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Abstract

Recent studies have demonstrated that recommender systems (RecSys) are vulnera-
ble to injective attacks. Given a limited fake user budget, attackers can inject fake
users with carefully designed behaviors into the open platforms, making RecSys
recommend a target item to more real users for profits. In this paper, we first
revisit existing attackers and reveal that they suffer from the difficulty-agnostic and
diversity-deficit issues. Existing attackers concentrate their efforts on difficult users
who have low tendencies toward the target item, thus reducing their effectiveness.
Moreover, they are incapable of affecting the target RecSys to recommend the
target item to real users in a diverse manner, because their generated fake user
behaviors are dominated by large communities. To alleviate these two issues, we
propose a difficulty and diversity aware attacker, namely DADA. We design the
difficulty-aware and diversity-aware objectives to enable easy users from various
communities to contribute more weights when optimizing attackers. By incorpo-
rating these two objectives, the proposed attacker DADA can concentrate on easy
users while also affecting a broader range of real users simultaneously, thereby
boosting the effectiveness. Extensive experiments on three real-world datasets
demonstrate the effectiveness of our proposed attacker.

1 introduction

In the era of big data, recommender systems (RecSys) [8, 28, 36, 39, 53] are a key component to
help users locate items that they may be interested in. Generally, given the user behaviors, such as
item purchase history and movie viewing history, RecSys learn the latent tendency of users regarding
each item, and then recommend the top-N matched items for each user. Over the past decade,
various RecSys have been proposed to provide services for users. Recent studies [17, 24, 33, 45, 51]
demonstrate that RecSys are vulnerable to adversarial attacks, e.g., fake user behaviors. It is because
the training of RecSys relies on user behaviors and attackers can easily inject fake users into open-
world web platforms. Specifically, attackers want to promote an item to real users, which can increase
the opportunity that users purchase this target item and thus bring economic profits. To achieve such
goals, attackers generally inject a limited number of fake users with designed behaviors, i.e., injective

attacks. Then, the target RecSys may be affected with these injected fake users, and then recommends
the target item into the top-N item list of real users.

Based on the techniques that are employed to design the behaviors of injected fake users, existing
attackers [4, 6, 10, 11, 12, 20, 30, 38, 41, 45, 49, 51, 52] can be classified into three types: heuristics-

based [4, 30, 49], neural network-based [10, 38, 45, 52], and gradient-based attackers [6, 11, 12,
20, 41, 51]. Heuristics-based attackers [4, 30, 49] sample popular items together with the target
item as the behaviors of each fake user to increase the co-occurrence between popular items and the
target item, i.e., trying to increase the popularity of the target item. Then, RecSys can be affected,
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and will recommend the target item to more users. However, such a way does not directly optimize
the attack objective, reducing the effectiveness of attackers [41, 52]. Instead, neural network-based
attackers [10, 38, 45, 52] utilize neural networks to generate influential fake user behaviors. They
maximize the attack objective by optimizing the parameters of neural networks. Gradient-based
attackers [6, 11, 12, 20, 41, 51] adopt the continuous relaxation to project user behaviors from
the discrete space into the continuous space. This enables attackers to parameterize the fake user
behaviors and maximize the attack objective by optimizing them with gradients.

Though existing attackers can achieve reasonably good attacking performance, they still suffer from
two crucial issues from the local and global views: difficulty-agnostic and diversity-deficit. First,
existing attackers do not consider the promotion difficulty of each user regarding the target item.
Particularly, users who have a higher (resp. lower) tendency toward the target item are referred to
easier (resp. more difficult) users. According to the formulated attack objective of existing attackers,
difficult users will contribute more weights to optimize attackers’ parameters, e.g., neural network
parameters for generating fake users. It makes attackers put more efforts to recommend the target
item to difficult users. However, the RecSys platforms will usually monitor the user registration, i.e.,
attackers only have a very limited budget for generating fake users. Thus, attackers that focus on
difficult users may only achieve small attacking gain, i.e., the target item can only be recommended
to a small number of users. Second, the generated fake behaviors of existing attackers cannot
influence real users diversely. Specifically, real users with different preferences are dispersed into
different communities. Communities with more users may dominate the optimization of attackers.
Consequently, the generated fake users cannot affect RecSys to promote the target item to various
communities, decreasing the effectiveness of attackers.

To address difficulty-agnostic and diversity-deficit issues, we propose a Difficulty-Aware and
Diversity-Aware attacker, namely DADA, which takes the promotion difficulty and diversity into
consideration simultaneously. First, to handle the difficulty-agnostic issue, we propose a novel
difficulty-aware objective that more emphasizes easier users than difficult users when optimizing
attack parameters. Moreover, we propose a diversity-aware attack objective that allows the generated
fake user behaviors to affect the target RecSys to recommend the target item to real users diversely,
thereby avoiding the diversity-deficit issue. By incorporating both attack objectives, our proposed
attacker DADA can concentrate on easy users and generate fake user behaviors that are capable of
affecting real users in a diverse manner. Overall, our contributions are summarized as follows:

• We revisit attackers on RecSys and reveal that existing attackers suffer from difficulty-agnostic

and diversity-deficit issues. More specifically, the objective designs in existing attackers make
them more focus on promoting the target item to those difficult users in the dominant community.
However, it is hard to handle difficult users with only a limited number of generated fake users.
Besides, the generated fake users tend to fall into the dominant community, which is not helpful to
affect real users in other communities.

• We propose two novel attack objectives (difficulty-aware and diversity-aware objectives) that
force the RecSys attacker to attack easy users distributed in various communities. Generally,
the proposed objectives could enable the easy users and unaffected real users to contribute more
weights when optimizing the parameters of the RecSys attacker.

