs for data annotation tasks. Four different datasets of978

varying complexity are chosen. From Table 2, it is observed that the performance of LLMs decreases979

as dataset complexity increases. The performance of LLMs on the SKILLSPAN dataset is significantly980

lower than human annotation, suggesting that even the latest available LLMs struggle to annotate data981

when the task is complex. For instance, soft skills lack clear or distinct definitions, making the task more982

challenging. Similarly, the GUM dataset also poses challenges for LLMs due to its entity diversity. On983

the other hand, in the case of the WNUT-17 and CoNLL-2003 datasets, which consist of simpler entities984

(more details are reported in Section 4.1), annotations are easier to extract for an LLM given its prior985

knowledge. Furthermore, the quality of context in LLMs plays a major role, particularly in data annotation986

tasks, as indicated by Tables 2, 3, and 4, where the RAG-based approach significantly outperforms its987

counterpart. Moreover, for simpler datasets, the RAG-based approach achieves performance comparable988

to human annotation.989

To gain better insights into the performance of the proposed RAG-based approach, Table 6 presents the990

qualitative results for the SKILLSPAN dataset annotated by gpt-4o-mini. In this dataset, data annotation991

performance remains far below human-level, suggesting that the LLM struggles to extract sufficient992
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Table 6: Qualitative analysis of soft skills annotations on dataset samples using gpt-4o-mini-2024-07-18. The
output of the best-performing model is reported. The highlighted texts in the first column are gold labels, while
those in the other columns are the corresponding LLM-generated annotations.

№ Human Baseline ICL RAG

1. Very good understanding
of test automation
frameworks.

Very good understanding
of test automation
frameworks.

Very good understanding
of test automation
frameworks.

Very good understanding
of test automation
frameworks.

2. Must have excellent verbal
and written skills being
able to communicate
effectively on both a
technical and business
level Ability to work under
pressure to resolve issues
affecting the production
services.

Must have excellent verbal
and written skills being
able to communicate
effectively on both a
technical and business
level Ability to work under
pressure to resolve issues
affecting the production
services.

Must have excellent verbal
and written skills being
able to communicate
effectively on both a
technical and business
level Ability to work under
pressure to resolve issues
affecting the production
services.

Must have excellent verbal
and written skills being
able to communicate
effectively on both a
technical and business
level Ability to work under
pressure to resolve issues
affecting the production
services.

3. Must have excellent work
ethic and be detail oriented
and be able to work
independently.

Must have excellent work
ethic and be detail oriented
and be able to work
independently.

Must have excellent work
ethic and be detail oriented
and be able to work
independently.

Must have excellent work
ethic and be detail oriented
and be able to work
independently.

4. Technical Skills Core Java. Technical Skills Core Java. Technical Skills Core Java. Technical Skills Core Java.

5. You will work with
the business to define
requirements and have
excellent communication
skills to interpret these into
consolidated development
scopes.

You will work with
the business to define
requirements and have
excellent communication
skills to interpret these into
consolidated development
scopes.

You will work with
the business to define
requirements and have
excellent communication
skills to interpret these into
consolidated development
scopes.

You will work with
the business to define
requirements and have
excellent communication
skills to interpret these into
consolidated development
scopes.

information from the context examples when the task is difficult. From Tables 2, 3, and 4, it is observed 993

that LLM-generated annotations improve recall, whereas precision is compromised. Table 6 shows that in 994

examples 1 and 4, the LLM incorrectly annotates soft skills that are not identified by human annotators, 995

whereas in examples 2 and 3, the annotations are nearly identical to human annotations. In Example 5, 996

the RAG-based approach performs comparably to human annotation, while both the baseline and ICL fail 997

to do so. 998

G Prompt 999

This section presents the prompts used to generate the response of LLMs. These prompts are carefully 1000

synthesized to encompass all the components required to get structured output for both: (i) baseline, and 1001

(ii) in-context learning models. 1002
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Baseline Prompt Structure

Task Description
You are an advanced Named-Entity Recognition (NER) system.
Your task is to analyze the given sentence or passage, identify, extract, and classify specific named entities according to
the following predefined entity types:

• {labels}
For each sentence:

• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation.
In entities, label the word exactly as in the text. All the text is case-sensitive.

