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Figure 1: We propose ProactiveBench, a multimodal benchmark to evaluate proactiveness in
multimodal large language models, i.e., the ability to ask for additional visual cues from the user to
answer an ambiguous query. ProactiveBench tests proactiveness in seven scenarios involving partially
observable objects and individuals, blurred input, and temporally evolving scenes.

ABSTRACT

How do multimodal large language models (MLLMs) handle images where the
object of interest is partially or fully occluded? While a human would naturally ask
follow-up questions or seek additional visual cues before answering, do MLLMs
exhibit similar “proactive” behavior by prompting the user for more information?
Despite their growing use in collaborative settings, no benchmark currently evalu-
ates the proactiveness of MLLMs. To fill this gap, we introduce ProactiveBench, a
benchmark built from seven repurposed datasets to evaluate proactiveness across
tasks such as recognizing occluded objects, enhancing image quality, and interpret-
ing coarse sketches, to name a few. We evaluated 21 MLLMs on ProactiveBench
and found that they generally lack proactiveness. Model capacity shows no clear
correlation with proactiveness, and adding “hints” in the query to elicit proactive
suggestions yields only marginal gains. Surprisingly, conversation histories and
in-context learning introduce negative biases, hindering performance. Overall,
our results highlight the challenge of instilling proactiveness in MLLMs, with
ProactiveBench being a first step toward building more proactive models.
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1 INTRODUCTION

Studies in neuroscience suggest that meaningful perception of the world arises from dynamic
interaction with our environment (Goodale & Milner, 1992} Haskins et al., [2020; Shapirol 2007}
Heuer et al., [2020). Faced with incomplete or ambiguous information, we instinctively generate
hypotheses, proactively search for additional clues, and revise our interpretations.

This ongoing cycle of inquiry and refinement is currently unexplored for multimodal large language
models (MLLMs) (Zhu et al., 2025} |Li et al.| 2025} |Bai et al., [2025)), where ambiguities may arise
when a user’s query is unanswerable due to false user premises (Wu et al., |2024) or bad image
quality (Chiu et al., 2020). For instance, for the query “What is behind the blue blocks?” of
Fig. E], a model can answer directly, e.g., hallucinating an incorrect answer (Li et al., 2023b)), or
abstaining (Whitehead et al.| |2022; |Guo et al.,|2024)). Such behavior is called reactive. Conversely, a
more desirable response is to ask the user for additional visual cues, e.g., by moving the blocks to
reveal the hidden object. We refer to such behavior as proactive, since it aims to refine predictions by
asking the user to intervene, providing additional information. With the wide adoption of MLLMs,
an essential question arises: can they, like humans, proactively seek for additional visual cues?

To fill this gap we introduce ProactiveBench, a novel benchmark to evaluate MLLMs’ proactiveness
in multiple scenarios, by repurposing seven existing datasets (ROD (Lee et al.}2023), VSOD (Liao
et al., [2020), MVP-N (Wang et al.| [2022a), ImageNet-C (Hendrycks & Dietterich, [2019), Quick-
Draw (Jongejan et al.,[2016)), Changelt (Soucek et al., [2022)), and MS-COCO (Lin et al.,[2014)) with
different target tasks (e.g., sketch recognition, product identification) that require user intervention
to answer correctly. As Fig. [1|shows, ProactiveBench captures different aspects of proactiveness:
(temporal) occlusion removal, camera movement, object movement, image quality enhancement, and
asking for details. In total, it contains more than 108k images grouped into 18k samples featuring 19
proactive suggestions. Each sample (see Fig.[2) contains the starting ambiguous frame, the reference
frame with complete information, and all the frames in between. The user intervention results in a
new frame with more visual cues based on the model’s guidance (termed proactive suggestion).

We tested 21 state-of-the-art MLLMs (e.g., LLaVA-OV (Li et al., [2025), Qwen2.5-VL (Bai et al.}
2025)), InternVL3 (Zhu et al.| 2025))) on ProactiveBench, reporting accuracy and number of proposed
proactive suggestions before predicting the category. Our experiments suggest that evaluated models
lack proactiveness, i.e., are reactive. Thus, they either tend to abstain from answering (saying, e.g.,
“I don’t know”) or predict random categories when the visual cues are insufficient, as Fig.[T]shows.
Providing hints about proactive suggestions increases their sampling probability, which marginally
raises accuracy. Interestingly, while some MLLMs (e.g., LLaVA-NeXT Vicuna 7B, InternVL3 1B)
appear on the surface as more proactive than others (e.g., LLaVA-OV 7B, Qwen2.5-VL 7B, InternVL3
8B), via a controlled experiment we show that the higher proactiveness results from a lower rate of
abstention on unanswerable questions, rather than a deeper understanding of the problem. Instead,
conditioning on the conversation history or few-shot samples increases proactiveness but reduces
accuracy. Finally, our results highlight that proactiveness is not an emerging property in MLLMs and
must be explicitly elicited, showcasing the challenging nature of ProactiveBench.

Contributions: (i) We formalize and explore MLLMs proactiveness in a wide spectrum, promoting
the development of models that can ask user assistance under uncertainty; (ii) We introduce Proac-
tiveBench, a novel open-source benchmark that assesses MLLM’s proactiveness in diverse contexts;
(iii) Our evaluation of 21 MLLMs on ProactiveBench reveals limited proactiveness of current models,
even when explicitly hinting it, highlighting the challenges of this setting.

2 RELATED WORK

MLLMs. Earlier MLLMs emerged from pioneering efforts to extend frozen LLMs, such as
Frozen (Tsimpoukelli et al.| 2021) and Flamingo (Alayrac et al.l [2022). These seminal works
convert pre-trained LLMs by injecting visual tokens in the language model’s attention layers and
fine-tuning them. Subsequent models, like PaL.I (Chen et al., 2022}, BLIP (Li et al.}[2022;2023a),
LLaVA (Liu et al.| [2023a};|20244)), and InstructBLIP (Dai et al.l 2023)), simplified the architecture by
forwarding projected visual tokens as input to the LLM and reducing the parameter count. Further-
more, LLaVA (Liu et al.||2023a) proposes fine-tuning LLMs using instruction tuning data, improving
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Figure 2: ProactiveBench evaluation. At step 1, the MLLM should propose to move the occluding
object (proactive suggestion), as the question is unanswerable. ProactiveBench, then, returns a new
frame following the MLLM’s suggestion. Since the model is still unsure, it asks to move the blocks
again. Finally, step 3 holds sufficient information, allowing the MLLM to predict the answer.

data efficiency and reasoning capabilities. We focus on benchmarking the proactive capabilities of
such models on a broad spectrum of tasks, a previously unexplored research direction.

Benchmarking for MLLMs. While early efforts evaluate MLLMs on visual question answering

tol et al,[2015}; [Goyal et al.} 2017; [Marino et al.,[2019), a second wave of benchmarks focused on
tasks requiring reasoning and world knowledge (Liu et all, [2024d; [Li et al, 2023b} [Liu et al., 2024c}
Yue et al, 2024} [Kazemi et al} [2023). As recent MLLMs support multiple images and videos as
inputs, more complex, multi-input benchmarks have been introduced to evaluate their reasoning
capabilities (Kil et al., 2024; [Kazemi et al., 2024} Dingjie et al.| 2024; Meng et al.}
[2024}; [Wang et al.,[2024} Tong et al.|[2024; Jiang et al., 2024} [Li et al., 2024a). A parallel effort has
emerged in the embodied Al literature, where several studies evaluate agents that integrate LLMs
et al.| 20240} [Shridhar et al., 2020} [Padmakumar et al. 2022} [Wang et all 2022} [Savva et al, 2019).
However, none of these works benchmark MLLMs’ proactiveness to ambiguous or even unanswerable
queries. Related to our work, (2024b) explores whether MLLM’s directional guidance
can help visually impaired individuals in capturing images. However, limits the
evaluation to a single type of proactive suggestion and to single-turn conversations, not measuring
the effectiveness of the MLLM’s proposed suggestion. Instead, we investigate models’ proactiveness
in seven distinct scenarios over multiple turns, enabling a more comprehensive analysis of failure
cases and false proactive behaviors.

