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Abstract

Transformer-based large language models (LLMs) have successfully handled vari-
ous tasks. As one fundamental module in Transformers, position encoding encodes
the positional information of tokens in a sequence. Specifically, rotary position
embedding (RoPE), one of the most widely used techniques, encodes the positional
information by dividing the query or key value with d elements into d/2 pairs
and rotating the 2d vectors corresponding to each pair of elements. Therefore,
the direction of each pair and the position-related rotation jointly determine the
attention score. In this paper, we show that the direction of the 2d pair is largely
affected by the angle between the corresponding weight vector pair. We theoreti-
cally show that non-orthogonal weight vector pairs lead to great attention on tokens
at a certain relative position and are less sensitive to the input which may corre-
spond to basic syntactic information. Meanwhile, the orthogonal weight vector
pairs are more flexible regarding the relative position, which may correspond to
high-level syntactic information. Empirical evidence supports the hypothesis that
shallow layers of LLMs focus more on local syntax and deep layers focus more
on high-level semantics. Furthermore, we show that LLMs fine-tuning mainly
changes the pairs of weight vectors that are nearly orthogonal, i.e., the weight
corresponding to high-level semantics, which enables the reduction of the number
of trainable parameters during fine-tuning without sacrificing performance. We
propose a method namely Angle-based Weight Masking (AWM) to reduce the
fine-tuning overhead and verify the effectiveness of the proposed method on widely
used Alpaca fine-tuned Llama-2.

1 Introduction
Large language models [36, 26, 35] have achieved impressive success and attracted considerable
attention towards analyzing the Transformer structure and enhancing fine-tuning efficiency [14, 1,
18, 15]. As one fundamental module in a Transformer, position encoding encodes the positional
information of tokens in a sequence. Various position encoding have been proposed including
absolute position encoding [36, 8, 26], and relative position encoding [30, 27], etc. Among them,
one of the most widely used position encodings is rotary position embedding (RoPE) [31] which is
used in various popular LLMs such as Llama [35], Mistral [16], GLM [9], etc. Instead of applying a
function to the input, RoPE applies a transformation to the query and the key of each attention layer,
which provides us with a window to investigate how the LLMs utilize the position information. In
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this paper, we analyze the query and the key weight matrix in the self-attention module of LLMs
using RoPE and propose a simple method to reduce the computational cost of LLM fine-tuning.

As the name “rotary” indicates, RoPE divides the elements of queries and keys into pairs and rotates
each pair as a 2D vector with a certain angle determined by the position. One simple fact is that the
direction of the 2D vector before rotation and the position-related rotation jointly affect the attention
score. Note that the direction of the 2D vector is determined by the corresponding weight vector
pairs. As illustrated in Fig. 1, a simple analysis shows that non-orthogonal weight vector pairs with
large absolute cosine similarity values are less sensitive to the input and will draw greater attention to
certain positions. It provides an indicator of how the model utilizes the position information. We
empirically show that attention heads with large absolute cosine similarity between weight vector
pairs focus more on basic syntactic information while attention heads with near-zero cosine similarity
between weight vector pairs focus more on high-level semantics. In linguistics, formally, syntactic
information refers to the arrangement of symbols or words according to the rules of a formal system or
language [10] and semantic information pertains to the meaning and interpretation of words, phrases,
and sentences [28]. In studying how deep learning models utilise syntactic and semantic information,
previous works [34] empirically show that shallow layers of LLMs focus more on basic syntactic
information and deep layers of LLMs focus more on high-level semantics. Our experimental results
align with previous works and further support the hypothesis. In a more fine-grained perspective, we
further show that within each attention head, the angles between weight vector pairs also vary.

By comparing the fine-tuned version with the pre-trained version of LLMs, we further show that
the weight in the query and the key are mainly changed on nearly orthogonal weight vector pairs
during fine-tuning, and the non-orthogonal weight vector pairs are barely changed. This implies that
fine-tuning the query and the key in LLMs mainly changes the weights corresponding to high-level
semantic information and does not change the weights corresponding to basic syntactic information
in the query and key. We conjecture that it is because the pre-trained LLMs are already good enough
in processing basic syntactic information and only need to be tuned on how to process high-level
semantic information for downstream tasks. Therefore, we propose to fix the non-orthogonal pairs of
weight vectors in the query and key of each layer in the pre-trained models to reduce the number of
trainable parameters during fine-tuning. We conduct experiments on widely used models and datasets
to verify the effectiveness of our method. We show that our method could effectively reduce the
number of trainable parameters while maintaining or even boosting the performance of the fine-tuned
model. We summarize the contributions of this paper in the following:

• We provide a new perspective to investigate how LLMs with RoPE utilize the positional information
and theoretically show that non-orthogonal weight vector pairs divided by RoPE are less sensitive
to input and draw greater attention to certain relative positions.