Input
{input_text}

1003

Context Prompt Structure

Task Description
You are an advanced Named-Entity Recognition (NER) system.
Your task is to analyze the given sentence or passage, identify, extract, and classify specific named entities according to
the following predefined entity types:

• {labels}
For each sentence:

• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation.
In entities, label the word exactly as in the text. All the text is case-sensitive.

Examples
{context_examples}

Input
{input_text}

1004

H Examples1005

This section provides examples of prompts from the training data for different datasets used in this study.1006

For visual purposes, we used only only top5 examples in context. Follows several prompt examples for1007

the: (i) CoNLL-2003, (ii) WNUT-17, (iii) SKILLSPAN datasets, and (iv) GUM datasets.1008

Example 1–CoNLL-2003

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’PER’, ’ORG’, ’LOC’, ’MISC’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ "A South A f r i c a n boy i s w r i t i n g back t o an American g i r l whose message i n a
b o t t l e he found washed up on P r e s i d e n t Nelson Mandela ’ s o l d p r i s o n i s l a n d

. " , [ { ’ E n t i t y ’ : ’ South A f r i c a n ’ , ’ Label ’ : ’MISC ’ } , { ’ E n t i t y ’ : ’ American ’ ,
1009
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’ Label ’ : ’MISC ’ } , { ’ E n t i t y ’ : ’ Nelson Mandela ’ , ’ Label ’ : ’PER ’ } ] ]

[ ’A r o t t w e i l e r dog b e l o n g i n g t o an e l d e r l y South A f r i c a n c o u p l e savaged t o
d e a t h t h e i r two − year − o l d g r a n d s o n who was v i s i t i n g , p o l i c e s a i d on
Thursday . ’ , [ { ’ E n t i t y ’ : ’ South A f r i c a n ’ , ’ Label ’ : ’MISC ’ } ] ]

[ ’ The p r i n c e s s , who has c a r v e d o u t a major r o l e f o r h e r s e l f a s a h e l p e r o f
t h e s i c k and needy , i s s a i d t o have t u r n e d t o Mother T e r e s a f o r g u i d a n c e
as h e r m a r r i a g e crumbled t o h e i r t o t h e B r i t i s h t h r o n e P r i n c e C h a r l e s . ’ ,
[ { ’ E n t i t y ’ : ’ Mother Teresa ’ , ’ Label ’ : ’PER ’ } , { ’ E n t i t y ’ : ’ B r i t i s h ’ , ’ Label
’ : ’MISC ’ } , { ’ E n t i t y ’ : ’ P r i n c e C h a r l e s ’ , ’ Label ’ : ’PER ’ } ] ]

[ ’ South A f r i c a n answer s U. S . message i n a b o t t l e . ’ , [ { ’ E n t i t y ’ : ’ South
A f r i c a n ’ , ’ Label ’ : ’MISC ’ } , { ’ E n t i t y ’ : ’U. S . ’ , ’ Label ’ : ’LOC’ } ] ]

[ " But C a r l o Hoffmann , an 11− year − o l d j a i l e r ’ s son who found t h e b o t t l e on
t h e beach a t Robben I s l a n d o f f Cape Town a f t e r w i n t e r s t o r m s , w i l l send
h i s l e t t e r back by o r d i n a r y ma i l on Thursday , t h e p o s t o f f i c e s a i d . " ,
[ { ’ E n t i t y ’ : ’ C a r l o Hoffmann ’ , ’ Label ’ : ’PER ’ } , { ’ E n t i t y ’ : ’ Robben I s l a n d ’ ,

’ Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Cape Town ’ , ’ Label ’ : ’LOC’ } ] ]

Input
Revered skull of S. Africa king is Scottish woman ’s .

