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Abstract

Semantic alignment methods attempt to establish a link between human-level con-
cepts and the units of an artificial neural network. Current approaches evaluate the
emergence of such meaningful neurons by analyzing the effect of semantically an-
notated inputs on their activations. In doing so, they often understate two aspects
that characterize neural representations and semantic concepts, namely the dis-
tributed nature of the former and the existence of semantic relationships binding
the latter. In this work, we explicitly tackle this interrelatedness, both at a neu-
ral and a conceptual level, by providing a novel semantic alignment framework
that builds on aligning a structured ontology with the distributed neural represen-
tations. The ontology introduces semantic relations between concepts, enabling
the clustering of topologically related units into semantically rich and meaning-
ful neural circuits. Our empirical analysis on notable convolutional models for
image classification discusses the emergence of such neural circuits. It also vali-
dates their meaningfulness by studying how the selected units are pivotal for the
accuracy of classes that are semantically related to the aligned concepts. We also
contribute by releasing the code implementing our alignment framework.

1 Introduction

Neural representations offer limited insights in terms of human-level interpretation. Overcoming
this limitation is one of the most compelling challenges in deep learning research and is crucial
when considering artificial neural networks deployed for safety- and privacy-critical tasks. Such
contexts require guarantees over the behavior of a neural model, which are unachievable without
a solid understanding of its inner workings. Because of the opacity of their internal behavior, the
literature tends to define neural networks as black boxes (Guidotti et al., 2018). Nonetheless, recent
research highlights how, in particular domains, some of the components of a neural network might
instead be characterized by clear-cutting intepretations (Olah et al., 2020; Goh et al., 2021). For
instance, hidden units that respond to human-level concepts autonomously emerge in various large
Convolutional Neural Networks (CNNs) for image classification (Bau et al., 2017). The conditions
under which this phenomenon arises still constitute an open question. For this reason, both theoret-
ical research and practical interpretability approaches require sound methods that can reliably and
accurately identify associations between high-level concepts and neural units.

In this context, the present work introduces an approach for the semantic alignment of artificial neu-
rons with visual concepts, applied to CNN architectures and computer vision scenarios. Early works
(Bau et al., 2017; 2019) considered human-level concepts as independent entities and tested their as-
sociation to neural units without considering a structured representation of the semantic knowledge.
Our approach, instead, regards concepts as entities of a computational ontology thus acknowledging
the existence of semantic relations binding them. Figure 1 provides an intuitive depiction of our ap-
proach by hinting that an image dataset X, when pixel-wise annotated with an ontology O, enables
identifying meaningful subgraphs within a set of neural units U. We refer to these subgraphs as
circuits, following the term “neural circuit” and its widespread use in neuroscience.

The contribution of our approach is threefold. Firstly, we improve the expressiveness of the align-
ment by including a specialization semantic relation. This relation produces a more precise charac-
terization of visual concepts and a loosening of the requirement for accurate semantic labeling of
the pixels. For instance, if an artificial neuron responds to the human notion of “feline”, the frame-
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Figure 1: Overview of the proposed methodology. A set of neural units U is semantically aligned
with an ontology O through a pixel-level annotated dataset X, whose labels are in a two-way rela-
tionship with the ontology concepts C. The relations S enable the retrieval of subgraphs composed
of architecturally connected and semantically related units. Different colors stand for different visual
concepts, while grey units account for semantically unaligned neurons.

work can propagate the partial alignment with the concepts of “cat” or “tiger” without the need for
explicit “feline” annotations. Section 3.1 shows how we can align neural units with higher-level
concepts via ontological information and without additional annotations. Secondly, we provide a
probabilistic formulation of the interaction between visual concepts and neural activations. The
model is used to define a novel measure of semantic alignment that correctly quantifies polyseman-
tic neurons. Since being polysemantic is not an intrinsic characteristic of artificial neurons but the
result of the concepts used to qualify them, this requirement is fundamental in our context (Sec-
tion 3.2). The last contribution leverages the alignment of neural units with multiple concepts to
propose a circuits identification algorithm. This algorithm produces meaningful subgraphs by ex-
ploiting semantic relations between aligned concepts. These subgraphs offer new insights into the
content of distributed neural representations and provide a novel instrument for network inspection
and interpretation (Section 3.3).

We validate our approach on the annotated dataset Broden against the state-of-the-art Network Dis-
section method (Bau et al., 2017) and by considering several renowned CNN architectures for im-
age classification. As a side contribution of our empirical validation, we extend the original Broden
dataset by associating its concepts with the WordNet ontology (Miller, 1995; Miller & Hristea,
2006). We publicly release this extension within the supplementary materials. While the main dis-
cussion focuses on the alignment with the Broden dataset, we also experimentally estimated the
alignment with ImageNet (Deng et al., 2009), whose results we report in Appendix B. The empiri-
cal results show that our semantic alignment method yields to the emergence of meaningful neural
circuits that are composed of units fundamental to predict semantically related visual categories.

2 RelatedWorks

Zhou et al. (2015) are among the first to highlight the emergence of object detectors within hid-
den units of CNNs trained to perform scene classification on the Places dataset (Zhou et al., 2014).
Their work manually annotated such detectors by visualizing manipulated examples that maximized
units activations. The Circuits framework approached the problem similarly by employing feature
visualization techniques (Olah et al., 2017) to manually assign specific roles to individual neurons,
but further highlighting their contribution to the fulfillment of more complex tasks throughout the
network (Olah et al., 2020). Bau et al. (2017) introduced Network Dissection to automatically ana-
lyze neural activations and identify meaningful neurons in CNNs trained on the Places-365 dataset
(Zhou et al., 2017). Their work introduced a pixel-level annotated image dataset called Broden
marking portrayed objects and patterns. Zhou et al. (2018) studied the role of semantically aligned
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units by measuring the accuracy drop when removing units aligned to a given concept. On top of
Network Dissection, Mu & Andreas (2020) discussed the consequences of analyzing compositions
of visual concepts by applying logical operations to the annotations. Despite the different method-
ological approaches, the works discussed above analyze neural models by considering single units
as meaningful artifacts as in localist networks (Page, 2000).

In contrast to our approach, other techniques aim to fulfill concept-based analysis of neural ac-
tivations without restraining meaningful information to single neurons. Firstly, Fong & Vedaldi
(2017) expanded Network Dissection with linear combinations of hidden neurons in CNNs to iden-
tify distributed concept detectors. Similarly, Kim et al. (2018) defined concept activation vectors
(CAVs) as linear classifiers over the activations of an hidden layer, to identify the direction of arbi-
trary meaningful visual concepts and consequently estimate their importance for specific labels in a
classification context. On top of CAVs, both Ghorbani et al. (2019) and Yeh et al. (2020) provided
different techniques to automatically cluster visual concepts without human supervision, nonetheless
practical applications require human intervention to label such concepts. While sharing the interest
in concept-based analysis, our approach focuses on single hidden neurons to initially estimate their
semantic role and eventually cluster them across different layers.

Finally, our approach might be understood in terms of ontology matching, i.e. the task of meaning-
fully aligning different ontologies to reduce the gap between different overlapping representations
(Otero-Cerdeira et al., 2015). Our work can be associated with extensional based techniques, where
the semantic distance between concepts from two different ontologies is estimated according to a
measure of the overlapping of their extensions (Euzenat & Shvaiko, 2013a). In comparison, our ap-
proach exploits the portrayal of visual concepts to mediate their extensions and thus to estimate the
difference between an explicit ontology and concepts implicitly expressed by individual neurons.

3 Ontology-Driven Semantic Alignment

Given a pre-trained CNN architecture for computer vision, our framework assigns structured seman-
tic roles to a subset U of its neural units. The assignment depends on the estimate of the semantic
alignment between each artificial neuron and a set of visual concepts C. The alignment is estimated
by analyzing neural activations over a pixel-level annotated image dataset X. In practice, for each
example image x ∈ X and concept c ∈ C, there exists a binary mask Lc(x), known as the concept
mask. A concept mask Lc(x) has the same shape of the example image x and marks the locations
portraying the visual concept c. Therefore, we are able to match the concept masks with feature
maps Au(x) produced by the activation of each neural unit u ∈ U.

By iterating over the annotated dataset X and analyzing neural activations, our approach computes
an estimate σ(u, c) ∈ [0, 1] of the alignment for each unit-concept pair (u, c). Based on this σ(u, c)
estimate, the framework then produces, for each unit u, the subset of concepts ψC(u) ⊂ C that are
most significantly aligned with the neuron.

Since our proposal requires visual concepts to be structured in an ontology, we define the latter as an
extensional relational structure O = (C, S ), where C is the set of all the possible concepts and S the
set of their semantic relations (Guarino et al., 2009). Each semantic relation s ∈ S is a truth-valued
function s : C × C → {T, F} that is true if and only if the relation between two concepts holds.
The ontology is a key difference with Network Dissection which treats concepts as independent
entities. In the following, we discuss the main characterizing aspects of masks generation (Section
3.1), alignment measurement (Section 3.2), and neural circuit extraction (Section 3.3).

3.1 High-level ConceptMasks

As in Frege (1891), we consider each concept as an ideal function whose argument is an object of the
world and whose value is a truth-value. Consequently, the extension Ec of a concept c, is the set of
all the objects of the world satisfying it. For instance, the meaning of the term “dog” is the concept
of dog, whose extension would be the set of all dogs. The specialization relation v, also known as
“is-a”, is the semantic relation that expresses the inclusion between the extensions of concepts in an
ontology (Euzenat & Shvaiko, 2013b). Formally, c v d ⇐⇒ Ec ⊆ Ed.
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animal.n.01

carnivore.n.01

canine.n.02

dog.n.01

feline.n.01

cat.n.01

(a) Induced taxonomy (b) cat.n.01 (c) dog.n.01 (d) animal.n.01

Figure 2: Example of mask generation for the higher-level concept of “animal” using ontological
information. The induced taxonomy, built over the WordNet hypernymy (is-a) relation, enables the
retrieval of the mask by exploiting the directly annotated masks for “dog” and “cat” from the Broden
dataset.