• Experiments on three real-world datasets demonstrate that the proposed attacker DADA achieves
superior performance compared with state-of-the-art attackers. Besides, extensive experiments
show that the generated fake users indeed focus on easy users in a diverse way.

2 Related Work
Formally, let U and I denote users and items, respectively. R 2 {0, 1}|U |⇥|I| denotes the records of
user-item interactions. Specifically, each entry R[u][i] denotes whether the user u 2 U interacts with
the item i 2 I , and Iu = {i : R[u][i] = 1} denotes the interacted item set of each user u 2 U .

2.1 Recommender System

Recently, various RecSys [47, 48] have been proposed and deployed in the website applications,
which recommend the items for users that match the preference of users. Formally, given users
U , items I , and user behaviors R 2 {0, 1}|U |⇥|I|, RecSys M✓ learns the latent tendency score
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Table 1: Summary of existing RecSys attackers. X and ⇥ indicate that the attacker can and cannot
satisfy the property, respectively. t is the target item that attackers are interested in. The function
f(R[u][i],R[u][t]) = 1 if both R[u][i] = 1 and R[u][t] = 1, and g(x) = 1

1+exp(�x/b) . b, b1, and
b2 are hyperparameters, and a and c are constants. S0 and S are learned tendency before and after
attacks, respectively. We discuss them in detail in Sec. 2.2.

Type Attacker Attack Objective
Oatk(·) Formulation Difficulty Diversity

Heuristic-based Popular [29] - ⇥ ⇥

CoVis [49]
P

i2I I(Pu2U f(R[u][i],R[u][t])) � a) ⇥ ⇥

Neural network-based
PoisonRec [38] 1

|Ur|
P

u2Ur I(t,�u) ⇥ ⇥

CopyAttack [10] 1
|Ur|

P
u2Ur I(t,�u) ⇥ ⇥

TrialAttack [45] �
P

u2Ur
P

i2�u
ln(g(S[u][i] � S[u][t])) ⇥ ⇥

Gradient-based

PGA [20]
P

u2Ur S[u][t] ⇥ ⇥

SGLD [20]
P

u2Ur S[u][t] ⇥ ⇥

SRWA [12]
P

u2Ur S[u][t] ⇥ ⇥

TNA [11] �
P

u2Ur
P

i2�u
g(S[u][i] � S[u][t]) ⇥ ⇥

PAPU [51]
P

u2Ur
P

i2�u
g(S[u][t] � S[u][i]) ⇥ ⇥

RevAdv [41]
P

u2Ur log( exp(S[u][t])P
i2I exp(S[u][i]) ) ⇥ ⇥

DADA (Ours)
P

u2Ur^ t/2�u
� log(1 � b1 · S[u][t])

+� · �(b2 ⇤ (S[u][t] � S0[u][t] � c))
X X

S = M✓(R) 2 R|U |⇥|I| between users and items. The parameters ✓ can be optimized as follows:

✓⇤ = argmin
✓

Ltra(M✓(R),R), (1)

where Ltra(M✓⇤(R),R) measures the training loss of RecSys model M✓ based on latent tendency
S and user behaviors R. Then, based on the learned tendency S, the RecSys M✓ recommends the
top-N un-interacted items �u with the highest tendency scores for each user u 2 U , i.e., �u ⇢ I \ Iu
and |�u| = N . Generally, current RecSys can be classified into three categories, i.e., neighborhood-
based [27, 35], matrix-factorization-based [18, 32], and neural-network-based [15, 50]. Take the
fundamental matrix-factorization RecSys WRMF [18] as an example, it maps users U and items I
into latent representations U 2 R|U |⇥dx and I 2 R|I|⇥dx , respectively. Then, it predicts the tendency
S = UIT between users and items. Particularly, WRMF takes ✓ = {U, I} as the parameter and refor-
mulates Eq. (1) into argmin✓={U,I}

P
u2U,i2I

wui(S[u][i]�R[u][i])2 + ⌘(kUk22 + kIk
2
2). where

k · k2 is the l2 norm distance, wui is the weight hyperparamter to differentiate the existing and
un-existing interactions, and ⌘ is a regularization hyperparameter. More details of recommender
systems can be referred to comprehensive surveys [47, 48].

2.2 Injective Attacks on Recommender System

Given a target item that attackers are interested in, attackers can inject fake users with carefully
crafted behaviors into platforms. The attacker’s goal is to affect the RecSys to promote the target item
into the top-N recommendation item list of as many real users as possible. Note that attackers can
also demote a target item, i.e., maximizing the number of real users whose top-N recommendation list
does not include the target item. In this paper, we focus on promotion, because attacks for demotion
can be constructed by a similar technique as promotion [10, 12, 38, 49, 52].

