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Abstract
We address a growing debate about the extent to
which large language models (LLMs) produce
behavior consistent with Theory of Mind (ToM)
in humans. We present EPITOME: a battery of
six experiments that tap diverse ToM capacities,
including belief attribution, emotional inference,
and pragmatic reasoning. We compare perfor-
mance of five LLMs to a baseline of responses
from human comprehenders. Results are mixed.
LLMs display considerable sensitivity to men-
tal states and match human performance in sev-
eral tasks. Yet, they commit systematic errors in
others, especially those requiring pragmatic rea-
soning on the basis of mental state information.
Such uneven performance indicates that attribut-
ing ToM to LLMs might be premature.

1. Introduction
Theory of Mind (ToM) is a broad construct encompassing
a range of social behaviors from reasoning about others’
beliefs and emotions to understanding non-literal commu-
nication (Apperly, 2012; Beaudoin et al., 2020). These
mentalizing or mindreading capacities underpin social in-
telligence (Frith & Frith, 2012), allowing us to anticipate
others’ actions (Tomasello et al., 2005), solve social coordi-
nation problems (Sebanz et al., 2006) and understand com-
municative intent (Grice, 1975; Sperber & Wilson, 2002).

There is growing interest whether artificial intelligence (AI)
agents could display ToM abilities (Johnson & Iziev, 2022;
Langley et al., 2022; Rabinowitz et al., 2018). Many desir-
able AI applications require something akin to ToM, includ-
ing recognizing users’ intents (Wang et al., 2019), displaying
empathy toward users’ emotions (Sharma et al., 2021), and
interpreting requests in the context of users’ goals (Dhelim
et al., 2021). Equally, improved mentalizing could improve
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models’ capacity for deception (Sarkadi et al., 2019), lead-
ing to safety concerns (Ngo et al., 2023). The recent success
of Large Language Models (LLMs) has further intensified
interest and optimism in the potential for artificial ToM. Al-
though their pre-training regime does not explicitly include
social interaction or communicative intent (Bender & Koller,
2020), LLMs produce text which superficially bears many
hallmarks of mentalizing (Shevlin, under review; Y Arcas,
2022). However, studies evaluating LLM performance on
ToM tasks have yielded inconsistent findings, sparking de-
bates on models’ capacities (Kosinski, 2023; Sap et al.,
2022; Ullman, 2023). Here, we collate six diverse tasks to
investigate the consistency of LLMs’ ToM capabilities.

A variety of tasks have been designed to measure different
facets of mentalizing (Happé, 1994; Premack & Woodruff,
1978; Wimmer & Perner, 1983). Unfortunately, these mea-
sures exhibit poor convergent validity—performance in one
task does not necessarily correlate with any other—and
limited predictive validity, with task performance failing
to consistently predict socioemotional functioning (Gerns-
bacher & Yergeau, 2019; Hayward & Homer, 2017; Warnell
& Redcay, 2019). This limits the extent to which perfor-
mance on a single task can be taken as evidence of ToM
more generally (Schaafsma et al., 2015), and underscores
the need for running varied, tightly controlled experiments
each measuring distinct aspects of mentalizing. We select
six experimental psychology tasks that collectively measure
a diverse set of ToM-related abilities including belief attribu-
tion, emotional reasoning, non-literal communication, and
pragmatic inference.

Beyond measuring LLMs’ ToM performance, these models
can provide insights into debates on human ToM’s evolu-
tionary and developmental origins (Krupenye & Call, 2019;
Premack & Woodruff, 1978). Researchers disagree about
whether ToM is an innate, evolutionary adaptation (Bedny
et al., 2009; Surian et al., 2007) or learned via social in-
teraction (Harris, 2005; Hughes et al., 2005) and language
(Brown et al., 1996; de Villiers & de Villiers, 2014; Hale
& Tager-Flusberg, 2003; Milligan et al., 2007). If language
exposure is sufficient for human ToM, then the statistical
information learned by LLMs could account for variabil-
ity in human responses. We collate human responses to
each task for comparison with LLM performance, using
identical materials for both. This approach allows us to ask
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where LLMs sit in the distribution of human scores; whether
their accuracy is significantly different from humans; and
whether their predictions explain the effects of mental state
variables on human responses.

2. Related Work
Several recent studies have directly investigated ToM abil-
ities in LLMs. Sap et al. (2022) evaluated GPT-3 davinci
on SocialIQA—a crowdsourced dataset of multiple choice
questions about social reactions to events (Sap et al., 2019)—
and ToMi—a synthetically generated dataset of False Belief
Task passages (Le et al., 2019). GPT-3 achieved 55% ac-
curacy on SocialIQA, well below a baseline of 84% set
by three human participants. While ToMi lacks a specific
human baseline, GPT-3 performed poorly (60%) at belief
questions, despite being near ceiling on factual questions.

Kosinski (2023) similarly found that GPT-3 davinci per-
forms poorly (40% accuracy) on a range of novel False
Belief stimuli (Perner et al., 1987; Wimmer & Perner, 1983).
However, later models in the series performed much better.
GPT-3 text-davinci-002, fine-tuned to follow instructions,
achieved 70% accuracy. GPT-3 text-davinci-003 and GPT-
4—fine-tuned using reinforcement learning—achieve 90%
and 95% respectively. Although the paper does not estab-
lish a human baseline for the novel stimuli, this compares
favorably to meta-analyses suggesting typical accuracy of
90% for 7-year olds (Wellman et al., 2001).