Consequently, if a dataset X is correctly annotated, being Q(xp) the set of objects of the world W
portrayed by an arbitrary location p of an image x ∈ X,

Lc(x)p ⇐⇒ ∃o ∈ W.o ∈ Q(xp) ∧ o ∈ Ec

=⇒ ∃o ∈ W.o ∈ Q(xp) ∧ o ∈ Ed {c v d}
⇐⇒ Ld(x)p.

(1)

Specialization induces a hierarchical taxonomy represented by a Directed Acyclic Graph (DAG)
where the node corresponding to the concept c is a child of the one corresponding to d if and only if
c v d. Hence, given a concept-annotated example image, the mask of any concept at a certain level
of the taxonomy can be obtained indirectly as the union of the masks of its children. The proposed
approach is thus able to align higher-level concepts without explicit annotations by analyzing the
concept masks of its descendants in the DAG (Figure 2).

3.2 AlignmentMeasure

The precise measurement of the alignment between concepts and network units is of fundamental
importance for a method seeking to assign semantics to neural components. In principle, we aim
to define a function σ(u, c) such that a concept c and a unit u are perfectly aligned if and only if
σ(u, c) = 1. We introduce a definition for such scoring function that relies on a probabilistic model
of the influence that a set of visual concepts C exerts on the activations of a set of neural units U.

Given an image example x ∈ RW×H , the output of an arbitrary convolutional unit u is a feature map
Au(x) ∈ RWu×Hu . We treat fully connected units as a special case whose feature maps have shape
(1, 1). Our approach focuses on higher than usual activations to highlight the most influential visual
concepts. Therefore, it masks each feature map Au(x) with an arbitrarily high threshold tu, whose
determination is discussed in the experimental section. As in the Network Dissection approach,
our solution scales the thresholded feature map (Au(x) > tu) ∈ RWu×Hu into an activation mask
Mu(x) ∈ RW×H to match the shape of the concept masks and of the example images. This operation
approximates the relation between a neural unit and its receptive field, so that the thresholded activa-
tion Mu(x)i, j depends solely on the location (i, j) of the example image x. Consequently, we assume
that Mu(x)i, j depends only on the portrayal of a visual concept c marked in the location Lc(x)i, j. This
approximation discards the effects of striding and padding over the receptive field of convolutional
units (Araujo et al., 2019), which will be subject of future research.

Given this formulation, an annotated dataset X containing N examples of shape (W,H) produces
WHN independent samples. In each sample, each visual concept c ∈ C is modeled by a Bernoulli
random variable Yc, and each neuron u ∈ U as a Bernoulli random variable Zu. Our model builds
on the assumption that such Zu variables are conditionally independent given the concept random
variables Yc. Formally,

∀u, u′ ∈ U × U.Zu y Zu′ | {Yc | c ∈ C}. (2)

4



Under review as a conference paper at ICLR 2022

Given the probabilistic formulation above, we can formulate semantic alignment in terms of the
maximum likelihood estimate (MLE) of a concept being in the receptive field of a firing unit, that is

L(Yc = 1 | Zu = 1) =

∑
x |Lc(x) ∧ Mu(x)|∑

x |Lc(x)|
, (3)

where Lc(x)∧Mu(x) applies the logical and elementwise on the masks. Consequently, we define the
MLE L(Yc = 1 | Zu = 1) as our semantic alignment measure σ(u, c).

In an ideal scenario, each unit of the network would activate only when stimulated by a specific
visual concept of the ontology. Assuming that a unit u responds solely to concept c̄, the estimate
would be

σ(u, c) = 1 ⇐⇒ c = c̄, (4)

for any arbitrary concept c ∈ C. Similarly, this estimate correctly handles polysemantic neurons
which ideally activate solely for a set of concepts C̄ ⊆ C. For any concept c ∈ C, the estimate
straighforwardly responds

σ(u, c) = 1 ⇐⇒ c ∈ C̄. (5)

In comparison, the IoU measure introduced by the Network Dissection approach,

IoU(u, c) =

∑
x∈X |Mu(x) ∧ Lc(x)|∑
x∈X |Mu(x) ∨ Lc(x)|

, (6)

does not yield to a valid alignment estimate σ outside of the ideal case in which a unit responds only
to a single concept. Assuming that a unit u responds to a subset of concept C̄ ⊂ C, it can be shown
that there exists scenarios where

IoU(u, c) < 1 (7)

even if c ∈ C̄. Furthermore, the IoU measurement will favour visual concepts which appear more
often in the annotated dataset X. Thus, it binds the estimate of the alignment of visual concepts to
their popularity, failing to properly characterize polysemantic units. We report further motivations
about the ideal behavior of the two measures in Appendix A.

3.3 Neural Circuits

The σ alignment function allows us to define, for each unit u, a subset ψC(u) ⊆ C of the concepts
influencing the most its activations. Having fixed an arbitrary threshold τ, standing for the toler-
ance towards unaligned concepts, the subset ψC(u) can be approximated by filtering out concepts
according to their alignment estimate σ(u, c). Formally,

ψC(u) = {c | σ(u, c) > τ}. (8)

Given the alignment estimates for the unit set U, our approach exploits the semantic relations con-
tained within an ontology to identify meaningful connected subgraphs. Circuits are systematically
retrievable by identifiying non-trivial connected components in a graph composed of unit-meaning
pairs (u, c) such that c ∈ ψC(u): Algorithm 1 provides a procedural description of the method.

Finally, we define the coherence of a circuit T as the expected similarity between two random
concepts. As in

Coherence(T ) =

∑
(c1,c2)∈P(T ) δ(c1, c2),

|P(T )|
(9)

where P(T ) is the set of possible concept pairs in T , and δ is an arbitrary semantic similarity function
between two concepts, such as the Jiang-Conrath (Jiang & Conrath, 1997) or the Lin (Lin, 1998)
similarities (Appendix C). Our coherence formulation measures the semantic diversity within a cir-
cuit, highlighting the presence of distant concepts. It is worth noticing that the same concept might
be aligned to many units and thus emerge multiple times in the same circuit. Consequently, it is
valuable to estimate coherence with or without these repetitions. In the following, we refer to the
measurement without repetitions as “unique coherence”.
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Algorithm 1: Algorithm to identify circuits from a set of semantically aligned units U within a
neural network composed of n consecutive layers. The algorithm connects units that are aligned
with semantically related concepts according to arbitrary relations s ∈ S from the ontology.
Each non-trivial connected component of the generated graph constitutes a circuit.
Function retrieve circuits(U, n,C, S , ψC):

G = new empty graph
G.V = {(u, c) ∈ U ×C : c ∈ ψC(u)}
G.E = {}
for i ∈ {1, . . . , n − 1} do

for u1 ∈ {u | u ∈ U ∧ u within i-th layer} do
for u2 ∈ {u | u ∈ U ∧ u within (i + 1)-th layer} do

if ∃c1 ∈ ψC(u1).∃c2 ∈ ψC(u2).∃s ∈ S .s(c1, c2) then
G.E = G.E ∪ ((u1, c1), (u2, c2))

return {T ∈ ConnectedComponents(G) : |T | > 1}

4 Results

The implementation of our framework is publicly available, as it is a Jupyter Notebook to replicate
the whole analysis reported in this section1. The experimental analysis focuses on the semantic
alignment of visual concepts representing concrete objects. To obtain an ontologically annotated
pixel-level dataset, we associated each object label of the Broden dataset to a member of the Word-
Net ontology. The assignment took into consideration the explicit description of each label and a
sample of corresponding annotated images. The 672 object labels within Broden produced 1177
unique concepts, of which 513 are leaves in the induced taxonomy. As speculated previously in
the paper, introducing a specialization relation increased the number of distinct visual concepts. We
publicly release this extension of the Broden dataset along with the code. Because of the direct com-
parison with the literature, the current section focuses on Broden. Nonetheless, we also extensively
studied semantic alignment with the ImageNet dataset (Deng et al., 2009). The dataset provides
bounding boxes selecting the portrayed objects that we exploited to construct approximated concept
masks. We report and discuss the results of the semantic alignment with ImageNet in Appendix B.

To obtain activation masks, we set for each unit u a threshold tu such that P(Au(x) > tu) > 0.005, by
estimating the probability over the activations on the Broden dataset. In doing so, we follow previous
works on Network Dissection to enhance comparability (Bau et al., 2017). For the same reason,
when using the IoU measure, we consider a concept-unit pair to be aligned if the measure overcomes
τIoU = 0.04. Instead, for our probabilistic measure, we fixed the threshold as τMLE = 0.2. The
threshold should account for erroneous and noisy annotations in the dataset, by effectively cutting
off visual concepts that are thus mistakenly aligned. Given a random selection of artificial units from
different architectures, we derived τMLE in a pre-experimental phase by comparing istances of ψC(u)
and samples of images activating each unit u.

We report the analysis of the last layers of three popular CNN architectures for image classification.
Firstly, we semantically aligned the last three fully connected layers and the last two convolutional
layers of AlexNet (Krizhevsky, 2014). Then, we considered the last fully connected layer and the last
two residual blocks of ResNet (He et al., 2015). In each residual block, we independently analyzed
the two convolutional operations and the sum after the residual connection. Finally, we aligned the
last fully connected layer and the output of the last three dense blocks in DenseNet (Huang et al.,
2017). All networks were pre-trained to classify the 365 different scenes and views from the Places-
365 dataset (Zhou et al., 2017). For replicability purposes, we adopted publicly available pre-trained
models mentioned in the supplementary materials.