Response
[Entity: S. Africa, Label: LOC, Entity: Scottish, Label: MISC]

1010

Example 2–CoNLL-2003

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’PER’, ’ORG’, ’LOC’, ’MISC’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ Rwanda s a i d on S a t u r d a y t h a t Z a i r e had e x p e l l e d 28 Rwandan Hutu r e f u g e e s
a c c u s e d of b e i n g " t r o u b l e −makers " i n camps i n e a s t e r n Z a i r e . ’ , [ { ’
E n t i t y ’ : ’ Rwanda ’ , ’ Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Z a i r e ’ , ’ Label ’ : ’LOC’ } ,
{ ’ E n t i t y ’ : ’ Rwandan ’ , ’ Label ’ : ’MISC ’ } , { ’ E n t i t y ’ : ’ Hutu ’ , ’ Label ’ : ’MISC
’ } , { ’ E n t i t y ’ : ’ Z a i r e ’ , ’ Label ’ : ’LOC’ } ] ]

[ ’ R e p a t r i a t i o n o f 1 . 1 m i l l i o n Rwandan Hutu r e f u g e e s announced by Z a i r e and
Rwanda on Thursday c o u l d s t a r t w i t h i n t h e n e x t few days , an e x i l e d
Rwandan Hutu lobby group s a i d on F r i d a y . ’ , [ { ’ E n t i t y ’ : ’ Rwandan Hutu ’ , ’
Label ’ : ’MISC ’ } , { ’ E n t i t y ’ : ’ Z a i r e ’ , ’ Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Rwanda ’ ,

’ Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Rwandan Hutu ’ , ’ Label ’ : ’MISC ’ } ] ]

[ ’ I n n o c e n t B u t a r e , e x e c u t i v e s e c r e t a r y o f t h e R a l l y f o r t h e R e t u rn o f
Refugees and Democracy i n Rwanda ( RDR ) which s a y s i t has t h e s u p p o r t o f
Rwanda \ ’ s e x i l e d Hutus , a p p e a l e d t o t h e i n t e r n a t i o n a l community t o d e t e r

t h e two c o u n t r i e s from go ing ahead wi th what i t t e rmed a " f o r c e d and
inhuman a c t i o n " . ’ , [ { ’ E n t i t y ’ : ’ I n n o c e n t Buta re ’ , ’ Label ’ : ’PER ’ } , { ’
E n t i t y ’ : ’ R a l l y f o r t h e R e tu rn o f Refugees and Democracy i n Rwanda ’ , ’
Label ’ : ’ORG’ } , { ’ E n t i t y ’ : ’RDR’ , ’ Label ’ : ’ORG’ } , { ’ E n t i t y ’ : ’ Rwanda ’ , ’
Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Hutus ’ , ’ Label ’ : ’MISC ’ } ] ]

1011
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[ ’ Rwanda s a y s Z a i r e e x p e l s 28 Rwandan r e f u g e e s . ’ , [ { ’ E n t i t y ’ : ’ Rwanda ’ , ’
Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Z a i r e ’ , ’ Label ’ : ’LOC’ } , { ’ E n t i t y ’ : ’ Rwandan ’ ,

’ Label ’ : ’MISC ’ } ] ]

[ ’ Rwandan group s a y s e x p u l s i o n c o u l d be imminent . ’ , [ { ’ E n t i t y ’ : ’ Rwandan ’ , ’
Label ’ : ’MISC ’ } ] ]

Input
Captain Firmin Gatera , spokesman for the Tutsi-dominated Rwandan army , told Reuters in Kigali that 17 of the 28
refugees handed over on Friday from the Zairean town of Goma had been soldiers in the former Hutu army which fled
to Zaire in 1994 after being defeated by Tutsi forces in Rwanda ’s civil war .