Formally, let Ur and Uf denote real users and fake users, respectively. Given the real user behaviors
Rr
2 {0, 1}|U

r
|⇥|I|, the target item t, and the target RecSys model M✓, the goal is to generate the

fake user data Rf
2 {0, 1}|U

f
|⇥|I| with the constraints, injection budget |Uf

|  � and the maximum
number kRf [u]k0  ⌧ of items that each fake user can interact with, which can maximize the attack
objective as follows:

max
Rf

Oatk(M✓⇤(R);Ur, t), (2)

s.t. ✓⇤ = argmin
✓

Ltra(M✓(R),R), |Uf
|  �, kRf [u]k0  ⌧ for any u 2 Uf ,

where Oatk(·) is the attack objective, Ltra(·) is the training loss of RecSys M✓ as Eq. (1), and

R =


Rr

Rf

�
2 {0, 1}(|U

r
|+|U

f
|)⇥|I| is matrix concatenation. Based on this formulation, various

attackers against RecSys are mainly different from three aspects: (1). The formulation of the attack
objective Oatk; (2). Technique used to optimize Eq. (2); (3). Knowledge accessed by attackers.
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Formulation of Oatk. Hit ratio [10, 38] is a common formulation, i.e., Oatk(·) =
1

|Ur|

P
u2Ur I(t,�u), where indicator I(t,�u) = 1 if t is recommended in the top-N item list

of u, i.e., t 2 �u. Also, several attackers [11, 12, 20, 41, 45, 51, 52] try to maximize the latent
tendency between real users and the target item, and propose several attack objective variants. The
objective details of these attackers are listed in Tab. 1. For clarification, we specifically list the part of
the attack objective that is related to the learned latent tendency S between real users Ur and items
i 2 I , and omit unrelated parts, such as the regularization of attacker neural network parameters.
Note that several attackers [11, 41, 51] try to minimize the attack loss Latk. For generality, we set
their attack objective Oatk = �Latk and use two notations interchangeably in this paper.

Technique. It is a non-trivial task to generate the exact optimal fake user behaviors Rf that can
achieve the maximum attack objective due to the exponential candidate search space, i.e., O(|I|⌧ ·|U

f
|).

As shown in Tab. 1, regarding the technique that generates behaviors for injected fake users, there are
three types of attackers: heuristics-based, neural network-based, and gradient-based attackers. As
introduced in Sec. 1, heuristics-based attackers [4, 30, 49] cannot cover various behavior patterns
and do not directly optimize the attack objective, leading to unsatisfied performance [52, 41]. Instead,
neural network-based attackers [10, 38, 45, 52] propose neural networks A' parameterized with ' to
learn probability distributions of selected items for each fake user. Then, they sample fake user be-
haviors Rf

⇠ A'(Rr) accordingly. Formally, the parameter ' can be optimized by maximizing the
attack objective as max',✓ ERf⇠A'(Rr)[Oatk(M✓⇤(R);Ur, t)]. Besides, gradient-based attackers
A [6, 11, 12, 20, 41, 51] relax the discrete fake user behaviors into continuous R̃f

2 R|U
f
|⇥|I|. Then,

they directly parameterize R̃f and maximize attack objective as maxR̃f ,✓
Oatk(M✓⇤(R̃);Ur, t).

After finishing the optimization of R̃f , they use a projector function to project the continuous user
behaviors R̃f into discrete fake behaviors Rf .

In this paper, we design a gradient-based attacker to generate fake user behaviors. For generality, we
use ' to denote the parameterized R̃f . Specifically, existing gradient-based attackers A use gradient
ascent approach [34] to optimize ' by maximizing the attack objective Oatk(·) as follows

' '+ ↵ ·

X

u2Ur

@Oatk(M✓⇤(R);u, t)

@'
, (3)

where ↵ is the learning rate, and Oatk(M✓⇤(R);u, t) denotes the objective value of user u regarding
the target item t. Particularly, when a user u provides more gradients @Oatk(M✓⇤ (R);u,t)

@'
to optimize

parameter ', the attacker will prioritize maximizing the user’s objective. For simplicity, we use
Oatk(Ur, t) and Oatk(u, t) to denote Oatk(M✓⇤(R);Ur, t) and Oatk(M✓⇤(R);u, t), respectively.

Knowledge. Regarding the knowledge accessed by attackers, existing attackers can be classified
into two categories. White-box attackers [11, 12, 20] take real user behaviors and the target RecSys
parameters as inputs to generate fake user behaviors. Unlike white-box attackers, gray-box attack-
ers [10, 38, 41, 45, 51, 52] assume that the target RecSys parameters are inaccessible. Instead, the
first type of gray-box attackers [10, 38] assume that the top-N item lists of real users recommended
by the target RecSys are available. Also, the second type of gray-box attackers [41, 45, 51, 52] only
access user behaviors and use a surrogate RecSys M̂

✓̂
to replace the target RecSys M✓ in Eq. (2),

which is expected to mimic the target RecSys. In summary, the second type of gray-box attackers
are more realistic than white-box and the first type of gray-box. The reason is that the target RecSys
parameters and the recommendation lists of real users are difficult to obtain. Instead, due to the
openness of web platforms, it is easy to collect real user behaviors [41, 51], such as movie viewing
history. More discussions on user behavior collection can be referred to Appx. B.5. Thus, we focus
on the second type of gray-box attacks on RecSys in this paper.

3 DADA Attacker
In this section, we introduce our attacker DADA. We first propose two attack objectives that consider
the promotion difficulty and the diversity of users, respectively. Then, we formulate a novel difficulty
and diversity-aware attack objective that enables our attacker DADA to simultaneously focus on easy
users and affect real users diversely, and propose an efficient greedy-based algorithm to optimize it.
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(a) Average gradient on
each user group.

(b) HR@50 on each user
group.

(c) Fake user distribution on
each community.

(d) HR@50 on each commu-
nity.

Figure 1: Difficulty-agnostic and diversity-deficit analysis.