• We empirically show the angles between the weight vector pairs in the query and the key could serve
as an indicator of whether the pair of weight vectors focuses on basic syntactic information or high-
level semantics. Non-orthogonal weight vector pairs focus more on basic syntactic information
while nearly orthogonal weight vector pairs focus more on high-level semantic information.

• Since RoPE divides the elements in the query or key values into pairs, we empirically show that
fine-tuning LLM mainly changes the orthogonal pairs of corresponding weight vectors. Based on
our findings, only orthogonal pairs of weight vectors are changed during fine-tuning, we propose
a method to reduce the number of trainable parameters during LLM fine-tuning and verify its
effectiveness on widely used models and benchmarks.

2 Preliminaries and Related Works

Position Encoding. After the seminar work [36], various Transformer-based position encoding
methods have been proposed to incorporate position information into the function calculating query,
key, and value. One typical way is adding the input with a vector depending on the position of the
input vector. Learnable position embedding is introduced where the position embedding is trainable
during training [36, 8, 26]. The sinusoidal positional encoding was introduced by the authors of [36]
where the vector is generated by a sinusoidal function. Instead of using absolute position, another
branch of work proposes relative position encoding [30, 27]. Rotary position embedding (RoPE) [31]
was proposed to incorporate position information by rotating the pairs of elements in the query
and the key, which was widely used in different LLMs such as Llama [35], Palm [2], Mistral [16],
GLM [9], etc. Recent works on long-context Transformers also show the advantage of RoPE on input
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Figure 1: Illustration of how the angle between weight vector pairs in the query or the key affects
RoPE. The larger absolute cosine similarity | cosα|, the direction of the projected 2D vector is more
fixed which leads to high attention on certain relative positions regardless of the input.

length extrapolation [32, 24]. In this paper, we provide a new weight vector angle perspective to
investigate how LLMs with RoPE utilize the positional information and empirically show that we
can identify weights corresponding to processing basic syntactic information or high-level semantic
information. Please refer to Sec. 3 for more details.

Parameter-Efficient Fine-Tuning. Different from full fine-tuning that fine-tunes all the parameters,
parameter-efficient fine-tuning (PEFT) methods aim at reducing the number of parameters fine-tuned
to reduce the computational cost and prevent overfitting on fine-tuning data [25]. Various PEFT
methods have been proposed such as adapter tuning [14], prefix tuning [1], and prompt tuning [18].
Adapter tuning proposes adding a small module to each layer of the pre-trained model. Prefix tuning
and prompt tuning propose adding additional tunable prefix tokens to the input. Notably, LoRA [15]
was proposed to use a low-rank matrix to approximate parameter updates.

Other Methods to Reduce Computational Cost of LLMs. Besides the PEFT methods, many other
methods are proposed to accelerate the LLMs. Quantization [5, 7] is a common technique to reduce
the memory footprint of LLMs. [6] propose double quantization to further extend the application of
quantization from inference to fine-tuning. Another common technique is pruning where parameters
or modules are pruned to reduce the computational cost [17, 13]. Recently, [12] shows that deep
layers of LLMs can be pruned without degrading much performance. Orthogonal to these previous
methods in reducing the computational cost of LLMs, we provide a method to identify weights in the
query and the key that does not require updating during fine-tuning. Refer to Sec. 4 for more details.

Definition of RoPE. For an input sequence SN = {xm}Nm=1 where xm ∈ Rd is the input regarding
the m-th token. The self-attention with RoPE [31] generates the query and the key with

qm = fq(xm,m) = Rd
Θ,mWqxm,

km = fk(xm,m) = Rd
Θ,mWkxm,

(1)

where qm and km is the query and key of the m-th token, the Wq and Wk is the weight matrix and
Rd

Θ,i is the rotary matrix defined as following

Rd
Θ,m =



cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2 − sinmθd/2
0 0 0 0 · · · sinmθd/2 cosmθd/2


.

(2)
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The Θ is predefined as Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, · · · , d/2]}.

3 Investigating the Angle between Weight Vector Pairs in RoPE
In this section, we first provide a simple analysis regarding how the angle between the pair of weight
vectors will affect the RoPE and then provide empirical results regarding how the LLM utilizes the
positional information with different attention heads and across layers.

