
Theoretical Guarantees for the Retention of Strict
Nash Equilibria by Coevolutionary Algorithms

Alistair Benford
School of Computer Science
University of Birmingham
a.s.benford@bham.ac.uk

Per Kristian Lehre
School of Computer Science
University of Birmingham
p.k.lehre@bham.ac.uk

Abstract

Most methods for finding a Nash equilibrium rely on procedures that operate over
the entire action space, making them infeasible for settings with too many actions
to be searched exhaustively. Randomised search heuristics such as coevolutionary
algorithms offer benefits in such settings, however they lack many of the theoretical
guarantees established for exhaustive methods such as zero-regret learning. We
address this by developing a method for proving necessary and sufficient conditions
for a coevolutionary algorithm to be stable, in the sense that it reliably retains a
Nash equilibrium following discovery. As the method provides bounds that are
adapted to both application and algorithm instance, it can be used as a practical
tool for parameter configuration. We additionally show how bounds on regret may
be deduced from our results and undertake corresponding empirical analysis.

1 Introduction

As many challenging problems are characterised by the presence of competition between agents,
the demand for efficient techniques for the determination of Nash equilibria has brought about a
range of powerful machine learning techniques, including Q-Learning [10, 20, 33], Fictitious Self-
Play [7, 25], Counterfactual Regret Minimisation [8, 9, 64], and gradient-based approaches [4, 19,
57, 63]. Analysis of regret for algorithms such as EXP3 [3] and FTRL [23] provide theoretical
guarantees of convergence to a Nash equilibrium in the zero-sum adversarial multi-armed bandit
setting, however such algorithms rely on procedures operating over the entire strategy space (such as
storing a vector over all available actions). In many settings, such as those characterised by a sequence
of binary decisions, a combinatorial explosion in the number of actions quickly make any exhaustive
approach infeasible. These many-action settings can only be addressed using procedures that exploit
underlying topological features of the strategic representation and corresponding payoff landscape in
order to guide a search towards a Nash equilibrium. Coevolutionary algorithms (CoEAs), a form of
evolutionary algorithms (EAs) employing two or more competing populations, are one such approach,
and recent theoretical work proves that CoEAs can efficiently discover the Nash equilibrium of a
range of two-player many-action games defined over bitstrings [5, 30, 31, 32, 40, 43].

The successful application of adversarial and self-play techniques is uniquely challenging due to the
potential for pathologies such as cycling or instability, and such pathologies have been observed in
a range of such methods including GANs [53, 62], AlphaStar [60], SGA [4], as well as CoEAs in
general [18]. In the case of CoEAs, one major open problem is the question of when to terminate and
extract an output from the current populations. This is an important consideration even for standard
evolutionary algorithms in non-adversarial settings [46], and made even more challenging for CoEAs
as the absence of a unary fitness function makes the identification of best-so-far strategies both
expensive and subjective. Thus, to maintain confidence in the output of a CoEA, one should ensure
that the algorithm is designed and configured in such a way that any discovered Nash equilibrium will

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

not be forgotten following discovery. Algorithms with this property are more amenable to maintain
progress towards the Nash equilibrium even before discovery (as per conditions of the level-based
theorem for CoEAs [40]), making its analysis even more essential.

The question of how CoEAs reach a Nash equilibrium is addressed theoretically by runtime analysis,
which is the subject of all existing theory for CoEAs. For an algorithm to have low runtime, it is
often necessary for the strength of its mutation operator (i.e., its mutation rate) to be sufficiently low
relative to selective pressure (although this alone is typically not sufficient) [38, 40, 50]. However,
there is a gap in our understanding of algorithm behaviour following the time after which a Nash
equilibrium first enters the populations. This paper presents a theoretical basis for the determination
of conditions for a CoEA to be ‘stable’ in the sense that it is overwhelmingly likely to retain a
Nash equilibrium following discovery. In particular, we quantify the link between the stability of a
CoEA and the mutation rate, and this link will closely depend on the selection process being used
(similar to runtime results that also impose necessary conditions on mutation rate). We will later
see (Theorem 3.5) that a given algorithm will never be stable if mutation is too strong. As a very
low mutation rate can inhibit exploration, knowledge about how strong mutation can be while still
ensuring stability is extremely valuable for practitioners. Our contributions are thus as follows.

1. An easily applicable theoretical technique (Lemmas 3.3 and 3.4) for ascertaining upper and
lower bounds on the threshold between stability and instability for population-based CoEAs
with unary variation.

2. Derivation of stability bounds using this technique for large classes of CoEAs (Theorems 3.5
and 3.6) as well as two specific CoEAs (Theorems 3.7 and 3.8). We also confirm the
predictions made by these derived bounds empirically.

3. A proof that stability guarantees can be combined with runtime analysis to additionally
quantify the regret of CoEAs, akin to the regret guarantees established for learning algorithms
on small action spaces.

1.1 Related work

CoEAs have been used in numerous applications to adversarial optimisation and multi-agent learning,
including generative adversarial networks [14], cybersecurity and defence [21, 26, 29, 59, 65], and
detecting tax evasion [27]. Coevolution has extensive use for the training of game-playing agents in
studies on backgammon [54], poker [49], Atari games [36], and StarCraft II [2, 60], to name just a
few. Other applications of coevolution introduce competition to improve learning by coevolving a
population of environments alongside agents [1, 12, 61]. For a general overview of fundamentals of
CoEAs, their use cases, and challenges arising in their application, we refer the reader to [55].

CoEAs can be viewed as an extension of EAs, for which there has been a large amount of theoretical
analysis (see survey [17] for example). Despite demand (see [55]), similar analysis for CoEAs is
more limited. Nonetheless, a rigorous theory for competitive CoEAs was initiated by Lehre [39, 40]
who provided guarantees for the expected time for an algorithm called PDCoEA (which we consider
later in Section 3.2) to discover the Nash equilibrium of a bilinear game (which we consider in
our empirical analysis in Section 4). Subsequent theoretical work analyses the impact of algorithm
design on runtime [30, 31, 32] and the use of CoEAs for the discovery of optimal play for new games
and problem classes, including symmetric zero-sum games [5], combinatorial games [6], binary
test-based problems [42, 43], and potential games [28].

Some theoretical results for EAs establish an ‘error threshold’ expressed as a function of selective
pressure. Configuring mutation rate above an error threshold makes it difficult to sustain a positive
proportion of individuals inside a region of the search space containing the target. In previous
analysis this is significant because it can lead to exponential runtime, however it is directly related to
stability results here which establish thresholds on mutation rate, also expressed in terms of selection,
above which a CoEA struggles to maintain populations on the solution concept. Error thresholds
are standard in analysis of EAs (see, for example, [38, 50]), and have also been proven to exist for
CoEAs [40]. The role that error thresholds play in coevolution has also been analysed empirically
in [29] where it was observed that the mutatation rate of self-adaptive version of PDCoEA converged
to a value just below the error threshold without previous knowledge.

2

1.2 Notation

A probability distribution over a finite set S is a function p : S → [0, 1] which satisfies
∑

s∈S p(s) =
1, and P(S) will be used to denote the set of probability distributions over S. An S-valued random
variable x is distributed according to p (written x ∼ p), if P(x = s) = p(s) holds for every s ∈ S.
We use x = argmaxy∈S f(y) as a shorthand for saying that x is sampled uniformly from the set
{y ∈ S : f(y) = maxz∈S f(z)}. Given a set X and a natural number λ ∈ N, we will use X λ to
denote the set of tuples of length λ over X . Given a tuple P := (P (1), . . . , P (λ)) ∈ X λ, we often
regard P also as a multiset (that is a subset of X) of cardinality λ, and hence write statements such as
x ∈ P to mean x ∈ {P (i) : i ∈ [λ]}, or use |P ∩A| to represent the quantity |{i ∈ [λ] : P (i) ∈ A}|.

2 Setting

The setting we consider is a conventional two-player game scenario, however it readily applies
not only to game-playing applications, but also to real-world adversarial optimisation, scenario
optimisation, multi-agent systems, and settings with competition added to enhance learning.

Definition 2.1. A problem (or game) is a tuple (X ,Y, f1, f2, A × B) where f1 : X × Y → R,
f2 : X × Y → R, A ⊆ X , and B ⊆ Y . fi is called the payoff function for player i and A× B is
called the solution concept. A problem class is simply a collection of problems.

Let G represent the class of all problems. As Definition 2.1 imposes no conditions or restrictions on
the sets A and B, there is no assurance that a problem (in the strict sense of the definition) has an
associated solution concept that is of meaningful or practical. In reality, we will restrict attention to
classes of problems which have solution concepts that fit a common understanding of what it means
to be strategically optimal. In particular, we will use STRICTNASH to denote the class of problems
for which f1(x, y) > f1(x

′, y) and f2(x, y) > f2(x, y
′) holds for all x ∈ A, x′ /∈ A, y ∈ B, y′ /∈ B,

and focus on this problem class as a particular case of interest. Nonetheless, the high degree of
generality in Definition 2.1 allows for results that potentially apply to alternative formulations of
optimality. For example, some of our negative results are general enough to apply to any solution
concept that is a singleton set. Therefore, let SINGLETONSOLUTION be the class of problems with
|A| = |B| = 1. It is also common to prove results for classes of problems with additional structure
imposed on the payoff function or strategy spaces. Let ZEROSUM be the class of problems for which
f1(x, y) + f2(x, y) = 0 holds for all x ∈ X and y ∈ Y . Given n ∈ N, let BITSTRINGn be the class
of problems with X = Y = {0, 1}n.

We consider CoEAs consisting of two populations P ⊆ X and Q ⊆ Y (informally labelled the
predator and prey populations) constructed using two fundamental randomised procedures: selection
and mutation. Selection uses evaluations of the payoff function to determine which individuals are
best suited to be parents for the next generation. Mutation randomly varies the genotype of those
selected parents to produce offspring. Here we formalise these two components and characterise
some key properties before stating the algorithmic model to which our results apply.

Definition 2.2. Given a search domain X , a mutation operator (or unary variation operator) over X
is a function MX : X → P(X). Given search domains X and Y and a subset R ⊆ [0, 1], we use
MUTATION(X ,Y ;R) to denote the set of pairs (MX ,MY) of mutation operators over X and Y
that satisfy the following statisticity condition.

MX (x)(x) · MY(y)(y) ∈ R for all (x, y) ∈ X × Y . (1)

In our results, the set R will characterise the strength of the mutation operators being discussed. For
example, if (MX ,MY) ∈ MUTATION(X ,Y ; (q0, 1]), then (1) ensures the probability that mutation
has no effect on a predator-prey pair greater than q0; in this context, q0 represents a bound on the
strength of the mutation operators being used. For blackbox optimisation problems over bitstrings, it
is standard to use mutation operators which are unbiased, in the sense that the effect of mutation is
preserved under permutations of the bit positions and applications of binary masks (see [44] for a
precise definition). Going further, with no a priori information about how the payoff landscape differs
between players, it is natural when X = Y to choose MX = MY . Thus we will often consider the
following subclass of MUTATION({0, 1}n, {0, 1}n ;R) (where the final assumption in Definition 2.3
simply ensures the probability of mutating to the most distant searchpoint is small, as is standard).

3

Definition 2.3. Given n ∈ N and R ⊆ [0, 1], we use UNBIASED(n ;R) to denote the set of
(MX ,MY) ∈ MUTATION({0, 1}n, {0, 1}n ;R) for which MX is unbiased, MY = MX , and
MX (0n)(1n) ⩽ 1/n.

Given populations (P,Q) ∈ X λ × Yλ, the role of a selection operator is to stochastically select
individuals (here, one pair at a time) from the populations that are suitable parents for the following
generation. The defining property of a selection operator is that its output must be an exact copy of a
pair from the input populations [52], defined formally as follows.
Definition 2.4. A selection operator is a function Sλ : X λ × Yλ → P(X × Y) (defined for each
λ ∈ N) such that for every (P,Q) ∈ X λ × Yλ, if (x, y) ∼ Sλ(P,Q) then P(x ∈ P ∧ y ∈ Q) = 1.

Selection operators use the payoff functions f1 and f2 (as well as the search domains X and Y) to
make decisions about what to select. Thus when we say ‘selection operator’, we typically mean ‘a
description of a selection operator for every possible problem instance G ∈ G’. Algorithm 1 describes
a model for non-elitist population-based CoEAs with unary variation. We note that this model is
a coevolutionary analogue to the Population Selection-Variation Algorithm (PVSA) for standard
EAs [38, 52], and additionally fits the population-based coevolutionary process model studied in [40].

Algorithm 1 Population-based CoEA with unary variation
Require: Population size λ
Require: Initial populations P0 ∈ X λ and Q0 ∈ Yλ

Require: Selection operator Sλ

Require: Mutation operators MX : X → P(X) and MY : Y → P(Y)
1: for t ∈ N until termination criterion met do
2: for j ∈ [λ] do
3: Sample (x, y) ∼ Sλ(Pt, Qt)
4: Sample Pt+1(j) ∼ MX (x)
5: Sample Qt+1(j) ∼ MY(y)
6: end for
7: end for

Typically, search domains and mutation operators are application-specific, and population size λ is
considered to be an algorithmic parameter. Thus, we will generally consider CoEAs to be defined
solely by their selection operator Sλ. In light of this, we will use AS(MX ,MY , λ) to denote the
population-based CoEA with unary variation corresponding to selection operator Sλ (where we drop
the implicit λ for brevity), mutation operators MX and MY , and population size λ.

3 Stability analysis

Roughly, we will say a CoEA is γ-stable on a problem if given it is initialised with at least γ
proportion of P0 ×Q0 on the solution concept, with overwhelmingly high probability it will continue
to maintain a γ proportion of Pt ×Qt on the Nash for an overwhelmingly long period of time (where
‘overwhelmingly’ here denotes exponential with respect to population size). This notion is formalised
using the following definitions.
Definition 3.1. Given an algorithm A running on a problem G with solution concept S, we define
the γ-departure and γ-hitting times to be

T γ
dep(A ;G) = min {t ⩾ 1 : |(Pt ×Qt) ∩ S| ⩽ γλ2},
T γ

hit(A ;G) = min {t ⩾ 1 : |(Pt ×Qt) ∩ S| ⩾ γλ2}.
That is, T γ

dep(A ;G) is the first time (excluding t = 0) for which the populations of A have at most
than a γ proportion of pairs on the solution concept for G, and T γ

hit(A ;G) is the first time (excluding
t = 0) for which the algorithm’s populations have at least a γ proportion of pairs on the solution
concept for G.
Definition 3.2. A population-based CoEA A with population size λ is γ-stable on a problem G with
solution concept S if there exists δ > 0 which does not depend on λ such that, for all populations
P ∈ X λ and Q ∈ Yλ satisfying |(P ×Q) ∩ S| ⩾ γλ2, it holds that

P[T γ
dep(A ;G) ⩽ eδλ | (P0, Q0) = (P,Q)] ⩽ e−δλ. (2)

4

Definition 3.2 is the strongest that can reasonably be adopted, in the sense if eδλ were replaced
by any function h : N → R that grows faster than exponential with respect to λ, then it would be
impossible for any non-trivial population-based CoEA with unary variation to satisfy the definition.
This observation is proven formally in Appendix A.