Active vision improves perception (Aloimonos et al.,[T988)) by allowing an active observer to con-
trol sensing strategies (e.g., viewpoint) dynamically. Active vision has been extensively studied
in view planning (i.e., determining optimal sensor viewpoints) (Zeng et al.,[2020), object recogni-
tion (Browatzki et al.,[2012), scene and 3D shape reconstruction (Smith et al.,[202T)), and robotic
manipulation (Chuang et al., 2024). To overcome passive systems’ drawbacks, |Xu et al. intro-
duces an open-world synthetic game environment, where agents actively explore their surroundings,
performing multi-round abductive reasoning. Although we inherit the underlying spirit of active
vision, our work differs as: (i) ProactiveBench contains real-world images from diverse and com-
plex scenarios, (ii) the observer receives feedback from the MLLM, through proactive suggestions,
fostering a collaboration of the model and the user, ideal for human-machine cooperative tasks.

3 THE PROACTIVEBENCH

This section introduces ProactiveBench, detailing the evaluation of MLLM proactiveness (Sec. [3.1)),
the repurposed datasets used (Sec. , and a filtering pipeline ensuring questions require MLLMs to
ask for human intervention (Sec. . Model and dataset licenses are provided in Appendix [E}

3.1 EVALUATING PROACTIVENESS IN MLLMS

We study MLLMS’ proactiveness, where a model should either answer correctly or suggest how
to make a question answerable. Since suggestions may leave questions unresolved (e.g., Fig. s
central frame), we evaluate proactiveness in a multi-turn setting, allowing the MLLM to interact
with the environment over multiple steps. Evaluating models in this setting requires verifying the
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answer and applying the requested action to get a new state. This can be challenging in free-form
generation, as (i) answers must be parsed by an LLM, adding cost and computational overhead, and (ii)
proposed actions may be inapplicable. Therefore, we focus on the multiple-choice question-answering
framework, where models select the answer from multiple options, enabling structured evaluation
over multiple turns. For completeness, we report results in free-form generation in Appendix [A]

We follow previous works (Duan et al.} 2024} [Liu et al.,[2023Db) and frame the evaluation as a Markov
decision process (S, A, g, R), over a finite states space S, a discrete set of actions A4, a policy 7y
(the MLLM), and reward R. At step ¢, the model observes state s; € S, which comprises the image
7, and valid actions A4; C A. The model selects an action a; conditioned by the question ¢ (e.g.,
“what is this object?”) and the state s; = {Z;, A; }. Thus, the transition function 7 : § x A — S'is
defined by the conditioned policy 7y (a¢|q, s¢). By selecting a proactive suggestion (e.g., “move the
occluding object”), state s; transitions to s;1, leading to a new image and a new set of valid actions.
Instead, by either abstaining (e.g., “I do not know”) or selecting a wrong category (e.g., dog vs. cat),
the evaluation stops with a wrong prediction. As environments are discrete, the policy can select
proactive suggestions a finite number of times, depending on the datasets, after which the evaluation
terminates with a wrong prediction. Finally, the evaluation also terminates if the model predicts the
correct answer. For each MLLM, we report the average accuracy and the average number of proactive
suggestions for each dataset. Further implementation details are in Appendix [B]

3.2 BENCHMARK CONSTRUCTION

We introduce seven scenarios to evaluate MLLMs’ proactiveness by drawing samples from diverse
datasets, whose multi-choice options comprise proactive suggestions, the abstain option, and four
categories, out of which only one is correct. Appendix [B]provides full details on each dataset.

Moving occluding objects. We repurposed the ROD
dataset by creating samples of 14 frames each, where the
two possible suggestions are: moving the occluding object to
the left or the right. The environment presents the model with
a fully occluded image and a prompt, as Fig. [3|shows. Proactive
suggestions tell the user to move occluding objects (e.g., the
blue blocks) that obscure the object of interest (e.g., an orange),
which the model aims to recognize. The model should ask to
move the blocks, and, depending on the visibility of the occluded
object, either predict its category or repeat the suggestion.

Handling temporal occlusions. We repurposed VSOD
2020), a dataset of public event videos with bounding
boxes annotations for occlusions, to evaluate proactiveness under
temporally evolving occlusions. We manually annotated public
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Figure 3: ROD overview.
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the environment initially shows the model the most occluded
frame of the sample alongside valid options. The model should
proactively suggest to the user to rewind the video or wait for
the occlusion to disappear before answering.

Handling uninformative views. We repurposed MVP-N
[20224)), a dataset containing multi-angle object views, to
evaluate proactiveness in handling uninformative views. We
built samples with one or more uninformative views followed
by an informative one. As Fig. [5|shows, the environment returns
the first image from a sample, which is not informative for pre-
dicting the correct target category. The model should proactively
ask the user to rotate the object (or the camera) until it returns
an informative view where the target category can be reliably
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Improving image quality. We repurposed ImageNet-C (IN-
C) (Hendrycks & Dietterich, 2019)) to test proactivess under
corruptions, by creating samples where first and last images
are the most and the least corrupted, respectively. As Fig. [f]
shows, the environment returns a corrupted image (e.g., defo-
cus blur), not suitable for predicting the correct category (e.g.,
White shark). The model should propose image quality enhance-
ments (e.g., deblurring, reducing brightness, removing artifacts,
increasing contrast) from a total of eight alternatives to improve
the image quality. In the example of Fig. [ the model should
propose to deblur the image to predict the correct category.

Asking for visual details. Different from the previous cases,
here we assess the model’s proactiveness by its ability to propose
proactive suggestions from a partial sketch. We repurposed the
QuickDraw (QD) (Jongejan et al., [2016) dataset by rendering
multiple PNGs for the same sketch, where each image includes
one additional stroke compared to the previous one. The more
strokes are added, the more recognizable the sketch becomes.
As Fig.[7)shows, the environment first presents an image to the
model that does not have enough detail to recognize the target
category (e.g., clock). In this case, the proactive suggestion by
the model is to improve the drawing, i.e., adding another stroke.

Handling temporal ambiguities. In this scenario, proactiveness
is judged by the ability to seek information situated in a different
instant of time in long videos. We repurposed the Changelt (CIT)
dataset (Soucek et al.l 2022), consisting of videos of people
interacting with objects, by creating samples of frames showing
the objects’ transformation (e.g., preparing tacos) from start to
end. As Fig.[8]shows, the environment presents an input frame
where the target category (e.g., tacos) is not visible. Similar to
handling temporal occlusions, the proactive suggestion of the
model is to ask the user to either rewind the video or wait for
the informative moment to appear.

Proposing camera movements. Finally, we consider a practical
scenario that prompts the user to spatially move the camera in
a 3D plane to obtain more informative visual cues. We repur-
posed MS-COCO (Lin et al.,|2014) to create samples containing
different crops of the same image, where some crops are more in-
formative than others. As Fig.[9shows, the environment presents
an uninformative crop to the model, where the target category
(e.g., clock) is barely visible. The model should ask the user to
move the camera or zoom to reveal the target object and answer
the question. In the case on the right, the model should ask the
user to move the camera towards the right.

3.3 FILTERING
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Figure 6: IN-C overview.
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Figure 9: MS-COCO overview.

As most of the datasets do not report how informative a frame is (except ROD and MVP-N), some
images (e.g., 55.3% in ImageNet-C) can be correctly classified from the first frame. This allows
models to bypass the need for human intervention, leading to uneven performance across tasks. To
focus the evaluation on proactive behaviors, we filter out samples where the majority of MLLMs are
capable of correctly guessing at the first turn, while preserving those that require multiple turns to
be correctly classified. Therefore, we filter out samples that were correctly predicted at least 25%
of the time during the first turn. After applying this filter, the average task accuracy in the first turn
drops from 32.5% to 6.4%, thus requiring proactive suggestions to achieve good scores. The resulting
filtered benchmark counts 7,557 samples from the original size of 17,909. For completeness, we
discuss the filtering effect and results on unfiltered data in Sec.
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Table 1: MLLMs results on ProactiveBench. We report the accuracy (acc) in percentages (%) and
average number of proactive suggestions (ps) for all datasets, with global averages in the last column.