Ullman (2023), however, showed that 8 simple perturba-
tions to Kosinski’s stimuli cause GPT-3 text-davinci-003 to
fail, suggesting that LLMs exploit shallow statistical pat-
terns rather than deploying a deep, emergent ToM ability.
Though these perturbations were not tested with humans
or generalized to a larger sample of items, Ullman argues
that “outlying failure cases should outweigh average suc-
cess rates.” Most recently, Shapira et al. (2023) evaluated 15
LLMs across 6 tasks incorporating belief attribution (ToMi,
False Belief), epistemic reasoning, and social reactions (So-
cialIQa and Faux Pas), and found that none performed ro-
bustly. Moreover, they showed that models were vulnerable
to systematic adversarial perturbations in the style of Ull-
man (2023). It is not clear how humans would perform
on these tasks, especially synthetic and adversarial exam-
ples that might contain less naturalistic language. However,
the authors’ comprehensive and diagnostic approach proves
very valuable, and we hope to extend and complement it in
the present work.

Our contribution differs from existing studies in several
ways. First, we include tasks that incorporate a broader
range of ToM capacities (including emotional reasoning,
pragmatic inference, and non-literal communication), and
evaluation criteria (including human evaluation of free-text

completions). Second, we use experimental stimuli orig-
inally designed to measure ToM in humans. While some
researchers are concerned that human experiments may be
poorly designed for LLMs (Mitchell & Krakauer, 2023;
Shapira et al., 2023; Ullman, 2023), it is unclear that novel
tasks (especially those generated synthetically or via crowd-
sourcing) overcome underlying problems. Moreover, ex-
perimental stimuli have the advantage of being carefully
designed and validated to control for confounds and mea-
sure specific latent constructs (Binz & Schulz, 2023). Third,
to minimize the risk of selecting items or analyses that
would lead to a given result, we preregistered materials and
analyses for four of the six studies. Fourth, to allow direct
item-level comparison between model and human perfor-
mance, for each study we elicit an appropriately powered
human baseline for all items. Finally, to test whether experi-
mental variables explain variance in human responses when
controlling for language model predictions, we perform
pre-planned hierarchical model comparisons.

3. The present study
We assemble EPITOME: a battery of six experiments de-
signed to measure distinct aspects of ToM in humans (see
Figure 1). The False Belief Task (FB) tests whether partici-
pants can maintain a representation of someone else’s belief,
even if it differs from their own (Wimmer & Perner, 1983).
Recursive Mindreading (RM) tests whether participants
can recursively represent mental states up to seven levels
of embedding, e.g. “Alice knows that Bob believes that
Charlie...” (O’Grady et al., 2015). The Short Story Task
(ShS) measures the ability to infer and explain emotional
states of characters (Dodell-Feder et al., 2013), while the
Strange Stories Task (StS) (Happé, 1994) asks participants
to explain why characters might say things they do not mean
literally. The final two tasks measure sensitivity to speaker
knowledge during pragmatic inference. The Indirect Re-
quest Task (IR) asks whether participants are less likely to
interpret an utterance as a request if the speaker knows that
the request can’t be fulfilled (Trott & Bergen, 2020). The
Scalar Implicature (SI) task tests whether comprehenders
are less likely to interpret some to mean not all when the
speaker does not know enough to make the stronger claim
(Goodman & Stuhlmüller, 2013).

We pre-registered our analyses for four of the six tasks, and
provide code, data, and materials for all six.1 To elicit a per-
formance baseline for models, we collect human responses
for each task. We ask three types of question: (1) Where
do LLMs sit in the distribution of human performance?
(2) Are LLMs sensitive to experimental variables that alter
characters’ mental states? (3) Do LLMs fully explain hu-

1https://osf.io/sn7gj/?view_only=
a793639cceda492f9020705b89045a31

https://osf.io/sn7gj/?view_only=a793639cceda492f9020705b89045a31
https://osf.io/sn7gj/?view_only=a793639cceda492f9020705b89045a31
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Figure 1. Truncated examples of materials from each of the 6 Theory of Mind tasks. Participants read a context passage (light text) and
then answered a question using the response type indicated in the top-right of each box. For unabbreviated examples, see Appendix B.

man behavior, or is there a residual effect of mental state
variables on human comprehenders after controlling for
distributional likelihood as measured by LLM predictions?

Our main analysis focuses on GPT-3 text-davinci-002
(henceforth, GPT-3): one of the best-performing models
which has not been trained using Reinforcement Learning
from Human Feedback (RLHF; Ouyang et al., 2022). While
RLHF has been found to improve performance at a many
tasks, it introduces an additional training signal, which com-
plicates inferences about the sufficiency of distributional
information. We make our code and materials available to
facilitate addressing further questions, including whether
RLHF improves performance at ToM tasks. Finally, we
perform analyses with smaller GPT-3 variants, to measure
the extent to which model performance changes with scale.

4. Methods
We accessed models through the OpenAI API with tem-
perature = 0. When measuring the probability assigned
to a multi-token string, we summed the log probabilities
of each token. The number of human participants in each
study varied based on the types of statistical analysis being
run, the number of items, and the number of observations

per participant. For tasks without explicit correct answers,
‘accuracy’ is defined as the total score on questions measur-
ing sensitivity to mental states. We use data and analysis
from Trott et al. (2023) for the FB component of our battery.
LLM data and analyses for all other tasks, as well as human
data for RM, StS, and SI are novel contributions.