3.1 A Simple Analysis Regarding the Angle between Weight Vector Pairs
Let wi⊤

q and wi⊤
k denote the i-th row vector of Wq and Wk such that Wq = (w1

q ,w
2
q , · · · ,wd

q)
⊤ and

Wk = (w1
k,w

2
k, · · · ,wd

k)
⊤. As shown in Eq. 1, RoPE rotates each pair (w(2i−1)⊤

q xm,w
(2i)⊤
q xm)

and (w
(2i−1)⊤
k xm,w

(2i)⊤
k xm) with mθi. As we take the inner product of query and key, the direction

of 2D pairs and the position-related rotation jointly determine the attention weight. According to the
definition in Eq. 1 we have

q⊤
nkm =

d/2∑
i=1

∥(w(2i−1)⊤
q xn,w

(2i)⊤
q xn)∥ · ∥(w(2i−1)⊤

k xm,w
(2i)⊤
k xm)∥ · cos

(
γi
n,q − γi

m,k + (n−m)θi
)
.

(3)
Where γi

n,q corresponds to the direction of 2D vector (w(2i−1)⊤
q xn,w

(2i)⊤
q xn) and γi

m,k corresponds

to the direction of 2D vector (w(2i−1)⊤
k xm,w

(2i)⊤
k xm).

Let us consider the angle γi
n,q and γi

m,k. Since the analysis for the query and the key are the same,
we use {q, k} to represent either the query or the key. Let xi

m,{q,k} denotes the projection of xm onto
the subspace held by w2i−1

{q,k} and w2i
{q,k}. Suppose the angle between w2i−1

{q,k} and w2i
{q,k} is αi

{q,k}
and the angle between w2i−1

{q,k} and xi
m,{q,k} is βi

m,{q,k}, we have

tan γi
m,{q,k} =

w
(2i)⊤
q xm

w
(2i−1)⊤
q xm

=
∥xi

m,{q,k}∥∥w
2i
{q,k}∥ cos(β

i
m,{q,k} − αi

{q,k})

∥xi
m,{q,k}∥∥w

2i−1
{q,k}∥ cos(β

i
m,{q,k})

(4)

Derive Eq. 4, we get

γi
m,{q,k} = arctan

(
∥w2i

{q,k}∥
∥w2i−1

{q,k}∥
· (cosαi

{q,k} + sinαi
{q,k} tanβ

i
m,{q,k})

)
. (5)

As shown in Eq. 5, the larger | sinαi
{q,k}| the larger impact βi

m,{q,k} would have on γi
m,{q,k}. It

indicates that if the | sinαi
{q,k}| is small and the | cosαi

{q,k}| is large for both the query and the key,
the attention weight would be less sensitive to the input and draw greater attention to certain relative
positions1 since the directions of the projected 2-d vector (w(2i−1)⊤

{q,k} xm,w
(2i)⊤
{q,k}xm) of every token

are close. In an extreme condition, when the two weight vectors are in the same direction or opposite

direction, sinαi
{q,k} = 0, we have γi

m,{q,k} = arctan(
∥w2i

{q,k}∥
∥w2i−1

{q,k}∥
), which means the direction of the

2-d vector (w(2i−1)⊤
{q,k} xm,w

(2i)⊤
{q,k}xm) is fixed for any xm.

Note that as vectors in high-dimensional space, due to the curse of dimensionality, these weight vector
pairs are nearly orthogonal when randomly initialized. Therefore the non-orthogonal weight vector
pairs are non-trivial such that the model learns non-orthogonal weight vector pairs to emphasize
tokens at certain relative positions. In the following sections, we empirically show that non-orthogonal
weight vector pairs widely exist in LLMs and provide a new perspective for us to investigate LLMs.

3.2 Attention Visualization for Different Attention Heads
To verify the conjecture in Sec. 3.1 that large absolute cosine similarity | cosα| corresponds to
basic syntactic information and small | cosα| corresponds to high-level semantics, we visualize the

1The focused relative position is
arctan(

∥w2i
q ∥

∥w2i−1
q ∥

)−arctan(
∥w2i

k ∥

∥w2i−1
k

∥
)

θi
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Figure 2: Attention visualization of the attention heads with the largest or the smallest average
absolute cosine similarity | cosα| across the weight vector pairs in RoPE, where the key is on the left,
and the query is on the right. The lower transparency means a higher attention score. We demonstrate
the results for the first layer of Llama-2-7b-chat and Mistral-7B-Instruct-v0.2. The results empirically
support that higher | cosα| leads to attention on basic syntactic information and lower | cosα| leads
to attention on high-level semantic information. For more results of different models at different
layers please refer to Appendix B.

attention of attention heads with different average absolute cosine similarity | cosα| in this section.
With simple questions such as “What is the capital of France?” as input, we record the attention score
of different attention heads and visualize the score by setting the transparency of the lines connecting
the key and the query accordingly. The lower transparency corresponds to a higher attention score.
For clarity in the figure, we limit the number of tokens to 20.