For the sake of compactness, Table 1 reports aggregated statistics, but we provide per-layer details in
Appendix B. Firstly, we adopted the IoU measure without ontologically propagating concept masks,
essentially replicating the original Network Dissection approach. Since most visual concepts in the

1Name and Git repository omitted to preserve anonymity. Anonymized code/data are in the supplementary
materials.
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Model AlexNet ResNet-18 DenseNet-161
Units 9069 3437 509

σ-metric IoU(u, c) L(c | u) IoU(u, c) L(c | u) IoU(u, c) L(c | u)
τ 0.04 0.2 0.04 0.2 0.04 0.2

Propagation 7 3 3 7 3 3 7 3 3

Concepts

Unique 40 83 367 71 138 412 64 124 433
Leaves 31 30 302 48 48 311 46 46 320

Non-leaves 9 53 65 23 90 101 18 78 113
Total 896 1892 12560 849 1967 3756 346 790 1998

ψC(u)

Size 0.10 0.21 1.38 0.25 0.57 1.09 0.68 1.55 3.93
Non-empty size 1.14 2.33 2.25 1.37 3.01 3.00 1.48 3.39 4.79

Depth 7.33 6.89 7.77 7.41 6.95 7.65 7.53 6.98 7.69
σ(u, c) 0.057 0.056 0.311 0.065 0.066 0.324 0.072 0.070 0.372

Table 1: Semantic alignment of convolutional architectures. We report the number of distinct aligned
concepts and we classify them according to their depth in the reference taxonomy (i.e. leaves or not).
We also report the total number of aligned concepts considering repetitions between units. The set
ψC(u) contains the concepts aligned to an arbitrary unit u. We report the average size of this set, the
average size when non-empty, the average depth of its members in the induced taxonomy, and the
average alignment estimate σ. The IoU measurement without the automatic propagation of concept
masks corresponds to the Network Dissection approach.

(a) Examples with maximal activations

Concept σ(u, c)
hovel.n.01 0.021
roof.n.03 0.025
building.n.01 0.031
shelter.n.01 0.035
house.n.01 0.098

(b) IoU(u, c)

Concept σ(u, c)
circus tent.n.01 0.401
greenhouse.n.01 0.403
shed.n.01 0.469
pavilion.n.01 0.568
bandstand.n.01 0.631

(c) L(c | u)

Figure 3: Semantic alignment of unit 196 in the last residual block of ResNet-18. The examples
reported in (a) are the top ten images producing the maximum activations for the unit. Top-5 aligned
concepts in (b) and (c) are presented in increasing order, respectively for IoU and our probabilistic
measure. While IoU captures concepts that are undoubtedly representative of the unit, our score
identifies visual concepts that describe the examples more precisely. As in the quantitative results,
considering the average distance from the root of the retrieved concepts, the top-5 results using IoU,
with depth 6.4, are more general than those obtained by our measure, with depth 8.0.

Broden dataset correspond to leaves of the WordNet ontology, units are aligned with a small number
of general concepts. In comparison, our proposal aligned more visual concepts throughout all the
target networks. Consequently, we retained the IoU measure and introduced ontological information
to automatically propagate concept masks. Higher-level concepts introduced by the specialization
relation consistently increase the number of aligned concepts, thus the expressivity of the results.
Nonetheless, while increasing this number, the results highlight that in this scenario IoU mostly
selects concepts nearer to root of the ontology, hence more general. This is due to the popularity
of high level concepts, that accounts for the popularity of all their specializations. Differently from
IoU, concept popularity does not influence our probabilistic measure L(c | u), that is therefore
more apt to semantically align concepts at different levels of the ontology. Figure 3 exemplifies the
different measures on a unit of ResNet-18. Overall, the results also support our intuition concerning
the polysemy of neural units, since if a unit is aligned to a concept, then it is on average aligned to
more than one. Finally, since the number of retrieved concepts depends on the thresholds τIoU and
τMLE, we discuss their lowering in Appendix A.1.

Given the semantic alignment of the target networks, we identify circuits by exploiting different se-
mantic relations contained in WordNet: hypernymy (is-a), meronymy (part-of ) and strong seman-
tic similarity. We consider two concepts to be sufficiently similar if their Jiang-Conrath similarity
(Jiang & Conrath, 1997) overcomes a fixed threshold set to 0.4. The threshold derives from a pre-
experimental phase where we empirically estimated it as a solid lower bound to construct meaningful
circuits. We reserve to deepen the analysis of the effect of this parameter on the overall approach
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Model Monosemantic Circuits Pairs Units Concepts Coh. Unique Coh.

AlexNet 3 175 71.308 64.634 1.874 0.949 0.535
7 42 175.452 147.645 4.643 0.786 0.535

ResNet-18 3 116 29.552 20.474 2.890 0.893 0.551
7 43 60.605 36.116 6.093 0.710 0.551

DenseNet-161 3 38 14.421 10.210 2.631 0.863 0.591
7 19 23.737 15.316 4.263 0.727 0.591

Table 2: Comparison of the results of the circuits retrieval algorithm on the three target models.
We report the average number of unit-concept pairs, the number of unique units, and the number
of unique concepts. Circuit coherence is presented with and without considering repetitions of the
concepts. Many circuits are composed by units aligned only with the same concept. For this reason
we report separately the same measures for non-monosemantic circuits, i.e. circuits containing at
least two distinct concepts.

in future research. Anyhow, to highlight the independence from this particular configuration, we in-
clude in Appendix B the results of the circuits retrieval procedure with a different similarity measure.
Given a circuit, its coherence is assessed using the Lin similarity (Lin, 1998). We adopt different
similarity measures for neural circuits construction and for their assessment, to avoid to predeter-
mine the coherence of a circuit. Furthermore, since Lin similarity has values on [0, 1], it produces
more intuitive comparisons between different neural circuits. Both similarity measures are formally
defined in Appendix C. Table 2 reports an overview of the circuits identified through the target net-
works. The overall number of identified circuits depends on the total number of aligned concepts,
thus resulting in considerable differences between the target networks. Furthermore, many circuits
whose units are aligned only with the same concept emerge. For each target network, Appendix B
reports a list of all the circuits aligned to at least two distinct concepts.

Finally, we are interested in the role of the identified neural circuits for the predictions generated
by the whole network. Similarly to Zhou et al. (2018), we assess the importance of neural units by
measuring the accuracy drop for specific classes in the predictive task learned by the network. More
in detail, we measure the drop on the Top-5 classification accuracy of the 365 distinct classes from
the Places-365 dataset. Notably, we do not ablate single units corresponding to a single concept,
but an overall neural circuit. We exclude from the ablation units within the last layer of the target
network, since we are interested in the characterization of hidden units within a circuit. Figure 4
shows an example of how a large circuit of highly coherent concepts is important for the correct
prediction of semantically related classes. In this type of circuits, there usually exists a dominating
concept that is aligned to most units. Nonetheless, by ablating only the units aligned to the most
popular concept, the accuracy drop is substantially different compared to the effects of ablating the
whole circuit. Therefore, the number of unique units and the coherence of a circuit are crucial in
influencing the predictive accuracy of related classes. Small circuits or semantically sparse units do
not result in relevant semantically related accuracy drops. For this reason, the number of circuits
producing significant accuracy drop is consistently inferior in ResNet and especially in DenseNet,
as a consequence of fewer identified circuits. We report additional circuit analysis in Appendix B.

5 Conclusion

We introduced what we believe to be the first framework for the semantic alignment of neural units
with a complete visual ontology. Our solution builds on previous works that semantically aligned vi-
sual concepts independently without considering semantic relations between them. The introduction
of semantic relations led us to three key innovative contributions. Firstly, we defined a propagation
strategy to align units with concepts that lack an explicit annotation in the alignment dataset. Sec-
ondly, we defined a novel semantic alignment measure acknowledging polysemy in neural units.
Finally, we introduced an algorithm to identify connected neural circuits composed of units aligned
to semantically related concepts. We experimentally validated our approach by studying the se-
mantic alignment of the WordNet ontology with three popular convolutional architectures for image
classification. To this end, we considered two datasets: an original extension of the Broden dataset
with ontological annotations and a bounding-box annotated subset of ImageNet. We publicly re-
lease the extended Broden dataset, the library implementing our approach, and the code used to
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commodity.n.01

covering.n.02

consumer goods.n.01

clothing.n.01

garment.n.01

overgarment.n.01

coat.n.01

jacket.n.01

trouser.n.01 sweater.n.01 shirt.n.01

jersey.n.03

robe.n.01

bathrobe.n.01

apparel.n.01 headdress.n.01

hat.n.01

merchandise.n.01

(a)

(b)

Class Drop
/c/closet -0.05
/f/fabric store -0.05
/b/banquet hall -0.05
/d/dressing room -0.05
/d/dorm room -0.06
/h/hardware store -0.07
/c/clothing store -0.08
/d/department store -0.08
/d/drugstore -0.09
/g/gift shop -0.1

(c)

Class Drop
/b/butchers shop -0.03
/b/booth/indoor -0.03
/s/slum -0.03
/b/banquet hall -0.04
/d/dorm room -0.04
/d/department store -0.04
/c/closet -0.04
/f/fabric store -0.06
/c/clothing store -0.06
/g/gift shop -0.09

(d)

Figure 4: Importance analysis of circuit n. 105 from AlexNet, containing 105 distinct units and 12
unique visual concepts. The circuit consists of units aligned to various concepts relative to clothing
and commodities: subfigure (a) reports the aligned concepts within the WordNet taxonomy. Italic
concepts are not directly aligned, but we include them for visualization purposes. When ablating the
circuit, the accuracy drop significantly affects only a small number of classes. Subfigure (b) depicts
the histogram of categories of the Places-365 dataset as a function of accuracy drop (on the x-axis).
The classes most affected by the ablation are those more strictly related to the semantically aligned
concepts of the circuit, as exemplified in (c). Dropping only the units aligned with the most popular
concept in the circuit (d) does not account for the effects of ablating the whole circuit (c).

reproduce our experiments. The experiments highlighted how our methodology could effectively
capture semantic alignment in neural units and consistently handle concepts inscribed within an on-
tology. Furthermore, we assessed the emergence of semantically related neural circuits and studied
their role in the overall network. We found that units within sufficiently large and coherent neural
circuits are pivotal to classify categories related to the aligned concepts.