3.1 General tools

We now present the main tools used to derive stability bounds for population-based CoEAs. The first of
these is a lemma that produces a bound q0(γ) on the strength of the mutation operators that can be used
while still ensuring γ-stability. The resulting bound is dependent on the description of the algorithm’s
selection operator Sλ, or more precisely it is dependent on two functions α : [0, 1]2 → [0, 1] and
β : [0, 1]2 → [0, 1] that can be straightforwardly derived from a description of the selection operator.
Semantically, α(a, b) represents a lower bound the probablity that a selected predator lies on the Nash
equilibrium, given an a-proportion of predators and b-proportion of preys in the present populations
lie on the Nash (and similar for β(a, b) and a selected prey). Later, we will see that the application-
specific expressions for α and β are typically polynomials and that deriving them is a matter of
routine computation. Obtaining expressions for α and β is one of only two application-specific steps
required to apply this tool. The other is to compute the maximisation set out in (3); however, as α and
β are typically polynomials (and also often exhibit symmetries that simplify analysis) this is most
often a case of applying elementary calculus and otherwise relying on numerical solvers. The proof
of Lemma 3.3 is provided alongside a more general version of the tool in Appendix B.3.
Lemma 3.3. Let Sλ be a selection operator, let G := (X ,Y, f1, f2, A × B), and let γ ∈ [0, 1].
Suppose there exist increasing functions α : [0, 1]2 → [0, 1] and β : [0, 1]2 → [0, 1] such that, for all
λ ∈ N and populations P ∈ X λ and Q ∈ Yλ,

P(x ∈ A) ⩾ α

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
and P(y ∈ B) ⩾ β

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
holds for (x, y) ∼ Sλ(P,Q). Then, provided (MX ,MY) ∈ MUTATION(X ,Y ; (q0(γ), 1]) where

q0(γ) := sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
, (3)

AS(MX ,MY , λ) is γ-stable on G.

We note that the assumptions in Lemma 3.3 imply condition (G2b) in the level-based theorem [40,
Theorem 3] used to derive bounds on the expected runtime of CoEAs. For details, see Appendix B.3.

As well as characterising regimes where stability is guaranteed, we must also assess when stability is
not guaranteed (or more drastically, when instability is guaranteed). This is possible using the second
of our main tools, Lemma 3.4. Its first conclusion (A1) is a direct analogue to Lemma 3.3, and the
outstanding application-specific steps are also the same (except that α and β must be obtained as
upper bounds on selection probabilities instead of lower). However, Lemma 3.4 is extended in two
further ways. First, it is stated with respect to bitstring problems and unbiased mutation operators. As
the purpose of the tool is to identify unstable circumstances, this is important that such circumstances
are natural applications rather than unrealistic instances without wider significance, and a restriction
to unbiased mutation over bitstrings is one well studied way to ensure this. Nonetheless, in order
to have negative results with utility beyond bitstring games, we state a more general version of the
result applicable to arbitrary domains in Appendix B.4 and use it to derive Lemma 3.4. Second, the
additional conclusion A2 identifies circumstances where an algorithm is unstable in a very strong and
critical sense in that the proportion of its populations on the Nash drops to almost zero in a small
amount of time. The proof of Lemma 3.4 is found alongside its generalisation in Appendix B.4.
Lemma 3.4. Let q, γ ∈ [0, 1] and Sλ be a selection operator. Let (Gn)

∞
n=1 be a sequence of problem

classes with Gn ⊆ BITSTRINGn ∩ SINGLETONSOLUTION. Suppose K ∈ R ∪ {∞} is a constant
and α : [0, 1]2 → [0, 1] and β : [0, 1]2 → [0, 1] are continuous increasing functions such that, for all
λ, n ∈ N, problems (X ,Y, f1, f2, (x

∗, y∗)) ∈ Gn, and populations P ∈ X λ and Q ∈ Yλ,

P(x = x∗) ⩽ α

(
|P ∩ {x∗}|

λ
,
|Q ∩ {y∗}|

λ

)
P(y = y∗) ⩽ β

(
|P ∩ {x∗}|

λ
,
|Q ∩ {y∗}|

λ

)
P((x, y) = (x∗, y∗)) ⩽ K · |(P ×Q) ∩ {(x∗, y∗)}|

λ2

holds for (x, y) ∼ Sλ(P,Q). Then the following results hold.

5

A1 Provided
q < sup

a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
, (4)

there is a constant n0 ∈ N such that for any n ⩾ n0, G ∈ Gn, (MX ,MY) ∈
UNBIASED(n ; [0, q]), the algorithm AS(MX ,MY , λ) is not γ-stable on any G ∈ Gn.

A2 Provided K < ∞, α(a, b) = β(b, a) for all a, b ∈ [0, 1], and that

q < inf
(a,b)∈(0,

√
γ]2

ab

α(a, b) · α(b, a)
, (5)

there is a constant δ > 0 such that the following holds for all functions τ : N → R
and ε : N → R with ε(n) ⩾ 10

δn . For any n ⩾ 2/(δ
√
γ), G ∈ Gn, (MX ,MY) ∈

UNBIASED(n ; [0, q]), λ satisfying

λ ⩾ max

{
K

δ
,

2

δ2γ
log (δτ(n)2ε(n))

}
, (6)

and populations P ∈ X λ and Q ∈ Yλ with |P ∩ {x∗}|, |Q ∩ {y∗}| ⩽ √
γλ, it holds that

P[T ε(n)
dep (A ;G) ⩾ τ(n) | (P0, Q0) = (P,Q)] ⩽

3

δε(n)τ(n)
,

where A := AS(MX ,MY , λ). In particular, choosing ε and τ appropriately (e.g., ε(n) =
6
δn and τ(n) = n2) shows that A is not γ-stable on any G ∈ Gn for n sufficiently large.

3.2 Applications

Here we showcase the utility of the tools from Section 3.1 by applying them to derive stability bounds
for a range of algorithms and problem classes. First, we show that it is immediate from Lemma 3.4
that γ-stability is never possible if (MX ,MY) ∈ UNBIASED(n ; [0, γ]).

Theorem 3.5. Let Sλ be any selection operator. If γ ∈ [0, 1] and q < γ, then the conclusion of A1
holds for Gn = BITSTRINGn ∩ SINGLETONSOLUTION.

Proof. The prerequisites of Lemma 3.4 are satisfied with α(a, b) = β(a, b) = 1 and K = ∞.

Improvements over this universal bound arise from the introduction of an additional weak assumption
on the structure of the selection operator. A feature common to many selection operators is to first
sample several candidates from each population uniformly at random (with replacement), and then
make an informed selection from those candidates. We will say that a k-candidate selection operator
is one that makes the predator selection from k predator candidates and the prey selection from k prey
candidates. This informal description is sufficient for the sake of the material in this paper; however,
for the sake of rigour a formal description may be found in Appendix B.5.

Theorem 3.6. Let Sλ be a k-candidate selection operator.

B1 If γ ∈ [0, 1] and q < γ/(1 − (1 − γ)k), then the conclusion of A1 holds for Gn =
BITSTRINGn ∩ SINGLETONSOLUTION.

B2 If γ ∈ [0, 1] and q < k−2, then the conclusion of A2 holds for Gn = BITSTRINGn ∩
SINGLETONSOLUTION.

Proof. k-candidate selection operators satisfy the prerequisites of Lemma 3.4 with α(a, b) = 1−
(1− a)k, β(a, b) = 1− (1− b)k, and K = k2; see Appendix B.5 for further details.

Theorems 3.5 and 3.6 characterise regimes where instability is inevitable (and hence should be
avoided when parameterising algorithms) for highly general classes of selection operators. By
considering specific selection operators, it is also possible to apply our main tools to derive not
only stronger bounds on instability, but also practical guidelines of how to parameterise mutation to
assure stability. We carry out these derivations for two specific population-based CoEAs: Pairwise

6

Dominance CoEA (PDCoEA) and Tournament Selection CoEA (TSCoEA)1. The selection operators
defining each algorithm are given below.

Algorithm 2 Selection operator for PDCoEA
1: Sample x1, x2 ∼ Unif(P)
2: Sample y1, y2 ∼ Unif(Q)
3: if f1(x1, y1) ⩾ f1(x2, y1) and

f2(x1, y1) ⩾ f2(x1, y2) then
4: Set (x, y) = (x1, y1)
5: else
6: Set (x, y) = (x2, y2)
7: end if

Algorithm 3 Selection operator for TSCoEA
1: Sample x1, . . . , xk ∼ Unif(Pt)
2: Sample y′1, . . . , y

′
ℓ ∼ Unif(Qt)

3: Set i = argmaxr∈[k] mins∈[ℓ] f1(xr, y
′
s)

4: Sample y1, . . . , yk ∼ Unif(Qt)
5: Sample x′

1, . . . , x
′
ℓ ∼ Unif(Pt)

6: Set j = argmaxr∈[k] mins∈[ℓ] f2(x
′
s, yr)

7: Set (x, y) = (xi, yj)

In each selection, PDCoEA decides between two sampled pairs (x1, y1) using a pairwise dominance
relation. PDCoEA has been studied empirically on game theoretic attacker-defender cyber security
interactions [29, 41], and theoretically on pseudoboolean payoff functions [40, 43]. In Theorem 3.7
we apply Lemma 3.3 to derive conditions for the assured stability of PDCoEA for three increas-
ingly specialised problem classes: STRICTNASH, STRICTNASH ∩ SINGLETONSOLUTION, and
STRICTNASH ∩ SINGLETONSOLUTION ∩ ZEROSUM. Going further, in the case of STRICTNASH ∩
SINGLETONSOLUTION, we show that the proven bound is best possible using both conclusions of
Lemma 3.4. Illustrations of the trade-off between mutation strength and γ-stability for the latter two
classes are given in Figure 1 and a proof of the theorem can be found in Appendix B.6.
Theorem 3.7. Let Sλ be the selection operator for PDCoEA (see Algorithm 2) and let γ ∈ (0, 1].

C1 Let q0(γ) = (52
√
γ − 3

2γ)
−2. If G ∈ STRICTNASH and (MX ,MY) ∈

MUTATION(X ,Y ; (q0(γ), 1]) then AS(MX ,MY , λ) is γ-stable on G.

C2 Let q0(γ) = (3
√
γ − 2γ)−2.

C2.1 If G ∈ STRICTNASH ∩ SINGLETONSOLUTION and (MX ,MY) ∈
MUTATION(X ,Y ; (q0(γ), 1]) then AS(MX ,MY , λ) is γ-stable on G.

C2.2 There is a sequence of problems (Gn)
∞
n=1 with Gn ∈ STRICTNASH ∩

SINGLETONSOLUTION ∩ BITSTRINGn for every n ∈ N such that if (MX ,MY) ∈
UNBIASED(n ; [0, q0(γ))), then AS(MX ,MY , λ) is not γ-stable on Gn for n suffi-
ciently large.

C2.3 If γ ∈ (0, 9/16] and q ∈ [0, q0(γ)), then the conclusion of A2 holds for Gn = {Gn}
(where (Gn)

∞
n=1 is the problem sequence arising in C2.2).

C3 Let ασ(a, b) = a(a+ (1− a)(3b− b2 + (1− b)2σ(1 + 1
2σ))) and

q0(γ) = sup
a∈[γ,1]

sup
σ∈[0,1]

γ

ασ(a, γ/a) · α1−σ(γ/a, a)
.

If G ∈ STRICTNASH ∩ SINGLETONSOLUTION ∩ ZEROSUM and (MX ,MY) ∈
MUTATION(X ,Y ; (q0(γ), 1]) then AS(MX ,MY , λ) is γ-stable on G.

TSCoEA [31] is archetypical of a broad class of CoEAs which perform a k-tournament selection
using some chosen metric calculated based on payoffs against a number of opponents (see [22, 35, 58]
for examples of similar such algorithms). While any desired metric may be chosen (such as best
average payoff or membership of the mixed Nash equilibrium of the implied restricted game), we
focus on best worst-case (or max-min) payoff for two good reasons. First, it can be computed
in time O(kℓ), whereas potential superior alternatives requiring determination of a mixed Nash
equilibrium are PPAD-complete [15]. Second, the pure Nash equilibrium of a two-player zero-sum
game corresponds to its max-min strategies (see [51, Proposition 22.2]), making it apt for the class
ZEROSUM. Accordingly, a restriction to ZEROSUM is made in the following stability bounds for
TSCoEA, which are proven in Appendix B.7 and illustrated in Figure 1.
Theorem 3.8. Let Sλ be the selection operator for TSCoEA (see Algorithm 3) which uses parameters
k, ℓ ∈ N, and let γ ∈ (0, 1].

1TSCoEA appears in [31] as Archived Tournament Selection CoEA (ATS-CoEA). As we forego the use of
an archive to fit the population-based CoEA with unary variation model, we drop ‘Archived’ from the name.

7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

C2.1

C2.2

B1

PDCoEA on
StrictNash SingletonSolution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

C3

B1

PDCoEA on
StrictNash SingletonSolution ZeroSum

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

D2.1

D2.2

B1

TSCoEA (k = = 2) on
StrictNash ZeroSum

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

D1

B1

TSCoEA (k = = 10) on
StrictNash ZeroSum

Figure 1: Best proven stability bounds of PDCoEA and TSCoEA on various problem classes. Green
regions indicate the algorithm is γ-stable on all instances of the relevant class; red regions indicate the
algorithm is not γ-stable on all instances of the relevant class; amber regions indicate there exist some
instances in the relevant class on which the algorithm is not γ-stable. For each region, the relevant
theoretical result is indicated (e.g., B1). As Theorem 3.5 proves the region q < γ must always be
red, the boundary q = γ shows both the improvement made by Theorem 3.6 and also how far the
algorithm deviates from the theoretical limit on what could be hoped for in terms of stability.

D1 Let
q0(γ) =

γ

(1− (1− γ)k)(1− (1− γ)ℓ)
.

If G ∈ STRICTNASH ∩ ZEROSUM and (MX ,MY) ∈ MUTATION(X ,Y ; (q0(γ), 1]) then
AS(MX ,MY , λ) is γ-stable on G.