As shown in Fig. 2, we present the attention visualization of the attention heads with the largest or
the smallest average absolute cosine similarity in the 1st layer of Llama-2-7b-chat [35] and Mistral-
7b-Instruct-v0.2 [16]. For the attention head with a large absolute cosine similarity value across the
weight vector pairs (0.54 on average for the 1st layer of Llama2-7b and 0.65 on average for the 1st
layer of Mistral-7b), attention is mainly on tokens of prepositions or articles that may correspond
more to the basic syntactic information. Notably, attention to special tokens is high. Special tokens
mainly correspond to syntactic information, such as the end of the input prompt or the start of the
answer by LLMs. In contrast, for the attention head with a small absolute cosine similarity value
across the weight vector pairs in RoPE (0.24 on average for the 1st layer of Llama2-7b and 0.29
on average for the 1st layer of Mistral-7b), the attention is on every token of the phrase which may
correspond more to the high-level semantics. For more results at different layers or different models,
please refer to Appendix. B.

3.3 Analyzing Weight Vector Pair Angles Across the Layers

In this section, we propose to investigate how LLMs utilize positional information from RoPE across
the layers from the weight vector angle perspective. For each layer, we calculate the average absolute
value of cosine similarity across all the weight vector pairs in the layer.

As shown in Fig. 3, we report the results of each layer of different LLMs. For each LLM, generally,
the average absolute cosine value decreases to a very low value after the first several layers (typically
3 layers) and stays low for the rest of the layers until it is slightly increased at the last layer. This
phenomenon agrees with the hypothesis that the LLMs first process the information about local syntax
at the first several layers and then process the high-level semantic information [34, 3]. While the
angle between weight vectors pairs in RoPE also provides a new perspective complementary to the
probing tasks [34] designed to show that models like BERT [8] process the information layer-by-layer
following the traditional NLP pipeline. It also explains the success of fastly training a smaller model
using the first several layers of a pre-trained LLM [29] where the first several layers contain the
weights responsible for processing basic syntactic information, which plays a vital role in the model.
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Figure 3: We report the average absolute cosine similarity of the query and the key across the layers
of different LLMs. We show that, for all the LLMs we investigate, the average absolute cosine
similarity drastically decreases after the first several layers and stays small until the last layer.
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Figure 4: We show the cosine similarity of each weight vector pair in the query and the key of
different layers of the Llama2-7b [35]. Each column corresponds to different layers. The top row
is the results for the query and the bottom row is the results for the key. The attention heads are
separated with vertical red lines. We show that even within one head, the cosine similarity of different
weight vector pairs differs. More results on other layers and other models are in Appendix B.

The last layer generates the output in a certain format, which leads to a slight increase in the average
absolute cosine value. This also agrees with the empirical results in previous works [37, 21] that
the sparsity of activation changes in the middle from sparse to dense, and the layers at the middle
could be pruned. [3] also shows that the layers in the middle are the mostly changed layers during
fine-tuning. In Sec. 4, we further extend the result to that the orthogonal pairs of weight vectors
(cosα = 0) are the mostly changed weights during fine-tuning and propose a method to reduce the
number of trainable parameters during fine-tuning.

3.4 Investigating the Cosine Similarity Across Weight Vector Pairs

Beyond the coarse grain results (attention head-wise as in Sec. 3.2 and layer-wise as in Sec. 3.3),
the angles between weight vector pairs could provide a more fine-grained view. In this section, we
propose to investigate the distribution of cosine similarity between weight vector pairs in the query
and the key. As shown in Fig. 4, we report the cosine similarity, the cosα, of weight vector pairs of
the query and key in the first layer of Llama2-7b [35]. In the figure, we separate different attention
heads by vertical red lines. The cosine similarity changes drastically across the heads or even across
the pairs of weight vectors in the same head. This means that in one head, there is still a division
of labor, such that some of the weight vector pairs draw more attention to certain relative positions
while the other weights are more flexible. More results of different LLMs are in Appendix B.
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1st layer 10th layer 20th layer 30th layer