ROD VSOD MVP-N IN-C QD CIT COCO avg.
family model acc  ps acc ps  acc ps acc ps  acc ps acc ps  acc ps acc  ps
LLaVA-1.5 7B 125 0.7 262 1.7 67 00 262 08 255 0.7 442 13 323 09 248 09

Mistral-7B 00 00 00 02 16 01 102 04 10 01 172 14 16 00 45 03

LLaVA-NeXT  Giona7B 193 07 119 05 65 01 332 13 102 09 366 09 171 03 193 07
0.58 443 23 95 16 128 04 248 14 338 15 311 14 169 04 248 1.3

LLaVA-OV 7B 00 00 143 04 67 00 278 10 243 04 104 03 32 00 124 03
728 00 00 190 04 50 01 322 12 143 02 169 05 37 00 130 03

SmolVLM2  2.2B 00 00 119 02 1LI 01 195 10 99 06 255 06 58 00 120 04
Idefics3 8B 38 16 190 22 74 0.0 321 11 125 06 121 04 90 02 177 09
InstructBLIP 7B 00 00 95 13 88 01 113 00 183 01 245 00 126 00 122 02
3B 00 00 95 00 49 00 350 20 79 02 124 03 63 00 110 04

owen2sve 7B 00 00 00 00 43 00 405 13 99 01 98 01 49 00 99 02
3B 00 00 48 00 46 00 309 04 123 00 174 04 55 00 108 0.1

728 00 00 24 02 67 00 292 09 31 01 93 03 20 00 75 02

1B 614 21 214 03 197 04 386 L1 150 05 169 03 165 01 27.1 07

2B L1 00 310 03 201 02 461 15 181 05 285 06 297 02 249 05

InternVL3 8B 00 00 119 02 64 00 377 10 154 05 101 02 71 00 127 03
38B 00 00 310 23 125 02 455 07 168 05 270 10 284 02 230 07

788 00 00 167 03 107 00 398 01 53 00 174 04 192 00 156 0.1
Phi-4-Multimodal 6B 11 00 167 1.0 189 00 298 16 219 04 326 06 152 02 194 0.5
openal  OPT1 00 00 00 02 152 0. 682 LI 150 02 235 06 944 00 309 03
@fkirstaf 00 00 167 0.6 198 0.0 490 02 216 00 379 08 928 0.0 340 02

4 EXPERIMENTS

Section describes our evaluation protocol, tested models, and metrics used. Then, Sec.
describes ProactiveBench results, evaluating the proactiveness of several MLLMs. Finally, Sec. 4.3
reports additional ProactiveBench analysis, evaluating ways to elicit proactive suggestions.

4.1 EXPERIMENTAL SETUP

Evaluation protocol. For each evaluation step, we feed the MLLM with the user prompt (the
question), the current image, and the valid set of suggestions, as Sec. [3.1] describes. Therefore,
the multi-choice question prompt consists of three parts: the question, optionally a hint to elicit
proactiveness, and the options (Sec. [3.2). Hints are dataset-specific and lead the model towards
considering proactive suggestions (e.g., “Hint: rotating the object could provide a more informative
view” for MVP-N). The conversation history is always discarded from one step to another unless
explicitly mentioned (see Sec.[4.3). Finally, as VSOD and Changelt consist of video frames, we also
tell the model that the visual input is taken from a video.

Tested models. We selected MLLMs from open and closed-weight models. Among open-weights
models we chose recent and well-established ones: LLaVA-1.5 7B (Liu et al.| 2024a), LLaVA-NeXT
7B (Liu et al.| 2024a) with Mistral (Jiang| 2024)) and Vicuna (Chiang et al.,2023) LLMs, LLaVA-OV
0.5B-7B-72B (Li et al.,[2025), SmolVLM2 2.2B (Marafioti et al., |2025), Idefics3 8B (Laurencon et al.,
2024), InstructBLIP (Dai et al.,[2023), Qwen2.5-VL 3B-7B-32B-72B (Bai et al.| 2025), InternVL3
1B-2B-8B-38B-78B (Zhu et al., [2025), Phi-4-Multimodal (Abouelenin et al., 2025). Finally, we
picked GPT-4.1 and 04-mini (OpenAll [2025b)) among closed-weight models.

Metrics. For each model, we report the accuracy (acc), i.e., the percentage of correctly classified
samples in a dataset over multiple turns, and the number of proactive suggestions (ps), namely the
average number of human interventions requested by the model on a dataset. We also report the
averaged metrics over the seven scenarios presented in Sec. 3.2}

4.2 MLLMS RESULTS IN PROACTIVEBENCH

Figure[I0|compares models’ accuracy (acc) obtained via Sec. [3|protocol and filtering, with the oracle
setting, where we use a reference frame (i.e., with no occlusions or ambiguity). The goal of this
comparison is to disentangle the recognition ability of MLLMs and their proactiveness. Results
correspond to the average performance of all evaluated MLLMs. We notice a large discrepancy
between the two settings. While MLLMs correctly classify 79.8% of samples in the oracle setting,
they underperform by more than 60% when tasked with navigating to the correct answer through
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Figure 11: Action distributions. While LLaVA-OV 7B, InternVL3 8B, and LLaVA-NeXT Mistral
tend to abstain or try to predict the correct answer, the other three models prefer to predict proactive
suggestions over abstention, which can lead them to better visual cues and predict the correct action.

+17% proactive abstain predict target
+36%
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Figure 12: Action distributions with random proactive options. Lighter bars describe variations
when using random, distracting, proactive suggestions.

proactive suggestions. The discrepancy is quite stark in the ROD dataset, where models achieve 8.2%
accuracy, while the oracle counterpart reaches 98.3% on average. This demonstrates a severe lack of
MLLMs’ proactiveness. Models” individual performance in the oracle setting is in Appendix [C|

Table[T]reports models’ individual performance on Proac-

tiveBench. Surprisingly, there is no clear correlation be- foronce . z6r0.Shot
tween model sizes and performance, e.g., InternVL3 1B 9.3 030
outperforms InternVL3 8B in terms of accuracy (27.1% vs. 880 80.8 79.8
12.7%) and proactive suggestions (0.7 vs. 0.3). Further- o 63 o

more, older models (e.g., LLaVA-1.5 7B) even outperform
their newer and larger counterparts (i.e., LLaVA-OV 72B)
by a discrete margin (24.8% vs. 13.0%) also in terms of
ps (0.9 vs. 0.3). Interestingly, the LLM has an impact on
the results, with LLaVA-NeXT Mistral achieving lower
performance than its counterpart using Vicuna (4.5% vs. Figure 10: Results vs. oracle perfor-
19.3%). Instead, closed-source models (i.e., GPT-4.1 and mance (acc). Models underperform by
o4-mini) show the best performance, with a low ps rate. over 60% with ambiguous inputs.

Yet, they achieve extremely high accuracies on MS-COCO

(about 3 x better than other models), suggesting potential memorization caused by training data
contamination. Unfortunately, we cannot verify this due to the proprietary nature of the data.