Response
[Entity: Captain Firmin Gatera, Label: PER, Entity: Rwandan, Label: MISC, Entity: Reuters, Label: ORG, Entity:
Kigali, Label: LOC, Entity: Zairean, Label: MISC, Entity: Goma, Label: LOC, Entity: Hutu, Label: MISC, Entity:
Zaire, Label: LOC, Entity: Tutsi, Label: MISC, Entity: Rwanda, Label: LOC]

1012

Example 3–WNUT-17

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’corporation’, ’creative-work’, ’group’, ’location’, ’person’, ’product’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ @ j u s t i n b i e b e r i j u s t wanna say you make me s m i l e e v e r y d a y : ) t h a n k s f o r
s m i l i n g b e c a u s e when u s m i l e i s m i l e ! : ) ’ , [ ] ]

[ " @joeymcin tyre I h e a r t you . Even i f I haven ’ t s een u i n months . . . SEND A
PIC ! " , [ ] ]

[ ’ @ l o v a b l e _ s i n OMG OMG OMG ! Thank you f o r " t u m b l r i n g " i t t o me , I so wasn
\ ’ t e x p e c t i n g them t o d a y . OMG ! ’ , [ ] ]

[ ’RT @aplusk : Th i s made me l a u g h t o d a y h t t p : / / b i t . l y / bjOhom & l t ; −−− c o u r t e s y
o f s p l u r b . What made you l a u g h ? ’ , [ ] ]

[ ’RT @Sn00ki : Haha yes ! ! ! I l o v e t h a t you knew t h a t : ) RT @ t r i s h a m e l i s s a
@Sn00ki I s phenomenal t h e word of t h e day ? ’ , [ ] ]

Input
@jimmyfallon is following me ! OMG ! My life is now complete ! I heart you JF and have for years ! Thank you for
making me laugh everyday !

Response
[Entity: @jimmyfallon, Label: person, Entity: JF, Label: person]

1013

Example 4–WNUT-17

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

1014
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[’corporation’, ’creative-work’, ’group’, ’location’, ’person’, ’product’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’We a r e one s t e p c l o s e r t o our new k i t c h e n s . We chose a maker and had
o f f i c i a l measurements t a k e n t o d a y ! ’ , [ ] ]

[ ’We were a l l e n j o y i n g a g l a s s o f wine i n t h e o f f i c e when a fudge d e l i v e r y
showed up . I l o v e my j o b . And I l o v e F r i d a y s . ’ , [ ] ]

[ ’800 m i l e s t o s e e c l i e n t s , 3 ACC c a n d i d a t e / commiss ione r m e e t i n g s , b i g p r e s s
r e l e a s e , making i t t o F r i d a y . . PRICELESS ! ’ , [ ] ]

[ " I hope t h e weeks keep f l y i n g . I t ’ s a c t u a l l y f a n t a s t i c t h e way none of t h e
days d ragged t h i s week . . . . l i k e NONE . :D" , [ ] ]

[ ’ F e e l i n g r e a l l y good a f t e r g r e a t week i n our SF and LA o f f i c e s . Glad t o k i c k
back on AMerican f l i g h t back t o NYC’ , [ { ’ E n t i t y ’ : ’SF ’ , ’ Label ’ : ’

l o c a t i o n ’ } , { ’ E n t i t y ’ : ’LA’ , ’ Label ’ : ’ l o c a t i o n ’ } , { ’ E n t i t y ’ : ’ AMerican ’ ,
’ Label ’ : ’ c o r p o r a t i o n ’ } , { ’ E n t i t y ’ : ’NYC’ , ’ Label ’ : ’ l o c a t i o n ’ } ] ]

Input
Great week in the Optimise office, another new client on board and we are close to signing a new team member

Response
[Entity: Optimise, Label: corporation]

1015

Example 5–SKILLSPAN

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’Skill’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ Hands on e x p e r i e n c e wi th au toma ted t e s t i n g u s i n g Java . ’ , [ ] ]

[ ’ E x p e r i e n c e wi th a u t o m a t i o n s y s t e m s framework d e s i g n / use and dep loyment . ’ ,
[ ] ]

[ ’ Good u n d e r s t a n d i n g of A g i l e m e t h o d o l o g i e s and C o n t i n u o u s D e l i v e r y . ’ , [ ] ]