3.1 Difficulty-aware Attack Objective

3.1.1 Motivational Observations of Difficulty-agnostic

As discussed in Sec. 1, given a target item and a set of real users, existing RecSys attackers more
focus on promoting the target item to difficult users when designing fake user behaviors. We
first demonstrate several motivational observations in existing works. Specifically, we employ
the representative and state-of-the-art gradient-based attackers, including RevAdv [41], TNA [11],
and PAPU [51], to inject fake users into the ML-100K dataset [14], where fake user budget � =
0.01|Ur

|. Specifically, we use the representative RecSys WRMF [18] as the target RecSys M✓

for evaluation. We first train WRMF on ML-100K without attacks, and output the latent tendency
S between each user u 2 Ur and each item i 2 I . We then randomly select an item t 2 I as
the target item. For simplicity and clarification, we separate real users into three groups as an
example. Specifically, if the latent tendency of a user u toward the target item S[u][t] is at the
top of {33.3%, 33.3% ⇠ 66.7%, 66.7% ⇠ 100%} largest among all items I , it will be regarded as
{easy,medium, difficult} users, respectively. Then, we can obtain three groups {Ue, Um, Ud

}.

For clarification, we show the result of RevAdv in Fig. 1 and similar results of TNA and PAPU in
Appx. A.1.1. For each group Ug

2 {Ue, Um, Ud
}, we show its average gradient for optimizing the

attacker parameter ' in Fig. 1 (a), i.e.,
P

u2Ug kr'Latk(u,t)k1

|Ug|·(|Uf |·|I|) . We can easily observe that the gradient
value is directly proportional to the degree of difficulty. In other words, the more difficult it is, the
greater gradient it is. It indicates that RevAdv puts more efforts to promote the target item to difficult
and medium users than easy users. Then, we investigate the hit ratio of 50 (HR@50) performance
on three different user groups. As illustrated in Fig. 1 (b), despite that RevAdv puts more effort on
medium and difficult users, the HR@50 of them is only marginally improved. Moreover, putting
more effort on medium and difficult users leads that the HR@50 of easy users increases unstably.
Therefore, with a limited budget for fake users, it is preferable to concentrate on easy users, as it is
easier to promote the target item for them.

3.1.2 Insights on Difficulty-agnostic Issue

Motivated by the observations, we plan to design a new difficulty-aware attack objective, which
enables attackers to focus on easy users primarily and achieve more recommendation gain. The basic
idea is to let easier users outweigh difficult users when optimizing the attacker’s parameter '. As
introduced in Eq. (3), the gradients for optimizing attack parameter ' that each user provides are
related to the attack objective Oatk. Particularly, due to the chain rule, the gradients @Oatk(u,t)

@'
of

each user u 2 Ur can be formulated as @Oatk(u,t)
@'

= @Oatk(u,t)
@S[u][t] ·

@S[u][t]
@'

, where @Oatk(u,t)
@S[u][t] only

relates to the attacker objective design. @S[u][t]
@'

only relies on the attacker parameters, which is fixed

and unrelated to attack objective Oatk(·). Thus, we can increase the @Oatk(u,t)
@S[u][t] of easier user to let

them more determine the optimization direction of attacker parameters. Besides, if a user has received
the target item in the top-N recommendation list, it indicates that the RecSys has promoted the target
item to this user successfully. Thus, this user should not provide any gradient, because increasing its
tendency toward the target item will not have any improvement on the recommendation gain.

Based on the above analysis, the difficulty-aware attack objective should satisfy two difficulty

properties: (1) given two users u and v, if the tendency score S[v][t] < S[u][t] and t /2 �u,
@Oatk(v,t)
@S[v][t] < @Oatk(u,t)

@S[u][t] . (2) if the target item t 2 �u, @Oatk(u,t)
@S[u][t] = 0. As shown in Tab. 1, the attack

objectives of existing attackers do not satisfy both properties simultaneously. In this paper, based on
the two properties, we formulate a difficulty-aware attack objective. Formally, given the tendency Ŝ
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learned by the surrogate RecSys M̂
✓̂
, the target item t, the difficulty-aware attack objective regarding

each real user u 2 Ur is formulated as follows:

Dict(M̂
✓̂⇤(R);u, t) =

⇢
� log(1� b1 · Ŝ[u][t]), t /2 �u

0, t 2 �u

, (4)

where b1 is a positive hyperparameter. Furthermore, we use the following Proposition 1 to show that
Eq. (4) enables easier users to more dominate the the attack parameter optimization than difficult
users. Due to space limit, we put the proof in Appx. A.2.1.
Proposition 1. Our difficulty-aware attack objective satisfies difficulty property 1 and property 2.

3.2 Diversity-aware Attack Objective

3.2.1 Motivational Observations of Diversity-deficit

As introduced in Sec. 1, existing attackers have the diversity-deficit issue that the generated fake
behaviors are dominated by large communities, where users in each community have similar prefer-
ences. Specifically, as introduced in Eq. (3), each real user u 2 Ur will provide gradients to optimize
the attackers’ parameters '. Since similar real users have similar preferences on items, real users can
form several communities {Cj}

nc
j=1, where each community Cj has nj real users. Thus, from the

community perspective, the optimization process of the attacker parameter ' via maximizing the at-
tack objective Oatk(·) can be reformulated as follows: ' = '+↵ ·

P
nc

j=1

P
u2Cj

@Oatk(M✓⇤ (R);u,t)
@'

.
Intuitively, users in the same community who are similar will give the gradients in similar directions.
Thus, there is a potential risk that the large communities Ck will dominate the optimization direction
of attacker parameter ' via

P
u2Ck

@Oatk(M_✓⇤(R);u,t)
@'

. Consequently, this community will dominate
the generated fake user behaviors. The generated fake user behaviors can only manipulate the target
RecSys to promote the target item to the dominated communities. In another words, the target RecSys
is incapable of promoting the target item to more users in other communities diversely.