Figure 6: Comparison between the base model Mistral-7B [16] and fine-tuned version WizardLM-
2 [38]. For each sub-figure, the scatter figure in the middle demonstrates the cosine similarity between
weight vector pairs where each point corresponds to a weight vector pair; the x-axis corresponds to
the results for the base model, and the y-axis corresponds to the fine-tuned model. In the histogram
on the top and left, we report the average L2 weight distance between the weight vectors of the
pre-trained model and the fine-tuned model. The y-axis of the histogram on the top and the x-axis of
the histogram on the left correspond to the L2 weight distance. Generally, fine-tuning merely changes
the angle between weight vector pairs. Besides the first several layers, the weight change mainly
happens on weight vector pairs that are nearly orthogonal. More results are provided in Appendix B.

Figure 5: Correlation between cosine similarity
of the query and key weight vector pair of the
1st layer of Llama2-7b. Each dot represents two
corresponding weight vector pairs in query and key.
The x-axis corresponds to the cosine similarity of
the weight vector pair in the query and the y-axis
corresponds to the cosine similarity of the weight
vector pair in the key. (Pearson’s r is 0.86)

Still, we find that the angles between the pairs
of weight vectors in query and key are highly re-
lated to each other. As shown in Fig. 5, the cosα
of pairs of weights of the query is positively cor-
related with the cosα of pairs of weights of the
key with Pearson correlation at 0.86. It makes
sense since it requires both the angle of the pro-
jected 2D vector of the query and the key to be
nearly fixed to assure high attention on certain
relative positions. Initialized to be both nearly
orthogonal, we conjecture that the angles be-
tween the query and the key weight vector pairs
may be changed simultaneously during train-
ing. For results of other layers and other models,
refer to Appendix B.

4 Reducing the Trainable
Parameters During Fine-tuning

In this section, we first show that only the weight
vector pairs that are nearly orthogonal (with
cosα = 0) are changed during training by com-
paring the base version and finetuned version
(e.g. chat or instruct version) of the same LLM. We then propose an efficient and effective method,
namely Angle-based Weight Masking (AWM), that fixes the non-orthogonal query and key weight
vector pairs defined in RoPE to reduce the number of trainable parameters while maintaining or even
boosting the performance during fine-tuning. Since our proposed method fixes parameters at a fine-
grained weight row vector level, it is orthogonal to LoRA [15], the widely used parameter-efficient
fine-tuning method. The experimental results verified the effectiveness of AWM.
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Figure 7: Average difference of weight vector pairs in the query and key across the layers of different
LLMs (including Llama-2 [35], Alpaca [33], Llama-3 [35], Mistral [16], and WizardLM [38]). We
show that the average difference increases after the first several layers and stays high, which is the
result of the fact that only near orthogonal weight vector pairs are updated during fine-tuning.

4.1 Comparing Different Versions of the Same LLM

Generally, most LLMs are trained in a pretrain-finetune paradigm where the language model is firstly
pre-trained on a large dataset with a pre-train task such as predicting the next token and then finetuned
to accommodate better the needs for downstream tasks. Generally, there will be many different
versions of the same LLM released such as the base version of the LLM after pre-training and the
finetuned version e.g. the chat version. By comparing the parameters of two different versions of the
same LLM, we could investigate how fine-tuning changes the parameters.

We present the results of comparison between the base model Mistral-7B-v0.1 [16] and its fine-tuned
version WizardLM-2 [38] in Fig. 6. Each sub-figure contains three figures. With the scatter figure
in the middle, we show the cosine similarity between weight vector pairs in the base model and the
fine-tuned version, where the x-axis corresponds to the base model and the y-axis corresponds to the
fine-tuned model. Generally, the fine-tuning barely changes the angle between weight vector pairs. It
means that the weights responsible for processing basic syntactic information or high-level semantic
information in the base model are still responsible for processing the corresponding basic syntactic
information or high-level semantic information after fine-tuning. With the histogram figure on the
top and left of each sub-figure, we further present the average L2 distance between weight vector
pairs in the base model and the fine-tuned model. For the figure on the top, the x-axis corresponds to
the cosine similarity of the weight vector pairs in the base model and the y-axis corresponds to the
weight distance. Similarly, for the figure on the left, the x-axis corresponds to weight distance, and
the y-axis corresponds to cosine similarity results for the fine-tuned model.