D2 Suppose additionally that k = 2 and let

q0(γ) = sup
a∈[γ,1]

1

(2− a)(2− 2(1− a)ℓ(1− γ/a)− γ/a)
. (7)

D2.1 If G ∈ STRICTNASH ∩ ZEROSUM and (MX ,MY) ∈ MUTATION(X ,Y ; (q0(γ), 1]),
then AS(MX ,MY , λ) is γ-stable on G.

D2.2 There is a sequence of problems (Gn)
∞
n=1 with Gn ∈ STRICTNASH ∩ ZEROSUM ∩

BITSTRINGn for every n ∈ N such that if (MX ,MY) ∈ UNBIASED(n ; [0, q0(γ))),
then AS(MX ,MY , λ) is not γ-stable on Gn for n sufficiently large.

4 Empirical analysis of stability

In this section we present the empirical stability of PDCoEA and TSCoEA on a range of zero-sum
games and compare our findings to the theoretical bounds derived in Section 3.2. Three problems are
considered: Bilinear [30, 32, 40], which emulates a standard game-theoretic saddle point trade-off
between two players; PlantedBilinear, a randomly instantiated many-dimensional generalisation
of Bilinear; and MBJR_2024 [34], a game based on that first introduced by Maiti et al. [47] as a
challenging instance for pairs of no-regret learners. By making minor modifications as necessary, all
games have the same search domains X = Y = {0, 1}n and have a unique strict Nash equilibrium
(x∗, y∗). These games were chosen because they have large strategy spaces, however the Nash equi-
librium is known in each case and so can be injected into the initial population at a controlled rate as
necessary to analyse stability. For full descriptions of the three problem instances as well as details of

8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

qPDCoEA

Bilinear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

Planted Bilinear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

MBJR_2024

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

qTSCoEA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 S
ta

bl
e

Ru
ns

Figure 2: Heatmaps indicating the proportion of runs for which T γ
dep(A ;G) > 4× 105 for combina-

tions of (γ, q) ∈ [0, 1]2. Green regions indicate that A was observed as γ-stable on G for the given q;
points not coloured green indicate that A was observed to be not γ-stable on G for the given q.

computational resources used to carry out the runs, see Appendix C. Code to reproduce the experiment
is available at https://github.com/asbenford/stability-analysis-of-coeas.

The mutation operator M used by each algorithm is standard bitwise mutation, which flips each
bit of a searchpoint x ∈ {0, 1}n independently with probability χ/n for some fixed χ. For a range
of combinations of (γ, q) ∈ [0, 1]2, χ was chosen to ensure that (M,M) ∈ UNBIASED(n ; {q})
and initial populations (P0, Q0) of size λ = 104 were generated with |P0 ∩ {x∗}| = γs and
|Q0 ∩ {y∗}| = γ1−s (where s ∼ Unif([0, 1])), so that |(P0 × Q0) ∩ {(x∗, y∗)}| = γλ2 (the
individuals not initialised on the Nash equilibrium were sampled uniformly at random from {0, 1}n).
As we cannot test all possible values of δ in Definition 3.2, we make no specific assumption about
δ but instead simply test whether T γ

dep(A ;G) is small for a large population size. The event that
T γ

dep(A ;G) is small was then tested for by running the algorithm for 4 × 105 evaluations of the
payoff function. By repeating this process 25 times for each (γ, q)-combination, we obtain a broad
indication of whether A is γ-stable on G when using mutation in UNBIASED(n ; {q}).
The corresponding results are displayed in Figure 2, alongside our best theoretical bounds for
stability on the given problems, which are all members of STRICTNASH ∩ SINGLETONSOLUTION ∩
ZEROSUM (see middle two plots of Figure 1). The most important aspect of each plot is the
boundary between the green region indicating stability (as all corresponding runs maintained the
initial proportion on Nash) and the non-green region indicating instability. In all cases, the empirical
boundary sits between the two theoretical lines, and so the observed stabilities are in close agreement
with our theoretical predictions. Of particular note is the fact that for each algorithm the empirical
boundary varies depending on problem instance, suggesting that gaps between our theoretical bounds
on stability and instability exist due to variation in problem instance and not because potential
improvements are missing from the corresponding proofs. In this sense, some of the derived bounds
may be best possible.

5 Regret analysis

We now turn our attention to how a deeper understanding of stability of CoEAs can be used to enable
regret analysis for coevolution. Let us consider a zero-sum game with unique Nash equilibrium
G = (X ,Y, f,−f, (x∗, y∗)). The regret for strategic interaction between two agents is defined with
respect to action outputs (xt)

∞
t=0 and (yt)

∞
t=0 in X and Y generated by a learning process. The

cumulative regret after time T is the total payoff improvement the players could have received, were

9

https://github.com/asbenford/stability-analysis-of-coeas

they given advanced knowledge of their opponents’ actions and allowed to adopt a best (constant)
response accordingly. Formally, this is

RT : = max
x∈X

(
T∑

t=1

(f1(x, yt)− f1(xt, yt)

)
+max

y∈Y

(
T∑

t=1

(f2(xt, y)− f2(xt, yt)

)

= max
x∈X

min
y∈Y

(
T∑

t=1

(f(x, yt)− f(xt, y))

)
.

The learning process is then said to be ε-Hannan consistent if the time-averaged regret converges
almost surely to the interval [0, ε]. That is,

P
[
lim sup
T→∞

1

T
RT ⩽ ε

]
= 1. (8)

In the case where ε = 0, the learning process is called Hannan consistent or zero-regret [11, 37, 56]. It
is known that the time-averaged output of a zero-regret algorithm converges to a pure Nash equilibrium
when one exists, and ascertaining theoretical guarantees about regret has been fundamental to the
development of multi-agent algorithms including Exp3 [3], CFR [64, 9], and FTRL [23]. Such
guarantees instill confidence in these algorithms, however they are typically only applicable when
the strategy spaces X and Y are small enough to query every possible strategy. Here we turn our
attention to regret analysis of CoEAs, which potentially apply to games with superpolynomial search
spaces where polynomial identification of a pure Nash equilibrium is highly non-trivial.

Assume that at each time step, a population-based CoEA A outputs a pair (xt, yt) of elites selected
from the current populations (Pt, Qt) according to

xt = argmax
x∈Pt

min
y∈Qt

f(x, y) yt = argmin
y∈Qt

max
x∈Pt

f(x, y).

Recall that for zero-sum games, this policy always ensures (xt, yt) = (x∗, y∗) whenever (x∗, y∗) ∈
Pt ×Qt. Runtime analysis (e.g., [5, 31, 40, 43]) typically proves polynomial bounds on the expected
time until (x∗, y∗) is first discovered, however this alone does not ensure a regret guarantee. However,
when combined with an added provision of stability (as given by the results of Section 3), it is straight-
forward to deduce ε(λ)-Hannan consistency, where ε(λ) is a function that decays exponentially in λ.
This is handled in the following theorem, which is proven in Appendix B.8. In the statement, the
runtime condition is represented using T γ

hit(A ;G) (see Definition 3.1).
Theorem 5.1. Let G ∈ ZEROSUM ∩ SINGLETONSOLUTION and suppose for some γ ∈ (0, 1] and
τ : N → R⩾0 that the following runtime bound holds for all populations P ∈ X λ and Q ∈ Yλ.

E[T γ
hit(A ;G) | (P0, Q0) = (P,Q)] ⩽ τ(λ). (9)

If A is γ-stable on G then there is a constant c such that A is τ(λ)e−cλ-Hannan consistent.

6 Limitations and further directions

There are several further directions and open questions related to the foundational results on stability
of CoEAs set out here. First, the empirical analysis of Section 4 implied that the gaps between the
always-stable and never-stable regions in Figure 1 likely occur due to variation in application rather a
lack of tightness of results. This is not yet confirmed rigorously, but could be with the construction
and analysis of specific problem instances. Second, there are many important solution concepts in
addition to Nash equilibrium, including dominating strategies, evolutionarily stable strategies, and
max-min strategies (for non-zero-sum games), and stability analysis can be undertaken using the
tools of Section 3.1. We also note that the methodology of the empirical analysis in Section 4 is
limited by its applicability only to problems where the solution concept is already known. Finally,
and perhaps most importantly, it is noteworthy that the proven regions where γ-stability is assured
for general problem classes (C2.1, C3, D1, D2.1) do not meet the line γ = 0, despite the fact that
0-stability is clearly desirable for ensuring populations will grow on the solution concept for a single
individual. While 0-stability is observed for existing algorithms in certain problem instances (see
Figure 2), we should strive to design algorithms configurable to assure 0-stability on general problem
classes. As our tools provide means to prove whether this criterion is met, designing such algorithms
is also a topic for future work.

10

Acknowledgements

This research was supported by a Turing AI Fellowship (EPSRC grant ref EP/V025562/1). The
computations were performed using the University of Birmingham’s BlueBEAR HPC service. See
http://www.birmingham.ac.uk/bear for more details.

References
[1] P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for complex

tasks. In Proceedings of the 5th International Conference on Genetic Algorithms, pages 264–270,
1993.

[2] K. Arulkumaran, A. Cully, and J. Togelius. AlphaStar: An evolutionary computation perspec-
tive. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’19, pages 314–315, 2019.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[4] D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Graepel. The mechanics of
n-player differentiable games. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 354–363, 2018.

[5] A. Benford and P. K. Lehre. Runtime analysis of coevolutionary algorithms on a class of
symmetric zero-sum games. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, pages 1542–1550, 2024.

[6] A. Benford and P. K. Lehre. A general upper bound for the runtime of a coevolutionary
algorithm on impartial combinatorial games. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’25, pages 1594–1603, 2025.

[7] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong. Combining deep reinforcement learning and
search for imperfect-information games. In Advances in Neural Information Processing Systems
33, NeurIPS ’20, pages 17057–17069, 2020.

[8] N. Brown, A. Lerer, S. Gross, and T. Sandholm. Deep counterfactual regret minimization.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 793–802, 2019.

[9] N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
2019.

[10] P. Casgrain, B. Ning, and S. J. and. Deep Q-learning for Nash equilibria: Nash-DQN. Applied
Mathematical Finance, 29(1):62–78, 2022.

[11] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

[12] E. Chigot and D. G. Wilson. Coevolution of neural networks for agents and environments. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’22,
pages 2306–2309, 2022.

[13] D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre. Level-based analysis of genetic
algorithms and other search processes. IEEE Transactions on Evolutionary Computation,
22(5):707–719, 2018.

[14] V. Costa, N. Lourenço, and P. Machado. Coevolution of generative adversarial networks. In
International Conference on the Applications of Evolutionary Computation (Part of EvoStar),
pages 473–487, 2019.

[15] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. Communications of the ACM, 52(2):89–97, 2009.

11

http://www.birmingham.ac.uk/bear

[16] B. Doerr, C. Doerr, and J. Yang. Optimal parameter choices via precise black-box analysis.
Theoretical Computer Science, 801:1–34, 2020.

[17] B. Doerr and F. Neumann. A survey on recent progress in the theory of evolutionary algorithms
for discrete optimization. ACM Transactions on Evolutionary Learning and Optimization,
1(4):1–43, 2021.

[18] S. G. Ficici. Solution concepts in coevolutionary algorithms. PhD thesis, Brandeis University,
2004.

[19] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Gradient-based algorithms for finding Nash
equilibria in extensive form games. In Internet and Network Economics, pages 57–69, 2007.

[20] A. Greenwald and K. Hall. Correlated Q-learning. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, ICML ’03, pages 242–249,
2003.

[21] R. Guha, R. Mckendrick, B. Feest, and K. Deb. Multi-objective competitive co-evolutionary
optimization and regularity-based decision-making for two-agent wargame strategy optimization.
IEEE Transactions on Evolutionary Computation, 2025.

[22] A. Hauptman and M. Sipper. GP-EndChess: Using genetic programming to evolve chess
endgame players. In Proceedings of the 8th European Conference on Genetic Programming,
EuroGP ’05, pages 120–131, 2005.

[23] E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3–4):157–325, 2016.

[24] J. He and X. Yao. Drift analysis and average time complexity of evolutionary algorithms.
Artificial Intelligence, 127(1):57–85, 2001.

[25] J. Heinrich and D. Silver. Deep reinforcement learning from self-play in imperfect-information
games. arXiv preprint arXiv:1603.01121, 2016.

[26] E. Hemberg, S. Moskal, U.-M. O’Reilly, E. Liu, and L. Fuller. Evolutionary and coevolutionary
multi-agent design choices and dynamics. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’25, pages 559–562, 2025.

[27] E. Hemberg, J. Rosen, G. Warner, S. Wijesinghe, and U.-M. O’Reilly. Detecting tax evasion: a
co-evolutionary approach. Artificial Intelligence and Law, 24(2):149–182, 2016.

[28] M. Hevia Fajardo, J. Toutouh, E. Hemberg, U.-M. O’Reilly, and P. K. Lehre. Runtime bounds
for a coevolutionary algorithm on classes of potential games. In Proceedings of the 18th
Conference on Foundations of Genetic Algorithms, FOGA ’25, pages 85–95, 2025.

[29] M. A. Hevia Fajardo, E. Hemberg, J. Toutouh, U.-M. O’Reilly, and P. K. Lehre. A self-adaptive
coevolutionary algorithm. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, pages 841–849, 2024.

[30] M. A. Hevia Fajardo and P. K. Lehre. How fitness aggregation methods affect the performance
of competitive CoEAs on bilinear problems. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’23, pages 1593–1601, 2023.

[31] M. A. Hevia Fajardo and P. K. Lehre. Ranking diversity benefits coevolutionary algorithms
on an intransitive game. In Parallel Problem Solving from Nature – PPSN XVIII, pages 213–229,
2024.

[32] M. A. Hevia Fajardo, P. K. Lehre, and S. Lin. Runtime analysis of a co-evolutionary algorithm:
Overcoming negative drift in maximin-optimisation. In Proceedings of the 17th Conference on
Foundations of Genetic Algorithms, FOGA ’23, pages 73–83, 2023.

[33] J. Hu and M. P. Wellman. Nash Q-learning for general-sum stochastic games. Journal of
Machine Learning Research, 4:1039–1069, 2003.

12

[34] S. Ito, H. Luo, T. Tsuchiya, and Y. Wu. Instance-dependent regret bounds for learning two-player
zero-sum games with bandit feedback. In Proceedings of the 38th Conference on Learning
Theory, volume 291 of Proceedings of Machine Learning Research, pages 2858–2892, 2025.

[35] W. Jaśkowski, K. Krawiec, and B. Wieloch. Fitnessless coevolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’08, pages 355–362, 2008.

[36] D. Klijn and A. Eiben. A coevolutionary approach to deep multi-agent reinforcement learning. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21,
pages 283–284, 2021.

[37] V. Kovařík and V. Lisý. Analysis of hannan consistent selection for monte carlo tree search in
simultaneous move games. Machine Learning, 109(1):1–50, 2020.