4.1. False Belief Task

Materials Trott et al. (2023) constructed 12 passage tem-
plates, in which a main character puts an object in a Start
location, and a second character moves it to an End location.
The last sentence states that the main character believes the
object is in some (omitted) location. There are 16 versions
of each item (192 passages) varied across 4 dimensions: i)
Knowledge State: whether the main character knows (True
Belief) or not (False Belief) that the object has changed
location; whether (ii) the First Mention and (iii) the most
Recent Mention of a location is the Start or End location;
and (iv) Knowledge Cue: whether the main character’s be-
lief is implicit or explicit (“X goes to get the book from the

”, vs “thinks the book is in the ”).

Human Responses 1156 participants from Amazon’s Me-
chanical Turk were compensated $1 to complete a single
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trial. Each read a passage (except the final sentence), and
on a new page, produced a single word free-response com-
pletion of the final sentence. Participants then completed
two free-response attention check questions that asked for
the true location of the object at the start and the end of the
passage. Responses were preprocessed by lowercasing and
removing punctuation, stopwords, and trailing whitespace.
Participants were excluded if they were non-native English
speakers (13), answered ≥ 1 attention check incorrectly
(513), or answered the sentence completion with a word that
was not the start or end location (17), retaining 613 trials.

LLM Responses LLM responses were operationalized as
the probability assigned to each possible location (Start vs.
End) conditioned on each of the passage versions. Using the
Log-Odds Ratio, log(p(Start))− log(p(End)), higher val-
ues indicate larger relative probabilities of the Start location.
We score model responses as correct if p(Start) > p(End)
in False Belief trials and vice versa in True Belief Trials.

4.2. Recursive Mindreading

Materials We adapted stimuli from O’Grady et al. (2015)
for U.S. participants. The stimuli comprised 4 stories, each
of which had a plot involving seven levels of recursively-
embedded mental representation, and seven levels of a non-
mental recursive concept, such as possession. For each of
the levels of mental and non-mental recursion, the authors
also created two scenes to follow the main story, only one of
which was consistent with the main story. All of the stories
and continuations were written in two different formats: as
scripts (dialogue) and as narratives. In total there were 112
pairs of continuation passages. While the original study
recorded actors reading scripts, we presented the materials
in text format to both LLMs and human participants.

Human Responses We recruited 72 undergraduates who
participated in the experiment online. Each read all four
stories in a randomized order. After each story, they re-
sponded to 14 questions (2 conditions × 7 embedding lev-
els); each asked which of a pair of story continuations was
consistent with the main story. The format of the story
and continuations (narrative vs dialogue) was fully crossed.
We excluded 6 participants who scored < 62% on level 1
questions, and trials in which the participant read the story
in < 65ms/word (322), or responded to the question in
< 300ms (45).

LLM Responses We measured the probability assigned
by LLMs to each continuation following the story. We pre-
sented all four combinations of story and question format
to the LLM. Because continuations varied considerably in
length and other surface features, we used PMIDC to con-
trol for the probability of the continuation in the absence
of the story (Holtzman et al., 2022). We operationalize the
LLM’s preference for one option over another as the log-

odds (log(p([A]))− log(p([B])), corrected with PMIDC .
We scored the LLM as correct if it assigned a higher proba-
bility to the consistent continuation.

4.3. Short Story Task

Materials Dodell-Feder et al. (2013) designed a set of 14
questions about Ernest Hemingway’s short story The End
of Something. The story describes an argument between
a couple, culminating in their breakup. The mental lives
of the characters are not explicitly described and must be
inferred from their behavior. There are 5 Reading Compre-
hension (RC) questions; 8 Explicit Mental State Reasoning
(EMSR) questions, and 1 Spontaneous Mental State Infer-
ence (SMSI) question that asks whether participants make
mental state inferences when summarizing the passage.

Human Responses Human response data came from Trott
& Bergen (2018). 240 participants completed a web version
of the Short Story Task, in which they read The End of Some-
thing and then answered all 14 questions. Participants who
indicated that they had read the story before were excluded,
and there were 227 subjects retained after exclusions. All
responses were scored by two independent coders using the
rubric provided by Dodell-Feder et al. (2013). A third coder
acted as tiebreaker for cases where these coders disagreed.

LLM Responses LLMs generated completions for
prompts that comprised the passage and a question. Each
question was presented separately. A third coder scored
LLM responses and a subset of human responses in a single
batch. The scores assigned to the human participant re-
sponses by this third rater were consistent with the original
assigned scores across all three components, (RC: r = 0.98;
EMSR: r = 0.90; SMSI: r = 0.76).

4.4. Strange Story Task

Materials Happé (1994) designed 24 passages in which a
character says something they do not mean literally. Each
story is accompanied by a comprehension question (“Was
it true, what X said?”) and a justification question (“Why
did X say that?”). 6 non-mental control stories measured
participants’ general reading comprehension skill.