Generally, we find that the weight distances are high for weight vector pairs with nearly zero cosine
similarity. It indicates that fine-tuning mainly changes the weights corresponding to high-level
semantic information processing and the weights corresponding to low-level information such
as syntax are merely changed. Intuitively, it results from the fact that pre-trained LLMs are good
enough at processing basic syntactic information and fine-tuning changes in how they process high-
level semantic information for downstream tasks. We further show the average distance between
weight vector pairs across the layers of different base and fine-tuned models in Fig. 7. As a result
of the fact that only near orthogonal weight vector pairs are updated during fine-tuning, the average
distance increases after the first several layers and stays large, which is aligned with the results in
Fig. 3. As previous work [23] also found that the layers in the middle are the most updated part
during fine-tuning, we provide a new perspective on further understanding the phenomenon. Beyond
that, since we could effectively calculate the cosine similarity of weight vector pairs, it enables an
efficient method to reduce the number of trainable parameters during fine-tuning. Note that being
barely changed during fine-tuning indicates non-orthogonal weight vector pairs are important
in processing basic syntactic information, which also agrees with empirical results in [12].

We have also conducted experiments on more LLMs and received similar results including
Llama2 [35], Alpaca [33], and Llama3 [35]. Please refer to Appendix B for more results.

4.2 Reducing the Trainable Parameters on Query and Key

Our observation provides us with an efficient way to reduce the trainable parameters during training.
According to the results in Sec. 4.1, the non-orthogonal weight vector pairs in the query and key
weight matrix do not need to be updated during fine-tuning, therefore we can reduce the number of
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Table 1: Results of Llama-2 fine-tuned on the query and value in attention module with LoRA [15]
and AWM. We report the evaluation results on TruthfulQA [20], GSM8K [4], and HellaSwag [39].
We also report the threshold of AWM and the portion of the masked query weight vector pair.

Model TruthfulQA GSM8K HellaSwag Threshold τ
Fixed weight

mc1 mc2 acc acc vector pairs (%)
Llama-2-7b 26.07 39.45 4.85 57.99 - -

+ LoRA(r=8) 33.41 49.48 10.92 58.81 - -
+ LoRA(r=8) + AWM(Ours) 34.27 50.37 11.30 58.79 0.01 77.20
+ LoRA(r=8) + AWM(Ours) 34.27 49.98 11.90 58.79 0.005 85.36
+ LoRA(r=8) + AWM(Ours) 35.00 50.97 10.69 58.91 0.001 92.12
+ LoRA(r=2) 32.19 48.64 10.99 58.73 - -
+ LoRA(r=2) + AWM(Ours) 33.41 49.78 11.30 58.91 0.01 77.20
+ LoRA(r=2) + AWM(Ours) 33.29 49.14 12.81 58.83 0.005 85.36
+ LoRA(r=2) + AWM(Ours) 33.66 49.98 11.37 58.93 0.001 92.12

Llama-2-13b 23.75 33.41 19.33 60.89 - -
+ LoRA(r=8) 30.72 44.74 18.42 61.31 - -
+ LoRA(r=8) + AWM(Ours) 30.48 45.40 19.41 61.45 0.01 79.32
+ LoRA(r=8) + AWM(Ours) 30.84 45.09 19.26 61.29 0.005 87.04
+ LoRA(r=8) + AWM(Ours) 32.07 45.88 19.48 61.28 0.001 93.40

trainable parameters before the fine-tuning is conducted and only update the nearly orthogonal weight
vector pairs during fine-tuning. Therefore, we propose the method, namely Angle-based Weight
Masking (AWM), to reduce the number of parameters during fine-tuning. With a threshold set as
τ , we only update the weight vector pairs w2i−1

{q,k} and w2i
{q,k} with | cosα| < τ where α is the angle

between w2i−1
{q,k} and w2i

{q,k}. The detailed algorithm is in Alg. 1.

Algorithm 1 Angle-based Weight Masking

Input: Query and Key parameters Θqk =
{wi

{q,k}|i ∈ [0, d)}, other parameters ΘO,
threshold τ and loss on fine-tuning dataset
L(·)
ΘTr ← ΘO

for w2i−1
{q,k},w

2i
{q,k} ∈ Θqk do

cosα←
w2i⊤

{q,k}w
2i−1
{q,k}

∥w2i
{q,k}∥∥w

2i−1
{q,k}∥

if cosα < τ then
ΘTr ← ΘTrU{w2i−1

{q,k},w
2i
{q,k}}

end if
end for
Θ∗

Tr ← minΘTr
L(ΘTr)

Since our method is orthogonal to many
popular parameter efficient fine-tuning
methods [15, 6] that reduce the compu-
tational cost of fine-tuning an LLM, in
this section, we conduct our experiments
with LoRA [15]. We finetune Llama2-7b
and Llama2-13b [35] on Alpaca [33] using
LoRA and AWM. The query and the value
weight of each model are fine-tuned with
LoRA on Alpaca for 3 epochs. For more
details on hyperparameter settings and re-
sults, please refer to Appendix A.