Similar to Sec. 3.1.1, we demonstrate several motivational observations. We use state-of-the-art
gradient-based attackers RevAdv [41], TNA [11], and PAPU [51], and neural network-based attacker
TrialAttack [45], to generate 0.05|Ur

| fake users and inject them into the ML-100K dataset [14]. Then,
we train the target RecSys WRMF and study the attacking results. For simplicity and clarification, we
put the result of RevAdv in Fig. 1 and similar results of TNA, PAPU, and TrialAttack in Appx. A.1.2.
Following [41], we extract the representations of real and fake users learned by WRMF, and use
PCA [1] to visualize them. Based on the result of PCA, we separate real users into three communities
by KMeans [19]. As shown in Fig. 1 (c), the fake users (blue points) tend to form a cluster that is
distributed in the community 1 (yellow points). It indicates that community 1 dominates the generated
fake users. It is because users in the same community will generate gradients with similar directions.
Thus, large communities with more users are more likely to dominate the optimization directions
of the attacker parameter. Consequently, RecSys can only be affected by the generated fake user
behaviors to recommend the target item to more users in the community 1.

To further verify this, we list the hit ratio 50 (HR@50) of each community before and after injecting
fake users in Fig. 1 (d). It shows that the generated fake users improve the HR@50 of the community
1 significantly, while maintaining similar HR@50 in the other two communities. To enable RevAdv
to affect users diversely, we add our formulated diversity-aware attack objective (see Sec. 3.2.2) into
RevAdv’s objective. As shown in Fig. 1 (d), RevAdv+Diverse improves HR@50 of community 2
and 3. Particularly, HR@50 on community 1 increases as well. As described in Sec. 3.1.1, RevAdv
more focuses on difficult users, thus the generated fake user behaviors may not be able to affect the
target RecSys to recommend the target item to other less difficult users in community 1. Fortunately,
the diverse-aware objective allows RevAdv to put more efforts on these users, thereby improving the
performance of community 1.
3.2.2 Insights on Diversity-deficit Issue

Motivated by these observations, we propose a diversity-aware attack objective that enables fake user
behaviors to affect real users diversely. The basic idea is that if the real users are less affected by fake
user behavior, the diversity-aware objective will concentrate on these real users in the subsequent
gradient computation process. Then, the attacker will be optimized to generate fake user behaviors
that can affect these users. In such a way, users in different communities can be affected diversely.
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Specifically, the influence of fake user behaviors on each user regarding the target item can be
measured by the difference between tendencies before and after attacks. Formally, let S0 and S denote
the tendencies learned by RecSys M before and after attacks, the influence of fake user behaviors
Rf on user u regarding the target item t is computed by 4S[u][t] = S[u][t] � S0[u][t]. To enable
attackers to affect more real users, the attack objective should focus on users with a smaller4S[u][t]

when optimizing the attacker parameter '. Specifically, according to the chain rule and @4S[u][t]
@S[u][t] = 1,

the gradients @Oatk(u,t)
@'

regarding the attacker parameter ' in Eq. (3) of each user u 2 Ur can be

formulated as @Oatk(u,t)
@'

= @Oatk(u,t)
@4S[u][t] ·

@S[u][t]
@'

. Thus, we can increase the @Oatk(u,t)
@4S[u][t] of real users

with smaller influence 4S[u][t] to let them more determine the attacker parameter optimization
direction. Similar to Sec. 3.1.2, the diversity-aware attacker objective should satisfy two diversity

properties: (1) given two users u and v, if4S[v][t] > 4S[u][t], and t /2 �u, @Oatk(v,t)
@4S[v][t] < @Oatk(u,t)

@4S[u][t] ;
(2) if the target item t has been recommended to a user u, the user u should have no effect on the
attackers’ parameter optimization, i.e., if t 2 �u, @Oatk(u,t)

@4S[u][t] = 0.

Obviously, existing attackers do not satisfy both properties because they do not consider the difference
of tendency between before and after attacks. Based on the two properties, we formulate a diversity-
aware attack objective. Formally, given the target item t, and the real user u 2 Ur, let Ŝ0 and Ŝ denote
the tendencies learned by the surrogate RecSys M̂

✓̂
before and after injecting fake user behaviors

Rf , the diversity-aware objective on each user u 2 Ur regarding the target item t is computed as:

Div(Ŝ[u][t];u, t, Ŝ0[u][t]) =

⇢
�(b2 ⇤ (Ŝ[u][t] � Ŝ0[u][t] � c)), t /2 �u

0, t 2 �u
, (5)

where c = minv2Ur (Ŝ[v][t]� Ŝ0[v][t]) is a constant for normalization, and b2 is a positive hyperpa-
rameter to scale the tendency difference. �(x) = 1

1+exp(�x) is the Sigmoid function. Additionally,
we use Proposition 2 to show that Eq. (5) enables users with a smaller4Ŝ[u][t] to contribute more
weights to the attack parameter optimization. Due to space limit, we put the proof in Appx. A.2.2.
Proposition 2. Our diversity-aware attack objective satisfies diversity property 1 and property 2.