Human Responses We recruited 44 undergraduates who
participated online. Participants saw a non-mentalistic exam-
ple passage, and example responses to both question types.
Participants read each passage and answered the associated
questions using a free-response input. We removed 95 trials
(7%) in which the participant answered the comprehension
question incorrectly. Responses to the justification question
were scored by two naive raters using the rubric provided by
Happé (1994), with a third coder acting as tiebreaker. We
excluded 16 participants for scoring < 66% on the control
stories, indicating inattention.
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LLM Responses We generated completions from LLMs
for a prompt which consisted of the same instructions and
examples that human participants saw, a passage, and the
relevant question. For the justification question, the prompt
additionally contained the first question along with the cor-
rect answer (i.e. “No”). LLM responses were scored in the
same batch as the human responses. Coders were not aware
that any of the responses had been generated by LLMs.

4.5. Indirect Request

Materials Trott & Bergen (2020) created 16 pairs of short
passages, each ending with an ambiguous sentence that
could be interpreted as either an indirect request or a direct
speech act (e.g. “it’s cold in here” could be a request to
turn on a heater, or a complaint about the temperature of
the room). In each passage, the participant learns about
an obstacle that would prevent fulfilment of the potential
request (e.g. the heater being broken). The authors manipu-
lated Speaker Awareness—whether the speaker was aware
of the obstacle or not— and Knowledge Cue: whether the
speaker’s knowledge about the obstacle was indicated explic-
itly (“Jonathan doesn’t know about the broken heater”) or
implicitly (Jonathan being absent when the heater breaks).

Human Responses Human response data came from Trott
& Bergen (2020) Experiment 2. 69 participants from Ama-
zon Mechanical Turk read 8 passages. Condition (Speaker
Aware vs Speaker Unaware) was randomized within sub-
jects. After each passage, participants were asked: “Is X
making a request?” and responded “Yes” or “No.”

LLM Responses We presented each version of each
passage to GPT-3 followed by the critical question “Do
you think [the speaker] is making a request?” and mea-
sured the probability assigned by the model to the to-
kens “Yes” and “No.” We calculate the log odds ratio
log(p(Y es)) − log(p(No)) and score answers as correct
if this is positive when the speaker is unaware of the obsta-
cle, and negative when the speaker is unaware.

4.6. Scalar Implicature

Materials We designed 40 novel passage templates based
on the 6 items in Goodman & Stuhlmüller (2013). The first
section of each passage introduces three objects that almost
always have some property (e.g. “David orders 3 pizzas that
almost always have cheese in the crust.”). The next section
contains an utterance about the speaker’s knowledge state
(“David says: ‘I have looked at [a] of the 3 pizzas. [n] of
the pizzas have cheese in the crust.”, where 1 ≤ a ≤ 3,
n =“Some” in Experiment 1, and 1 ≤ n ≤ a in Experiment
2. After each of the two passage sections, participants are
asked “How many of the 3 pizzas do you think have cheese
in the crust? (0, 1, 2, or 3)”, probing participants’ beliefs
both before and after the utterance. A third question asks

if the speaker knows how many objects have the property
(“Yes” or “No”).

Human Responses We randomly assigned 242 under-
graduate student participants to either Experiment 1 (126)
or Experiment 2 (116).2 For each question, participants
were instructed to divide “$100” among the options, bet-
ting to indicate their confidence in each option. Participants
completed 3 trials in E1 (each with different values of a)
and 6 trials in E2 (with all possible combinations of a and
n). Following Goodman & Stuhlmüller (2013), we excluded
410 trials (143 in E1, 247 in E2) in which the knowledge
judgement was less than 70 in the expected direction (i.e.
< $70 on “Yes” when a = 3; < $70 on “No” when a < 3).
We measured accuracy by testing whether the relationships
between bets before and after the speaker’s utterance reflect
the fact that a scalar implicature should only be drawn when
the speaker has complete access (see Appendix C).

LLM Responses For each question, we constructed a
prompt consisting of the relevant sections of the story, fol-
lowed by the question (marked by ‘Q:’), then by an answer
prompt, ‘A:’. We found the probability assigned by the
model to each response option (0, 1, 2, and 3), normalized
by the total probability assigned to all response options. We
did not use the knowledge check filtering criterion for model
responses as this would amount to removing entire items.

5. Results
For each task we ask how GPT-3 and human accuracy com-
pare by testing whether data source (human vs GPT-3) im-
proves the fit of a regression model predicting accuracy. We
also test whether log model scale predicts accuracy across
four base GPT-3 models (ada to davinci). We exclude text-
davinci-002 from the scaling analysis to avoid conflating
contributions of scale and training data. For 4 of the tasks
(FB, RM, IR, SI), we additionally ask whether mental state
variables have significant effects on GPT-3 metrics, anal-
ogous to the statistical analyses from the original experi-
ments. Finally, we use hierarchical model comparisons to
test whether the effects of these variables on humans are
robust to controlling for LLM predictions.

5.1. False Belief Task

GPT-3 accuracy was 74%, significantly below the human
mean of 83% (χ2(1) = 6.97, p = .008, see Figure 2).
Accuracy increased with model size from ada (51%) to
davinci (60%) (χ2(1) = 7.51, p = .006, see Figure 3).