In Table 1, we present the evaluation re-
sults of LoRA combined with our AWM.
We evaluate the fine-tuned model on
TruthfulQA [20], GSM8K [4], and Hel-
laswag [39]. TruthfulQA measures the ten-
dency of the model to reproduce common
falsehoods online. GSM8K is a test of di-
verse grade school math problems. Hel-
laswag is a test of commonsense inference.
We use lm-eval [11] and follow the setting
in Open LLM Leaderboard2 to evaluate LLMs on these datasets where models are evaluated in 0-shot
setting on TruthfulQA, 5-shot on GSM8K, and 10-shot on Hellaswag. As shown in Table 1, our
proposed method could largely reduce the trainable parameters in the query while maintaining or even
boosting the performance. As shown in Table 2, we also conduct experiments following the setting
in LoftQ [19] where we fine-tune Llama-2-7b, Mistral-7B, and Phi-2 on wikitext-2 and GSM8K.
Generally, our proposed method improves the performance while reducing the number of trainable
parameters. We conjecture that the performance is boosted because the orthogonal weight pairs in
the query corresponding to basic syntactic information are fixed, which prevents the model from
overfitting the basic syntactic information in the fine-tuning dataset. Generally, the benefits of our

2https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Table 2: Results of LLMs fine-tuned on WikiText-2 [22] and GSM8K [4] with LoftQ [19] and
AWM. Models are fine-tuned through causal language modelling on training sets and are tested on
validation/test sets. We also report the threshold of AWM and the portion of the masked query weight
vector pair.

Model WikiText-2 GSM8K Threshold τ
Fixed weight

perplexity acc vector pairs (%)
Llama-2-7b + LoftQ 5.518 39.20 - -

+ LoftQ + AWM(Ours) 5.485 40.86 0.01 77.20
+ LoftQ + AWM(Ours) 5.483 38.44 0.005 85.36
+ LoftQ + AWM(Ours) 5.480 38.06 0.001 92.12

Mistral-7B + LoftQ 6.423 54.51 - -
+ LoftQ + AWM(Ours) 6.335 55.12 0.01 19.72
+ LoftQ + AWM(Ours) 6.340 55.88 0.005 21.56
+ LoftQ + AWM(Ours) 6.337 55.80 0.001 23.04

Phi-2 + LoftQ 9.553 48.75 - -
+ LoftQ + AWM(Ours) 9.766 51.71 0.01 32.44
+ LoftQ + AWM(Ours) 9.829 52.01 0.005 37.00
+ LoftQ + AWM(Ours) 9.836 52.92 0.001 40.72

proposed method are twofold: 1) further reduce the number of trainable parameters during
fine-tuning, and 2) fix the orthogonal query and key weight vector pairs to prevent overfitting.

5 Conclusion and Limitation Discussion

We provide a new perspective to study how LLMs with Rotary Position Embedding (RoPE) utilize
the position information. We show that non-orthogonal query and key weight vector pairs in RoPE
draw higher attention to certain relative positions regardless of the input, which may correspond to
processing basic syntactic information while the orthogonal query and key weight vector pairs in
RoPE are more flexible with the relative position, which may correspond to processing high-level
semantic information. Our analysis and various empirical results at the layer level, attention head
level, and neuron level are provided in Sec. 3. By comparing the pre-trained model and the fine-tuned
model, we show that fine-tuning mainly updates near orthogonal weight vector pairs and further
propose a method to reduce the number of trainable parameters during LLM fine-tuning in Sec. 4.