3.3 Difficulty and Diversity Aware Attacker
3.3.1 Problem Formulation

Based on two measurements proposed in Eq. (4) and Eq. (5), we formally formulate the Difficulty-
Aware and Diversity-Aware (DADA) RecSys attacking problem as follows.
Definition 1 (DADA Problem). Given the real user behaviors Rr

2 {0, 1}|U
r
|⇥|I|

, the target item t,

and the surrogate RecSys M̂
✓̂
, the goal is to generate the fake user behaviors Rf

2 {0, 1}|U
f
|⇥|I|

with the constraints, injection budget |Uf
|  � and the maximum number kRf [u]k0  ⌧ of items

that each fake user can interact with, which can maximize the attack objective as follows:

max
Rf

X

u2Ur

Dict(M̂
✓̂⇤(R);u, t) + � ·Div(Ŝ[u][t];u, t, Ŝ0[u][t]) (6)

s.t. ✓̂⇤ = argmin
✓̂

Ltra(M̂✓̂
(R),R), |Uf

|  �, kRf [u]k0  ⌧ for any u 2 Uf ,

where � is a trade-off hyperparamter, R 2 {0, 1}(|U
r
|+|U

f
|)⇥|I|

concatenates the real and fake user

representations, Ŝ and Ŝ0
are the learned latent tendencies of the surrogate RecSys M̂

✓̂
on R and

Rr
, respectively. Ltra(·) is the training loss of M̂

✓̂
as in Eq. (1).

3.3.2 Greedy Algorithm

Due to the exponential search space O(|I|⌧ ·|U
f
|), it is nontrivial to find the exact optimal fake user

behaviors for the difficulty-aware and diversity-aware optimization problem in Eq (6). Thus, we
propose a gradient-based greedy algorithm to maximize the objective in Alg. 1 in Appx. A.3. With
the help of gradients, our algorithm can give a good direction to find effective fake user behaviors.
Specifically, we first initialize the fake user behaviors Rf

2 {0, 1}|U
f
|⇥|I| (line 1). In each epoch

l, we first train the surrogate model M̂
✓̂

on R, and then compute the attack objective Oatk(·) in
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Eq. (6) (line 4-5). Second, we relax the discrete fake user behaviors Rf into a continuous one
R̃f
2 R|U

f
|⇥|I|, and take it as our attacker’s parameter ' (line 6). Then, we compute the gradients

rR̃fOatk(·) according to [41] (line 7). Finally, we update the R̃f and utilize a projector to map it
into discrete behaviors Rf , where each fake user can select ⌧ items at most (line 8). Formally, given
the continuous user behaviors R̃f , the maximum number ⌧ of items that each fake user u 2 Uf can
interact with, and the pre-defined threshold th, the projector is formulated as follows:

Proj(R̃f ; ⌧, th)[u][i] =

(
0, R̃f [u][i] < th _ i /2 Pu

1, R̃f [u][i] > th ^ i 2 Pu

, (7)

where Pu is top-⌧ largest item set of user u according to the value in R̃f [u]. After finishing L epochs,
we output Rf for injection. We analyze the time complexity of Alg. 1 in Appx. A.4.

4 Experiments
4.1 Experiment Setting

Datasets. We evaluate our attacker on widely used three real-world datasets: MovieLens-100K
(ML-100K) [14], MovieLens-1M (ML-1M) [14], and Gowalla [5]. We put the descriptions of three
datasets in Appx. B.1.

Attacker Baselines. To verify the effectiveness of our proposed attacker, we compare our proposed
attacker DADA with the three types of attackers in Tab. 1. Specifically, heuristic-based attackers in-
clude Random [12, 51] and Popular [29, 51], neural network-based attackers include TrialAttack [45],
and gradient-based attackers include CoVis [49], PGA [20], SGLD [20], SRWA [12], TNA [11],
RevAdv [41], and PAPU [51]. Particularly, we do not compare PoisonRec [38] and CopyAttack [10]
in Tab. 1, because they need to access the predictions of the target RecSys for real users. Also,
we compare two variants: DADA-DICT and DADA-DIV, which only optimize the difficulty and
diversity-aware objective in Eq. (4) and Eq. (5), respectively.

Targeted Recommender Systems. Following [41, 51], we choose three representative target Rec-
Sys to evaluate the attacking performance of RecSys attackers, i.e., matrix factorization-based
WRMF [18], neural network-based NCF [16], and graph neural network-based LightGCN [15].

Target Items and Evaluation Metric. Following [41, 51], we uniformly sample 5 items as a target
item set It and measure the hit ratio Hit@N of It on the real users Ur. If one of these target items
appears in the top-N recommended item list of a user u 2 Ur, the target item set is considered as
a hit. Besides, we use the Normalized Discounted Cumulative Gain (NDCG) to measure the rank
quality of the target items in the recommendation list. Specifically, we set the relevance score of
target items and the other items for all real users as 1 and 0, respectively. Then, a higher NDCG value
indicates better attack performance, where target items are ranked higher in the recommendation list.
The reported results are averaged over five different runs.

Hyperparamter Setting. Due to datasets with different sizes, we set the fake user budget � =
�1 · |Ur

| and the maximum number of selected items ⌧ = �2 · |I|, where �1 and �2 are the parameters
to control � and ⌧ . For default, we set �1 = 0.01 for all datasets. For unnoticeable, we set the
default ⌧ to be similar to the average number of interacted items of real users as shown in Tab. 4,
i.e., �2 is {0.05, 0.05, 0.002} for ML-100K, ML-1M, and Gowalla, respectively. The details about
hyper-parameter settings are listed in Appx. B.2.

4.2 Experiment Results

We report the HR performance of attackers on ML-100K and ML-1M in Tab. 2 and Tab. 3. To better
show the improvement, we add the improvement ratio of HR@10 for each attacker compared with
the result in clean data. Due to space limit, we report similar results of Gowalla in Appx. B.3. We
report the NDCG results on three datasets in Appx. B.4. Under the same target RecSys, the bold and
underlined numbers indicate the first and second best performance, respectively.