[ ’ Demons t r a t e c l e a r u n d e r s t a n d i n g of a u t o m a t i o n and o r c h e s t r a t i o n p r i n c i p l e s
. ’ , [ ] ]

[ ’ Good e x p o s u r e t o UI Frameworks l i k e Angula r P r o f i c i e n c y i n SQL and D a t a b a s e
deve lopmen t . ’ , [ ] ]
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[ " A b i l i t y t o u n d e r s t a n d and use e f f i c i e n t D e f e c t management r e g u l a r view of
t e s t c o v e r a g e t o i d e n t i f y gaps and p r o v i d e improvements P e r s o n a l
S p e c i f i c a t i o n 5+ y e a r s o f r e l e v a n t IT / q u a l i t y a s s u r a n c e work e x p e r i e n c e
Bache lo r ’ s d e g r e e i n Computer S c i e n c e o r r e l a t e d f i e l d o f s t u d y or
e q u i v a l e n t r e l e v a n t e x p e r i e n c e ; d e m o n s t r a t e d e x p e r i e n c e w i t h i n t h e q u a l i t y

a s s u r a n c e / t e s t i n g a r e n a ; d e m o n s t r a t e d s k i l l s i n q u a l i t y a s s u r a n c e
methods / p r o c e s s e s and p r a c t i c e s . " , [ { ’ E n t i t y ’ : ’ u n d e r s t a n d and use
e f f i c i e n t D e f e c t management ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ i d e n t i f y gaps
’ , ’ Label ’ : ’ S k i l l ’ } ] ]

Input
Very good understanding of test automation frameworks.

Response
[Entity: test automation frameworks, Label: Skill]

1017

Example 6–SKILLSPAN

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’Skill’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ S t r o n g communica t ion s k i l l s i n c l u d i n g t h e a b i l i t y t o e x p r e s s complex
t e c h n i c a l c o n c e p t s t o d i f f e r e n t a u d i e n c e s i n w r i t i n g and c o n f e r e n c e c a l l s
. ’ , [ { ’ E n t i t y ’ : ’ communica t ion s k i l l s ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’
e x p r e s s complex t e c h n i c a l c o n c e p t s t o d i f f e r e n t a u d i e n c e s ’ , ’ Label ’ : ’
S k i l l ’ } ] ]

[ ’ E x c e l l e n t o r g a n i z a t i o n a l v e r b a l and w r i t t e n communica t ion s k i l l s . ’ , [ { ’
E n t i t y ’ : ’ o r g a n i z a t i o n a l v e r b a l and w r i t t e n communica t ion s k i l l s ’ , ’ Label
’ : ’ S k i l l ’ } ] ]

[ ’ E x c e l l e n t o r g a n i z a t i o n a l v e r b a l and w r i t t e n communica t ion s k i l l s . ’ , [ { ’
E n t i t y ’ : ’ o r g a n i z a t i o n a l v e r b a l and w r i t t e n communica t ion s k i l l s ’ , ’ Label
’ : ’ S k i l l ’ } ] ]

[ ’ The a b i l i t y t o work w i t h i n a team and i n c o l l a b o r a t i o n wi th o t h e r s i s
c r i t i c a l t o t h i s p o s i t i o n and e x c e l l e n t communica t ion s k i l l s v e r b a l and
w r i t t e n a r e e s s e n t i a l . ’ , [ { ’ E n t i t y ’ : ’ work w i t h i n a team and i n
c o l l a b o r a t i o n wi th o t h e r s ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ communica t ion
s k i l l s ’ , ’ Label ’ : ’ S k i l l ’ } ] ]

[ ’ Th i s r o l e r e q u i r e s a wide v a r i e t y o f s t r e n g t h s and c a p a b i l i t i e s i n c l u d i n g
A b i l i t y t o work c o l l a b o r a t i v e l y i n teams and d e v e l o p m e a n i n g f u l
r e l a t i o n s h i p s t o a c h i e v e common g o a l s S t r o n g o r g a n i z a t i o n a l s k i l l s A b i l i t y

t o m u l t i − t a s k and d e l i v e r t o a t i g h t d e a d l i n e E x c e l l e n t w r i t t e n and
v e r b a l communica t ion s k i l l s E x p e r i e n c e d e v e l o p i n g UI components i n Angula r
Good e x p e r i e n c e i n u s i n g d e s i g n p a t t e r n s UML OO c o n c e p t s . ’ , [ { ’ E n t i t y ’ :