We investigate the unexpected behaviors above by visualizing the action distribution for proactive,
abstain, and target category predictions in Fig. [[T] Specifically, we compare pairs of MLLMs having
different LLMs (i.e., LLaVA-NeXT Mistral and Vicuna) and different parameter counts (i.e., LLaVA-
OV 0.5B and 7B, InternVL3 1B and 8B). While LLaVA-OV 7B, InternVL3 8B, and LLaVA-NeXT
Mistral tend to abstain over sampling proactive suggestions, the other three show the exact opposite
behavior. Thus, they are more likely to be proactive (over twice as likely for LLaVA-OV 0.5B) and,
as a result, reach better states, leading to higher accuracy. A similar behavior was reported in (Wolfe|
2024), with LLaVA-NeXT Mistral abstaining more than LLaVA-NeXT Vicuna. Results for all
models are reported in Appendix [C|

4.3 ANALYZING AND ELICITING MLLMS PROACTIVENESS

Are some MLLMs more proactive than others? To answer this question, we replaced valid
proactive suggestions with invalid ones chosen randomly from other datasets (e.g., “rewind the video”
for QuickDraw). If a model chooses an invalid proactive option, this suggests that the model is
not proactive but prefers to answer (even incorrectly) over abstaining. Figure [I2]shows the action
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Figure 13: Performance when conditioning action sampling with hints. Results are averaged across
all MLLMs. Zero-shot refers to models not prompted with hints.
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Figure 14: Action distributions with hints. Bars describe action distributions with (light) or without
(dark) hints in the prompt. Hinting tilts the action distributions in favor of the proactive suggestion.

distribution for this experiment with the same six models as Fig. [T} Replacing valid proactive
suggestions with invalid ones substantially reduces proactiveness for LLaVA-NeXT Mistral, LLaVA-
OV 7B, and InternVL3 8B (i.e., -60%, -86%, and -90% relative decrease, respectively). Instead, other
models seem less bothered by random practice options. LLaVA-NeXT Vicuna even increases the
probability of sampling proactive suggestions (from 37% to 49%). These insights indicate that models
showing a higher rate of proactive suggestions are not necessarily proactive, but rather they are less
prone to abstain (Shukor et all 2024), preferring unknown answers. Full results in Appendix [C]

Does hinting boost proactiveness? Explicitly hinting at proactive suggestions may help navigate
to the correct answer by eliciting MLLMSs’ proactiveness. To evaluate this hypothesis, we add
dataset-specific hints to the prompt (e.g., “Hint: moving the occluding object might reveal what is
behind it” for ROD), measuring how it affects the accuracy and number of proactive suggestions. We
report the hints used in Appendix [B] Figure[I3b]shows that hinting increases the proactive suggestions
rate by 1.9 on average, with a significant boost in VSOD, likely caused by its numerous frames.
Nonetheless, the accuracy does not surpass the random choice on average, reaching 25.8% (+8.3%).
We also noticed that 16.0% of the time, MLLMs blindly chose proactive suggestions, disregarding the
original task and reaching the maximum exploration steps allowed by the environment, thus failing
to predict the correct category. Although hinting increases proactiveness, models may over-exploit
proactive suggestions, failing to classify the object even if they stumble across the reference image.
Figure [T4] further visualizes this by showing how action distributions change using the same six
models as Fig.[TT} While original distributions (in darker colors) suggest that models infrequently
choose proactive options, adding hints completely changes this behavior, preferring hinted actions
over predicting the correct category. We report individual MLLMs performance in Appendix [C}

Does knowledge of the past elicit proactiveness? Section[3.1|formalizes ProactiveBench evaluation,
allowing MLLMs to observe the current state only. A key question is whether incorporating previous
states and actions into the policy, i.e., mg(at|q, so, ao, ..., St ), elicits proactiveness. Thus, we keep the
MLLM conversation history, limiting this evaluation to models supporting multi-image inference.
Figure [T3] shows the outcome of this experiment. The average accuracy drops by 7% while the
number of proactive suggestions increases from 0.5 to 1.8 on average, compared to the zero-shot case.
ROD average accuracy, in particular, is lowered by almost ten times (1.5% vs. 14.0%). Although
models are not explicitly “told” to be proactive, like in Fig.[T3] past proactive suggestions bias models
towards repeating them. In fact, 12.9% of the time models displayed the same behavior as with
"hints", where they repeatedly selected the proactive suggestions until reaching the maximum number
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Figure 15: Performance when conditioning on conversation histories. Results are averaged across
all MLLMs. Zero-shot refers to models not integrating information about previous states.

of allowed steps. This value is lower compared to 16.0% of the previous case, as the first action is
always unconditioned: thus, the blind selection of proactive actions only occurs if the first action is
also proactive. We report models’s individual performance in Appendix [C]

Do few-shot samples improve proactiveness? We now investigate whether conditioning the policy
on a few correct examples elicits proactiveness, improving accuracy. Let ¢ = (¢°, s§, a, ..., $§, a%)
be a conversation example leading to the correct answer a¢. We condition the action sampling on m of
such examples, 7g(a¢|co, ..., Cm, ¢, S¢) on ROD and MVP-N, the only datasets supporting automatic
few-shot sample generation (as image informativeness is annotated). We experiment with m = 1
and m = 3. Figure[I6shows how proactiveness changes with few-shot in-context learning (ICL).
Compared to the previous setting (indicated as
zero-shot in the figure), the avg. ps increases

by 1.4 and 0.2 on ROD and MVP-N, and 1.6 wo 2 14.0 1:; 2

and 0.5 with one and three samples, respec- e

tively. Furthermore, the accuracy drops in ROD 12,0 o8

while remaining stable in MVP-N, resulting in 67 03 0.1

6.7% and 11.6% with one sample and 12.0%  Rob MvPN  ROD MVPN  ROD MVP-N  ROD MVP-N
accuracy proactive sugg. accuracy proactive sugg.

and 12.2% with three. When conditioning ROD
experiments with one sample, we notice that
models either tend to predict the same category
of the ICL example or blindly select proactive
suggestions until reaching the maximum num-
ber of exploration steps. Scaling ICL to three
samples helps some models (e.g., LLaVA-OV 7B and Phi-4-Multimodal) predict the correct answer.
Generally, InternVL3 1B and LLaVA-OV 0.5B are the most prone to consistently repeat proactive
suggestions and disregard the main task, while InternVL3 8B and SmolVLM?2 2.2B tend to abstain.
Similarly, in MVP-N, model errors arise either from random guesses, abstentions, or, occasionally,
valid proactive sequences ending with incorrect predictions. Full results are shown in Appendix [C|

(a) 1 sample (b) 3 samples
Figure 16: Performance when conditioning on few
shots. Results are averaged across all MLLMs.

5 CONCLUSION

This paper presents ProactiveBench, a novel benchmark that evaluates MLLMSs’ proactiveness by
pairing multi-choice questions with visual inputs that require human intervention (e.g., move the
occluding object) to make the query answerable. We built ProactiveBench by repurposing seven
existing datasets designed for different tasks, creating sequences that allow evaluating proactiveness
in seven distinct scenarios in a multi-turn fashion. Our findings suggest that existing MLLMs are
not proactive and prefer to abstain or predict random categories. Additionally, our analysis shows
that hinting at the proactive action improves proactivity, with marginal accuracy gains. Furthermore,
conditioning models on conversation histories and few-shot examples negatively biases the action
distribution, with lower accuracy scores. These findings highlight ProactiveBench challenges, which
we publicly release for future research.
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APPENDIX

This Appendix reports experiments, results, and implementation details that could not fit in the
main paper. Appendix [A]evaluates MLLMs on ProactiveBench via free-form generation, further
validating the findings of the main paper. Appendix [B|describes each dataset environment (Secs.
to[B.7), expanding main paper details, and provides further insights about the benchmark filtering
(Sec. [B.§). Instead, Appendix [C] supplements the main results with detailed tables of individual
model performance. Finally, Appendices [D|to|G|report ProactiveBench broader impact statement, the
licenses for the used datasets, models and ProactiveBench, additional qualitative examples, and the
declaration about LLM usage.

A EVALUATION ON FREE-FORM GENERATION

This section evaluates multimodal LLMs on ProactiveBench via open-ended generation, validating
the multiple-choice question-answering framework used in the main paper. Therefore, we only
provide the MLLM with the image frame and the question that the model should answer.

Evaluation protocol. As evaluating free-form answers is challenging, we follow previous works (Liu
et al.,[2023a}; [Fu et al.,[2024;|Ma et al.,|2024; Maaz et al., 2023 Song et al.,2024; [Nagrani et al.|[2024;
Plizzari et al.| 2025) and employ LLM-as-a-judge to provide a score to each answer. In particular, we
use OpenAl’s 04-mini (OpenAl 2025a) and prompt it to spot proactive suggestions and category
predictions. The following system and user prompts were used to query the judge:

System Prompt:

You are an automatic evaluation system.

You will receive:

— A user prompt (describing the task or question)

— A list of correct answers (accepted correct outputs)

- A system output (the model’s generated answer)

Your task is to evaluate whether the system output includes at
least one of the correct answers clearly and correctly.

Guidelines:

— Minor wording differences (e.g., paraphrasing) are acceptable as
long as the meaning is preserved.