Baseline Comparison. As shown in Tab. 2 and Tab. 3, our attacker DADA outperforms all baselines
under different target RecSys on both ML-100K and ML-1M datasets. Specifically, heuristics-based
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Table 2: Evaluation on ML-100K dataset under fake user budget � = 0.01|Ur
|.

Attacker WRMF [18] NCF [16] LightGCN [15]
HR@10 HR@50 HR@100 HR@10 HR@50 HR@100 HR@10 HR@50 HR@100

Clean 0.0901 0.3606 0.5677 0.1094 0.4799 0.7462 0.0977 0.3813 0.7941
Random [51, 12] 0.0907 (+0.67%) 0.3701 0.5536 0.1134 (+3.66%) 0.5031 0.7511 0.0987 (+1.02%) 0.3887 0.7824

Popular [29] 0.0912 (+1.22%) 0.3743 0.5695 0.1145 (+4.66%) 0.5221 0.7574 0.0998 (+2.15%) 0.3918 0.7973
CoVis [49] 0.0965 (+7.10%) 0.3722 0.5778 0.1139 (+4.11%) 0.5585 0.7798 0.0985 (+0.82%) 0.3960 0.7946

TrialAttack [45] 0.1002 (+11.21%) 0.3902 0.5911 0.1203 (+9.96%) 0.5998 0.7868 0.0998 (+2.15%) 0.3992 0.7983
SRWA [12] 0.0906 (+0.55%) 0.3721 0.5732 0.1172 (+7.13%) 0.5124 0.7521 0.0991 (+1.43%) 0.3927 0.7981
PGA [20] 0.0923 (+2.44%) 0.3752 0.5769 0.1211 (+10.69%) 0.5483 0.7668 0.0987 (+1.02%) 0.3971 0.7946

SGLD [20] 0.0923 (+2.44%) 0.3721 0.5716 0.1187 (+8.50%) 0.5530 0.7675 0.0966 (-1.13%) 0.3824 0.7952
TNA [11] 0.0974 (+8.10%) 0.3801 0.5843 0.1199 (+9.60%) 0.5812 0.7826 0.0924 (-5.42%) 0.3928 0.7962

RevAdv [41] 0.1017 (+12.87%) 0.4167 0.6285 0.1229 (+12.34%) 0.6128 0.7885 0.1008 (+3.17%) 0.4181 0.8026
PAPU [51] 0.1039 (+15.32%) 0.4231 0.6361 0.1405 (+28.43%) 0.6334 0.7983 0.1012 (+3.58%) 0.4191 0.7998

DADA-DICT 0.1145 (+27.08%) 0.4380 0.6471 0.1418 (+29.62%) 0.6387 0.8130 0.1019 (+4.30%) 0.4212 0.8061
DADA-DIV 0.1078 (+19.64%) 0.4218 0.6411 0.1375 (+25.69%) 0.6292 0.8017 0.1011 (+3.48%) 0.4196 0.8033

DADA 0.1220 (+35.41%) 0.4453 0.6585 0.1513 (+38.30%) 0.6623 0.8225 0.1040 (+6.45%) 0.4286 0.8127

Table 3: Evaluation on ML-1M dataset under fake user budget � = 0.01|Ur
|.

Attacker WRMF [18] NCF [16] LightGCN [15]
HR@10 HR@50 HR@100 HR@10 HR@50 HR@100 HR@10 HR@50 HR@100

Clean 0.0195 0.0970 0.1912 0.0158 0.0925 0.1965 0.0257 0.1008 0.1572
Random [51, 12] 0.0196 (+0.51%) 0.1002 0.2030 0.0174 (+10.13%) 0.0948 0.1983 0.0264 (+2.72%) 0.1028 0.1618

Popular [29] 0.0196 (+0.51%) 0.1007 0.2028 0.0202 (+27.85%) 0.0976 0.2008 0.0268 (+4.28%) 0.1035 0.1692
CoVis [49] 0.0212 (+8.72%) 0.1061 0.2148 0.0198 (+25.32%) 0.1073 0.2180 0.0279 (+8.56%) 0.1057 0.1793

TrialAttack [45] 0.0218 (+11.79%) 0.1084 0.2203 0.0213 (+34.81%) 0.1088 0.2159 0.0295 (+14.79%) 0.1115 0.1864
SRWA [12] 0.0202 (+3.59%) 0.1017 0.2060 0.0194 (+22.78%) 0.1021 0.2061 0.0272 (+5.84%) 0.1031 0.1711
PGA [20] 0.0206 (+5.64%) 0.1021 0.2072 0.0201 (+27.21%) 0.1017 0.2048 0.0276 (+7.39%) 0.1046 0.1715

SGLD [20] 0.0209 (+7.18%) 0.1020 0.2025 0.0192 (+21.52%) 0.0992 0.2008 0.0267 (+3.89%) 0.1029 0.1702
TNA [11] 0.0221 (+13.33%) 0.1068 0.2182 0.0195 (+23.42%) 0.1049 0.2065 0.0282 (+9.73%) 0.1074 0.1854

RevAdv [41] 0.0227 (+16.41%) 0.1168 0.2412 0.0224 (+41.77%) 0.1109 0.2197 0.0318 (+23.74%) 0.1206 0.2037
PAPU [51] 0.0246 (+26.15%) 0.1126 0.2462 0.0221 (+39.87%) 0.1125 0.2173 0.0334 (+29.96%) 0.1257 0.2077