[38] P. K. Lehre. Negative drift in populations. In Parallel Problem Solving from Nature – PPSN XI,
pages 244–253, 2010.

[39] P. K. Lehre. Runtime analysis of competitive co-evolutionary algorithms for maximin optimi-
sation of a bilinear function. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’22, pages 1408–1416, 2022.

[40] P. K. Lehre. Runtime analysis of competitive co-evolutionary algorithms for maximin optimisa-
tion of a bilinear function. Algorithmica, 86(7):2352–2392, 2024.

[41] P. K. Lehre, M. Hevia Fajardo, J. Toutouh, E. Hemberg, and U.-M. O’Reilly. Analysis of a
pairwise dominance coevolutionary algorithm and DefendIt. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’23, pages 1027–1035, 2023.

[42] P. K. Lehre and S. Lin. Overcoming binary adversarial optimisation with competitive coevolu-
tion. In Parallel Problem Solving from Nature – PPSN XVIII, pages 117–132, 2024.

[43] P. K. Lehre and S. Lin. Towards runtime analysis of population-based co-evolutionary algorithms
on sparse binary zero-sum game. Proceedings of the AAAI Conference on Artificial Intelligence,
39(25):27054–27062, 2025.

[44] P. K. Lehre and C. Witt. Black-box search by unbiased variation. Algorithmica, 64(4):623–642,
2012.

[45] J. Lengler. Drift analysis. In Theory of Evolutionary Computation: Recent Developments in
Discrete Optimization, pages 89–131. Springer International Publishing, Cham, 2020.

[46] Y. Liu, A. Zhou, and H. Zhang. Termination detection strategies in evolutionary algorithms: A
survey. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18,
pages 1063–1070, 2018.

[47] A. Maiti, R. Boczar, K. Jamieson, and L. Ratliff. Near-optimal pure exploration in matrix
games: A generalization of stochastic bandits and dueling bandits. In Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of
Machine Learning Research, pages 2602–2610, 2024.

[48] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, 1989:
Invited Papers at the Twelfth British Combinatorial Conference, London Mathematical Society
Lecture Note Series, pages 148–188, 1989.

[49] J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved opponents
in a game as dimensions for Pareto selection. In Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, GECCO ’01, pages 493–500, 2001.

[50] G. Ochoa. Error thresholds in genetic algorithms. Evolutionary computation, 14(2):157–182,
2006.

[51] M. J. Osborne and A. Rubinstein. A course in game theory. The MIT Press, 1994.

13

[52] T. Paixão, G. Badkobeh, N. Barton, D. Çörüş, D.-C. Dang, T. Friedrich, P. K. Lehre, D. Sudholt,
A. M. Sutton, and B. Trubenová. Toward a unifying framework for evolutionary processes.
Journal of Theoretical Biology, 383:28–43, 2015.

[53] D. Pfau and O. Vinyals. Connecting generative adversarial networks and actor-critic methods.
arXiv preprint arXiv:1610.01945, 2016.

[54] J. B. Pollack and A. D. Blair. Co-evolution in the successful learning of backgammon strategy.
Machine Learning, 32(3):225–240, 1998.

[55] E. Popovici, A. Bucci, R. P. Wiegand, and E. D. De Jong. Coevolutionary principles. In
Handbook of Natural Computing, pages 987–1033. Springer, 2012.

[56] R.-J. Qin and Y. Yu. Learning in games: A systematic review. Science China Information
Sciences, 67(7):171101, 2024.

[57] F. Schäfer and A. Anandkumar. Competitive gradient descent. In Advances in Neural Informa-
tion Processing Systems 32, NeurIPS ’19, 2019.

[58] M. Szubert, W. Jaśkowski, and K. Krawiec. On scalability, generalization, and hybridization
of coevolutionary learning: A case study for Othello. IEEE Transactions on Computational
Intelligence and AI in Games, 5(3):214–226, 2013.

[59] M. J. Turner, E. Hemberg, and U.-M. O’Reilly. Analyzing multi-agent reinforcement learning
and coevolution in cybersecurity. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’22, pages 1290–1298, 2022.

[60] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre,
T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring,
D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, Nov 2019.

[61] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. POET: Open-ended coevolution of en-
vironments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, pages 142–151, 2019.

[62] K. Xu, C. Li, J. Zhu, and B. Zhang. Understanding and stabilizing GANs’ training dynamics
using control theory. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 10566–10575, 2020.

[63] G. Zhang and Y. Yu. Convergence of gradient methods on bilinear zero-sum games. In
International Conference on Learning Representations, ICLR ’20, 2020.

[64] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. In Advances in Neural Information Processing Systems 20, NIPS ’07,
2007.

[65] A. Żychowski and J. Mańdziuk. Coevolution of players strategies in security games. Journal of
Computational Science, 68:101980, 2023.

A On the strength of Definition 3.2

Theorem A.1. Let Sλ be any selection operator, let G := (X ,Y, f1, f2, A × B) ∈
SINGLETONSOLUTION, and let (MX ,MY) ∈ MUTATION(X ,Y ; (0, 1)). Then there exists a
constant δ > 0 such that for all λ ∈ N and populations P ∈ X λ and Q ∈ Yλ,

P[T 0
dep(A ;G) > eδλ | (P0, Q0) = (P,Q)] ⩽ e−δλ,

where A = AS(MX ,MY , λ). In particular, if h : N → R is any function that grows faster than
exponential (that is, h(λ) = ω(eδλ) for any δ ∈ R), then limλ→∞ P[T 0

dep(A ;G) ⩽ h(λ)] = 1.

14

Proof. Write S = {(x∗, y∗)}. Because

MX (x)(x) · MY(y)(y) ∈ (0, 1) (10)

holds for every (x, y) ∈ X × Y , we either have MX (x∗)(x∗) < 1 or MY(y
∗)(y∗) < 1. Assume

without loss of generality that MX (x∗)(x∗) < 1 (as the case MY(y
∗)(y∗) < 1 is similar). Since

(10) implies that MX (x)(x) > 0 for all x ̸= x∗, we have MX (x)(x∗) < 1 for all x ̸= x∗ also.
Thus, if we define

δ = −2min
x∈X

ln (1−MX (x)(x∗)) > 0,

it now holds for any x ∈ X and x′ ∼ MX (x) that P(x′ ̸= x∗) ⩾ e−δ/2. Thus, for any P ∈ X λ and
Q ∈ Yλ, by considering Line 4 of Algorithm 1,

P((Pt+1 ×Qt+1) ∩ S = ∅ | Pt = P ∧Qt = Q) ⩾ e−δλ/2.

We may now bound for any τ ∈ N and (P,Q) ∈ X λ × Yλ,

P[T 0
dep(A ;G) > τ | (P0, Q0) = (P,Q)] ⩽ (1− e−δλ/2)τ ⩽ exp (−τe−δλ/2).

Setting τ = eδλ now yields

P[T 0
dep(A ;G) > eδλ | (P0, Q0) = (P,Q)] ⩽ exp (−eδλ/2) ⩽ (eδλ/2)−2 = e−δλ,

where we have used the identity exp (−z) ⩽ z−2 for z > 0.

B Deferred proofs

B.1 Preliminary results

Several of our proofs rely on analysing the distribution of |(Pt+1 ×Qt+1) ∩ (A×B)| (that is, the
number of predator-prey pairs that lie on the solution concept at time t + 1) given the value of
|(Pt × Qt) ∩ (A × B)| is fixed. For this task there are many concentration inequalities that will
suffice, however it is particularly convenient to use McDiarmid’s inequality [48], given as follows.

Theorem B.1. Suppose f : X1 × . . .×Xn → R has the property that substituting the value of the ith

coordinate changes the value of f by at most ci. Suppose that X1, . . . , Xn are independent random
variables where Xi ∈ Xi for each i ∈ [n]. Then, for any t > 0,

P(f(X1, . . . , Xn) ⩾ E[f(X1, . . . , Xn)] + t) ⩽ exp

(
− 2t2∑n

i=1 c
2
i

)
,

P(f(X1, . . . , Xn) ⩽ E[f(X1, . . . , Xn)]− t) ⩽ exp

(
− 2t2∑n

i=1 c
2
i

)
.

In order to later prove conclusion A2 of Lemma 3.4, roughly speaking we need to estimate the amount
of time until the number Xt of predator-prey pairs on the solution concept drops below a certain
value. This detail will be handled using the additive drift theorem [24, 45], which provides such
estimations provided one can prove a minimum expected drift on such pairs in each generation.

Theorem B.2. Let (Xt)
∞
t=0 be a sequence of non-negative random variables with a finite state space

S ⊆ R+
0 such that 0 ∈ S. Let T := inf {t ⩾ 0 : Xt = 0}. Suppose there exists δ > 0 such that for

all s ∈ S \ {0} and all t ⩾ 0,

∆t(s) := E[Xt −Xt+1 | Xt = s] ⩾ δ.

Then

E[T] ⩽
E[X0]

δ
.

15

B.2 Basic calculations

In several of our proofs, certain steps require some calculations that are straightforward, however
also lengthy (in many cases they are working through standard calculus arguments to establish the
infimum or supremum of certain functions). In order to benefit the flow of presented proofs, we
provide these calculations separately here.
Proposition B.3. Let C ∈ [0, 3) be fixed, and let α : [0, 1]2 → R and β : [0, 1]2 → R be defined by

α(a, b) = a(a+ Cb(1− a)),

β(a, b) = b(b+ Ca(1− b)).

It holds for any γ ∈ (0, 1] that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
= ((1 + C)

√
γ − Cγ)−2.

Proof. The case C = 0 is trivial, so additionally assume that C > 0. Let g : [γ, 1] → R be given by
g(a) = α(a, γ/a) · β(a, γ/a)/γ. We have

g(a) =
(
a+ C

γ

a
− Cγ

)(γ
a
+ Ca− Cγ

)
= Ca2−(C2+C)γa−(C2+C)

γ2

a
+C

γ2

a2
+C2γ2+γ,

and hence,

g′(a) = 2Ca− (C2 + C)γ + (C2 + C)
γ2

a2
− 2C

γ2

a3

=
C

a3
(2a4 − (1 + C)γa3 + (1 + C)γ2a− 2γ2)

=
C

a3
(a2 − γ)(2a2 − (1 + C)γa+ 2γ)

=
C

a3
(a−√

γ)(a+
√
γ)(2a2 − (1 + C)a+ 2γ).

The discriminant of the quadratic 2a2 − (1 + C)γa+ 2γ is

(1 + C)2γ2 − 16γ ⩽ (1 + C)2γ2 − 16γ2 = γ2((1 + C)2 − 16) < 0.

Therefore, 2a2 − (1 + C)γa+ 2γ is positive for all a ∈ R. Hence, h′(a) is negative for a ∈ [γ,
√
γ)

and positive for a ∈ (
√
γ, 1], and hence

inf
a∈[γ,1]

g(a) = g(
√
γ) = ((1 + C)

√
γ − Cγ)2.

The result now follows.

Proposition B.4. Let α : [0, 1]2 → R be defined by α(a, b) = a(a+2b(1−a)). For all γ ∈ (0, 9/16],
we have

inf
(a,b)∈(0,

√
γ]2

ab

α(a, b) · α(b, a)
⩾ (3

√
γ − 2γ)−2. (11)

Proof. Let g : (0,
√
γ]2 → R be given by g(a, b) = α(a, b) · α(b, a)/(ab) = (a + 2b(1 − a))(b +

2a(1− b)). We can compute the partial derivative

∂g

∂a
(a, b) = (1− 2b)(b+ 2a− 2ab) + (a+ 2b− 2ab)(2− 2b)

= 5b− 6b2 + 4a− 12ab+ 8ab2

= b(5− 6b) + 4(1− 2b)(1− b)a.

If 0 < b ⩽ 1/2, then ∂g
∂a (a, b) ⩾ b(5 − 6b) ⩾ 0. On the other hand, if 1/2 < b ⩽

√
γ, then

4(1− 2b)(1− b) is negative, and so

∂g

∂a
(a, b) ⩾ b(5− 6b) + 4(1− 2b)(1− b)

√
γ ⩾ b(5− 6b) + 3(1− 2b)(1− b)

= 5b− 6b2 + 3− 9b+ 6b2 = 3− 4b ⩾ 3− 4
√
γ ⩾ 3− 4(3/4) = 0.

16

As ∂g
∂a is non-negative on (0,

√
γ]2, we have g(a, b) ⩽ g(

√
γ, b) for all a, b ∈ (0,

√
γ]. Therefore, for

any a, b ∈ (0,
√
γ]2, g(a, b) ⩽ g(

√
γ, b) = g(b,

√
γ) ⩽ g(

√
γ,

√
γ) = (3

√
γ − 2γ)2. Therefore,

inf
(a,b)∈(0,

√
γ]2

ab

α(a, b) · α(b, a)
= inf

(a,b)∈(0,
√
γ]2

1

g(a, b)
⩾

1

(3
√
γ − 2γ)2

,

as required.

Proposition B.5. Let α : [0, 1]2 → R and β : [0, 1]2 → R be defined by

α(a, b) = (1− (1− a)k)(1− (1− b)ℓ),

β(a, b) = (1− (1− b)k)(1− (1− a)ℓ).

It holds for any γ ∈ (0, 1] that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
=

γ

(1− (1− γ)k)(1− (1− γ)ℓ)
.

Proof. Let g : [γ, 1] → R be given by g(a) = α(a, γ/a) · β(a, γ/a) and note that g(a) > 0 for all
a ∈ [γ, 1]. We have g(a) = A(a)B(a)C(a)D(a) where

A(a) = 1− (1− a)k, B(a) = 1− (1− γ/a)ℓ,

C(a) = 1− (1− γ/a)k, D(a) = 1− (1− a)ℓ.

Therefore we can write

g′(a) = g(a)

(
A′(a)

A(a)
+

C ′(a)

C(a)
+

D′(a)

D(a)
+

B′(a)

B(a)

)
= g(a)

(
k(1− a)k−1

1− (1− a)k
−
(γ

a2

) k(1− γ/a)k−1

1− (1− γ/a)k
+

ℓ(1− a)ℓ−1

1− (1− a)ℓ
−
(γ

a2

) ℓ(1− γ/a)ℓ−1

1− (1− γ/a)ℓ

)
=

g(a)

a
(hk(a)− hk(γ/a) + hℓ(a)− hℓ(γ/a)) , (12)

where for m ∈ N we define hm : [γ, 1] → R by

hm(a) =
ma(1− a)m−1

1− (1− a)m
.