— If a correct answer 1s present but accompanied by incorrect or

irrelevant content, still consider it correct (score = 1).
— If none of the correct answers are present, or the output is
incorrect, mark it as wrong (score = 0).

Respond with a comma-separated list of 0Os and 1ls, one for each
correct answer in the list.\n\n

User Prompt:

Input:

User Prompt: {user_prompt}

Correct Answers: {correct_answer}

System Output: {generated_answer}

Your Response: (Only output comma-separated list of 0Os and 1s)

. J

Thus, as answers are usually long, the LLM-as-a-judge is tasked to spot whether the answer
contains correct proactive suggestions and correct category predictions, respectively defined in
{correct_answer}. The judge returns comma-separated values, with one digit for each correct
answer (either a valid proactive suggestion or the right category). Evaluating multi-turn conversa-
tions with free-form answers, however, is highly impractical since it requires alternating the answer
generation with the MLLM and the evaluation with LLM-as-a-judge to update the environment
state. Therefore, we limited this evaluation to single-turn conversations. Furthermore, to reduce the
evaluation cost, we subsample each dataset to 500 entries, except ROD and VSOD, as they have
smaller dimensions. We did not apply our filtering strategy as we noticed models could not easily
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answer in the first turn. We report the ratio of correctly predicted categories (acc), the ratio of correct
proactive suggestions (pa), and the aggregate accuracy (agg), computed as the average accuracy in
either predicting the correct answer or providing a valid proactive suggestion.

Results. Table [2] shows the models’ performance in open-ended generation on ProactiveBench.
Due to the computational overhead and the monetary cost, we limit this evaluation to six repre-
sentative models, i.e., LLaVA-OV 0.5B-7B, Qwen2.5-VL 3B-7B, and InternVL3 1B-8B. Overall,
larger models tend to outperform smaller ones, e.g., LLaVA-OV 7B outperforms LLaVA-OV 0.5B,
with the former being slightly more proactive than the smaller ones, except for InternVL3 1B
proposing few correct proactive suggestions (i.e., 0.1% on avg.). By hinting at proactive sug-
gestions (i.e., If you cannot answer this question, please tell me what I
should do to help you.), the proactiveness increases for all MLLMs, with larger models
showing higher absolute growths (e.g., Qwen2.5-VL 7B +10.5% vs. Qwen2.5-VL 3B +3.2%). Yet,
performances are still very low, and the proactive suggestion rate grows only if models are explicitly
told to be proactive, validating main paper’s findings. Finally, we also notice that by hinting, models
become more cautious in answering questions, showing lower ratios of correct predictions (e.g., from
15.2% to 12.7% of Qwen2.5-VL 7B).

Table 2: Open-ended generation evaluation on ProactiveBench. We report the aggregate accuracy
(agg), the ratio of correctly predicted categories (acc), and the ratio of correct proactive suggestions
(pa) for all datasets, with global averages in the last column.

ROD VSOD MVP-N IN-C
model agg acc pa agg acc pa agg acc pa agg acc pa
LLaVA-OV-0.5B 0.0 0.0 0.0 6.3 6.3 0.0 0.0 0.0 0.0 10.6  10.6 0.0
LLaVA-OV-7B 2.3 0.0 2.3 7.9 79 0.0 0.0 0.0 0.0 112 110 0.2
Qwen2.5-VL-3B 0.0 0.0 0.0 111 111 0.0 0.0 0.0 0.0 114 114 0.0
Qwen2.5-VL-7B 1.2 0.0 1.2 11.1 11.1 0.0 0.0 0.0 0.0 182 182 0.0
InternVL3-1B 0.0 0.0 0.0 7.9 79 0.0 0.0 0.0 0.0 12.4 12.4 0.0
InternVL3-8B 0.0 0.0 0.0 11.1 11.1 0.0 0.0 0.0 0.0 16.0  16.0 0.0

QD CIT COCO avg.
model agg acc pa agg acc pa agg acc pa agg acc pa
LLaVA-OV-0.5B 6.4 6.4 0.0 134 134 0.0 382 382 0.0 10.7 10.7 0.0
LLaVA-OV-7B 11.6 108 0.8 194 194 0.0 426 426 0.0 13.6  13.1 0.5
Qwen2.5-VL-3B 6.6 6.6 0.0 28.0 280 0.0 333 333 0.0 129 129 0.0
Qwen2.5-VL-7B 8.8 7.4 14 320 316 0.4 383 383 0.0 15.7 152 0.4
InternVL3-1B 3.4 3.0 0.4 294 294 0.0 45.6  45.6 0.0 14.1 14.0 0.1
InternVL3-8B 34 34 0.0 332 332 0.0 454 454 0.0 156 15.6 0.0

Table 3: Open-ended generation evaluation on ProactiveBench by hinting at proactive sugges-
tions. We report the aggregate accuracy (agg), the ratio of correctly predicted categories (acc), and
the ratio of correct proactive suggestions (pa) for all datasets, with global averages in the last column.

ROD VSOD MVP-N IN-C
model agg acc pa agg acc pa agg acc pa agg acc pa
LLaVA-OV-0.5B 1.1 0.0 1.1 6.3 6.3 0.0 0.0 0.0 0.0 8.2 8.2 0.0
LLaVA-OV-7B 0.0 0.0 0.0 4.8 4.8 0.0 0.4 0.0 0.4 28.2 8.4 20.0
Qwen2.5-VL-3B 5.7 0.0 5.7 6.3 6.3 0.0 0.2 0.0 0.2 17.8 9.4 8.4
Qwen2.5-VL-7B 1.1 0.0 1.1 7.9 6.3 1.6 1.2 0.0 1.2 40.2 154 252
InternVL3-1B 0.0 0.0 0.0 11.1 11.1 0.0 0.0 0.0 0.0 12.0 9.8 22
InternVL3-8B 27.3 0.0 27.3 6.3 6.3 0.0 0.6 0.0 0.6 30.4 13.0 18.4

QD CIT Ccoco avg
model agg acc pa agg acc pa agg acc pa agg acc pa
LLaVA-OV-0.5B 7.6 7.4 0.2 124 12.4 0.0 39.2 39.2 0.0 10.7 10.5 0.2
LLaVA-OV-7B 23.5 8.9 14.8 18.6 18.6 0.0 31.8 30.6 1.2 15.3 10.2 52
Qwen2.5-VL-3B 14.2 6.6 8.2 244 242 0.2 28.4 28.4 0.0 13.9 10.7 32
Qwen2.5-VL-7B 42.5 6.8 39.1 334 268 6.8 344 333 1.4 23.0 12.7 10.9
InternVL3-1B 10.2 3.7 6.5 256 256 0.0 432 432 0.0 14.6 133 1.2
InternVL3-8B 25.8 32 233 344 320 2.6 450 448 0.2 24.3 14.2 10.3

B DATASET DETAILS AND ENVIRONMENT IMPLEMENTATION

This section expands Secs. [3.1]to[3.3] providing further information about data generation pipelines,
environment details, and filtering.
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B.1 THE ROD ENVIRONMENT

The ROD (Lee et al., 2023) environment evaluates MLLMSs’ proactiveness in proposing to move
occluding objects before answering the question. The first frame in the ROD environment de-
picts an occluding object that completely hides another object, as Fig. shows. Each MLLM
is prompted to predict the category of the occluded object, choosing out of four possible cate-
gories, and the abstain option. As the posed question is unanswerable from the initial frame, given
that the subject of the question is invisible, the environment also returns two valid proactive sug-
gestions among other options, i.e., move the {occluding_object} to the left, and
move the {occluding_object} to the right, where {occluding_object} isre-
placed with the occluding object description (e.g., red cardboard, blue blocks). Furthermore, we also
consider camera movement a valid proactive suggestion in the free-form evaluation experiments. A
typical prompt is structured as follows:

Could you tell me what is behind the {occluding _object}? <hint>
Choose from the following options. Options:

A. Move the {occluding_object} to the left.

B. Move the {occluding_object} to the right.

C. {abstain option}.

D. {wrong random category}.

E. {wrong random category}.

F. {correct category}.

G. {wrong random category}.

Please only return one of the options without any other words.