Knowledge State—whether the character knew that the

2We originally ran this study on Mechanical Turk. An unusually
high exclusion rate of 70% indicated unreliable data and we re-ran
the study with undergraduate students.
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Figure 2. Distribution of human accuracy by participant (grey
circles with 95% bootstrap confidence intervals) compared to mean
GPT-3 text-davinci-002 accuracy (red diamonds). GPT-3 accuracy
was not significantly different from human accuracy across 3 tasks
(ShS, StS, IR), but was significantly lower in others (FB, RM, SI).

object had been moved—had a significant effect on the
log-odds that GPT-3 assigned to each location (χ2(1) =
18.6, p < .001). Concretely, GPT-3 assigned a higher
probability to the true (end) location of the object when
the character was in a position to observe the object hav-
ing moved to that location. Human comprehenders also
showed an effect of Knowledge State on the likelihood
that they completed a probe sentence with the end location
(χ2(1) = 31.7, p < .001). Crucially, this effect on human
comprehenders was robust to controlling for the predictions
of GPT-3 (χ2(1) = 30.4, p < .001), suggesting that Knowl-
edge State influenced human responses in a way that was
not captured by the LLM.

5.2. Recursive Mindreading

GPT-3’s mean accuracy on mental questions was 73%, sig-
nificantly lower than the human mean of 85% (χ2(1) =
9.12, p = .003). GPT-3 was in the 16th percentile of human
accuracy scores, aggregated by participant. Model accuracy
increased slightly with scale, from ada (63%) to davinci
(65%) (z = 3.06, p = .002, see Figure 3).

Human accuracy on mental questions was significantly
above chance up to 7 levels of embedding (z = 5.56, p <
.001), though there was a negative effect of embedding level
(z = −4.12, p < .001). GPT-3 accuracy on mental ques-
tions decreased after level 4 and was not significantly dif-
ferent from chance beyond level 5 (z = −0.06, p = 0.949).
However, there was no such drop for control questions (see
Figure 4). The difference in log-probability assigned to cor-
rect and incorrect continuations did not significantly predict
human accuracy (z = 1.78, p = 0.075), indicating that hu-

man comprehenders are using different information from the
LLM to select responses. Human accuracy was significantly
above chance at all embedding levels when controlling for
GPT-3 log probabilities (all p values < 0.022).

5.3. Short Story Task

GPT-3 scored 100% on both the RC and SMSI ques-
tions, and 62% on EMSR. Mean human performance was
83%, 42%, and 46% for these components respectively.
GPT-3’s EMSR score was better than 73% of human sub-
jects, but not significantly greater than the human mean
(χ2(1) = 0.997, p = .318). It was not possible to perform
scaling analysis on the StS as the story did not fit in the
context window of smaller models. In order to test whether
GPT-3’s EMSR performance could be attributable to gen-
eral comprehension performance, we performed a follow-up
analysis on the 55 participants (25%) who matched GPT-3’s
Reading Comprehension score. Mean EMSR performance
among this group was 57% and GPT-3 fell in the 50th per-
centile of this distribution.

5.4. Strange Story Task

GPT-3 text-davinci-002’s mean accuracy on critical trials
was 83%, below mean human accuracy of 86%, however
the difference was not significant (χ2(1) = 0.119, p = .73).
GPT-3 performed better than 36% of human participants.
Model performance increased monotonically with scale,
from ada (18%) to davinci (75%) (t(71) = 6.02, p < .001,
see Figure 3). GPT-3’s accuracy on the control questions
(83%) was very similar to the mean accuracy of retained
participants (80%).

5.5. Indirect Request

GPT-3 interpreted all statements as requests (i.e. it assigned
a higher probability to ‘Yes’ vs ‘No’), yielding an accuracy
of 50%. Human mean accuracy was 62% and there was no
significant difference in accuracy between Human and LLM
responses (χ2(1) = 0.666, p = .414). GPT-3’s accuracy
placed it in the 11th percentile of humans, aggregated by
subject. No consistent relationship held between model
scale and performance, with all smaller models performing
at around 50% accuracy (z = −1.13, p = .260).

There was a significant effect of Speaker Awareness on
human responses (χ2(1) = 23.557, p < .001). Human
participants were less likely to interpret a statement as a
request if the speaker was aware of an obstacle preventing
the request’s fulfillment. There was no significant effect of
Speaker Awareness on the log-odds ratio between the prob-
abilities assigned to ‘Yes’ and ‘No’ by GPT-3, suggesting
that the model was not sensitive to this information when
interpreting the request (χ2(1) = 1.856, p = .173).
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Figure 3. ToM task accuracy vs model scale across four base GPT-
3 models (ada, babbage, curie, and davinci). FB, StS, RM, and SI
E1 show positive scaling, with higher-parameter models achieving
increased accuracy. IR and SI E2 show relatively flat scaling,
with no significant increase in accuracy for larger models. GPT-3
text-davinci-002 was excluded from the scaling analysis.

5.6. Scalar Implicature

In Experiment 1, GPT-3 accuracy was 25%, significantly
lower than the human mean of 56% (χ2(1) = 28.0, p <
.001), and outperforming only 19% of human participants.
Accuracy increased with scale from ada (17%) to davinci
(50%) (z = 3.93, p < .001, see Figure 3). In line with the
original results, human participants bet significantly more
on 2 vs 3 when access = 3 (t(1) = −13.07, p < .001).
However, in contrast with the original results we also find
this effect when the speaker has incomplete access and the
implicature ought to be cancelled (t(1) = −5.881, p <
.001). This could be due to the ambiguity of whether ‘some’
refers to some of the observed objects or some of the total
set of objects (Zhang et al., 2023). GPT-3’s predictions
were inconsistent with the rational model in both cases. It
assigned a higher probability to 3 vs 2 in the complete
access condition— inconsistent with the scalar implicature—
and a lower probability to 3 vs 2 in the incomplete access
conditions—inconsistent with cancelling the implicature.