The limitation of the proposed method is that it only applies to the query or the key weights which
may limit the number of reduced trainable parameters. Specifically, the query and key weight vector
pairs are near orthogonal at random initialization, which makes the non-orthogonal query and key
weight vector pairs non-trivial. The phenomena presented in previous works and in this paper imply
that the non-orthogonal query and key weight vector pairs play an important role in LLMs using
RoPE, which requires further investigation and we leave it for future works. This paper provides a
new perspective on investigating large language models (LLMs), which have the potential to make
LLMs more accessible and effective for various applications. However, we must also address the
potential risks associated with their misuse.
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A Details of Experiments

A.1 Details of AWM

As shown in Alg. 1, with a threshold τ , we fix the weight vector pairs with absolute cosine similarity
larger than the threshold τ . We then fine-tune the model with LoRA on Alpaca. We set the hyper-
parameters following alpaca-lora 3. We fine-tune the query and the value with Lora alpha at 16 and
rank at 8 or 2. The learning rate is 3e− 4, batch size is 128, cutoff length is 512, and the dropout for
LoRA is 0.05. Since the absolute cosine similarity is large in the first 3 layers, we did not apply our
method to the first 3 layers of Llama-2-7b and Llama-2-13b.

For evaluation, we follow open llm leaderboard4 to evaluate the finetuned model on Hellaswag,
TruthfulQA and GSM8K. All the hyper-parameter settings are the same as those on the open LLM
leaderboard. All the experiments are conducted on one NVIDIA GeForce RTX 4090.

A.2 Details of Attention Visualization

We take two simple questions as input. We record the query and key of each layer and calculate
the attention score of different attention heads. We present the attention head with the largest and
the smallest average absolute cosine similarity between weight vector pairs of the first layer of
Llama-2-7b-chat and Mistral 7B Instruct v0.2.

A.3 Details of Model Comparison

We compare various models, including Llama-2-7b-chat, Llama-2-7 b, Llama-2-7 b finetuned on
Alpaca, Mistral 7 B v0.1, WizzardLM2, Llama-3-8 B, and Llama-3-8B-Instruct. The phenomenon
between these models is similar, with changes mainly on the near orthogonal weight vector pairs.

B Additional Experiemental Results

B.1 Model Comparison

In this section, we provide more comparisons of the results of two versions of the same fine-tuned
model.

1st layer 10th layer 20th layer 30th layer

Figure 8: Comparsion Results between Llama-2-7b and Llama-2-7b-chat. Similar to Fig. 6.

3https://huggingface.co/spaces/tloen/alpaca-lora
4https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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1st layer 10th layer 20th layer 30th layer

Figure 9: Comparsion Results between Llama-3-8B and Llama-3-8B-Instruct. Similar to Fig. 6.
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Figure 10: Attention visualization of the attention heads with the largest or the smallest average abso-
lute cosine similarity | cosα| across the weight vector pairs in RoPE, where the lower transparency
means the higher attention score. We demonstrate the results for the first layer of Llama2 13b chat
and Llama3 8B Instruct. Note that Llama3 8B have a much lower | cosα| (0.46 max and 0.17 min)
comparing to Llama2 (0.70 max and 0.31 min).

B.2 Attention Visualization

We provide more attention visualization results on Llama-2-13b and Llama3 8B in Fig. 10. Note
that the attention head at the first layer of Llama3 8B has a relatively small average absolute cosine
similarity compared to Llama2 7b and Llama2 13b.

B.3 Pair-wise Cosine Similarity

In this section, we further provide the visualization of cosine similarity between the weight vector
pairs in different Mistral 7B v0.1 layers in Fig. 11. In the future, we hope to extend our method
and apply it to further models such as multi-modal LLMs or position information related to image
processing [40].
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Figure 11: We show the cosine similarity of each weight vector pair in the query and the key of
different layers of the Mistral 7B v0.1. Each column corresponds to different layers. The top row
is the results for the query, and the bottom row is the results for the key. The attention heads are
separated with vertical red lines. We show that even within one head, the cosine similarity of different
weight vector pairs differs.
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during LLM fine-tuning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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Justification: We discuss the limitations of the work in the final conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

16



• The authors should reflect on the scope of the claims made, e.g., if the approach was
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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in Appendix B. The source code will also be made publically available upon acceptance.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code will be made public upon acceptance. The reasons are twofold.
First, the experiments in this paper are easy to implement, which makes releasing the code
less necessary. Second, given the time we spent preparing the paper, more time is needed to
clean and refactor our code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: We have provided details when introducing experiments and provide full
details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For most of the results in this paper, we investigate open-source LLMs, which
are fixed and do not require error bars. For fine-tuning LLMs, we use the official code on
Huggingface to ensure fair comparison. At the same time, running the fine-tuning multiple
times is too computationally expensive

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided information of the compute resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impact of this paper in the final conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper mainly provides a new perspective to investigate language models
and does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In this paper, we cite the paper or assets used in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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