The question is sampled from a pool of 15 similar questions generated by ChatGPT, and the abstain
option is from a pool of three. Additionally, the first three options and the remaining four are shuffled,
so the same option does not always appear in the same position. Shuffling is performed during data
generation, resulting in a fixed order for each sample. Finally, <hint > indicates the position of the
hint used in the main paper experiments (Sec. @, which, in the case of ROD, corresponds to “Hint :
moving the occluding object might reveal what is behind it.”

The set of valid actions .4; is constant throughout the evaluation, and MLLMs are allowed to move
the occluding object 14 times, corresponding to the total number of frames for each sample. As the
first frame is completely occluded, if a model predicts a category for the first frame, we count the
prediction as wrong, as the first frame does not contain information about the target object class.
After seven consecutive right or left movements from the most occluded frame, MLLMs encounter
the reference frame, where the object is perfectly visible. Finally, the environment is circular, which
means that by pursuing the same proactive suggestion, the occluding object will reveal the object
until it reappears from the opposite side, gradually re-occluding the object.

B.2 THE VSOD ENVIRONMENT

The VSOD environment evaluates MLLMs’ proactiveness in proposing to wait or rewind the video
before answering the question, in case of occlusions. The first frame in this environment depicts a
scene where individuals are occluded by someone passing in front of the camera, as Fig. 23] shows.
Each MLLM is prompted to predict the speaker’s name, the number of people, or the event type,
choosing out of four possible categories, and the abstain option. As the posed question is likely
unanswerable from the initial frame, given that the subject of the question is (partially) invisible,
the environment also returns two valid proactive suggestions among other options, i.e., wait for
the occlusion to disappear,and rewind the video. Furthermore, we also consider
camera movement a valid proactive suggestion in the free-form evaluation experiments. A typical
prompt is structured as follows:
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This is a frame extracted from a video. Answer the following
question. Could you tell me who is talking? <hint> Choose from
the following options. Options:

A. Rewind the video.

B. {abstain option}.

C. Wait for the occlusion to disappear.

D. {wrong random category}.

E. {correct category}.

F. {wrong random category}.

G. {wrong random category}.

Please only return one of the options without any other words.

In this prompt, the question is sampled from a pool of 45 similar questions (15 for each question
type), and the abstain option is from a pool of three. Additionally, the first three options and the
remaining four are shuffled, so the same option does not always appear in the same position. Shuffling
is performed during data generation, resulting in a fixed order for each sample. Finally, <hint>
indicates the position of the hint used in the main paper experiments (Sec. 4.3)), which, in the case of
VSOD, corresponds to “Hint: If there is an occlusion, waiting for it to
disappear or rewinding the video might reveal what’s behind it.”

The set of valid actions .A; is constant throughout the evaluation, and MLLMs are allowed to propose
proactive suggestions as many times as the number of frames in the video. As each occlusion lasts for
a different amount of time, the number of proactive suggestions to reach a state where the question
becomes answerable varies from sample to sample. Finally, if the MLLM suggests waiting at the last
frame, we treat the sequence as circular and return the first frames. Analogously, we return the final
frame if, at the first frame, the model suggests rewinding the video.

B.3 THE MVP-N ENVIRONMENT

The MVP-N environment evaluates MLLMSs’ proactiveness in suggesting objects and camera rotations
before answering the question in case of uninformative views. The first frame in the MVP-N
environment depicts an object from an uninformative viewpoint, as Fig.[24]shows. Each MLLM is
prompted to predict the category of the object, choosing out of four possible categories, and the abstain
option. As the posed question is unanswerable from the initial frame, given that discriminative object
features are invisible, the environment also returns a valid proactive suggestion among other options,
e.g., rotate the object,give me a view of the object from a different
perspective. As object orientation and camera extrinsic parameters are not annotated, the
proactive suggestion is sampled from a pool of 11 prompts generated with ChatGPT that contain both
object rotations and camera movements. A typical prompt is structured as follows:

Identify the object in this image. <hint> Choose from the
following options. Options:

{abstain option}.

B. {proactive suggestion}.

C. {wrong random category}.

D. {correct category}.
E
F
P

>

{wrong random category}.
{wrong random category}.
lease only return one of the options without any other words.

In this prompt, the question is sampled from a pool of 15 similar questions, and the abstain option is
from a pool of three. Additionally, the first two options and the remaining four are shuffled, so the same
option does not always appear in the same position. Shuffling is performed during data generation,
resulting in a fixed order for each sample. Finally, <hint > indicates the position of the hint used
in the main paper experiments (Sec. [f-3), which, in the case of MVP-N, corresponds to “Hint :
rotating the object could provide a more informative view.”

The set of valid actions A, is constant throughout the evaluation, and, since we generated sequences
of various lengths, MLLMs are allowed to rotate the object or change camera angle 3 times on
average for each sample, depending on the sequence. To find the informative view, MLLMs must
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propose object rotations or camera movements until they reach the last state, where the object is
distinguishable.

B.4 THE IMAGENET-C ENVIRONMENT

The ImageNet-C environment evaluates MLLMSs’ proactiveness in suggesting image quality improve-
ments before answering the question, in case of badly corrupted pictures. The first image in the
ImageNet-C environment depicts one of ImageNet (Russakovsky et al., [2015)) validation samples
strongly corrupted by one of eight different corruptions, as Fig. [25|shows. Each MLLM is prompted
to predict the category of the corrupted object, choosing out of four possible categories, and the
abstain option. As the posed question is hardly answerable from the initial picture, the environment
also returns four proactive suggestions, out of which only one is valid, e.g., deblur the image,
denoise the image, remove artifacts. For example, a typical prompt is structured as
follows:

What type of object do you see here? <hint> Choose from the
following options. Options:

A. {invalid proactive suggestion}.

B. {abstain option}.

C. {valid proactive suggestion}.

D. {invalid proactive suggestion}.

E. {invalid proactive suggestion}.

F. {wrong random category}.

G. {correct category}.

H. {wrong random category}.

I. {wrong random category}.

Please only return one of the options without any other words.

In this prompt, the question is sampled from a pool of 15 similar questions, and the abstain option is
from a pool of three. Additionally, the first five options and the remaining four are shuffled, so the same
option does not always appear in the same position. Shuffling is performed during data generation,
resulting in a fixed order for each sample. Finally, <hint > indicates the position of the hint used in
the main paper experiments (Sec. , which, in the case of ImageNet-C, corresponds to “Hint :
enhancing the image quality could help with classification.”

As ImageNet-C counts 50,000 images, we subsampled 5 images per class, resulting in 5,000 images,
making this dataset comparable in size to the others used. The set of valid actions .4; is constant
throughout the evaluation, and MLLMs are allowed to propose the correct proactive suggestion 4
times, improving the image quality. After 4 proactive suggestions, MLLMSs encounter the last frame,
the reference one. Further proactive suggestions result in terminating the evaluation.

B.5 THE QUICKDRAW ENVIRONMENT

The QuickDraw environment evaluates MLLMs’ proactiveness in proposing to add details to a sketch,
to make it more recognizable. The first image in the QuickDraw environment shows the first drawn
stroke by a user in trying to depict a target object, as Fig. 26| shows. Each MLLM is prompted to
predict the category of such depicted object, choosing out of four possible categories, and the abstain
option. As the posed question is likely unanswerable from the initial drawing, the environment also
returns a valid proactive suggestion among other options, e.g2., add more details, or could
you improve the quickdraw? For example, a typical prompt is structured as follows:
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What is the category of the depicted object? <hint> Choose from
the following options. Options:

A. {proactive option}.

B. {abstain option}.

C. {wrong random category}.

D. {wrong random category}.

E. {wrong random category}.

F. {correct category}.

Please only return one of the options without any other words.

\. J

In this prompt, the question is sampled from a pool of 15 similar questions, the abstain option is
from a pool of three, and the proactive option is from a pool of 13. Additionally, the first two
options and the remaining four are shuffled, so the same option does not always appear in the same
position. Shuffling is performed during data generation, resulting in a fixed order for each sample.
Finally, <hint> indicates the position of the hint used in the main paper experiments (Sec. 4.3,
which, in the case of QuickDraw, corresponds to “Hint: Adding more details to the
quickdraw could help with classification.”