This last aspect constitutes the most valuable contribution of our semantic alignment methodology.
Semantically coherent neural circuits could be exploited for innovative interpretative approaches,
for instance by producing explanations at different levels of detail according to circuit members
and user knowledge of the context. We reserve to explore practical interpretative applications of
our approach in future research. Similarly, we want to mention the main limitations affecting our
proposal. Firstly, as already discussed for Network Dissection (Fong & Vedaldi, 2017), a unit might
express other visual concepts in activation ranges other than the maximal. Furthermore, the idea
that single neurons express human-like concepts correctly describes some units, but overall the vast
majority of neurons are not immediately alignable. Nonetheless, concepts, in the sense of functions
from instances to truth-values, might be a useful tool to describe artificial neurons even if not directly
associated to human-like ones. This might also enable the use of tools for the automatic retrieval
of visual concepts, to produce annotated datasets and consequently identify the patterns underlying
unit activations without further supervision. To conclude, ontology-based neural circuits offer an
innovative instrument to inquire about the nature of neural representations, highlighting semantically
related human-interpretable features across the network.
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Reproducibility Statement

We actively considered reproducibility issues during both research and paper preparation. For this
reason, the supplementary materials contain or point out all the necessary artifacts to replicate the re-
ported results. More in detail, we adopted publicly available datasets such as Broden and ImageNet.
We release our original extension of the Broden dataset and include the code needed to preprocess
images from a selection of ImageNet. Similarly, we analyzed publicly available pre-trained neural
models from the Places-365 project. We implemented our methodological proposal in a Python
library, publicly releasing it as free and open-source code. More importantly, supplementary mate-
rials include a Jupyter Notebook that documents step by step how to download publicly available
resources, how to integrate our contributions, and how to run the experiments reported in the paper.
Finally, the reader can compare its results with Appendix B, which summarizes the analysis of each
model and dataset combination.
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A AlignmentMeasure

Given an image dataset X portraying a set of a visual concepts C, we explicitly consider the behavior
of the probablistic measure introduced in Section 3.2

L(Yc = 1 | Zu = 1) =

∑
x |Lc(x) ∧ Mu(x)|∑

x |Lc(x)|
(A.1)

and the IoU measure for semantic alignment adopted by Network Dissection (Bau et al., 2017)

IoU(u, c) =

∑
x∈X |Mu(x) ∧ Lc(x)|∑
x∈X |Mu(x) ∨ Lc(x)|

. (A.2)

For brevity, we will refer to the former simply as L(c | u).

Furthermore, we are interested in the response of the measures to a unit u which activates solely for
a non-empty subset ψC(u) ⊂ C of visual concepts. Formally, assuming that the dataset X correctly
annotates each visual concept,

c ∈ ψC(u) ⇐⇒ ∀x.Mu(x) ∧ Lc(x) = Lc(x). (A.3)

Given this formalization, ψC(u) is closed under specialization. If c ∈ ψC(u) then all the descendants
of c in the specialization-induced taxonomy are also members because of the inclusion between their
concept masks (Section 3.1).

For what concerns the probabilistic measure L(c | u),

c ∈ ψC(u) ⇐⇒ ∀x.Mu(x) ∧ Lc(x) = Lc(x)

⇐⇒
∑

x

|Mu(x) ∧ Lc(x)| =
∑

x

|Lc(x)|

⇐⇒

∑
x |Mu(x) ∧ Lc(x)|∑

x |Lc(x)|
= 1

⇐⇒ L(c | u) = 1.

(A.4)

Instead, the IoU(u, c) measure is proportional to the popularity of a visual concept c within the
dataset X. In fact, if c ∈ ψC(u),

IoU(u, c) =

∑
x∈X |Mu(x) ∧ Lc(x)|∑
x∈X |Mu(x) ∨ Lc(x)|

=

∑
x∈X |Lc(x)|∑
x∈X |Mu(x)|

∝
∑
x∈X

|Lc(x)|

(A.5)

because of A.3. Furthermore, we proof that c ∈ ψC(u) 6=⇒ IoU(u, c) = 1 by constructing a simple
counter example. Suppose that a unit u responds to two visual concepts c1, c2 ∈ ψC(u), and that
there exists at least one example x portraying them differently, i.e. Lc1 (x) , Lc2 (x). Consequently, at
least one of them has a popularity

∑
x |Lc(x)| inferior to the extent of the activation map

∑
x |Mu(x)|,

therefore
∃c ∈ ψC(u).IoU(u, c) < 1. (A.6)

A.1 Alignment Threshold

In the current section, we report a practical example concerning the dependence of IoU on concept
popularity and consequently on concept generality. In fact, because of the automatic propagation
of concept masks, general concepts are usually significantly more popular then leaves, since they
account for all their descendants in the induced taxonomy. As a remainder, Appendix B reports
quantitative results on this same aspect, highlighting how IoU selects concepts on average nearer to
the root of the ontology.
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τIoU aqueduct.n.01 food.n.01

0.04 0 3
0.02 0 21
0.01 1 165
0.005 21 602
0.002 223 1888
0 1498 7181

(a) IoU(u, c)

τMLE aqueduct.n.01 food.n.01

0.2 56 0
0.1 317 16
0.05 797 110
0 1498 7181

(b) L(c | u)

Table A.1: Each subtable reports for each measure, as the alignment threshold decreases, the number
of units from the last four hidden layers of AlexNet aligned with an highly specific concept, namely
aqueduct.n.01 which has depth equal to eight, and a more general one, namely food.n.01 with
depth four.

(a) τIoU = 0.01, food.n.01 (b) τIoU = 0.005, food.n.01 (c) τIoU = 0.005, aqueduct.n.01

(d) τMLE = 0.1, aqueduct.n.01 (e) τMLE = 0.01, aqueduct.n.01 (f) τMLE = 0.01, food.n.01

Figure A.1: Accuracy drop histograms due to the ablation of units aligned to a given concept ac-
cording to the IoU (a, b, c) and L(c | u) (d, e, f) measures. For what concerns IoU, τIoU is lowered to
select sufficient units aligned to the specific concept of aqueduct. For L(c | u) instead, the lowering
of τMLE enables the alignment of units to the general concept of food. The x-axis groups according
to the accuracy drop extent, while the y-axis counts the number of affected classes in the given range.

Thresholds τIoU and τMLE (Section 4) fix the lower bound according to which IoU and L(c | u) con-
sider a concept and a unit to be semantically aligned. While lowering these thresholds might increase
the sensitivity of the approach, it would also acknowledge spurious concepts as semantically aligned
to unrelated units. Table A.1 reports how the the number of aligned units varies with the alignment
threshold in AlexNet. To identify the impact of such spurious assignments, we consider the accuracy
drop effect in a classification task as a valuable indicator. Ideally, if units and concepts are perfectly
aligned, the ablation of semantically coherent units should affect only a precise selection of related
classes. Otherwise, we expect the accuracy drop to be more sparse across labels. In practice, we
measure the accuracy drop on the Top-5 classification task on Places-365 (Zhou et al., 2017) as in
the main discussion. As visualized in Figure A.1, reducing the τIoU threshold, enables the retrieval
of more specialized concepts. Anyhow, this also results in a significant increase of the units aligned
to more general concepts. Consequently, this results in a less ideal distribution of the accuracy drop
for general concepts. Similarly, reducing τMLE to acknowledge more general concepts in L(c | u)
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produce an increase of the units aligned to more specific concepts. Nonetheless, the increase does
not justify a significant effect on accuracy plots.
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B Additional Results

The current section reports the results of the semantic alignment of the target networks with the
WordNet ontology given the Broden and the ImageNet datasets. The characteristics of the Broden
dataset are discussed in Section 4. Concerning ImageNet, we adopted the validation split of the
ILSVRC 2011 competition. The dataset annotates the bounding boxes of 1000 different visual con-
cepts over 50000 disting images. The induced taxonomy within WordNet corresponds to a directed
acyclic graph containing 1905 distinct concepts. We directly exploited the bounding boxes to pro-
duce an approximation of the concept masks needed by our approach. Compared to Broden, the
alignment resulted in a similar number of aligned concepts and consequently of retrieved circuits.
Similarly, highly coherent circuits with many units result in a semantically clear accuracy drop.
Nonetheless, concept masks approximation mainly affects semantic alignment in layers distant from
the last. In these layers, the number of aligned concepts is significantly low when compared to the
alignment obtained by pixel-level concept masks from Broden.

The following tables include additional statistics for each layer within the target networks mentioned
in Section 4. More in detail, we report the number of distinct aligned concepts and we classify
them according to their depth in the reference taxonomy (i.e. leaves or not). We also report the
total number of aligned concepts considering repetitions between units. The set ψC(u) contains the
concepts aligned to an arbitrary unit u. We report the average size of this set, the average size when
non-empty, the average depth of its members in the induced taxonomy and the average alignment
estimate σ.

For each non-monosemantic circuit, i.e. aligned to at least two distinct concepts, we report the num-
ber of valid (u, c) pairs, the number of unique units and concepts and the coherence with and without
considering repetitions. Furthermore, we characterize each circuit by mentioning their nearest com-
mon ancestor and the most popular concept within the aligned units. To highlight the independence
from a particular similarity measure, in Table B.11 we report the results of the circuit analysis proce-
dure on AlexNet using the Resnik similarity (Resnik, 1995) instead of the Jiang-Conrath similarity
(Jiang & Conrath, 1997). Furthermore, for a selection of circuits, we report a dedicated analysis
visualized as in Figure 4 from Section 4.

B.1 Broden Semantic Alignment

Module features.8 features.10 classifier.1 classifier.4 classifier.6 alexnet
Units 256 256 4096 4096 365 9069

Concepts

Unique 9 36 39 73 56 83
Leaves 4 9 13 28 22 30

Non-leaves 5 27 26 45 34 53
Total 9 58 263 1152 410 1892

ψC(u)

Size 3.52e-02 2.27e-01 6.42e-02 2.81e-01 1.12 2.09e-01
Non-empty 1.50 2.64 2.01 2.32 2.59 2.33

Depth 7.56 6.78 6.95 6.84 7.07 6.89
σ(u, c) 4.57e-02 4.94e-02 5.19e-02 5.36e-02 6.56e-02 5.58e-02

Table B.1: Semantic alignment of AlexNet with the Broden dataset. Fixed threshold τ = 0.04 over
the IoU metric.