We will shortly prove that any m ∈ N, hm is a decreasing function. It then follows that hk(a) −
hk(γ/a) + hℓ(a) − hℓ(γ/a) is decreasing in a. Thus, from (12) it can be seen that g′(a) ⩾ 0 for
a ∈ [γ,

√
γ] and g′(a) ⩽ 0 for a ∈ [

√
γ, 1], and hence

inf
a∈[γ,1]

g(a) = min {g(γ), g(1)} = (1− (1− γ)k)(1− (1− γ)ℓ).

The proposition then follows by noting that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
=

γ

infa∈[γ,1] g(a)
.

Thus all that remains is to prove that hm is decreasing. To see this, observe using the quotient rule
that
h′
m(a)

m
=

(1− (1− a)m)((1− a)m−1 − (m− 1)a(1− a)m−2)− a(1− a)m−1(m(1− a)m−1)

(1− (1− a)m)2

=
(1− a)m−2[(1− (1− a)m)(1− a− (m− 1)a)−ma(1− a)m]

(1− (1− a)m)2

=
(1− a)m−2[(1− (1− a)m)(1−ma)−ma(1− a)m]

(1− (1− a)m)2

=
(1− a)m−2[1− (1− a)m −ma]

(1− (1− a)m)2
=

(
(1− a)m−2

(1− (1− a)m)2

)
ϕ(a)

where ϕ : [0, 1] → R is defined as ϕ(a) = 1−(1−a)m−ma. We have ϕ′(a) = m(1−a)m−1−m ⩽ 0
and ϕ(0) = 0, and so ϕ(a) ⩽ 0 always. Therefore, h′

m(a) ⩽ 0 for all a ∈ [γ, 1], showing that hm is
a decreasing function and completing the proof of the proposition.

17

Proposition B.6. Let c : [0, 1]2 → R be arbitrary, and let d : [0, 1]2 → R be such that either
d([0, 1]2) ⊆ [0,∞) or d([0, 1]2) ⊆ (−∞, 0]. For σ ∈ [0, 1], let

ασ(a, b) = a(c(a, b) + d(a, b) · σ),
βσ(a, b) = b(c(b, a) + d(b, a) · (1− σ)).

Then, for any γ ∈ (0, 1] it holds that

sup
a∈[γ,1]

sup
σ∈[0,1]

γ

ασ(a, γ/a) · βσ(a, γ/a)
= sup

a∈[γ,1]

1

c(a, γ/a) · (c(γ/a, a) + d(γ/a, a))
.

Proof. First, note that for any a, b ∈ [0, 1] and we have

ab

α1(b, a) · β1(b, a)
=

ab

α0(a, b) · β0(a, b)
=

1

c(a, b) · (c(b, a) + d(b, a))
. (13)

Next, for all fixed a, b ∈ (0, 1] we have

ασ(a, b) · βσ(a, b)

ab
= (c(a, b) + d(a, b) · σ)(c(b, a) + d(b, a) · (1− σ))

= [c(a, b)(c(b, a) + d(b, a))] + [d(a, b)c(b, a)− c(a, b)d(b, a)] · σ
+ [d(a, b)d(b, a)] · σ(1− σ).

By the assumptions of the proposition, d(a, b)d(b, a) ⩾ 0. Thus, ασ(a, b) · βσ(a, b) attains its
minimum at some σ ∈ {0, 1}. We now have

sup
a∈[γ,1]

sup
σ∈[0,1]

γ

ασ(a, γ/a) · βσ(a, γ/a)
= sup

a∈[γ,1]

max
σ∈{0,1}

γ

ασ(a, γ/a) · βσ(a, γ/a)

= sup
a∈[γ,1]

max

{
γ

α0(a, γ/a) · β0(a, γ/a)
,

γ

α1(a, γ/a) · β1(a, γ/a)

}
(13)
= sup

a∈[γ,1]

max

{
γ

α0(a, γ/a) · β0(a, γ/a)
,

γ

α0(γ/a, a) · β0(γ/a, a)

}

= max

{
sup

a∈[γ,1]

γ

α0(a, γ/a) · β0(a, γ/a)
, sup
a∈[γ,1]

γ

α0(γ/a, a) · β0(γ/a, a)

}

= max

{
sup

a∈[γ,1]

γ

α0(a, γ/a) · β0(a, γ/a)
, sup
a′∈[γ,1]

γ

α0(a′, γ/a′) · β0(a′, γ/a′)

}
= sup

a∈[γ,1]

γ

α0(a, γ/a) · β0(a, γ/a)

(13)
= sup

a∈[γ,1]

1

c(a, γ/a) · (c(γ/a, a) + d(γ/a, a))
,

as required.

B.3 Proof of Lemma 3.3

Lemma 3.3 is simply the case |I| = 1 in the following generalisation.
Lemma B.7. Let Sλ be a selection operator, let G := (X ,Y, f1, f2, A × B), and let γ ∈ [0, 1].
Suppose there exists a family {(αi, βi)}i∈I of pairs of increasing functions αi : [0, 1]

2 → [0, 1] and
βi : [0, 1]

2 → [0, 1] such that for all λ ∈ N and populations P ∈ X λ and Q ∈ Yλ, there exists i ∈ I
such that

P(x ∈ A) ⩾ αi

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
P(y ∈ B) ⩾ βi

(
|P ∩A|

λ
,
|Q ∩B|

λ

)

18

holds whenever (x, y) ∼ Sλ(P,Q). Then, provided (MX ,MY) ∈ MUTATION(X ,Y ; (q0(γ), 1])
where

q0(γ) := sup
a∈[γ,1]

sup
i∈I

γ

αi(a, γ/a) · βi(a, γ/a)
,

AS(MX ,MY , λ) is γ-stable on G.

Proof. Let q = min(x,y)∈X×Y MX (x)(x) · MY(y)(y). Because (MX ,MY) ∈
MUTATION(X ,Y ; (q0(γ), 1]), we have q > q0(γ). Let Λ0 ∈ N and ε > 0 be such that
γ + ε+ 2/Λ0 ⩽ 2 and

q > sup
a∈[γ,1]

sup
i∈I

γ + ε+ 2/Λ0

αi(a, γ/a) · βi(a, γ/a)
. (14)

We remark that ε (and Λ0) can be chosen to depend only on γ, q, and {(αi, βi)}i∈I , and hence have
no dependence on λ. Label S = A × B and let Xt = |(Pt × Qt) ∩ S|. Suppose at time t that
|Pt ∩ A| = aλ and |Qt ∩ B| = bλ where c := ab ⩾ γ. Using the fact that b = c/a ⩾ γ/a and
a ∈ [γ, 1], there exists some i ∈ I (depending on Pt and Qt) such that for arbitrary j ̸= k,

P((Pt+1(j), Qt+1(k)) ∈ S) ⩾ q · αi(a, b) · βi(a, b) ⩾ q · αi(a, γ/a) · βi(a, γ/a)

(14)
⩾ γ + ε+ 2/Λ0. (15)

We may write Xt = f((Pt+1(1), Qt+1(1)), . . . , (Pt+1(λ), Qt+1(λ))) where

f((x1, y1), . . . , (xλ, yλ)) =
∑

j,k∈[λ]

1((xj , yk) ∈ S).

Note that modifying the value of any one of the (xj , yj) changes the value of f((x1, y1), . . . , (xλ, yλ))
by at most 2λ. For any c ⩾ γ and λ ⩾ Λ0 we have

E[Xt+1 | Xt = cλ2] =
∑

j,k∈[λ]

P((Pt+1(j), Qt+1(k)) ∈ S)
(15)
⩾ (γ + ε+ 2/Λ0)λ(λ− 1)

= (γ + ε)λ2 + 2
λ2

Λ0
− (γ + ε+ 2/Λ0)λ

⩾ (γ + ε)λ2 + 2λ− 2λ = (γ + ε)λ2.

Applying Theorem B.1 now gives

P(Xt+1 ⩽ γλ2 | Xt = cλ2) ⩽ exp

(
− 2ε2λ4∑

j∈[λ](2λ)
2

)
= exp

(
− 1

2ε
2λ
)
. (16)

Write A = AS(MX ,MY , λ). For a given τ , if the event T γ
dep(A ;G) ⩽ τ occurs then there must

exist some t with 0 ⩽ t < τ such that Xt ⩾ γλ2 and Xt+1 ⩽ γλ2. Therefore we have the relation
of events

(T γ
dep(A ;G) ⩽ τ) ⊆ ∪t<τ (Xt ⩾ γλ2 ∧Xt+1 ⩽ γλ2). (17)

By taking τ = e
1
4 ε

2λ, a union bound now yields for any (P,Q) ∈ X λ×Yλ satisfying |(P×Q)∩S| ⩾
γλ2,

P[T γ
dep(A ;G) ⩽ e

1
4 ε

2λ | (P0, Q0) = (P,Q)]
(17)
⩽
∑
t<τ

P(Xt ⩾ γλ2 ∧Xt+1 ⩽ γλ2)

⩽
∑
t<τ

P(Xt+1 ⩽ γλ2 | Xt ⩾ γλ2)

(16)
⩽ τ · exp (− 1

2ε
2λ) = e−

1
4 ε

2λ,

thus satisfying Definition 3.2 for δ = 1
4ε

2 (which is independent of λ).

19

We now consider a connection between Lemma 3.3 (and implicitly also Lemma B.7) and the
coevolutionary level-based theorem [40]. The coevolutionary level-based theorem is stated with
respect to a constant γ0 and subsets of the search domains A1, . . . , Am ⊆ X and B1, . . . , Bm ⊆ Y ,
with A1 = X and B1 = Y , such that at each time t, the largest j for which |(Pt×Qt)∩(Aj×Bj)| ⩾
γ0λ

2 is identified as the ‘current level’. By using assumptions arising from algorithm and problem
instance, such as lower bounds on the probability of generating offspring on the next level, the
theorem derives an upper bound on the expected time for a CoEA to reach the final level Am ×Bm

(which is typically identified with the solution concept). This form of analysis extends the classical
level-based theorem, which uses similar constructions to derive upper bounds on expected runtime
for EAs [13].

One of the assumptions needed to apply the coevolutionary level-based theorem ((G2b) in [40,
Theorem 3]) is that if j is the current level (so that |(Pt×Qt)∩ (Aj ×Bj)| ⩾ γ0λ), then the expected
proportion of level-j pairs in the next generation is strictly larger than γ0. Precisely, the condition is

P(Pt+1(k) ∈ Aj) · P(Qt+1(ℓ) ∈ Bj) ⩾ (1 + δ)γ0,

where δ is a constant (on which the eventual runtime bound depends) and k, ℓ ∈ [λ] are arbitrary
indices. In the proof of the coevolutionary level-based theorem, this assumption is used to show the
populations do not regress to a lower level, or informally that they have stabilised on the current level.
It is therefore not too surprising that if we identify the solution concept A×B as the current level
(and also identify γ0 = γ), then the assumptions of Lemma 3.3 imply assumption (G2b). Indeed,
with the assumptions of Lemma 3.3, setting a = |Pt ∩A| and arguing as in (15) yields

P(Pt+1(k) ∈ A) · P(Qt+1(ℓ) ∈ B) ⩾ q · α(a, b) · β(a, b) ⩾ q · α(a, γ/a) · β(a, γ/a)
⩾ γ + ε = (1 + ε/γ)γ = (1 + δ)γ0,

where ε is chosen (depending on the mutation operators) as in (14) and we set δ = ε/γ0. Thus, there
is potential for much of the analysis in this paper (particularly the derivations of the functions α and
β within the proofs of Theorem 3.7 and Theorem 3.8) to also be used to derive level-based runtime
results for specific problems and problem classes.

B.4 Proof of Lemma 3.4

Before proving Lemma 3.4, we will state and prove the general result outlining situations where
instability occurs which applies to games with arbitrary search domains rather than just bitstrings.
Lemma 3.4 will then be derived using this result.

In general, if a mutation operator is somehow rigged to produce offspring inside or near to a game’s
solution concept with unreasonable probability, then stability can be trivially guaranteed even for
CoEAs using impractical selection operators (for example, a CoEA using a mutation operator that
returns elements of the solution concept with probability 1 will always be γ-stable for any γ ∈ [0, 1]).
Therefore, to obtain useful negative results it is necessary to have an underlying assumption related to
the innate tendency the mutation operator has for moving towards or into the solution concept. In the
case of Lemma 3.4 such an assumption is implicit from the fact that the relevant mutation operators
over {0, 1}n are unbiased (see Definition 2.3). As there is not an analogous notion of unbiasedness
for arbitrary domains, for the more general lemma in this appendix we will simply bound above the
probability of mutating into the solution concept from outside (see (19)).
Lemma B.8. Let q, γ, ζ ∈ [0, 1], let Sλ be a selection operator, and let G ⊆ SINGLETONSOLUTION
be a problem class. Suppose there exist continuous increasing functions α : [0, 1]2 → [0, 1] and
β : [0, 1]2 → [0, 1] such that for all λ ∈ N, problems (X ,Y, f1, f2, (x

∗, y∗)) ∈ G, and populations
P ∈ X λ and Q ∈ Yλ,

P(x = x∗) ⩽ α

(
|P ∩ {x∗}|

λ
,
|Q ∩ {y∗}|

λ

)
and P(y = y∗) ⩽ β

(
|P ∩ {x∗}|

λ
,
|Q ∩ {y∗}|

λ

)
holds whenever (x, y) ∼ Sλ(P,Q). Then provided (MX ,MY) ∈ MUTATION(X ,Y ; [0, q]) where

q < sup
a∈[γ,1]

γ − ζ

α(a, γ/a) · β(a, γ/a)
, (18)

and also

max

{
sup
x ̸=x∗

MX (x)(x∗), sup
y ̸=y∗

MY(y)(y
∗)

}
⩽ ζ/3, (19)

20

the algorithm AS(MX ,MY , λ) is not γ-stable on any G ∈ G.

Proof. Let (MX ,MY) ∈ MUTATION(X ,Y ; [0, q]) and define

qX = sup
x∈X

MX (x)(x) and qY = sup
y∈Y

MY(y)(y). (20)

Note that by Definition 2.2 we have qX qY ⩽ q. Adopting the notation of a given selection and
mutation step in Algorithm 1 (that is, sampling (x, y) ∼ Sλ(Pt, Qt) and then sampling Pt+1(j) ∼
MX (x) and Qt+1(j) ∼ MY), for fixed Pt and Qt we can compute

P(Pt+1(j) = x∗) = P(Pt+1(j) = x∗ | x = x∗)P(x = x∗) + P(Pt+1(j) = x∗ | x ̸= x∗)P(x ̸= x∗)

(20)
⩽ qX · α

(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+ P(Pt+1(j) = x∗ | x ̸= x∗)

⩽ qX · α
(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+ sup

x̸=x∗
MX (x)(x∗)

(19)
⩽ qX · α

(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+

ζ

3
.