As each drawing is also evaluated by a classification model (Jongejan et al., [2016), we discarded
all drawings not recognized by such a model, avoiding unrecognizable drawings. Furthermore,
the dataset contains 50 million drawings over 345 classes. Evaluating each MLLM would require
approximately 300 GPU days. Thus, we subsample it to 10 samples per class, resulting in 3450
drawings. The set of valid actions .A; is constant throughout the evaluation, and MLLMs are allowed
to ask for details a limited number of times, which depends on the number of strokes drawn by the
user. Depending on the number of strokes, after requesting further details enough times, MLLMs
encounter the reference frame, where the object is recognizable.

B.6 THE CHANGEIT ENVIRONMENT

The Changelt environment evaluates MLLMSs’ proactiveness in proposing to seek the answer at a
different moment in the video. The first frame in the Changelt environment shows the beginning
of a video tutorial, as Fig. [27] shows. Each MLLM is prompted to either predict the category of
the main object or the main action taken in the video, choosing out of four possible categories
and the abstain option. As the posed question is likely unanswerable from the initial frame, the
environment also returns two valid proactive suggestions among other options, i.e., wait for
the occlusion to disappear,and rewind the video. For example, a typical prompt
is structured as follows:

What action is being performed in the video? <hint> Choose from
the following options. Options:

A. Rewind the video.

B. Wait for the occlusion to disappear.

C. {abstain option}.

D. {wrong random category}.

E. {wrong random category}.

F. {wrong random category}.

G. {correct category}.

Please only return one of the options without any other words.

\. J

For this prompt, questions related to the object category are sampled from a pool of 15 simi-
lar questions, while those related to the action category are from a pool of 11 questions, all
obtained by querying ChatGPT. The abstain option, instead, is sampled from a pool of three.
Additionally, the first three options and the remaining four are shuffled, so the same option
does not always appear in the same position. Shuffling is performed during data generation,
resulting in a fixed order for each sample. Finally, <hint> indicates the position of the
hint used in the main paper experiments (Sec. f.3), which, in the case of Changelt, corre-
spondsto “Hint: If you cannot answer the question, waiting for it to
appear or rewinding the video could help with classification.”
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The set of valid actions .A; changes throughout the evaluation. Since the environment returns the
initial frame first, the rewind option is disabled at the first frame and enabled from the second step.
MLLMs can propose proactive suggestions as many times as the number of frames in the video.
Finally, as each video differs, the number of proactive suggestions to reach a state where the question
becomes answerable varies from sample to sample.

B.7 THE MS-COCO ENVIRONMENT

The MS-COCO environment evaluates MLLMSs’ proactiveness in proposing camera movements
to obtain more informative cues. The first image in the MS-COCO environment shows a trimmed
picture with missing object details, as in Fig. 28] Since most images in MS-COCO contain multiple
objects, we discard all those samples that contain more than one object, avoiding ambiguities.
Each MLLM is prompted to predict the category of the object in the image, choosing out of four
possible categories and the abstain option. As the posed question is likely unanswerable from the
initial frame, the environment also returns one or two valid proactive suggestions, depending on
how the image crop was computed. Crops are generated to allow for exploration of one of the
ordinal or cardinal directions or zooming out, the set of proactive actions, thus, changes based on
the picture, i.e., move the camera up, move the camera down, move the camera
left, move the camera right, and move farther from the object. In the case
of ordinal directions, MLLMs receive two proactive options, one for each of the cardinal directions
that generate the ordinal one. Instead, for cardinal directions and zooming out, MLLMs receive only
one. For example, a typical prompt for an ordinal direction is structured as follows:

- ~

Classify the visual content of this image. <hint> Choose from the
following options. Options:

A. Move the camera left.

B. Move the camera up.

C. {abstain option}.

D. {wrong random category}.

E. {wrong random category}.

F. {wrong random category}.

G. {correct category}.

Please only return one of the options without any other words.

For this prompt, the question is sampled from a pool of 15 similar questions obtained from querying
ChatGPT, while the abstain option is sampled from a pool of three. Additionally, the first two/three
options (depending on the direction) and the remaining four are shuffled, so the same option does
not always appear in the same position. Shuffling is performed during data generation, resulting in
a fixed order for each sample. Finally, <hint> indicates the position of the hint used in the main
paper experiments (Sec. [#.3), which, in the case of MS-COCO, corresponds to “Hint: moving
the camera could help with classification” for ordinal and cardinal directions
and “Hint: zooming out could help with classification” forthe zooming out
case.

The set of valid actions .4; changes throughout the evaluation for ordinal directions, while it remains
fixed for cardinal directions and the zooming out case. Since the camera can move in two of the four
cardinal directions in the ordinal directions case, we remove a cardinal direction if the MLLM has
already unveiled all possible object details in a specific direction, i.e., it has explored all discrete steps
in a direction. Finally, MLLMs can propose proactive suggestions as many as the predefined discrete
steps, set between 3 and 5.

B.8 FILTERING

This section visualizes the effects of the filtering procedure (Sec.[3.3)), showing for each dataset the
number of remaining samples and the average accuracy at different filtering thresholds. Figure
shows for each dataset the original dataset size and the size after filtering. Datasets with images
that are generally easier to classify correctly in the first turn undergo a larger reduction (e.g., IN-C
decreases from 4,856 to 1,095 samples). Instead, Fig. @] reports, for each dataset, the average
accuracy at the first turn pre- and post-filtering, and compares them with the original and post-filtering
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Figure 17: Samples after filtering. Each plot shows the remaining examples for each datasets after
filtering. The light blue line represents the number of remaining examples at different thresholds.
Instead, in black and red we report the original and post-filtering dataset size, respectively.
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Figure 18: Accuracy pre- and post-filtering. Each plot shows the average MLLM’s accuracy in
the first turn for different datasets. The light blue line represents the accuracy at different thresholds,
while in black and red we report the original and post-filtering accuracy, respectively. Finally, we
report the multi-turn accuracy before and after filtering in green and blue.

zero-shot accuracy over multiple rounds. Finally, Tab. ] reports MLLMs’ zero-shot performance on
the unfiltered benchmark.

C EXTENDED RESULTS

As most results could not fit within nine pages, the main paper summarizes key findings with plots.
This section reports all tables associated with the main paper’s plots and the extended version of
each plot, not limited to six models. Table [5|reports MLLMs oracle performance on ProactiveBench.
Figure |19|shows the action distribution for all models, further highlighting that some overweight
proactive suggestions over the abstain option. InternVL3 78B stands out, showing the lowest rate
of proactive suggestions (4%), despite being one of the best open-weight MLLMs. Table [6] and
Fig. 20| respectively report MLLM’s results and the corresponding action distribution when proactive
suggestions are replaced with random ones. Similarly, Tab.[7]and Fig. 2T describe MLLM’s results
and action distribution on all models when the prompt hints at proactive suggestions. Finally, Tab.[§]
and Tab. 9] display MLLM’s performance on ProactiveBench when conditioned on conversation
histories and few-shot examples of proactive conversations. We do not report results for all models
for experiments with random proactive options, conversation histories, and in-context learning, due
to computational and monetary constraints.

Computational details. We conducted most experiments using a single A100 Nvidia GPU, 32GB
of RAM, and 8 CPU cores, lasting about 1 hour, depending on the dataset. When conditioning
on conversation histories and few-shot samples, we used two A100 GPUs to reduce the memory
footprint of the models’ parameters, with experiments lasting about 2 hours on average and at most 8
hours, depending on the dataset and model. Furthermore, to avoid out-of-memory issues for Phi-4-
Multimodal with ICL examples, we reduced the ROD image sizes of the few shots from 3024 x3024
to 512x512, and the sequence length of MVP-N to 2 when using 3 shots. Finally, we resized all
samples’ short edge to 224px when conditioning on conversational histories to avoid out-of-memory
issues with long sequences.