In Experiment 2, GPT-3 achieved 45% accuracy, placing it
in the 12th percentile of the human distribution and signifi-
cantly below the human mean of 72% (χ2(1) = 37.0, p <
.001). There was no significant relationship between model
scale and performance (z = 1.04, p = .300). GPT-3 failed
to show the scalar implicature effect in the complete ac-

cess condition (see Figure 5). The model assigned a higher
probability to 2 vs 1 when n = 1 (t(1) = 29.3, p < .001),
and there was no difference between p(2) and p(3) when
n = 2 (t(1) = 0.39, p < .697). The probabilities reflected
cancellation of the implicature in all of the incomplete ac-
cess conditions: p(2) ≥ p(1) when a = 1 and n = 1
(t(1) = 216, p < .001) and when a = 2 and n = 1
(t(1) = 71.4, p < .001), and p(3) ≥ p(2) when a = 2
and n = 2 (t(1) = 13.256, p < .001). The pattern of
human responses replicated all of the planned comparison
effects from Goodman & Stuhlmüller (2013), and all effects
persisted when controlling for GPT-3 predictions.

6. Discussion
We compared GPT-3 and human performance on EPITOME:
a battery of 6 ToM experiments. LLM performance varied
considerably by task, achieving parity with humans in some
cases and failing to show sensitivity to mental states at
all in others. There was also significant variation in hu-
man performance within and between tasks—with close to
baseline performance on SI E1 and IR—highlighting the
importance of establishing human baselines to contextualise
LLM performance. While previous work has shown isolated
successes (Kosinski, 2023) and failures (Sap et al., 2022;
Ullman, 2023) of LLMs at specific tasks, the breadth of
tasks presented here provide a more systematic basis for un-
derstanding model performance on diverse aspects of ToM.
We make the code, materials, and human data from EPIT-
OME available to facilitate further research into differences
in ToM between humans and LLMs.

In some respects, GPT-3 showed striking sensitivity to men-
tal state information. For three of the tasks (ShS, StS, and
IR), GPT-3 accuracy was not significantly different from
the human mean. For the ShS and StS tasks, this means that
GPT-3’s free-text explanations of character’s mental states
were rated as equivalent to humans’ by naive raters. In oth-
ers tasks, GPT-3 was sensitive to mental states, with above
chance performance in RM up to 5 levels of embedding, and
significant effects of knowledge state in FB.

However, other aspects of the current results suggest crucial
differences between human and LLM performance. First,
GPT-3 was insensitive to knowledge state in the IR task,
interpreting every statement as a request. Second, GPT-
3 failed to show effects of speaker knowledge in SI (al-
though poor human performance indicates the wording of
E1 may be ambiguous). Third, GPT-3 failed to perform
above chance at Recursive Mindreading beyond 5 levels
of embedding, suggesting that distributional information
may be insufficient for more complex mentalizing behav-
ior. Finally, across 4 tasks (FB, RM, IR, and SI) there
were residual effects of mental state variables on human
responses after controlling for GPT-3 predictions, indicating
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that humans are sensitive to mental state information in a
way that is not captured by models.

Consistent with the hypothesis that an LLM’s performance
is positively correlated with its size (Kaplan et al., 2020), we
found positive scale-accuracy relationships for 4 tasks (FB,
RM, and StS, SI E1). However, IR and SI E2 showed flat
or even negative scaling. This could indicate that models
will require information beyond distributional statistics to
achieve human parity.

GPT-3 performed worst on IR and SI, the two tasks requiring
pragmatic inferences from mental state information. These
showed the largest gaps in accuracy, insensitivity to mental
states, and the flat scaling relationships noted above. Given
existing work showing LLM sensitivity to pragmatic infer-
ence (Hu et al., 2022), this trend could indicate a specific
difficulty for LLMs in varying pragmatic inferences on the
basis of mental state information. These tasks require a
complex multi-step process of sampling, maintaining, and
deploying mental-state information (Trott & Bergen, 2020),
increasing the chances of information loss.

The results also bear on the origins of mentalizing abil-
ities in humans. LLMs’ sensitivity to mental state vari-
ables suggests that domain-general learning mechanisms
and exposure to language could be sufficient to produce
ToM-consistent behavior. But LLMs also performed rela-
tively better at non-mental control questions (in RM and
ShS). This could imply that distributional information is
less useful for predicting human performance in mentalistic
than non-mentalistic tasks, supporting the view that humans
recruit other resources for mental reasoning specifically.