16



Under review as a conference paper at ICLR 2022

Module features.8 features.10 classifier.1 classifier.4 classifier.6 alexnet
Units 256 256 4096 4096 365 9069

Concepts

Unique 8 32 265 328 255 367
Leaves 7 28 233 277 205 302

Non-leaves 1 4 32 51 50 65
Total 13 50 4836 6660 1001 12560

ψC(u)

Size 5.08e-02 1.95e-01 1.18 1.63 2.74 1.38
Non-empty 1.30 1.43 1.98 2.38 3.45 2.25

Depth 8.12 7.75 7.86 7.76 7.64 7.77
σ(u, c) 3.04e-01 2.70e-01 3.09e-01 3.11e-01 3.29e-01 3.11e-01

Table B.2: Semantic alignment of AlexNet with the Broden dataset. Fixed threshold τ = 0.2 over
the likelihood L(c | u) metric.

Module layer4.0.conv1 layer4.0.conv2 layer4.0 layer4.1.conv1 layer4.1.conv2 layer4.1 fc resnet18
Units 512 512 512 512 512 512 365 3437

Concepts

Unique 35 76 93 62 78 86 106 138
Leaves 11 25 32 24 26 31 38 48

Non-leaves 24 51 61 38 52 55 68 90
Total 54 153 182 137 376 408 657 1967

ψC(u)

Size 1.05e-01 2.99e-01 3.55e-01 2.68e-01 7.34e-01 7.97e-01 1.80 5.72e-01
Non-empty 2.35 2.64 2.64 2.85 3.16 3.14 3.17 3.01

Depth 7.11 7.26 7.14 7.55 7.49 7.35 6.87 6.95
σ(u, c) 5.73e-02 6.05e-02 6.42e-02 6.29e-02 6.50e-02 6.64e-02 6.80e-02 6.55e-02

Table B.3: Semantic alignment of ResNet with the Broden dataset. Fixed threshold τ = 0.04 over
the IoU metric.

Module layer4.0.conv1 layer4.0.conv2 layer4.0 layer4.1.conv1 layer4.1.conv2 layer4.1 fc resnet18
Units 512 512 512 512 512 512 365 3437

Concepts

Unique 31 88 128 119 225 237 368 412
Leaves 27 72 99 98 180 188 281 311

Non-leaves 4 16 29 21 45 49 87 101
Total 37 154 200 213 793 820 1539 3756

ψC(u)

Size 7.23e-02 3.01e-01 3.91e-01 4.16e-01 1.55 1.60 4.22 1.09
Non-empty 1.61 1.66 1.94 1.82 2.72 2.69 4.85 3.00

Depth 7.77 7.57 7.46 7.71 7.75 7.79 7.65 7.65
σ(u, c) 2.72e-01 2.75e-01 2.80e-01 2.84e-01 3.03e-01 3.04e-01 3.63e-01 3.24e-01

Table B.4: Semantic alignment of ResNet with the Broden dataset. Fixed threshold τ = 0.2 over the
likelihood L(c | u) metric.

Module DenseBlock4.22 DenseBlock4.23 DenseBlock4.24 classifier densenet161
Units 48 48 48 365 509

Concepts

Unique 11 9 32 123 124
Leaves 4 2 11 45 46

Non-leaves 7 7 21 78 78
Total 12 13 52 713 790

ψC(u)

Size 2.50e-01 2.71e-01 1.08 1.95 1.55
Non-empty 2.40 2.60 5.20 3.35 3.39

Depth 8.82 7.44 7.88 6.98 6.98
σ(u, c) 4.70e-02 4.75e-02 7.22e-02 7.08e-02 7.01e-02

Table B.5: Semantic alignment of DenseNet with the Broden dataset. Fixed threshold τ = 0.04 over
the IoU metric.
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Module DenseBlock4.22 DenseBlock4.23 DenseBlock4.24 classifier densenet161
Units 48 48 48 365 509

Concepts

Unique 28 66 53 427 433
Leaves 25 52 43 314 320

Non-leaves 3 14 10 113 113
Total 40 101 102 1755 1998

ψC(u)

Size 8.33e-01 2.10 2.12 4.81 3.93
Non-empty 1.67 2.97 3.00 5.40 4.79

Depth 8.32 7.82 7.79 7.70 7.69
σ(u, c) 2.79e-01 3.16e-01 3.27e-01 3.80e-01 3.72e-01

Table B.6: Semantic alignment of DenseNet with the Broden dataset. Fixed threshold τ = 0.2 over
the likelihood L(c | u) metric.

B.2 ImageNet Semantic Alignment

Module features.8 features.10 classifier.1 classifier.4 classifier.6 alexnet
Units 256 256 4096 4096 365 9069

Concepts

Unique 1 3 443 649 361 712
Leaves 1 3 379 543 284 589

Non-leaves 0 0 64 106 77 123
Total 6 4 4129 5644 1506 11289

ψC(u)

Size 2.34e-02 1.56e-02 1.01 1.38 4.13 1.24
Non-empty 1.00 1.33 1.96 2.33 4.56 2.32

Depth 8.00 8.33 9.42 9.63 9.21 9.60
σ(u, c) 3.05e-01 2.86e-01 2.67e-01 2.81e-01 3.31e-01 2.82e-01

Table B.7: Semantic alignment of AlexNet with the ImageNet dataset. Fixed threshold τ = 0.2 over
the likelihood L(c | u) measure.

Module layer4.0.conv1 layer4.0.conv2 layer4.0 layer4.1.conv1 layer4.1.conv2 layer4.1 fc resnet18
Units 512 512 512 512 512 512 365 3437

Concepts

Unique 3 20 24 45 194 199 482 494
Leaves 3 20 24 41 164 170 379 390

Non-leaves 0 0 0 4 30 29 103 104
Total 4 24 26 48 387 399 1812 2700

ψC(u)

Size 7.81e-03 4.69e-02 5.08e-02 9.38e-02 7.56e-01 7.79e-01 4.96 7.86e-01
Non-empty 2.00 1.71 1.62 1.50 1.99 2.05 5.30 3.40

Depth 7.67 8.90 8.79 8.62 9.38 9.35 9.32 9.32
σ(u, c) 2.48e-01 2.42e-01 2.40e-01 2.52e-01 2.70e-01 2.69e-01 3.63e-01 3.31e-01

Table B.8: Semantic alignment of ResNet with the ImageNet dataset. Fixed threshold τ = 0.2 over
the likelihood L(c | u) measure.

Module DenseBlock4.22 DenseBlock4.23 DenseBlock4.24 classifier densenet161
Units 48 48 48 365 509

Concepts

Unique 7 16 16 528 530
Leaves 6 14 14 410 412

Non-leaves 1 2 2 118 118
Total 12 20 22 1661 1715

ψC(u)

Size 2.50e-01 4.17e-01 4.58e-01 4.55 3.37
Non-empty 1.20 1.67 1.69 5.00 4.67

Depth 8.43 8.25 9.44 9.36 9.35
σ(u, c) 2.66e-01 2.73e-01 3.03e-01 3.75e-01 3.72e-01

Table B.9: Semantic alignment of DenseNet with the ImageNet dataset. Fixed threshold τ = 0.2
over the likelihood L(c | u) measure.
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B.3 Broden Neural Circuits

ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
0 850 731 9 space.n.02 ball.n.01 0.625331 0.259294
2 5 3 2 orifice.n.01 mouth.n.01 0.964942 0.94157
3 190 189 2 structure.n.03 grid.n.01 0.989474 0
6 275 208 9 excavation.n.03 gasoline station.n.01 0.61525 0.459214
7 60 60 2 rim.n.03 waterwheel.n.01 0.966667 0
9 331 330 3 ligament.n.02 binder.n.04 0.986998 0.2804

11 321 277 8 food.n.02 vegetable.n.01 0.635454 0.563819
13 590 511 9 tower.n.01 viaduct.n.01 0.339819 0.305501
16 111 91 6 passageway.n.01 aqueduct.n.01 0.737838 0.658568
18 7 7 2 text.n.01 text.n.01 0.714286 0
22 38 21 3 structural member.n.01 tread.n.04 0.480597 0.243158
24 95 92 3 cloud.n.01 fog.n.01 0.995741 0.946449
25 719 559 20 porch.n.01 mosque.n.01 0.472632 0.353401
27 210 190 4 plant organ.n.01 leaf.n.01 0.880618 0.751105
31 486 463 12 oar.n.01 cockpit.n.01 0.640215 0.302589
35 121 94 6 body of water.n.01 pond.n.01 0.798482 0.750965
37 94 84 4 electrical device.n.01 dashboard.n.02 0.930582 0.732251
38 312 235 4 memory device.n.01 videocassette.n.01 0.495736 0.421269
46 253 219 9 geological formation.n.01 shore.n.01 0.715117 0.675303
48 160 80 2 armor plate.n.01 helmet.n.01 0.962684 0.925835
57 365 343 8 desert.n.01 tennis court.n.01 0.423691 0.448653
62 33 28 4 deck.n.01 aircraft carrier.n.01 0.588415 0.397467
69 52 49 4 roof.n.02 roof.n.02 0.718415 0.552456
71 198 121 4 memorial.n.03 gravestone.n.01 0.609763 0.445555
75 396 366 5 shelter.n.01 circus tent.n.01 0.906657 0.851022
77 76 71 3 water faucet.n.01 steering wheel.n.01 0.976087 0.79145
79 20 19 2 figure.n.04 dummy.n.03 0.996855 0.968546
81 16 12 2 scale.n.07 weighbridge.n.01 0.6 0
85 86 50 3 airfoil.n.01 rudder.n.01 0.829244 0.708283
90 163 115 3 workplace.n.01 vineyard.n.01 0.80421 0.621505
92 200 129 2 power shovel.n.01 steam shovel.n.01 0.959715 0.91353
93 128 123 3 wing.n.01 duck.n.01 0.856421 0.292789
96 54 51 2 conveyer belt.n.01 carousel.n.01 0.893082 0
97 28 25 2 rubbish.n.01 debris.n.01 0.997945 0.989643