Similar calculations apply for Qt+1(j), and so we have for arbitrary j ∈ [λ],

P(Pt+1(j) = x∗) ⩽ qX · α
(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+

ζ

3
,

P(Qt+1(j) = y∗) ⩽ qY · β
(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+

ζ

3
.

(21)

Using (18), let a ∈ [γ, 1] be chosen such that, setting b = γ/a, we have

q <
γ − ζ

α(a, b) · β(a, b)
.

Using that α and β are continuous, let η > 0 and Λ ∈ N be chosen such that

q <
γ − η − 1

Λ − ζ

α(a+ 1
Λ , b+

1
Λ) · β(a+ 1

Λ , b+
1
Λ)

. (22)

Let λ ⩾ Λ, G ∈ G, and consider A := AS(MX ,MY , λ) with initial populations P0 ∈ X λ and
Q0 ∈ Yλ chosen to satisfy |P0| = ⌈aλ⌉ and Q0 = ⌈bλ⌉. Using that ⌈aλ⌉ ⩽ a+ 1

Λ and ⌈bλ⌉ ⩽ b+ 1
Λ

together with the fact that α and β are increasing, it holds for j ̸= k that

P((P1(j), Q1(k)) ∈ S)
(21)
⩽ (qX · α(a+ 1

Λ , b+
1
Λ) +

ζ
3)(qY · β(a+ 1

Λ , b+
1
Λ) +

ζ
3)

⩽ q · α(a+ 1
Λ , b+

1
Λ) · β(a+ 1

Λ , b+
1
Λ) + ζ

(22)
⩽ γ − η − 1

Λ ⩽ γ − η − 1
λ . (23)

Setting S = {(x∗, y∗)}, we may write |(P1 ×Q1) ∩ S| = f((P1(1), Q1(1)), . . . , (P1(λ), Q1(λ)))
where

f((x1, y1), . . . , (xλ, yλ)) =
∑

j,k∈[λ]

1((xj , yk) ∈ S).

Note that modifying the value of (xj , yj) changes the value of f((x1, y1), . . . , (xλ, yλ)) by at most
2λ. We also have

E[|(P1 ×Q1) ∩ S|] =
∑

j,k∈[λ]

P((P1(j), Q1(k)) ∈ S)
(23)
⩽ (γ − η − 1/λ)λ2 + λ = (γ − η)λ2.

Applying Theorem B.1 now gives,

P[T γ
dep(A ;G) = 1] ⩾ P[|(P1 ×Q1) ∩ S| ⩽ γλ2] ⩽ exp

(
− 2η2λ4∑

j∈[λ](2λ)
2

)
= exp

(
− 1

2η
2λ
)
,

and hence A is not γ-stable on G.

21

We are now ready to derive Lemma 3.4 using the more general result.

Proof of Lemma 3.4. First we will derive A1. Using (4), let n0 ∈ N be chosen such that

q < sup
a∈[γ,1]

γ − 3/n0

α(a, γ/a) · β(a, γ/a)
. (24)

Suppose that n ⩾ n0, G ∈ Gn, and (MX ,MY) ∈ UNBIASED(n ; [0, q]), as per the conditions of A1.
In accordance with the characterisation of Lemma 1 of [16], an unbiased mutation can be simulated
by choosing a random number r ∈ {0, 1, . . . , n} and then flipping a uniformly selected subset of
r bits. Thus, when combined with our minor assumption that MX (0n)(1n) ⩽ 1/n, we have that
MX (x)(x′) = MY(x)(x

′) ⩽ 1/n ⩽ 1/n0 holds for every x, x′ ∈ {0, 1}n with x ̸= x′. Therefore,
condition (19) of Lemma B.8 also holds for ζ = 3/n0. Furthermore, the condition (18) of Lemma B.8
also holds for ζ = 3/n0 due to (24). Therefore, Lemma B.8 shows that AS(MX ,MY , λ) is not
γ-stable on any G ∈ Gn, and so A1 holds.

We now turn to proving A2. Let δ > 0 now be chosen such that

q < inf
(a,b)∈[0,

√
γ]2

(1− 2δ)ab

α(a, b) · α(b, a)
. (25)

Note that the assumption in Definition 2.3 that MY = MX implies that qX = qY ⩽
√
q (where

qX and qY are as defined in (20)). Therefore, as the calculations at the beginning of the proof of
Lemma B.8 apply with ζ = 3/n, we can deduce from (21) that for arbitrary j ∈ [λ],

P(Pt+1(j) ∈ A | Ft) ⩽
√
q · α

(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+

1

n
,

P(Qt+1(j) ∈ B | Ft) ⩽
√
q · β

(
|Pt ∩ {x∗}|

λ
,
|Qt ∩ {y∗}|

λ

)
+

1

n
.

(26)

We will examine the random variable

Xt =

{
|(Pt ×Qt) ∩ S| if |Pt ∩A| ⩽ √

γλ and |Qt ∩B| ⩽ √
γλ,

0 otherwise.

Suppose that Xt = s ⩾ ε(n)λ2. Writing |Pt∩{x∗}| = aλ and |Qt∩{y∗}| = bλ, we have a, b ⩽
√
γ

and ab ⩾ ε(n). We have for j ̸= k,

P((Pt+1(j), Qt+1(k)) = (x∗, y∗))
(26)
⩽ (

√
q · α(a, b) + 1

n)(
√
q · α(b, a) + 1

n)

⩽ q · α(a, b) · α(b, a) + 3
n

(25)
⩽ (1− 2δ)ab+ 3

n ,

and for j = k,

P((Pt+1(j), Qt+1(j)) = (x∗, y∗)) ⩽ Kab+ 2
n .

We now bound

∆t(s) : = E[Xt −Xt+1 | Xt = s] ⩾ E[Xt − |(Pt+1 ×Qt+1) ∩ S| | Xt = s]

= abλ2 −
∑

j,k∈[λ]

P((Pt+1(j), Qt+1(k)) ∈ S | Xt = s)

⩾ abλ2 − (1− 2δ)abλ2 − (3/n)λ2 −Kabλ− (2/n)λ

⩾ ((2δ −K/λ)ab− 5/n)λ2 ⩾ (δε(n)− 5/n)λ2

⩾

(
δε(n)

2

)
λ2.

Thus, by applying the additive drift theorem (Theorem B.2), and also noting that X0 ⩽ λ2, we have
for T = inf {t : Xt ⩽ ε(n)λ2},

E[T] ⩽
2

δε(n)
.

22

(We remark that Theorem B.2 is not applied directly to the stochastic process (Xt)
∞
t=0, but rather

to a modified process X̃t := max {Xt − ε(n)λ2, 0}; the fact that E[X̃0] ⩽ λ2 is also used.) By
Markov’s inequality, it therefore holds for any τ(n) ⩾ 1 that

P[T ⩾ τ] ⩽
2

δε(n)τ(n)
.

Next, let Tbad = min {t : max {|Pt ∩ {x∗}|, |Qt ∩ {y∗}|} >
√
γλ}. If |Pt∩{x∗}| = aλ ∈ [0,

√
γλ]

and |Qt ∩ {y∗}| = bλ ∈ [0,
√
γλ], then by recalling that n ⩾ 2/(δ

√
γ),

E[|Pt+1 ∩ {x∗}|] ⩽ (
√
q · α(a, b) + 1

n)λ ⩽ (
√
q · α(√γ,

√
γ) + 1

n)λ

⩽ (
√

(1− 2δ)γ + 1
n)λ ⩽ ((1− δ)

√
γ + 1

n)λ ⩽ (1− δ/2)
√
γλ.

Using a similar calculation for E[|Qt+1 ∩ {y∗}|, applying Theorem B.1 and taking a union bound
over time steps, we now obtain

P[Tbad ⩽ τ(n)] ⩽ 2τ(n) · exp
(
−−2δ2γλ2/4

λ

)
= 2τ(n) · e−δ2γλ/2 ⩽ 2τ(n) · 1

δτ(n)2ε(n)
.

Setting S = {(x∗, y∗)}, we have T = min {T ε(n)
dep (S), Tbad}, and hence

P[T ε(n)
dep (S) ⩾ τ(n)] ⩽ P[T ⩾ τ(n)] + P[Tbad ⩽ τ(n)] ⩽

3

δτ(n)ε(n)
,

as required.

B.5 Proof of Theorem 3.6

While its exact statement is not necessary for the proof of Theorem 3.6, the following is a formalisation
of what it means to be a k-candidate selection operator. The proof of Theorem 3.6 is then given
afterwards.

Definition B.9. A k-candidate selection operator is a selection operator Sλ for which there exists a
function Sλ : X k × Yk ×X λ × Yλ → P(X × Y) satisfying the following two properties.

E1 For all P ′ ∈ X k, Q′ ∈ Yk, P ∈ X λ, and Q ∈ Yλ,

P(x ∈ P ′ ∧ y ∈ Q′) = 1

holds whenever (x, y) ∼ Sλ(P
′, Q′, P,Q).

E2 For all P := (x1, . . . , xλ) ∈ X λ and Q := (y1, . . . , yλ) ∈ Yλ,

1

λ2k

∑
i1,...,ik∈[λ]

∑
j1,...,jk∈[λ]

Sλ((xi1 , . . . , xik), (yj1 , . . . , yjk), P,Q) = Sλ(P,Q).

Proof of Theorem 3.6. Let G ∈ BITSTRINGn ∩ SINGLETONSOLUTION and let (x∗, y∗) be the solu-
tion concept for G. Let λ ∈ N and let P ∈ X λ, Q ∈ Yλ be arbitrary. Write a = |P ∩ {x∗}|/λ and
b = |Q ∩ {y∗}|/λ. Because Sλ is a k-candidate selection operator, if (x, y) ∼ Sλ(P,Q) then the
event x = x∗ can occur only at least one of the k predator candidates is equal to x∗, an event which
occurs with probability 1− (1− a)k. In particular P(x = x∗) ⩽ 1− (1− a)k. More formally, if we
write P = (x1, . . . , xλ) ∈ X λ and Q = (y1, . . . , yλ) ∈ Yλ, and also define I = {i ∈ [λ] : xi ̸= x∗}

23

(so that |I| = (1− a)λ), we have

P(x = x∗) =
∑
y∈Y

Sλ(P,Q)(x, y)

E2
=
∑
y∈Y

1

λ2k

∑
i1,...,ik∈[λ]

∑
j1,...,jk∈[λ]

Sλ((xi1 , . . . , xik), (yi1 , . . . , yik), P,Q)(x, y)

E1
=
∑
y∈Y

1

λ2k

∑
(i1,...,ik)∈[λ]k\Ik

∑
j1,...,jk∈[λ]

Sλ((xi1 , . . . , xik), (yi1 , . . . , yik), P,Q)(x, y)

=
1

λ2k

∑
(i1,...,ik)∈[λ]k\Ik

∑
j1,...,jk∈[λ]

∑
y∈Y

Sλ((xi1 , . . . , xik), (yi1 , . . . , yik), P,Q)(x, y)

⩽
1

λ2k

∑
(i1,...,ik)∈[λ]k\Ik

∑
j1,...,jk∈[λ]

1 =
λk(λk − ((1− a)λ)k

λ2k
= 1− (1− a)k.

Similarly, P(y = y∗) ⩽ 1− (1− b)k. Moreover, the event x = x∗ ∧ y = y∗ can occur only if at least
one of the k predator candidates is equal to x∗ and one of the prey candidates is equal to y∗, which
occurs with probability at most (1− (1− a)k)(1− (1− b)k) ⩽ k2ab. Therefore, the prerequisites
of Lemma 3.4 are satisfied with α(a, b) = 1− (1− a)k, β = 1− (1− b)k, and K = k2. B1 now
follows by applying A1 and verifying that

sup
a∈[γ,1]

γ

(1− (1− a)k)(1− (1− γ/a)k)
=

γ

1− (1− γ)k
.

A2 follows by applying A2 and verifying that

inf
(a,b)∈(0,

√
γ]

ab

(1− (1− a)k)(1− (1− b)k)
⩾ inf

(a,b)∈(0,
√
γ]2

ab

k2ab
=

1

k2
.

B.6 Proof of Theorem 3.7

Proof of Theorem 3.7. We prove each of part of the theorem in turn.

C1: Let G ∈ STRICTNASH and let A × B be the solution concept for G. Recall that f1(x, y) ⩾
f1(x

′, y) and f2(x, y) ⩾ f2(x, y
′) holds for all x ∈ A, x′ /∈ A, y ∈ B, and y′ /∈ B. Let λ ∈ N and

P ∈ X λ, Q ∈ Yλ be arbitrary. Write a = |P ∩A|/λ and b = |Q∩B|/λ. If (x, y) ∼ Sλ(P,Q), then
letting x1, x2 be independent uniform samples from P and y1, y2 be independent uniform samples
from Q, we have

P(x ∈ A) ⩾ P(x1 ∈ A ∧ x2 ∈ A) + 1
2P(x1 ∈ A ∧ y1 ∈ B ∧ x2 /∈ A)

+ P(x1 /∈ A ∧ x2 ∈ A ∧ y2 ∈ B)

= a2 + 3
2ab(1− a) = a(a+ 3

2b(1− a)).

Similarly, P(y ∈ B) ⩾ b(b + 3
2a(1 − b)). Let α : [0, 1]2 → R and β : [0, 1]2 → R be given by

α(a, b) = a(a+ 3
2b(1− a)) and β(a, b) = b(b+ 3

2a(1− b)). C1 now follows from Lemma 3.3 by
verifying that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
= (52

√
γ − 3

2γ)
2,

which can be seen by setting C = 3/2 in Proposition B.3.

C2: Let G ∈ STRICTNASH ∩ SINGLETONSOLUTION and let A×B be the solution concept for G.
Recall that f1(x, y) ⩾ f1(x

′, y) and f2(x, y) ⩾ f2(x, y
′) holds for all x ∈ A, x′ /∈ A, y ∈ B, and

y′ /∈ B. Let λ ∈ N and P ∈ X λ, Q ∈ Yλ be arbitrary. Write a = |P ∩ A|/λ and b = |Q ∩ B|/λ.
If (x, y) ∼ Sλ(P,Q), then letting x1, x2 be independent uniform samples from P and y1, y2 be
independent uniform samples from Q, we have

P(x ∈ A) ⩾ P(x1 ∈ A ∧ x2 ∈ A) + P(x1 ∈ A ∧ y1 ∈ B ∧ x2 /∈ A)

+ P(x1 /∈ A ∧ x2 ∈ A ∧ y2 ∈ B)

= a2 + 2ab(1− a) = a(a+ 2b(1− a)).