’ work c o l l a b o r a t i v e l y i n teams ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ d e v e l o p
m e a n i n g f u l r e l a t i o n s h i p s ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ a c h i e v e common
g o a l s ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ o r g a n i z a t i o n a l s k i l l s ’ , ’ Label ’ : ’
S k i l l ’ } , { ’ E n t i t y ’ : ’ m u l t i − t a s k ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ d e l i v e r
t o a t i g h t d e a d l i n e ’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ communica t ion s k i l l s
’ , ’ Label ’ : ’ S k i l l ’ } , { ’ E n t i t y ’ : ’ d e v e l o p i n g UI components ’ , ’ Label ’ : ’

1018

24



S k i l l ’ } , { ’ E n t i t y ’ : ’ u s i n g d e s i g n p a t t e r n s ’ , ’ Label ’ : ’ S k i l l ’ } ] ]

Input
Must have excellent verbal and written skills being able to communicate effectively on both a technical and business
level Ability to work under pressure to resolve issues affecting the production services .

Response
[Entity: verbal and written skills, Label: Skill, Entity: communicate effectively on both a technical and business level,
Label: Skill, Entity: work under pressure, Label: Skill, Entity: resolve issues affecting the production services, Label:
Skill]
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Example 7–GUM

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’abstract’, ’animal’, ’event’, ’object’, ’organization’, ’person’, ’place’, ’plant’, ’quantity’, ’substance’, ’time’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ The 131− page document was found on C a s t l e f r a n k Road i n Kanata , O n t a r i o i n
a r a i n − s t a i n e d , t i r e −marked brown e n v e l o p e by a p a s s e r b y ’ , ’ E n t i t i e s ’ :
[ { ’ E n t i t y ’ : ’ The 131− page document was found on C a s t l e f r a n k Road i n Kanata

, O n t a r i o i n a r a i n − s t a i n e d , t i r e −marked brown e n v e l o p e by a p a s s e r b y ’ ,
’ Label ’ : ’ even t ’ } ] ]

[ ’ Also t h e l a n g u a g e i s i m p o r t a n t i n w r i t i n g and i n l i t e r a t u r e ’ , ’ E n t i t i e s ’ :
[ { ’ E n t i t y ’ : ’ t h e language ’ , ’ Label ’ : ’ a b s t r a c t ’ } , { ’ E n t i t y ’ : ’ w r i t i n g ’ , ’
Label ’ : ’ a b s t r a c t ’ } , { ’ E n t i t y ’ : ’ l i t e r a t u r e ’ , ’ Label ’ : ’ a b s t r a c t ’ } ] ]

[ ’ I n g r e d i e n t s B a s i l comes i n many d i f f e r e n t v a r i e t i e s , each of which have a
un iq ue f l a v o r and smel l ’ , ’ E n t i t i e s ’ : [ { ’ E n t i t y ’ : ’ I n g r e d i e n t s ’ , ’ Label ’ :
’ o b j e c t ’ } , { ’ E n t i t y ’ : ’ B a s i l ’ , ’ Label ’ : ’ p l a n t ’ } , { ’ E n t i t y ’ : ’many
d i f f e r e n t v a r i e t i e s ’ , ’ Label ’ : ’ a b s t r a c t ’ } , { ’ E n t i t y ’ : ’ each of which ’ , ’
Label ’ : ’ a b s t r a c t ’ } , { ’ E n t i t y ’ : ’ a u n i qu e f l a v o r and smel l ’ , ’ Label ’ : ’
a b s t r a c t ’ } ] ]