105 142 105 12 merchandise.n.01 jersey.n.03 0.793094 0.693743
108 97 67 2 machinery.n.01 windmill.n.01 0.916062 0.805565
117 25 25 2 pier.n.01 quay.n.01 0.92 0
123 28 28 3 hoop.n.02 tire.n.01 0.94303 0.481756
129 15 14 3 window.n.01 dormer.n.01 0.51537 0.259486
132 5 4 2 table game.n.01 table tennis.n.01 0.920032 0.800079
137 6 4 3 spoon.n.01 spoon.n.01 0.972869 0.956966
152 8 8 2 slot machine.n.01 vending machine.n.01 0.949664 0.90604

Table B.10: Circuits with more than one unique meaning retrieved in AlexNet pretrained with
Places365 and aligned with Broden.
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ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
0 862 741 9 space.n.02 ball.n.01 0.626546 0.259294
2 5 3 2 orifice.n.01 mouth.n.01 0.964942 0.94157
3 189 188 2 structure.n.03 grid.n.01 0.989418 0
6 284 215 9 excavation.n.03 gasoline station.n.01 0.617445 0.459214
7 83 83 4 barrel.n.02 waterwheel.n.01 0.567426 0.214731
9 332 331 3 ligament.n.02 binder.n.04 0.987037 0.2804

11 276 240 8 food.n.02 vegetable.n.01 0.634215 0.563819
12 157 156 2 aquarium.n.01 water tower.n.01 0.507594 0
14 592 514 9 tower.n.01 viaduct.n.01 0.339497 0.305501
17 67 64 3 conduit.n.01 aqueduct.n.01 0.948512 0.680936
24 16 16 2 crossing.n.05 crossing.n.05 0.918874 0.750383
26 95 92 3 cloud.n.01 fog.n.01 0.995741 0.946449
27 728 565 20 porch.n.01 mosque.n.01 0.47486 0.353401
29 208 190 4 plant organ.n.01 leaf.n.01 0.884087 0.751105
31 39 39 2 scoreboard.n.01 billboard.n.01 0.86143 0.714777
33 487 465 13 oar.n.01 cockpit.n.01 0.638221 0.316108
34 86 86 2 wheelchair.n.01 wheelchair.n.01 0.931874 0
35 152 152 3 drum.n.01 synthesizer.n.02 0.487248 0.283054
37 119 93 6 body of water.n.01 pond.n.01 0.796736 0.750965
38 94 91 4 dryer.n.01 sewing machine.n.01 0.846097 0.674925
39 308 231 4 memory device.n.01 videocassette.n.01 0.49483 0.421269
40 42 40 2 escalator.n.02 escalator.n.02 0.562137 0
46 244 217 9 geological formation.n.01 shore.n.01 0.716514 0.675303
48 160 80 2 armor plate.n.01 helmet.n.01 0.962684 0.925835
50 116 113 2 boot.n.01 boot.n.01 0.91978 0.731797
58 361 339 8 desert.n.01 tennis court.n.01 0.426161 0.448653
63 33 28 4 stern.n.01 aircraft carrier.n.01 0.582435 0.397467
65 48 44 2 conveyer belt.n.01 carousel.n.01 0.843972 0
69 50 48 4 roof.n.02 roof.n.02 0.727762 0.552456
71 200 123 4 grave.n.02 gravestone.n.01 0.614909 0.445555
74 403 373 5 shelter.n.01 circus tent.n.01 0.907495 0.851022
76 95 85 4 electrical device.n.01 dashboard.n.02 0.928053 0.732251
77 77 72 3 water faucet.n.01 steering wheel.n.01 0.976381 0.79145
78 20 19 2 figure.n.04 dummy.n.03 0.996855 0.968546
80 20 15 2 scale.n.07 weighbridge.n.01 0.605263 0
83 138 100 11 clothing.n.01 jersey.n.03 0.810025 0.700148
85 92 53 3 airfoil.n.01 rudder.n.01 0.831804 0.708283
89 161 114 3 workplace.n.01 vineyard.n.01 0.803814 0.621505
91 202 131 2 power shovel.n.01 steam shovel.n.01 0.959655 0.91353
93 123 118 3 wing.n.01 duck.n.01 0.854961 0.292789
94 57 56 2 revolving door.n.02 revolving door.n.02 0.56015 0
95 29 26 2 rubbish.n.01 debris.n.01 0.99801 0.989643

103 99 69 2 machinery.n.01 windmill.n.01 0.917032 0.805565
106 29 29 2 crate.n.01 crate.n.01 0.91697 0.719083
109 41 30 3 passageway.n.01 tunnel.n.01 0.832241 0.712414
124 15 14 3 window.n.01 dormer.n.01 0.51537 0.259486
125 3 3 2 text.n.01 magazine.n.01 0.333333 0
127 5 4 2 table game.n.01 table tennis.n.01 0.920032 0.800079
132 6 4 3 spoon.n.01 spoon.n.01 0.972869 0.956966
143 7 7 2 slot machine.n.01 vending machine.n.01 0.955257 0.90604
145 3 3 2 merchandise.n.01 stall.n.03 0.526492 0.289738

Table B.11: Circuits with more than one unique meaning retrieved in AlexNet pretrained with
Places365 and aligned with Broden. Differently to the methodology reported in the main body
of the paper, for this run we adopted the Resnik similarity (Resnik, 1995) tested against a threshold
equal to 8.0. As already discussed, this threshold has been determined by evaluating the resulting
circuits. We report results for a different similarity measure to highlight how circuits retrieval does
not depend on the Jiang-Conrath measure only and how results are compatible.
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ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
1 1264 605 106 porch.n.01 beacon.n.03 0.239235 0.234927
2 17 15 3 plate.n.02 license plate.n.01 0.44753 0.262001
3 5 4 3 text.n.01 text.n.01 0.39229 0.307634
5 45 45 2 structure.n.03 grid.n.01 0.913131 0
6 107 68 9 space.n.02 ball.n.01 0.346641 0.259294
7 104 83 8 passage.n.03 aqueduct.n.01 0.701643 0.678228
9 21 18 3 orifice.n.01 mouth.n.01 0.561412 0.313857

11 6 4 2 eye.n.01 nose.n.01 0.931428 0.871428
14 69 42 6 body of water.n.01 waterfall.n.01 0.780574 0.750965
15 104 33 15 merchandise.n.01 shirt.n.01 0.68488 0.571657
19 20 20 2 top.n.01 capital.n.08 0.978116 0.8845
25 30 26 3 airfoil.n.01 stabilizer.n.02 0.880132 0.708283
27 84 53 2 power shovel.n.01 power shovel.n.01 0.956269 0.91353
29 53 50 4 geographical area.n.01 tennis court.n.01 0.722598 0.602029
30 20 20 2 system.n.01 maze.n.01 0.973198 0.731977
31 52 38 2 machinery.n.01 windmill.n.01 0.921992 0.805565
34 4 2 3 memory device.n.01 videocassette.n.01 0.326899 0.320464
35 29 29 3 area.n.01 resort area.n.01 0.789643 0.695962
38 61 20 9 electronic device.n.01 display panel.n.01 0.475204 0.43386
39 20 14 3 hoof.n.01 horse.n.01 0.530977 0.372404
44 88 52 7 facility.n.01 gasoline station.n.01 0.591917 0.50208
47 25 25 6 food.n.01 meat.n.01 0.635034 0.47772
50 12 11 2 white goods.n.01 washer.n.03 0.983003 0.898017
51 16 12 3 activity.n.01 table tennis.n.01 0.814476 0.549572
54 29 29 2 wing.n.01 duck.n.01 0.548711 0.0746296
56 30 19 4 electrical device.n.01 dashboard.n.02 0.787095 0.732251
59 23 19 4 curve.n.01 arch.n.01 0.472645 0.361969
64 36 26 3 workplace.n.01 vineyard.n.01 0.737174 0.621505
65 30 18 7 writing.n.02 text.n.01 0.402414 0.296983
71 25 22 3 plant organ.n.01 fruit.n.01 0.888738 0.851518
73 11 6 4 footwear.n.02 boot.n.01 0.865618 0.85109
74 17 13 2 land.n.02 badlands.n.01 0.897501 0.731927
78 14 13 2 booth.n.02 telephone booth.n.01 0.975486 0.907052
79 20 16 2 pier.n.01 quay.n.01 0.557895 0
81 5 4 2 eye.n.01 eye.n.01 0.922857 0.871428
91 27 13 3 memory device.n.01 videocassette.n.01 0.476092 0.320464
93 31 27 3 geological formation.n.01 iceberg.n.01 0.752086 0.6328
94 7 7 2 electronic equipment.n.01 television camera.n.01 0.950905 0.828169
96 15 9 2 armor plate.n.01 helmet.n.01 0.961858 0.925835

100 5 5 2 slot machine.n.01 slot machine.n.01 0.943624 0.90604
101 6 6 2 group.n.01 group.n.01 0.662791 0.367734
109 8 7 2 bathtub.n.01 hot tub.n.01 0.75 0
114 11 5 3 structural member.n.01 tread.n.04 0.429952 0.243158

Table B.12: Circuits with more than one unique meaning retrieved in ResNet pretrained with
Places365 and aligned with Broden.

ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
1 15 9 6 musical instrument.n.01 synthesizer.n.02 0.467058 0.580528
3 9 8 2 white goods.n.01 washer.n.03 0.977337 0.898017
5 20 14 3 tower.n.01 tower.n.01 0.885044 0.832248
6 3 2 2 place of worship.n.01 temple.n.01 0.916572 0.874859
8 2 2 2 signal.n.01 signal.n.01 0.475168 0.475168

11 53 30 7 machine.n.01 steam shovel.n.01 0.755432 0.636582
12 50 30 10 roof.n.02 bulldozer.n.01 0.326871 0.394883
15 24 15 3 airfoil.n.01 airfoil.n.01 0.805058 0.708283
16 70 37 10 space.n.02 goal.n.03 0.401247 0.299264
17 32 29 5 food.n.02 vegetable.n.01 0.711422 0.599991
19 22 20 3 bridge.n.01 covered bridge.n.01 0.830977 0.471673
20 22 15 3 workplace.n.01 vineyard.n.01 0.735493 0.621505
21 12 12 2 state.n.02 roller coaster.n.01 0.833333 0
22 21 19 4 wing.n.01 duck.n.01 0.794905 0.441684
23 10 8 3 lifting device.n.01 crane.n.04 0.952759 0.941642
26 17 7 4 activity.n.01 table tennis.n.01 0.547083 0.274786
30 2 2 2 sense organ.n.01 sense organ.n.01 0.984071 0.984071
34 44 13 7 fuselage.n.01 fuselage.n.01 0.640271 0.546299
36 23 19 3 geographical area.n.01 tennis court.n.01 0.772247 0.656816

Table B.13: Circuits with more than one unique meaning retrieved in DenseNet pretrained with
Places365 and aligned with Broden.
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passage.n.03

conduit.n.01

flue.n.03

chimney.n.01

aqueduct.n.01

passageway.n.01

tunnel.n.01 arcade.n.01

(a)

(b)

Class Drop
/c/clothing store -0.05
/d/dining room -0.05
/g/gazebo/exterior -0.06
/c/church/outdoor -0.06
/a/arch -0.08
/p/pavilion -0.09
/r/river -0.1
/b/bridge -0.11
/v/viaduct -0.19
/a/aqueduct -0.23

(c)

Class Drop
/c/clothing store -0.05
/m/mountain -0.05
/d/dining room -0.06
/c/church/outdoor -0.07
/a/arch -0.08
/r/river -0.08
/p/pavilion -0.09
/b/bridge -0.12
/v/viaduct -0.18
/a/aqueduct -0.21

(d)

Figure B.1: Importance analysis of circuit n.16 from AlexNet, containing 91 distinct units and 6
unique visual concepts. The circuit is aligned to various concepts relative to passages, especially
when water-related. Subfigure (a) reports the aligned concepts within the WordNet taxonomy. Italic
concepts are not directly aligned, but we include them for visualization purposes. When ablating the
circuit, the accuracy drop significantly affects only a small number of classes. Subfigure (b) depicts
the histogram of categories of the Places-365 dataset as a function of accuracy drop (on the x-axis).
The classes most affected by the ablation are those more strictly related to the semantically aligned
concepts of the circuit, as exemplified in (c). Dropping only the units aligned with the most popular
concept in the circuit (d) does not account for the effects of ablating the whole circuit (c).
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body of water.n.01

sea.n.01 lake.n.01

pond.n.01

waterfall.n.01 stream.n.01

river.n.01

(a)

(b)

Class Drop
/p/pier -0.1
/c/cliff -0.1
/h/harbor -0.1
/b/boat deck -0.11
/d/dam -0.12
/b/boathouse -0.13
/s/swimming hole -0.13
/p/promenade -0.16
/w/waterfall -0.32
/f/fountain -0.38

(c)

Class Drop
/f/field/cultivated -0.06
/v/volcano -0.06
/c/crevasse -0.07
/a/amusement park -0.07
/t/ticket booth -0.08
/h/hot spring -0.09
/s/science museum -0.1
/d/dam -0.15
/w/waterfall -0.33
/f/fountain -0.4

(d)

Figure B.2: Importance analysis of circuit n.14 from ResNet, containing 42 distinct units and 6
unique visual concepts. The circuit is aligned to various concepts relative to bodies of water. Sub-
figure (a) reports the aligned concepts within the WordNet taxonomy. Italic concepts are not directly
aligned, but we include them for visualization purposes. When ablating the circuit, the accuracy drop
significantly affects only a small number of classes. Subfigure (b) depicts the histogram of categories
of the Places-365 dataset as a function of accuracy drop (on the x-axis). The classes most affected
by the ablation are those more strictly related to the semantically aligned concepts of the circuit, as
exemplified in (c). Dropping only the units aligned with the most popular concept in the circuit (d)
does not account for the effects of ablating the whole circuit (c).
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B.4 ImageNet Neural Circuits

ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
0 291 285 4 screen.n.05 window screen.n.01 0.952625 0
1 118 98 3 press.n.02 school newspaper.n.01 0.756026 0.236177
3 51 32 3 bed.n.01 four-poster.n.01 0.45849 0.243415
4 81 75 4 white goods.n.01 refrigerator.n.01 0.904113 0.870666
6 1223 694 42 ball.n.01 pickup.n.01 0.318472 0.19791
8 163 151 3 sheet.n.06 puck.n.02 0.562053 0.236684

11 102 87 2 reservoir.n.03 water tower.n.01 0.96552 0.863904
14 89 68 6 top.n.09 bottlecap.n.01 0.322545 0.0843083
19 47 44 4 baby bed.n.01 crib.n.01 0.974298 0.916775
20 324 169 24 nutriment.n.01 pizza.n.01 0.228595 0.189299
21 1192 766 28 housing.n.01 palace.n.04 0.314521 0.282249
22 468 371 9 memorial.n.03 triumphal arch.n.01 0.256961 0.110752
24 250 184 6 public transport.n.01 school bus.n.01 0.288938 0.166539
26 916 427 33 wing.n.02 lifeboat.n.01 0.346403 0.385034
27 474 273 14 establishment.n.04 toyshop.n.01 0.216096 0.2173
29 143 102 3 locomotive.n.01 electric locomotive.n.01 0.469812 0
31 205 143 3 slot machine.n.01 slot.n.07 0.964002 0.935163
35 159 114 3 cabinet.n.01 medicine chest.n.01 0.353555 0
38 79 58 3 communication.n.02 street sign.n.01 0.726745 0.326418
40 68 35 6 duck.n.01 red-breasted merganser.n.01 0.812208 0.457885
41 159 104 5 person.n.01 scuba diver.n.01 0.469973 0.27022
44 7 7 2 free-reed instrument.n.01 harmonica.n.01 0.962366 0.868279
47 385 202 15 geological formation.n.01 alp.n.01 0.614762 0.558982
51 58 43 7 coelenterate.n.01 jellyfish.n.02 0.384755 0.190476
54 25 23 3 worm.n.01 nematode.n.01 0.975471 0.883518
56 77 65 4 blind.n.03 theater curtain.n.01 0.483109 0.16163
59 88 77 3 seed.n.01 rapeseed.n.01 0.682281 0.289388
60 62 48 3 flower.n.01 daisy.n.01 0.778478 0.255305
61 30 24 3 bird of prey.n.01 kite.n.04 0.704017 0.281213
62 97 83 3 equine.n.01 sorrel.n.05 0.867603 0.645367
65 13 12 2 shoe.n.01 wing tip.n.01 0.846154 0
70 39 39 4 lever.n.01 organ.n.05 0.420929 0.0573089
71 4 4 2 cornet.n.01 french horn.n.01 0.955708 0.911416
72 97 88 7 pool table.n.01 pool table.n.01 0.293053 0.0706613
74 24 21 3 cloth covering.n.01 band aid.n.01 0.497121 0.263062
75 10 9 3 swimsuit.n.01 maillot.n.01 0.643598 0.320638
78 19 15 3 percoid fish.n.01 rock beauty.n.01 0.438596 0
81 103 97 2 gear.n.04 drilling platform.n.01 0.889206 0
85 5 4 2 odonate.n.01 damselfly.n.01 1 1
88 58 52 2 floor cover.n.01 prayer rug.n.01 0.811252 0
91 35 26 3 whale.n.02 grey whale.n.01 0.488024 0.329858
93 27 23 3 astronomical telescope.n.01 newtonian telescope.n.01 0.418803 0
94 37 25 6 personal computer.n.01 hand-held computer.n.01 0.234234 0.2
99 41 29 2 material.n.01 gravel.n.01 0.820461 0.576949

102 5 4 2 weight.n.02 barbell.n.01 0.94725 0.868126
103 3 3 2 bib.n.01 apron.n.01 0.450865 0.176297
106 25 21 5 photographic equipment.n.01 polaroid camera.n.01 0.300312 0.250013
107 34 18 3 shirt.n.01 polo shirt.n.01 0.484291 0.316997
108 21 14 3 power tool.n.01 circular saw.n.01 0.876812 0.813926
112 30 28 4 electro-acoustic transducer.n.01 headset.n.01 0.760106 0.461025
115 7 5 3 knife.n.01 carving knife.n.01 0.410684 0.270726
121 66 42 8 overgarment.n.01 mess jacket.n.01 0.301214 0.295988
123 30 20 3 citrus.n.01 orange.n.01 0.968543 0.937791
124 43 39 5 decoration.n.01 obelisk.n.01 0.681294 0.267083
127 7 6 2 food fish.n.01 coho.n.02 0.714286 0
130 25 21 3 gymnastic apparatus.n.01 balance beam.n.01 0.837949 0.777162
138 21 14 3 farm machine.n.01 harvester.n.02 0.570147 0.331539
139 14 12 2 monotreme.n.01 echidna.n.02 0.993526 0.975453
149 18 17 2 pot.n.01 coffeepot.n.01 0.987252 0.885269
156 9 8 3 bicycle.n.01 bicycle-built-for-two.n.01 0.420012 0.260037
159 41 36 3 movable barrier.n.01 sliding door.n.01 0.45122 0
160 15 15 3 jinrikisha.n.01 horse cart.n.01 0.37875 0.0769099
168 8 7 2 armor plate.n.01 pickelhaube.n.01 0.75 0
171 10 8 3 sandpiper.n.01 red-backed sandpiper.n.01 0.311111 0
179 18 17 2 solanaceous vegetable.n.01 mashed potato.n.01 0.888889 0
181 17 14 2 rabbit.n.01 angora.n.03 0.691176 0
183 23 16 3 communication system.n.01 monitor.n.05 0.639657 0.502954
188 34 18 5 elasmobranch.n.01 great white shark.n.01 0.229847 0.0912011
192 18 16 2 trouser.n.01 jean.n.01 0.971391 0.863211
193 9 9 3 starfish.n.01 sea urchin.n.01 1 1
198 7 5 3 capuchin.n.02 howler monkey.n.01 1 1
208 9 8 3 winter squash.n.02 butternut squash.n.02 1 1
210 8 7 2 elephant.n.01 indian elephant.n.01 0.970095 0.880378
216 8 7 2 towel.n.01 bath towel.n.01 0.974183 0.896731