6.1. Limitations

The current work has several important limitations. First, the
tasks were designed to test specific hypotheses about human
comprehenders and may not be well suited to comparing
mentalizing performance of humans and LLMs. The perfor-
mance score for the SI tasks, for instance, was not proposed
by the original authors and may not reliably track mentaliz-
ing ability. Second, some aspects of ToM are not measured
by the tasks in this inventory, including recognizing inten-
tions, perspective taking, and inferring emotions from visual
cues (Beaudoin et al., 2020). Third, several tasks require
abilities beyond mentalizing (Bloom & German, 2000), for
instance infrequent vocabulary (ShS) and probabilistic rea-
soning (SI). Fourth, many differences between LLMs and
human comprehenders complicate comparisons between
them. In particular, LLMs are exposed to orders of mag-
nitude more words than humans in a lifetime (Warstadt &
Bowman, 2022), which undermines claims that LLM per-
formance indicates the practical viability of distributional
learning in humans. Fifth, although we tried to closely align
experimental procedures between LLMs and humans, there

are inevitably differences. For instance, while humans could
not look back at context passages, LLMs can attend to any
previously presented token in their context window. Finally,
although stimuli for 2 tasks were novel (FB and SI), stimuli
for other tasks could theoretically have appeared in GPT-3’s
training data. This exposure could artificially inflate LLM
performance, and so results might not generalize to novel
examples.

6.2. Does the LLM have a Theory of Mind?

Do the results suggest that LLMs have ToM-like abilities?
One interpretation argues that these tasks, which are used to
measure mentalizing in humans, should be equally persua-
sive for artificial agents (Hagendorff, 2023; Schwitzgebel,
2013; Y Arcas, 2022). On this view, LLMs demonstrably
learn to implicitly represent mental states to some degree,
and we should attribute ToM-like abilities to them insofar as
it helps to explain their behavior (Dennett, 1978; Sahlgren
& Carlsson, 2021). An alternative view proposes that we
should deny a priori that LLMs can mentalize, due to their
lack of grounding and social interaction (Bender & Koller,
2020; Searle, 1980). On this view, successful LLM per-
formance undermines the validity of the tasks themselves,
revealing unidentified confounds that allow success in the
absence of the relevant ability (Niven & Kao, 2019; Raji
et al., 2021). While some argue these tests can be valid
for humans in a way that they are not for LLMs (Mitchell
& Krakauer, 2023; Ullman, 2023), it is unclear how well
these arguments apply in an unsupervised, zero-shot set-
ting, where models are not trained on specific dataset arti-
facts. Moreover, growing evidence suggests that humans
are also sensitive to distributional information (Michaelov
et al., 2022; Schrimpf et al., 2021) and therefore could be
exploiting the same statistical confounds in materials.

An analogous debate revolves around attributing ToM to
non-human animals on the basis of behavioral evidence.
Chimpanzees produce behavior that is consistent with them
representing mental states, (Krupenye et al., 2016; Kru-
penye & Call, 2019), but can also be explained by low-level,
domain-general mechanisms operating on observable be-
havioral regularities (Heyes, 2014; Penn & Povinelli, 2007).
One integrative proposal to resolve this debate is to test
behavior in a wide variety of conditions: if mentalizing ex-
planations predict behavior in diverse situations they may be
more useful than equivalent deflationary accounts (Halina,
2015). The current work is intended in this vein and presents
mixed evidence. While GPT-3 performance is impressive
and humanlike in several ToM tasks, it lags behind humans
in others and makes errors that would be surprising for an
agent with a general and robust theory of mind. Even if
GPT-3s don’t appear to represent mental states of others in a
general sense, continued work along the lines described here
may uncover such developments if and when they emerge.
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A. Supplementary Results
A.1. Accuracy Summary Table

Table 1. Accuracy of models and human participants across tasks.
Model FB RM ShS StS IR SI E1 SI E2
ada 0.51 0.63 0.19 0.58 0.17 0.45
babbage 0.46 0.62 0.31 0.50 0.32 0.42
curie 0.48 0.63 0.48 0.47 0.43 0.47
davinci 0.61 0.65 0.75 0.47 0.50 0.49
t-d-002 0.74 0.73 0.62 0.83 0.50 0.25 0.45
Human 0.83 0.84 0.46 0.86 0.63 0.59 0.73

A.2. Supplementary Figures

C
ontrol

M
ental

2 4 6

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Embedding Level

A
cc

ur
ac

y

Source GPT−3 Human

Figure 4. Recursive mindreading accuracy by embedding level
and question type for GPT-3 and human participants.

B. Example Materials
B.1. False Belief

Context: Sean is reading a book. When he is done, he
puts the book in the box and picks up a sweater from the
basket. Then, Anna comes into the room. Sean leaves to
get something to eat in the kitchen. While he is away, Anna
moves the book from the box to the basket. Sean comes
back into the room and wants to read more of his book.

Question: Sean thinks the book is in the...

Response type: Free-text completion

Scoring: 1 — box, 0 — basket or other

B.2. Recursive Mindreading

Context: One evening, Megan finds out that her sister Lau-
ren wants to go out with a boy in her Biology class, Stephen.
Megan tells Lauren that Stephen used to be best friends with
a boy called Chris, who is now Megan’s best friend. Lauren
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Figure 5. GPT-3 and human bets on each state (the number of
objects that meet the property) for all conditions in SI E2.

tells Megan that she saw Stephen smiling and flirting with
their cousin, Elaine, and so she thinks Stephen might want
to go out with Elaine. Because Lauren thinks Stephen likes
someone else, she is too nervous to ask him out.

Megan talks to Elaine at school and finds out that Elaine
actually wants to go out with Bernard, whom Megan knows
from the school play. Megan learns that Elaine and Bernard
are next-door neighbours, and that Bernard thinks that
Elaine doesn’t know him well enough to date. Elaine tells
Megan that Stephen knows how Elaine feels about Bernard
and how Bernard feels about Elaine.