24

Similarly, P(y ∈ B) ⩾ b(b+ 2a(1− b)). Let α : [0, 1]2 → [0, 1] and β : [0, 1]2 → [0, 1] be given by
α(a, b) = a(a+ 2b(1− a)) and β(a, b) = b(b+ 2a(1− b)). C2.1 now follows from Lemma 3.3 by
verifying that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
= (3

√
γ − 2γ)−2, (27)

which can be seen by setting C = 2 in Proposition B.3. Next, let Gn =
({0, 1}n, {0, 1}n, f1, f2, (1n,1n)), where f1 and f2 are given by

f1(x, y) =


0 if x ̸= 1n and y = 1n,
1 if x = 1n and y ̸= 1n,
2 otherwise,

f2(x, y) =


1 if x ̸= 1n and y = 1n,
0 if x = 1n and y ̸= 1n,
2 otherwise,

and label A = B = {1n}. Let λ ∈ N and P ∈ X λ, Q ∈ Yλ be arbitrary. Write a = |P ∩A|/λ and
b = |Q ∩B|/λ. If (x, y) ∼ Sλ(P,Q), then letting x1, x2 be independent uniform samples from P
and y1, y2 be independent uniform samples from Q, we have

P(x ∈ A) = P(x1 ∈ A ∧ x2 ∈ A) + P(x1 ∈ A ∧ y1 ∈ B ∧ x2 /∈ A)

+ P(x1 /∈ A ∧ x2 ∈ A ∧ y2 ∈ B)

= a2 + 2ab(1− a) = a(a+ 2b(1− a)).

Similarly,
P(y ∈ B) = b(b+ 2a(1− b)).

Using also the fact that Sλ is a 2-candidate selection operator, the prerequisites of Lemma 3.4 are
satisfied with α(a, b) = a(a+ 2b(1− a)), β(a, b) = b(b+ 2a(1− b)), and K = 4 (this is covered
in detail in the proof of Theorem 3.6 provided in Appendix B.5). C2.2 now follows by applying A1
using (27). Because K < ∞ and α(a, b) = β(b, a), in order to additionally deduce C2.3 from A2,
we only need to prove that for all γ ∈ (0, 9/16],

inf
(a,b)∈(0,

√
γ]2

ab

α(a, b) · α(b, a)
⩾ (3

√
γ − 2γ)−2.

This is confirmed by Proposition B.4.

C3: Let G ∈ STRICTNASH ∩ SINGLETONSOLUTION ∩ ZEROSUM have payoff function f and
solution concept (x∗, y∗). Let λ ∈ N and P ∈ X λ and Q ∈ Yλ be arbitrary. Write a = |P ∩{x∗}|/λ
and b = |Q∩{y∗}|/λ. Moreover, let r = (1− a)λ and s = (1− b)λ, and note that by reordering the
elements of P and Q if necessary, we may assume that P (j) ̸= x∗ whenever j ∈ [r] and Q(k) ̸= y∗

whenever k ∈ [s]. Given j ∈ [r] we will write

pj =
|{k ∈ [s] : f(P (j), Q(k)) < f(x∗, Q(k))}|

s
,

and given k ∈ [s] we will write

qk =
|{j ∈ [r] : f(P (j), Q(k)) < f(P (j), y∗)}|

r
,

Note that 1
r

∑
j∈[r] pj is the proportion of pairs (x, y) ∈ (P \ {x∗}) × (Q \ {y∗}) satisfying

f(x, y) < f(x∗, y), and that 1
s

∑
k∈[s] qk is the proportion of pairs (x, y) ∈ (P \ {x∗})× (Q \ {y∗})

satisfying f(x, y) > f(x, y∗). Because f(x, y∗) > f(x∗, y∗) > f(x, y∗) holds for any (x, y) ∈
(P \ {x∗})× (Q \ {y∗}), all such pairs satisfy at least one of these conditions, and hence

1

r

∑
j∈[r]

pj +
1

s

∑
k∈[s]

qk ⩾ 1. (28)

25

If (x, y) ∼ Sλ(P,Q), then letting x1, x2 be independent uniform samples from P and y1, y2 be
independent uniform samples from Q it is not difficult to see that

P(x ∈ A | x1 ∈ A ∧ x2 /∈ A ∧ y1 ∈ B ∧ y2 ∈ B) = 1,

P(x ∈ A | x1 ∈ A ∧ x2 /∈ A ∧ y1 ∈ B ∧ y2 /∈ B) = 1,

P(x ∈ A | x1 ∈ A ∧ x2 /∈ A ∧ y1 /∈ B ∧ y2 ∈ B) ⩾ 0.

and

P(x ∈ A | x1 /∈ A ∧ x2 ∈ A ∧ y1 ∈ B ∧ y2 ∈ B) = 1,

P(x ∈ A | x1 /∈ A ∧ x2 ∈ A ∧ y1 ∈ B ∧ y2 /∈ B) = 1,

P(x ∈ A | x1 /∈ A ∧ x2 ∈ A ∧ y1 /∈ B ∧ y2 ∈ B) = 1.

There are two remaining conditioning cases that require more care: E1 := x1 ∈ A ∧ x2 /∈
A ∧ y1 /∈ B ∧ y2 /∈ B and E2 := x1 /∈ A ∧ x2 ∈ A ∧ y1 /∈ B ∧ y2 /∈ B. To examine
these, write Cj = {k ∈ [s] : f(P (j), Q(k)) < f(x∗, Q(k))} so that pj = |Cj |/r, and write
Q(Cj) = {Q(k) : k ∈ Cj}. We now have

P(x ∈ A | E1) ⩾
1

r

∑
j∈[r]

P(y1 ∈ Q(Cj) ∧ y2 ∈ Q(Cj) ∧ f(P (j), y1) ⩽ f(P (j), y2) | E1)

⩾
1

r

∑
j∈[r]

1

2
P(y1 ∈ Q(Cj) ∧ y2 ∈ Q(Cj) | E1) =

1

r

∑
j∈[r]

1

2
p2j .

Additionally,

P(x ∈ A | E2) ⩾ P(f(x1, y1) < f(x∗, y1) | E2) ⩾
1

r

∑
j∈[r]

P(y1 ∈ Q(Cj) | E2) =
1

r

∑
j∈[r]

pj

Combining all of these observations using the law of total probability,

P(x ∈ A) ⩾ a2 + a(1− a)

b2 + 3b(1− b) + (1− b)2
1

r

∑
j∈[r]

1

2
p2j + b2 + (1− b)2

1

r

∑
j∈[r]

pj


= a2 + a(1− a)

(
3b− b2 + (1− b)2 1

r

∑
j∈[r](

1
2p

2
j + pj)

)
⩾ a(a+ (1− a)

(
3b− b2 + (1− b)2

(
1
2

(
1
r

∑
j∈[r] pj

)2
+ 1

r

∑
j∈[r] pj

))
,

where in the final line we have used Jensen’s inequality. A similar argument for y yields.

P(y ∈ B) ⩾ b(b+ (1− b)

(
3a− a2 + (1− a)2

(
1
2

(
1
s

∑
k∈[s] qk

)2
+ 1

s

∑
k∈[s] qk

))
.

Let {(ασ, βσ)}σ∈[0,1] be the family of pairs of increasing functions ασ : [0, 1]2 → [0, 1] and
βσ : [0, 1]2 → [0, 1] given by

ασ(a, b) = a(a+ (1− a)(3b− b2 + (1− b)2σ(1 + 1
2σ))),

βσ(a, b) = b(b+ (1− b)(3a− a2 + (1− a)2(1− σ)(1 + 1
2 (1− σ)))).

It now holds (in part due to (28)) that for all populations P ∈ X λ and Q ∈ Yλ there exists σ ∈ [0, 1]
such that

P(x ∈ A) ⩾ ασ

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
P(y ∈ B) ⩾ βσ

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
holds whenever (x, y) ∼ Sλ(P,Q). The result now follows from Lemma B.7.

26

B.7 Proof of Theorem 3.8

The following simple lemma will be useful in the proof of Theorem 3.8 for identifying conditions
for TSCoEA to select parents on the solution concept of a game in STRICTNASH ∩ ZEROSUM. The
proof of Theorem 3.8 is then given afterwards.

Lemma B.10. Let G ∈ STRICTNASH ∩ ZEROSUM have payoff function f and solution con-
cept A × B. Suppose X ⊆ X and Y ⊆ Y are such that X ∩ A ̸= ∅ and Y ∩ B ̸= ∅. Then
P(argmaxx∈X miny∈Y f(x, y) ∈ A) = 1 and P(argmaxy∈Y minx∈x(−f(x, y)) ∈ B) = 1.

Proof. Let x∗ ∈ X∩A be arbitrary. Using that G ∈ STRICTNASH∩ZEROSUM, we have f(x∗, y) <
f(x∗, y′) for all y ∈ B and y′ /∈ B. In particular, there is some y∗ ∈ Y ∩B such that

min
y∈Y

f(x∗, y) = f(x∗, y∗) (29)

Using again that G ∈ STRICTNASH ∩ ZEROSUM, we have

f(x, y∗) > f(x′, y∗) for all x ∈ A and x′ /∈ A. (30)

Thus, for any x′ ∈ X \A,

min
y∈Y

f(x′, y) ⩽ f(x′, y∗)
(30)
< f(x∗, y∗)

(29)
= min

y∈Y
f(x∗, y),

and hence we have P(argmaxx∈X miny∈Y f(x, y) ∈ A) = 1. The corresponding proof that
P(argmaxy∈Y minx∈x(−f(x, y)) ∈ B) = 1 is similar.

Proof of Theorem 3.8. We prove each of part of the theorem in turn.

D1: Let G ∈ STRICTNASH∩ZEROSUM and let A×B be the solution concept for G. Let λ ∈ N and
P ∈ X λ and Q ∈ Yλ be arbitrary. Write a = |P ∩A|/λ and b = |Q ∩B|/λ. If (x, y) ∼ Sλ(P,Q),
then letting x1, . . . , xk be independent uniform samples from P and y1, . . . , yℓ be independent
uniform samples from Q we have (using Lemma B.10)

P(x ∈ A) ⩾ P({x1, . . . , xk} ∩A ̸= ∅ ∧ {y1, . . . , yℓ} ∩B ̸= ∅)
= (1− (1− a)k)(1− (1− b)ℓ).

Similarly, P(y ∈ B) ⩾ (1 − (1 − b)k)(1 − (1 − a)ℓ). Let α : [0, 1]2 → R and β : [0, 1]2 → R be
given by α(a, b) = (1− (1− a)k)(1− (1− b)ℓ) and β(a, b) = (1− (1− b)k)(1− (1− a)ℓ). D1
now follows from Lemma 3.3 by verifying that

sup
a∈[γ,1]

γ

α(a, γ/a) · β(a, γ/a)
=

γ

(1− (1− γ)k)(1− (1− γ)ℓ)
,

which is confirmed by Proposition B.5.

D2.1: Let G ∈ STRICTNASH ∩ ZEROSUM have payoff function f and solution concept A×B. Let
us write

fX = min
x∈A

min
y/∈B

f(x, y) fY = max
y∈B

max
x/∈A

f(x, y). (31)

Note that if (x∗, y) ∈ A× (Y \B) and (x, y∗) ∈ (X \A)×B, then because G ∈ STRICTNASH ∩
ZEROSUM,

f(x, y∗) < f(x∗, y∗) < f(x∗, y).

Therefore, fX > fY .

Let λ ∈ N and P ∈ X λ and Q ∈ Yλ be arbitrary. Write a = |P ∩ A|/λ and b = |Q ∩ B|/λ.
Moreover, let r = (1 − a)λ and s = (1 − b)λ, and note that by reordering the elements of P and
Q if necessary, we may assume that P (j) /∈ A whenever j ∈ [r] and Q(k) /∈ B whenever k ∈ [s].
Given j ∈ [r] we will write

pj =
|{k ∈ [s] : f(P (j), Q(k)) ⩾ fX }|

s
,

27

and given k ∈ [s] we will write

qk =
|{j ∈ [r] : f(P (j), Q(k)) ⩽ fY}|

r
,

Note that 1
r

∑
j∈[r] pj is the proportion of pairs (x, y) ∈ (P \A)× (Q \B) satisfying f(x, y) ⩾ fX ,

and that 1
s

∑
k∈[s] qk is the proportion of pairs (x, y) ∈ (P \A)× (Q \B) satisfying f(x, y) ⩽ fY .

Because fX > fY , these are disjoint sets, and hence

1

r

∑
j∈[r]

pj +
1

s

∑
k∈[s]

qk ⩽ 1. (32)

If (x, y) ∼ Sλ(P,Q), then letting x1, x2 be independent uniform samples from P and y1, . . . , yℓ be
independent uniform samples from Q we have

P(x ∈ A) = P(x1 ∈ A ∧ x2 ∈ A) + P(x ∈ A | x1 ∈ A ∧ x2 /∈ A) · P(x1 ∈ A ∧ x2 /∈ A)

+ P(x ∈ A | x1 /∈ A ∧ x2 ∈ A) · P(x1 /∈ A ∧ x2 ∈ A)

= a2 + a(1− a) · (P(x ∈ A | x1 ∈ A ∧ x2 /∈ A) + P(x ∈ A | x1 /∈ A ∧ x2 ∈ A))

= a2 + 2a(1− a) · P(x ∈ A | x1 ∈ A ∧ x2 /∈ A).

Let E1 be the event x1 ∈ A ∧ x2 /∈ A and let E2 be the event y1, . . . , yℓ /∈ B. Because E1 and E2

are independent events, we have P(E2 | E1) = P(E2) = (1− b)ℓ and hence

P(x ∈ A | E1) = P(x ∈ A | E1 ∧ E2) · P(E2 | E1) + P(x ∈ A | E1 ∧ E2) · P(E2 | E1)

= P(x ∈ A | E1 ∧ E2) · (1− b)ℓ + P(x ∈ A ∧ E1 ∧ E2) · (1− (1− b)ℓ).

Using Lemma B.10,

P(x ∈ A | E1 ∧ E2) = P(x ∈ A | x1 ∈ A ∧ x2 /∈ A ∧ {y1, . . . , yℓ} ∩B ̸= ∅) = 1.

Additionally,

P(x /∈ A | E1 ∧ E2) = P(x /∈ A | x1 ∈ A ∧ x2 /∈ A ∧ y1, . . . , yℓ /∈ B)

⩽ P(min
i∈[ℓ]

f(x2, yi) ⩾ min
i∈[ℓ]

f(x1, yi) | x1 ∈ A ∧ x2 /∈ A ∧ y1, . . . yℓ /∈ B)

(31)
⩽ P(min

i∈[ℓ]
f(x2, yi) ⩾ fX | x1 ∈ A ∧ x2 /∈ A ∧ y1, . . . yℓ /∈ B)

= P(min
i∈[ℓ]

f(x2, yi) ⩾ fX | x2 /∈ A ∧ y1, . . . yℓ /∈ B)

=
1

r

∑
j∈[r]

P(min
i∈[ℓ]

f(x2, yi) ⩾ fX | x2 = P (j) ∧ y1, . . . yℓ /∈ B)

=
1

r

∑
j∈[r]

P(min
i∈[ℓ]

f(P (j), yi) ⩾ fX | y1, . . . yℓ /∈ B)

=
1

r

∑
j∈[r]

pℓj ⩽
1

r

∑
j∈[r]

pj .