[ ’We do n o t want t o j u s t t r a f f i c i n t h e same 24 hour news c y c l e ’ , ’ E n t i t i e s ’ :
[ { ’ E n t i t y ’ : ’We do n o t want t o j u s t t r a f f i c i n t h e same 24 hour news c y c l e
’ , ’ Label ’ : ’ a b s t r a c t ’ } ] ]

[ ’ You go t h r o u g h q u i t e a b i t ’ , ’ E n t i t i e s ’ : [ { ’ E n t i t y ’ : ’You ’ , ’ Label ’ : ’ pe r son
’ } , { ’ E n t i t y ’ : ’ q u i t e a b i t ’ , ’ Label ’ : ’ q u a n t i t y ’ } ] ]

Input
If you are just visiting York for the day , using a Park and Ride [ 1 ] costs a lot less than trying to park in or near the city
centre , and there are five sites dotted around the Outer Ring Road

Response
[’Entity’: ’York’, ’Label’: ’place’, ’Entity’: ’the day’, ’Label’: ’time’, ’Entity’: ’a Park and Ride’, ’Label’: ’object’,
’Entity’: ’the city centre’, ’Label’: ’place’, ’Entity’: ’five sites’, ’Label’: ’quantity’, ’Entity’: ’the Outer Ring Road’,
’Label’: ’place’]
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Example 8–GUM

Task Description
You are an advanced Named-Entity Recognition (NER) system. Your task is to analyze the given sentence or passage,
identify, extract, and classify specific named entities according to the following predefined entity types:

[’abstract’, ’animal’, ’event’, ’object’, ’organization’, ’person’, ’place’, ’plant’, ’quantity’, ’substance’, ’time’]

For each sentence:
• Label each word in the text with the appropriate entity type if it matches the specified categories.
• Extract multiple entities of the same class if they exist.

The output should be in valid JSON format, with each word and its corresponding label as shown below.
Follow the structure strictly and do not add any other explanation. In entities, label the word exactly as in the text. All
the text is case-sensitive.

Examples

[ ’ " NASA A d m i n i s t r a t o r C h a r l e s Bolden announces where f o u r s p a c e s h u t t l e
o r b i t e r s w i l l be p e r m a n e n t l y d i s p l a y e d a t t h e c o n c l u s i o n of t h e Space
S h u t t l e Program d u r i n g an e v e n t commemorating t h e 30 t h a n n i v e r s a y o f t h e
f i r s t s h u t t l e l a u n c h on A p r i l 12 , 2011 ’ , ’ E n t i t i e s ’ : [ { ’ E n t i t y ’ : ’NASA
A d m i n i s t r a t o r C h a r l e s Bolden ’ , ’ Label ’ : ’ pe r son ’ } , { ’ E n t i t y ’ : ’ where f o u r
s p a c e s h u t t l e o r b i t e r s w i l l be p e r m a n e n t l y d i s p l a y e d ’ , ’ Label ’ : ’ p l a c e ’ } ,
{ ’ E n t i t y ’ : ’ t h e c o n c l u s i o n of t h e Space S h u t t l e Program ’ , ’ Label ’ : ’ even t
’ } , { ’ E n t i t y ’ : ’ an even t ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’30 t h a n n i v e r s a y
o f t h e f i r s t s h u t t l e l aunch ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’ A p r i l 12 ,
2011 ’ , ’ Label ’ : ’ t ime ’ } ] ]

[ ’NASA c e l e b r a t e d t h e l a u n c h of t h e f i r s t s p a c e s h u t t l e Tuesday a t an e v e n t a t
t h e Kennedy Space C e n t e r ( KSC ) i n Cape C a n a v e r a l , F l o r i d a ’ , ’ E n t i t i e s

’ : [ { ’ E n t i t y ’ : ’NASA’ , ’ Label ’ : ’ o r g a n i z a t i o n ’ } , { ’ E n t i t y ’ : ’ t h e l a u n c h of
t h e f i r s t s p a c e s h u t t l e ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’ Tuesday ’ , ’ Label