Table B.14: Circuits with more than one unique meaning retrieved in AlexNet pretrained with
Places365 and aligned with ImageNet.
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ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
4 77 44 9 geological formation.n.01 geyser.n.01 0.654843 0.671612
7 101 58 8 bridge.n.01 triumphal arch.n.01 0.217881 0.142396
8 19 12 4 baby bed.n.01 crib.n.01 0.957237 0.916775

18 7 5 2 material.n.01 gravel.n.01 0.798547 0.576949
19 61 41 6 public transport.n.01 trolleybus.n.01 0.325314 0.166539
20 30 16 3 car.n.02 passenger car.n.01 0.904969 0.86348
21 60 26 3 locomotive.n.01 electric locomotive.n.01 0.328814 0
22 34 30 4 pool table.n.01 pool table.n.01 0.408058 0.152828
24 23 12 3 shirt.n.01 polo shirt.n.01 0.472837 0.316997
26 23 14 4 condiment.n.01 carbonara.n.01 0.448014 0.398186
27 15 11 2 glass.n.02 beer glass.n.01 0.580952 0
28 192 45 27 military vehicle.n.01 airliner.n.01 0.370326 0.432937
29 22 17 2 reservoir.n.03 water tower.n.01 0.949922 0.863904
31 15 10 3 swimsuit.n.01 bikini.n.02 0.512009 0.307519
33 52 29 7 overgarment.n.01 lab coat.n.01 0.264992 0.252517
35 26 24 2 gear.n.04 drilling platform.n.01 0.852308 0
36 73 22 12 nutriment.n.01 cheeseburger.n.01 0.405082 0.493011
39 115 44 11 establishment.n.04 confectionery.n.02 0.267614 0.276645
40 47 36 4 theater.n.01 cinema.n.02 0.427225 0.21267
41 133 71 8 housing.n.01 palace.n.04 0.407624 0.291335
42 18 14 3 cabinet.n.01 medicine chest.n.01 0.379085 0
43 16 8 3 flower.n.01 yellow lady 0.451232 0.255305
45 20 14 2 equine.n.01 sorrel.n.05 0.872006 0.71049
46 8 6 2 towel.n.01 bath towel.n.01 0.955742 0.896731
47 16 12 3 blind.n.03 theater curtain.n.01 0.598993 0.323261
48 107 32 17 grille.n.02 sports car.n.01 0.467275 0.479944
52 36 13 3 bed.n.01 bed.n.01 0.469733 0.243415
55 17 16 2 telephone.n.01 pay-phone.n.01 0.882353 0
57 58 16 5 shorebird.n.01 redshank.n.01 0.244757 0.0983143
58 28 11 6 anseriform bird.n.01 eider.n.01 0.57625 0.465927
59 4 3 2 rabbit.n.01 angora.n.03 0.5 0
61 67 30 4 place of worship.n.01 mosque.n.01 0.6712 0.43035
67 47 25 4 person.n.01 ballplayer.n.01 0.622116 0.31211
68 11 10 2 beverage.n.01 espresso.n.01 0.818182 0
69 9 4 3 spiny-finned fish.n.01 rock beauty.n.01 0.44387 0.331609
70 13 8 2 communication.n.02 street sign.n.01 0.701406 0.417741
72 7 6 2 seed.n.01 rapeseed.n.01 0.714286 0
79 17 15 2 column.n.06 obelisk.n.01 0.971856 0.872413
80 15 14 2 shed.n.01 boathouse.n.01 0.975887 0.819153
83 4 3 2 decoration.n.01 necklace.n.01 0.904723 0.809447
84 7 5 2 slot machine.n.01 slot.n.07 0.997932 0.996382
87 8 4 3 shark.n.01 hammerhead.n.03 0.321429 0
89 6 4 2 white goods.n.01 washer.n.03 0.945609 0.898017
94 27 12 4 personal computer.n.01 laptop.n.01 0.316239 0.166667
95 17 10 3 communication system.n.01 monitor.n.05 0.627787 0.502954
98 9 7 3 footwear.n.02 wing tip.n.01 0.610668 0.328013
99 14 5 6 coelenterate.n.01 stony coral.n.01 0.43956 0.266667

101 11 5 3 bicycle.n.01 mountain bike.n.01 0.418564 0.260037
103 5 4 2 trouser.n.01 jean.n.01 0.945284 0.863211
112 6 4 2 sheet.n.06 scoreboard.n.01 0.84536 0.710051

Table B.15: Circuits with more than one unique meaning retrieved in ResNet pretrained with
Places365 and aligned with ImageNet.

ID Pairs Units Concepts Highest concept Most common concept Coherence Unique coherence
1 23 11 3 car.n.02 freight car.n.01 0.909144 0.86348
2 15 6 3 locomotive.n.01 electric locomotive.n.01 0.295238 0
3 7 6 2 car.n.01 racer.n.02 0.917336 0.710677
4 7 4 3 table.n.02 pool table.n.01 0.333333 0
5 6 5 2 seed.n.01 rapeseed.n.01 0.666667 0
6 5 3 2 flower.n.01 daisy.n.01 0.859548 0.765914
7 4 2 3 nutriment.n.01 pizza.n.01 0.768412 0.752821
8 11 9 3 overgarment.n.01 lab coat.n.01 0.48908 0.324948
9 3 3 2 person.n.01 person.n.01 0.550697 0.326045

Table B.16: Circuits with more than one unique meaning retrieved in DenseNet pretrained with
Places365 and aligned with ImageNet.
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geological formation.n.01

shore.n.01
seashore.n.01

lakeside.n.01

natural elevation.n.01

mountain.n.01
volcano.n.02

alp.n.01

ridge.n.01
reef.n.01 coral reef.n.01

bar.n.08 sandbar.n.01

promontory.n.01cliff.n.01

spring.n.03 geyser.n.01

natural depression.n.01 valley.n.01

(a)

(b)

Class Drop
/l/lagoon -0.07
/l/lake/natural -0.08
/m/mountain path -0.08
/c/coast -0.08
/t/tundra -0.09
/o/ocean -0.1
/m/mountain snowy -0.1
/v/valley -0.13
/h/hot spring -0.15
/m/mountain -0.24

(c)

Class Drop
/f/forest path -0.04
/c/castle -0.04
/m/mansion -0.04
/m/mountain snowy -0.05
/g/glacier -0.05
/v/valley -0.06
/d/desert/sand -0.07
/c/chalet -0.07
/m/mountain path -0.09
/m/mountain -0.11

(d)

Figure B.3: Importance analysis of circuit n.47 from AlexNet aligned with the ImageNet dataset,
containing 202 distinct units and 15 unique visual concepts. The circuit is aligned to geological
formations, such as mountains. Subfigure (a) reports the aligned concepts within the WordNet tax-
onomy. Italic concepts are not directly aligned, but we include them for visualization purposes.
When ablating the circuit, the accuracy drop significantly affects only a small number of classes.
Subfigure (b) depicts the histogram of categories of the Places-365 dataset as a function of accuracy
drop (on the x-axis). The classes most affected by the ablation are those more strictly related to the
semantically aligned concepts of the circuit, as exemplified in (c). Dropping only the units aligned
with the most popular concept in the circuit (d) does not account for the effects of ablating the whole
circuit (c).

26



Under review as a conference paper at ICLR 2022

C Semantic Similarity

WordNet enables the estimate of semantic similarity using different measures (Meng et al., 2013).
Essentially, the similarity between two concepts is estimated by studying their information content
(IC) in the specialization induced taxonomy. The IC of a specific concept consists of the negative
log-probability of the concept itself,

IC(c) = − log P(c). (C.1)

Given a text corpus, the maximum likelihood estimate of P(c) is obtained by counting the Nc occur-
rences of the concept c, against the total number of terms N,

P(c) =
Nc

N
. (C.2)

With the current formulation, the IC of a concept monotonically increases crossing the WordNet
taxonomy from the root r, which has IC(r) = 0, to the leaves. Using the IC metric, Lin (1998)
proposes to estimate the similarity slin between two arbitrary concepts c1, c2 as

slin(c1, c2) =
2IC(LCS(c1, c2))
IC(c1) + IC(c2)

, (C.3)

where the least common subsumer (LCS) of two concepts is defined as their nearest common ances-
tor in the taxonomy. Intuitively, the more the two concepts are specific, the more they are similar if
their LCS is also sufficiently specific. Furthermore, given the monotonicity of IC in respect to the
taxonomical order

IC(LCS (c1, c2)) ≤ IC(c1), IC(c2), (C.4)
for any possible pair (c1, c2), it holds

slin(c1, c2) ∈ [0, 1]. (C.5)

Notably, the Lin similarity derives from the Resnisk similarity (Resnik, 1995),

sresnik = IC(LCS(c1, c2)) (C.6)

Alternatively, Jiang & Conrath (1997) propose a similarity measure based on the notion of link
strength. Given two concepts c, p, where p is an ancestor of c, the link strength can be measured as
follows:

LS(c, p) = − log P(c | p)

= − log
P(c, p)
P(p)

= − log
P(c)
P(p)

= − log P(c) + log P(p)
= IC(c) − IC(p).

(C.7)

The similarity sjcn is then expressed as the inverse of the sum of the link strengths between two
arbitrary concepts c1, c2 and their LCS.

sjcn(c1, c2) =
1

LS(c1,LCS(c1, c2)) + LS(c2,LCS(c1, c2))

=
1

IC(c1) + IC(c2) − 2IC(LCS(c1, c2))

(C.8)
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