Combining these observations, we have

P(x ∈ A) ⩾ a2 + 2a(1− a) · [(1− b)ℓ · (1− 1
r

∑
j∈[r] pj) + (1− (1− b)ℓ)]

= a2 + 2a(1− a)(1− (1− b)ℓ · 1
r

∑
j∈[r] pj)

= a(a+ 2(1− a)(1− (1− b)ℓ · 1
r

∑
j∈[r] pj))

= a(2− a− 2(1− a)(1− b)ℓ · 1
r

∑
j∈[r] pj)

A similar argument for y yields

P(y ∈ B) ⩾ b(2− b− 2(1− b)(1− a)ℓ · 1
s

∑
k∈[s] qk).

28

Let {(ασ, βσ)}σ∈[0,1] be the family of pairs of increasing functions ασ : [0, 1]2 → [0, 1] and
βσ : [0, 1]2 → [0, 1] given by

ασ(a, b) = a(2− a− 2(1− a)(1− b)ℓσ),

βσ(a, b) = b(2− b− 2(1− b)(1− a)ℓ(1− σ)).

It now holds (in part due to (32)) that for all populations P ∈ X λ and Q ∈ Yλ there exists σ ∈ [0, 1]
such that

P(x ∈ A) ⩾ ασ

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
P(y ∈ B) ⩾ βσ

(
|P ∩A|

λ
,
|Q ∩B|

λ

)
holds whenever (x, y) ∼ Sλ(P,Q). Thus, the result now follows from Lemma B.7 by using
Proposition B.6 to establish that

sup
a∈[γ,1]

sup
σ∈[0,1]

γ

ασ(a, γ/a) · βσ(a, γ/a)
= sup

a∈[γ,1]

1

(2− a)(2− 2(1− a)ℓ(1− γ/a)− γ/a)
.

D2.2: Let Gn = ({0, 1}n, {0, 1}n, f,−f, (1n,1n)), where f is given by

f(x, y) =


0 if x = 1n and y = 0n,
−1 if x ̸= 1n and y = 1n,
1 if x = 1n and y ̸= 1n,
−2 otherwise,

label A = B = {1n}. Let λ ∈ N and P ∈ X λ, Q ∈ Yλ be arbitrary. Write a = |P ∩ A|/λ and
b = |Q ∩B|/λ. If (x, y) ∼ Sλ(P,Q), then letting x1, x2 be independent uniform samples from P
and y1, y2 be independent uniform samples from Q, we have

P(x ∈ A) = P(x1 ∈ A ∨ x2 ∈ A) = 2a− a2 = a(2− a).

Additionally,

P(y ∈ B) = P(y1 ∈ B ∧ y2 ∈ B) + P(y1 ∈ B ∧ y2 /∈ B ∧ {x1, x2} ∩A ̸= ∅)
+ P(y1 /∈ B ∧ y2 ∈ B ∧ {x1, x2} ∩A ̸= ∅)

= b2 + 2b(1− b)(1− (1− a)2) = b(b+ 2(1− b)(1− (1− a)2))

= b(2− 2(1− a)2(1− b)− b).

Using also the fact that Sλ is a 2-candidate selection operator, the prerequisites of Lemma 3.4 are
now satisfied with α(a, b) = a(2 − a), β(a, b) = b(2 − 2(1 − a)2(1 − b) − b), and K = 4 (this
is covered in detail in the proof of Theorem 3.6 provided in Appendix B.5). D2.2 now follows by
applying A1.

B.8 Proof of Theorem 5.1

Proof of Theorem 5.1. Using that A is γ-stable on G, let δ > 0 be a constant such that, for all
populations P ∈ X λ and Q ∈ Yλ satisfying |(P ×Q) ∩ {(x∗, y∗)}| ⩾ γλ2, it holds that

P[T γ
dep(A ;G) ⩽ e2δλ | (P0, Q0) = (P,Q)] ⩽ e−2δλ. (33)

Set a = ⌊e2δλ⌋. Given t ∈ N, let Gt be the event that (x∗, y∗) ∈ Pt ×Qt. For i ∈ N, let let us define
the time interval Ii = [ia] \ [(i− 1)a], so that |Ii| = a. Define

Ti = min {a+ 1} ∪ {t ∈ [a] : G(i−1)a+t holds}.

From (9), we have E[Ti] ⩽ τ(λ).

29

Let Ei denote the event that (xt, yt) = (x∗, y∗) for all but at most eδλ values of t ∈ Ii. By (33) the
probability that Gt holds for all (i − 1)a + Ti ⩽ t ⩽ ia is at least (1 − e−2δλ). Therefore, for all
populations P ∈ X λ and Q ∈ Yλ,

P(Ei | (P(i−1)a, Q(i−1)a) = (P,Q)) ⩾ P(Ti ⩽ eδλ) · (1− e−2δλ)

⩾ (1− e−δλE[Ti])(1− e−2δλ) ⩾ 1− 2τ(λ)e−δλ. (34)

Let X1, X2, . . . be a sequence of independent identically distributed random variables with

P(Xi = a) = 2τ(λ)e−δλ,

P(Xi = eδλ) = 1− 2τ(λ)e−δλ.

For i ∈ N, let Yi = |{t ∈ Ii : Gt does not hold}|. Using (34), it holds for all i ∈ N and
y1, . . . , yi−1 ∈ {0} ∪ [a] that

P(Yi ⩽ eδλ | Y1 = y1 ∧ . . . ∧ Yi−1 = yi−1) ⩾ 1− 2τ(λ)e−δλ.

In particular, if X = lim supk→∞
1
k

∑
i∈[k] Xi and Y = lim supk→∞

1
k

∑
i∈[k] Yi, then

X ≽ Y (35)

We now turn our attention to (8). Writing

F := max
(x,y)∈X×Y

f(x, y)− min
(x,y)∈X×Y

f(x, y),

We first note that for any x ∈ X and y ∈ Y ,

f(x, yt)− f(xt, y) ⩽ F (1− 1(Gt)). (36)

Thus for any T ,

1

T
max
x∈X

min
y∈Y

(
T∑

t=1

(f(x, yt)− f(xt, y))

)
⩽

F

T

T∑
t=1

(1− 1(Gt)) ⩽
aF

T
+

F

T

a⌊T/a⌋∑
t=1

(1− 1(Gt))

⩽
aF

T
+

F

a⌊T/a⌋

a⌊T/a⌋∑
t=1

(1− 1(Gt))

=
aF

T
+

F

a⌊T/a⌋

⌊T/a⌋∑
i=1

Yi,

and hence,

lim sup
T→∞

1

T
max
x∈X

min
y∈Y

(
T∑

t=1

(f(x, yt)− f(xt, y))

)
⩽

F

a
lim sup
k→∞

1

k

k∑
i=1

Yi =
F

a
Y . (37)

Additionally, by the strong law of large numbers,

P(X ⩽ E[X1]) = 1. (38)

Next, note that there is a constant c (depending on F and δ) such that

F

a
E[X1] =

F

a
(2τ(λ)e−δλa+ eδλ − 2τ(λ)) ⩾ τ(λ) · 2F (e−δλ − 1/a)

= τ(λ) · 2F (e−δλ − 1/⌊e2δλ⌋) ⩾ τ(λ)e−cλ. (39)

We now have

P

[
lim sup
T→∞

1

T
max
x∈X

min
y∈Y

(
T∑

t=1

(f(x, yt)− f(xt, y))

)
⩽ τ(λ)e−cλ

]
(37)
⩾ P

[
F

a
Y ⩽ τ(λ)e−cλ

]
(35)
⩾ P

[
F

a
X ⩽ τ(λ)e−cλ

]
(39)
⩾ P

[
F

a
X ⩽

F

a
E[X1]

]
= P(X ⩽ E[X1])

(38)
= 1

Thus, A is τ(λ)e−cλ-Hannan consistent, as required.

30

C Experimental details

The runs used to produce the data represented in Figure 2 were executed on an internal cluster
provisioned with 1344 CPU cores and 6TB of RAM and had a wall-clock time of 36 hours, resulting
in a maximum total provision of 48384 core-hours. A Python implementation of the experiment is
publicly available at https://github.com/asbenford/stability-analysis-of-coeas.

We now provide complete definitions for the three problems considered in the empirical analysis of
Section 4. As all three problems are zero-sum games use the same action spaces X = Y = {0, 1}n,
it suffices in each case to specify the payoff function f for player 1 (as we then take f1 = f and
f2 = −f). In all cases, the problems where instantiated with n = 50. In the subsequent definitions
we write |x| for the number of 1-bits in x ∈ {0, 1}n (that is, |x| =

∑
i∈[n] x(i)).

C.1 Bilinear

Let a, b ∈ {0, . . . , n}. Given x ∈ {0, 1}n, write LO(x) for the length of a maximal prefix of 1-bits
of x and write TZ(x) for the length of a maximal suffix of 0-bits of x. Formally,

LO(x) =
∑
i∈[n]

∏
j∈[i]

x(i),

TZ(x) =
∑
i∈[n]

∏
j∈[i]

(1− x(n− i+ 1)).

Additionally, write h(x) = LO(x) + TZ(x) and note that 0 ⩽ h(x) ⩽ n. The payoff function for
Bilinear is now given as follows.

f(x, y) =


1
2 + h(x)− h(y) if |x| = a and |y| ≠ b,
− 1

2 + h(x)− h(y) if |x| ≠ a and |y| = b,
(|x| − a)(|y| − b) + h(x)− h(y) otherwise.

The strict Nash equilibrium is given by x∗ = 1a0n−a and y∗ = 1b0n−b. Note that this payoff
function is isomorphic to the problem definitions appearing in [40, 31], except for the addition of the
± 1

2 (to ensure the Nash equilibrium is strict) and h(x)− h(y) (to ensure that the Nash equilibrium is
unique). All runs were executed using problem parameters a = 35 and b = 10.

C.2 PlantedBilinear

PlantedBilinear is a randomly instantiated zero-sum game. First, u and v are sampled uniformly
at random from {0, 1}n, a random n× n matrix A is instantiated by generating each entry uniformly
at random from [0, 1]. The payoff function is then defined as

f(x, y) =


ε if x = u and y ̸= v,
−ε if x ̸= u and y = v,
2xTAy − xTAv − uTAy otherwise.

Where ε is chosen to satisfy ε < |{2xTAy−xTAv−uTAy : x ̸= u and y ̸= v}| (we used min_float
from Ocaml’s native Float module). The strict Nash equilibrium is given by x∗ = u and y∗ = v.
PlantedBilinear generalises Bilinear-type problem to forms more akin to that provided in [63].
All runs were executed using the same random seed to generate u, v, and A, so that all problem
instances were identical.

31

https://github.com/asbenford/stability-analysis-of-coeas

C.3 MBJR_2024

Introduced in [47], we adopt the zero-sum formulation of [34] after projecting {0, 1}n onto {0, . . . , n}
using the function | · |. Let ∆min,∆1 ∈ R. The payoff function for MBJR_2024 is given as follows.

f(x, y) =



0 if |x| = n and |y| = n,
2∆min if |x| = n and |y| = n− 1,
−2∆min if |x| = n− 1 and |y| = n,
2∆1 if |x| = n and |y| < n− 1,
−2∆1 if |x| < n− 1 and |y| = n,
0 if |x| = |y| < n,
1 if |y| < |x| < n,
−1 if |x| < |y| < n.

The strict Nash equilibrium is given by x∗ = y∗ = 1n. Our runs were executed using ∆min = 0.001
and ∆1 = 0.1.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim the development of a theoretical technique
for deriving upper and lower bounds on the threshold between stability and instability
for population-based CoEAs with unary variation, as well as a number of applications
of this tool to various algorithms and problem classes, comparison to empirical analysis,
and a proven link to regret analysis. The promised tool is developed in Section 3.1 (with
corresponding proofs in Appendices B.3 and B.4), the subsequent applications are given in
Section 3.2 (with corresponding proofs throughout Appendix B), the empirical analysis is
provided in Section 4, and the corresponding regret analysis is covered in Section 5 (with
corresponding proof in Appendix B.8).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The main limitations arise from the gaps between the upper and lower bounds
on stability, our rigorous understand of to what extent such gaps are necessary, and the
fact that only one class of solution concept (strict Nash equilibrium) is considered in detail.
These are discussed in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

33

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All results have all assumptions stated precisely with respect to the definitions
set out in Section 2. All proofs are complete and contained in Appendix B. Results upon
which our proofs are dependent are stated and referenced in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithms examined empirically in Section 4 are simple and plainly stated
in Algorithms 2 and 3 (alongside Algorithm 1). Methodological aspects including mutation
operator, population size, number of runs, and the procedure followed to generate Figure 2
are all provided in Section 4 and complete descriptions of the problem instances can be
found in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

34

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Python code that reproduces the empirical analysis in the paper is publicly
available at https://github.com/asbenford/stability-analysis-of-coeas.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full specification of mutation operator, population size, number of runs, and
statistical aspects of the procedure followed to generate Figure 2 are provided in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

35

https://github.com/asbenford/stability-analysis-of-coeas
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: As all of the claims made in this paper are theoretical, the aim of the empirical
analysis is to provide broad intuition about behaviour in circumstances where gaps between
theoretical bounds make no specific prediction, rather than to scientifically test a claim or
hypothesis. As the contributions of the paper were claims supported by rigorous proof rather
than experimental data, statistical tests were not appropriate.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The relevant details for the computational resources used to produce Figure 2
are provided in Appendix C and signposted in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research has been conducted fully in accordance with the NeurIPS Code
of Ethics.

36

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1 we consider how theoretical guarantees can instill greater con-
fidence in the output of CoEAs. We also explain how the quantitive nature of the main
theoretical contribution makes it a valuable tool for practitioners applying such algorithms.
No foreseeable negative societal impacts arise beyond anything applicable to all theoretical
works advancing understanding of CoEAs.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

37

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

38

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Notation

	Setting
	Stability analysis
	General tools
	Applications

	Empirical analysis of stability
	Regret analysis
	Limitations and further directions
	On the strength of Definition 3.2
	Deferred proofs
	Preliminary results
	Basic calculations
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8
	Proof of Theorem 5.1

	Experimental details
	Bilinear
	PlantedBilinear
	MBJR_2024