Megan later talks to her friend Chris about the situation,
realizing that if Lauren knew about Elaine’s situation, and
knew that Stephen knows about it too, Lauren would realize
that Stephen doesn’t want to go out with Elaine, and might
work up the courage to ask him out. Megan plans to tell
Lauren about everything that evening.

Question: Which of the following sentences do you think
is consistent with the story you read earlier?

A: Stephen knows that Elaine knows that Bernard feels she
doesn’t know him well enough to date.

B: Stephen doesn’t know that Elaine knows that Bernard
feels she doesn’t know him well enough to date

Response type: 2AFC

Scoring: 1 — A, 0 — B

B.3. Short Stories

Context: The End of Something, by Ernest Hemingway

Question: Why does Nick say to Marjorie, “You know
everything”?



EPITOME: Experimental Protocol Inventory for Theory Of Mind Evaluation

Response type: Free-text

Scoring: 2 – He’s being sarcastic/cynical/intentionally
mean AND wants to get Marjorie upset/sad/mad/annoyed;
provoke a fight or provoke Marjorie so that she breaks up
with him so he can blame the breakup on her; 1 – He’s
unhappy with the relationship; wants to end the relation-
ship; He’s annoyed/nervous about the situation/impending
breakup; he’s being sarcastic/cynical (no mention of con-
sequences, i.e. what Marjorie’s reaction will be); 0 – He
thinks Marjorie is a know-it-all; He’s just being mean; He’s
a mean person

B.4. Strange Stories

Context: One day Aunt Jane came to visit Peter. Now Peter
loves his aunt very much, but today she is wearing a new
hat; a new hat which Peter thinks is very ugly indeed. Peter
thinks his aunt looks silly in it, and much nicer in her old
hat. But when Aunt Jane asks Peter, ”How do you like my
new hat?”, Peter says, ”Oh, its very nice”.

Question: Why does Peter say that?

Response type: Free-text completion

Scoring: 2 — reference to white lie or wanting to spare
her feelings; some implication that this is for aunt’s benefit
rather than just for his, desire to avoid rudeness or insult; 1
— reference to trait (he’s a nice boy) or relationship (he likes
his aunt); purely motivational (so she won’t shout at him)
with no reference to aunt’s thoughts or feelings; incomplete
explanation (he’s lying, he’s pretending); 0 — reference to
irrelevant or incorrect facts ⁄ feelings (he likes the hat, he
wants to trick her)

B.5. Indirect Request

Stimulus: You and your friend Jonathan are taking a road
trip. You began in California, and are now passing through
Michigan. It’s almost winter, so it’s very cold outside -
especially for Southern California dwellers like you and
Jonathan. You see that you’re almost out of gas, so you stop
at a gas station in a small town.

You fill up the tank, and then the two of you go inside the
gas station to buy some water and snacks. When you return
to the car and start up the engine, you and Jonathan both
notice with some dismay a blinking light, which indicates
that the car’s heating system is broken. You both bundle up.

As you leave the station, Jonathan shivers in his seat. He
turns to you and says, “Man, it’s really cold in here.”

Question: Do you think he is making a request?

Response type: 2AFC

Scoring: 1 — no, 0 — yes

B.6. Scalar Implicature

Context: Pizzas from Luigi’s Pizzeria almost always have
cheese in the crust. David ordered 3 pizzas from Luigi’s
Pizzeria. David tells you on the phone: ”I have looked at 3
of the 3 pizzas. 2 of the pizzas have cheese in the crust.”

Question: How many of the 3 pizzas do you think have
cheese in the crust?

Response type: Probability Distribution

Scoring: ∆bet3 < 0

C. Scalar Implicature Scoring Criteria
We designed scoring rubrics for the SI tasks based on ∆bet:
the difference between bets on an outcome before and after
the utterance. The scoring attempts to capture the intuition
that scalar implicatures should only be drawn where the
speaker has full access to the class of objects.

C.1. Experiment 1

For Experiment 1, we check that bets on 3 decrease when
access = 3 (scalar implicature) and do not decrease when
access < 2 (implicature cancelled).

Access Criterion
3 ∆bet3 > 0

≤ 2 ∆bet3 <= 0

Table 2. Scoring criteria for Scalar Implicature Experiment 1.

C.2. Experiment 2

In Experiment 2, the speaker indicates a specific number
of objects that have a given property. When access = 3,
we expect the speaker to draw the scalar implicature and
decrease bets on states > n. When access ≤ 2 and n = a,
the scalar implicature is cancelled, so bets on 3 ought not
to decrease. When access = 2 and n = 1, the speaker can
draw the partial implicature that fewer than 3 objects meet
the condition.

Access N Criterion
3 3 ∆bet3 > 0
3 2 ∆bet3 < 0
3 1 ∆bet3 < 0 and ∆bet2 < 0
2 2 ∆bet2 > 0 and ∆bet3 ≥ 0
2 1 ∆bet2 ≥ 0 and ∆bet3 < 0
1 1 ∆bet2 ≥ 0 and ∆bet3 ≥ 0

Table 3. Scoring criteria for Scalar Implicature Experiment 2.
∆bet3 and ∆bet2 represent the change in bets on 3 and 2, re-
spectively, between the prior and updated estimates.