’ : ’ t ime ’ } , { ’ E n t i t y ’ : ’ an even t ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’ Kennedy
Space Cen te r ’ , ’ Label ’ : ’ p l a c e ’ } , { ’ E n t i t y ’ : ’KSC’ , ’ Label ’ : ’ p l a c e ’ } , { ’
E n t i t y ’ : ’ Cape C a n a v e r a l , F l o r i d a ’ , ’ Label ’ : ’ p l a c e ’ } ] ]

[ ’ Looking back : Space S h u t t l e Columbia l i f t s o f f on STS−1 from Launch Pad 39A
a t t h e Kennedy Space C e n t e r on A p r i l 12 , 1981 ’ , ’ E n t i t i e s ’ : [ { ’ E n t i t y ’ :

’ Space S h u t t l e Columbia ’ , ’ Label ’ : ’ o b j e c t ’ } , { ’ E n t i t y ’ : ’STS −1 ’ , ’ Label ’ :
’ even t ’ } , { ’ E n t i t y ’ : ’ Launch Pad 39A’ , ’ Label ’ : ’ p l a c e ’ } , { ’ E n t i t y ’ : ’

Kennedy Space Cente r ’ , ’ Label ’ : ’ p l a c e ’ } , { ’ E n t i t y ’ : ’ A p r i l 12 , 1981 ’ , ’
Label ’ : ’ t ime ’ } ] ]

[ ’ At t h e ceremony , NASA A d m i n i s t r a t o r C h a r l e s Bolden announced t h e l o c a t i o n s
t h a t would be g i v e n t h e t h r e e r e m a i n i n g Space S h u t t l e o r b i t e r s f o l l o w i n g
t h e end of t h e Space S h u t t l e program ’ , ’ E n t i t i e s ’ : [ { ’ E n t i t y ’ : ’ t h e
ceremony ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’NASA A d m i n i s t r a t o r C h a r l e s
Bolden ’ , ’ Label ’ : ’ pe r son ’ } , { ’ E n t i t y ’ : ’ t h e l o c a t i o n s ’ , ’ Label ’ : ’ p l a c e
’ } , { ’ E n t i t y ’ : ’ t h e t h r e e r e m a i n i n g Space S h u t t l e o r b i t e r s ’ , ’ Label ’ : ’
o b j e c t ’ } , { ’ E n t i t y ’ : ’ t h e end of t h e Space S h u t t l e program ’ , ’ Label ’ : ’
even t ’ } ] ]

[ ’ On A p r i l 12 , 1981 , Space S h u t t l e Columbia l i f t e d o f f from t h e Kennedy
Space C e n t e r on STS−1 , t h e f i r s t s p a c e s h u t t l e mis s ion ’ , ’ E n t i t i e s ’ : [ { ’
E n t i t y ’ : ’ A p r i l 12 , 1981 ’ , ’ Label ’ : ’ t ime ’ } , { ’ E n t i t y ’ : ’ Space S h u t t l e
Columbia ’ , ’ Label ’ : ’ o b j e c t ’ } , { ’ E n t i t y ’ : ’ Kennedy Space Cen te r ’ , ’ Label ’ :

’ p l a c e ’ } , { ’ E n t i t y ’ : ’STS −1 ’ , ’ Label ’ : ’ even t ’ } , { ’ E n t i t y ’ : ’ t h e f i r s t
s p a c e s h u t t l e mis s ion ’ , ’ Label ’ : ’ even t ’ } ] ]

Input
Tuesday , September 22 , 2015 Discovery is undergoing decommissioning and currently being prepped for display by
removing toxic materials from the orbiter

Response
[’Entity’: ’Tuesday’, ’Label’: ’time’, ’Entity’: ’September 22 , 2015’, ’Label’: ’time’, ’Entity’: ’Discovery’, ’Label’:
’object’, ’Entity’: ’decommissioning’, ’Label’: ’event’, ’Entity’: ’display’, ’Label’: ’event’, ’Entity’: ’toxic materials’,
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’Label’: ’substance’, ’Entity’: ’the orbiter’, ’Label’: ’object’]
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