DADA-DICT 0.0253 (+29.74%) 0.1217 0.2581 0.0230 (+45.57%) 0.1290 0.2219 0.0343 (+33.46%) 0.1312 0.2184
DADA-DIV 0.0236 (+21.03%) 0.1175 0.2460 0.0227 (+43.67%) 0.1146 0.2201 0.0331 (+28.79%) 0.1214 0.2049

DADA 0.0286 (+46.67%) 0.1407 0.2746 0.0233 (+47.47%) 0.1315 0.2313 0.0362 (+40.86%) 0.1407 0.2308

approaches, such as Random, Popular, and CoVis, achieve unsatisfied results. Because they only
consider to increase the co-occurrence between several items and the target items, which does not
relate to the attack objective directly and cannot cover various behavior patterns [41, 51, 52]. Instead,
neural network-based and gradient-based attackers optimize the attack objective directly. Compared
with TrialAttack, RevAdv and PAPU, several gradient-based attackers, including SRWA, PGA,
SGLD, and TNA, achieve inferior performance. It is because when computing the gradients to design
fake user behaviors, these approaches approximate the gradients in a biased way instead of exact
computing gradients [41]. Our attacker DADA outperforms the above baselines significantly, because
it enables the fake user behaviors to affect real users in a diverse manner.

Ablation Study. As shown in Tab. 2 and Tab. 3, DADA-DICT achieves the second best results,
outperforming all baselines. It is because the difficulty-aware attack objective allows DADA-DICT
to concentrate on easy users with high tendencies toward the target items. Moreover, DADA-DIV
achieves satisfied performance. It outperforms current state-of-the-art attackers, including RevAdv
and PAPU, in most cases. It is because the diversity-aware attack objective allows the generated
fake user behaviors to affect real users more diversely, avoiding large communities dominating the
generated fake users. Nevertheless, DADA-DIV does not outperform DADA-DICT, because DADA-
DIV cannot differentiate easy users from all real users and put more efforts on them. Furthermore,
DADA that considers both user difficulty and diversity can perform the best. In such a way, it can
potentially affect easy users from different communities, thereby boosting attacker’s effectiveness.

4.3 Parameter Sensitivity

In this subsection, we evaluate DADA under different parameters. As shown in Tab 2 and Tab. 3,
the results of DADA and baselines on different target RecSys and hit ratios have similar trends. For
clarification, we use WRMF and HR@50 for evaluation on ML-100K and ML-1M datasets.

Fake User Budget �. We study the effect of fake user budget � = �1|Ur
| by varying �1 2

{0.01, 0.03, 0.05, 0.07, 0.09}. For clarification, we only compare the effective baselines, including
TrialAttack, TNA, RevAdv, and PAPU. As shown in Fig. 2 (a) and (b), HR@50 of all attackers
increases as the fake user budget increases on both ML-100K and ML-1M datasets. Furthermore,
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(a) � on ML-100K. (b) � on ML-1M. (c) ⌧ on ML-100K. (d) ⌧ on ML-1M.
Figure 2: Evaluation on the fake user budget and maximum selected items.

DADA outperforms all baselines under different attack budgets, i.e., the red solid line is above other
lines, demonstrating its effectiveness. Particularly, as the fake user budget increases, our attacker and
baselines improve HR@50 on ML-100K more than that on ML-1M. The reason is that ML-100K
only has 1682 items, while ML-1M has 3706 items. As a result, it is more difficult to promote target
items into the top-50 recommendation list of each user in ML-1M than ML-100K.

Maximum Selected Items ⌧ . We study the effect of different maximum number of selected items
⌧ = �2|I| by varying �2 2 {0.01, 0.03, 0.05, 0.07, 0.09}. As shown in Fig. 2 (c) and (d), as the
maximum number of items increases, the performance of attackers first increases and then decreases
on both datasets. It indicates that selecting suitable items can increase the attacker’s power. But more
items will reduce the effectiveness of attackers, since the valuable items are limited, and extra items
will introduce noise [12, 29, 51]. Furthermore, compared with these powerful baselines, DADA can
achieve stable and the best performance under different maximum number of selected items.

4.4 More Insights via Empirical Study

Due to space limit, we include more experiments in Appx. B for more insights. In Appx. B.5, to
better mimic the real-world applications, we demonstrate the generality and practicability of our
attacker on partial and noisy user behaviors. In Appx. B.6, we evaluate our attacker under different
item popularity. In Appx. B.7, we more comprehensively reveal the effectiveness of the difficulty-
aware objective and quantitatively measure the diversity brought by the diversity-aware objective. In
Appx. B.8, we evaluate our attacker under more parameter settings, including extremely limited fake
user budget and � in Eq (6). In Appx. B.9, we analyze the hit ratio improvement under different target
RecSys. In Appx. B.10, we provide visualizations on gradients provided by different users and fake
user distributions. Finally, in Appx. B.11, we list several future directions based on our observations.

5 Conclusion

In this paper, we revisit the problem of injective attacks against recommender systems and reveal
two issues of existing attackers: difficulty-agnostic and diversity-deficit issues. To address these
two issues, we propose DADA, a difficulty and diversity aware attacker. Within a limited fake user
budget, DADA enables the generated fake user behaviors to concentrate on easy users who have
high tendencies toward the target item, and affect real users in a more diverse manner. Extensive
experiments on three real-world datasets demonstrate the effectiveness of our proposed attacker. In
this paper, we mainly reveal the weakness of existing recommender systems and discuss how to attack
them. For the sake of society, we discuss how to defense and resist such attacks in Appx. B.12.
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contributions and scope? [Yes]
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(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] This

paper mainly reveals the potential way to attack some recommendation systems. We
discuss some existing defense models and future directions in Appx. B.12

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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