D BROADER IMPACTS STATEMENT

ProactiveBench is designed to assess the proactiveness of multimodal large language models
(MLLMs), i.e., their ability to request additional input when faced with ambiguous or insuffi-
cient visual information. As MLLMs are increasingly deployed in interactive and safety-critical
applications (i.e., assistive tools, autonomous systems), encouraging and evaluating such behavior is
essential for developing more collaborative and user-aligned Al.
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Table 4: MLLMs results on unfiltered ProactiveBench. We report the accuracy (acc) in percentages
(%) and average number of proactive suggestions (ps) for all datasets without filtering, with global
averages in the last column.

ROD VSOD MVP-N IN-C QD CIT COoCco avg.
family ~ model acc ps acc ps acc ps acc ps acc ps acc ps acc ps  acc ps
LLaVA-1.5 7B 125 07 413 13 277 00 594 04 430 05 703 07 676 04 460 0.6

Mistral-7B 00 00 95 02 137 0.1 539 02 122 0.1 463 14 49.1 00 264 03

LLaVA-NeXT  Giina7B 193 07 254 09 262 01 692 05 220 07 686 04 677 0.1 426 0.5
0.5B 443 23 206 19 307 04 536 07 458 L1 590 0.6 610 0. 450 1.0

LLaVA-OV 7B 00 00 302 03 242 00 703 04 467 03 564 01 600 00 411 02
728 00 00 413 03 237 00 746 04 390 01 619 02 597 00 429 0.1

SmolVLM2  2.2B 00 00 238 03 266 00 558 0.5 270 05 640 03 599 00 367 02
Idefics3 8B 318 1.6 317 20 277 00 700 04 279 05 580 02 622 01 442 07
InstructBLIP 7B 00 00 127 15 128 01 189 01 260 0.1 476 0.1 267 0.0 207 0.3
3B 00 00 317 00 254 00 695 09 290 01 589 02 566 00 387 02

owenzsve B 00 00 175 00 247 00 785 05 343 01 606 00 595 00 393 0.1
3B 00 00 206 00 249 00 736 01 364 00 641 02 581 00 397 0.0

728 00 00 206 06 274 00 720 03 253 00 550 0.1 551 00 365 0.1

1B 614 2.1 397 02 293 03 694 0.5 292 04 613 01 696 00 54 05

2B L1 00 492 02 305 01 769 06 379 04 693 03 771 0.1 489 02

InternVL3 8B 00 00 317 0. 232 00 759 03 360 03 583 0.1 671 00 417 0.1
38B 00 00 444 17 314 01 844 02 391 03 688 05 774 00 494 04

788 00 00 397 03 317 00 834 00 295 00 629 02 749 0.0 460 0.1
Phi-4-Multimodal 6B 11 00 270 07 295 00 664 07 423 03 660 02 646 0. 424 0.3
Openat  OHmn 00 00 238 04 346 00 802 01 424 00 718 04 966 00 499 0.1
GPT-4.1 00 00 95 01 248 0. 900 03 350 0.1 620 03 968 00 454 0.1

Table 5: MLLMs oracle performance on ProactiveBench. We report the accuracy in percentages
(%) for all datasets, with global averages in the column.

family ~ model ROD VSOD MVP-N IN-C QD CIT COCO avg.
LLaVA-15 7B 100.0 762 326 91.0 729 76.8 93.0 775
Mistral-7B 100.0 57.1 436 88.6 65.6 753 955 75.1

WLANARDET v 718 98.9 57.1 36.6 90.6 56.8 742 952 72.8
0.5B 1000 405 60.7 84.6 78.1 785 96.0 76.9

LLaVA-OV 7B 1000 78.6 632 45 86.4 87.4 976 86.8
728 100.0 833 68.0 953 88.1 87.1 976 885

SmolVLM2  2.2B 100.0 69.0 50.4 889 731 84.6 9538 803
Idefics3 8B 100.0 762 525 90.4 675 836 96.1 809
InstructBLIP 7B 75.0 57.1 215 315 325 61.4 256 s
3B 100.0 78.6 517 915 655 84.8 96.0 812

owen2sve 7B 100.0 81.0 633 95.0 753 87.9 97.1 85.6
308 100.0 786 538 932 723 843 9538 826

728 100.0 762 638 947 803 843 973 853

1B 98.9 524 55.4 88.0 625 803 9.5 763

2B 1000 76.2 570 92.7 65.8 84.1 97.6 81.9

InternVL3 8B 100.0 76.2 599 9.1 70.1 84.1 976 83.4
388 100.0 81.0 722 975 80.7 86.1 978 879

788 100.0 85.7 745 98.3 80.9 87.4 987 89.4
Phi-4-Multimodal 6B 1000 7.1 475 826 779 742 96.0 765
openal  OPT41 100.0 762 80.8 982 8822 83.6 96.8 89.1
Y 92.0 643 734 65.4 64-4 65.4 92,6 739

By highlighting current models’ proactiveness limitations, our work provides meaningful insights
for researchers seeking to build more collaborative Al systems. However, promoting proactiveness
must be carefully balanced to avoid over-questioning or inefficient behavior. While our benchmark
promotes interpretability and safe failure modes (i.e., abstention over hallucination), there is a risk of
misuse in adversarial settings if models over-rely on user feedback. We release ProactiveBench to
support reproducible and community-driven progress toward more robust and human-aware MLLMs.

E LICENSES

All original material presented in this work is intended solely for academic research and not for
commercial purposes. Below, we report the licenses of the used datasets and models:

* ROD (Lee et al.|[2023)): This dataset is released without a license.
* VSOD (Liao et al., [2020): MIT License.
* MVP-N (Wang et al., 2022a): MIT License.

22



Under review as a conference paper at ICLR 2026

proactive abstain predict target
0.66
0.47 0.49
0.36 037 o 037 034 036 041 041 o037 gy 038 037
0.17 0.16 0.18 : 017 0.23 0.22 :
LLaVA-1.5-7B LLaVA-NeXT-Mistral-7B LLaVA-NeXT-Vicuna-7B LLaVA-OV-0.5B LLaVA-OV-7B LLaVA-OV-72B SmolVLM2-2.2B
0.51 0.51 0.49
0.41 0.41 0.44 039 043
030 0.29 027 2% 0¥ 049 837 037 038
0.08 : 0.10 0.14
Idefics3-8B InstructBLIP Qwen2.5-VL-3B Qwen2.5-VL-7B Qwen2.5-VL-32B Qwen2.5-VL-72B InternVL3-1B
0.57
0.51 0.51
0.33 038 039 0.42 0.45 048 0.40
- 0.23 028 0.30 030 oy 0.28 0.32 0.27
0.16 : : 016
0.04
InternVL3-2B InternVL3-8B InternVL3-38B InternVL3-78B Phi-4-Multimodal GPT-4.1 04-mini

Figure 19: Action distributions. We report the action distribution for all evaluated models.

Table 6: MLLMs results on ProactiveBench with random proactive suggestions. We report the
accuracy (acc) in percentages (%) and average number of proactive suggestions (ps) for all datasets,
with global averages in the last column.

ROD VSOD MVP-N IN-C QD CIT COoCoO avg.
family ~ model acc ps acc ps acc ps acc ps acc ps acc ps acc ps  acc ps
LLaVA-1.5 7B 420 35 190 1.0 56 00 5.1 02 297 15 192 03 337 09 286 1.1
LLaVA-NeXT Mistral—7B 00 01 24 00 14 00 82 00 20 01 15 00 36 01 27 0.1
Vicuna-7B 432 30 190 00 67 0.1 309 02 122 19 149 02 244 05 21.6 08
LLaVA-OV 0.5B 295 20 95 00 137 05 291 04 260 1.0 13.6 04 287 0.6 215 07
7B .1 00 262 07 54 00 175 00 155 00 35 01 43 0.0 105 0.1
SmolVLM2  2.2B 125 08 143 00 93 00 63 00 41 00 11.I 05 104 00 97 02
Idefics3 8B 193 05 262 26 64 00 252 00 135 05 91 02 122 02 160 0.6
InstructBLIP 7B 00 07 167 12 20 06 302 0.1 155 06 197 02 143 04 141 05
Qwen2.5-VL 3B 68 02 95 00 52 00 270 00 83 00 56 00 88 0.0 102 00
i 7B 23 0.0 190 00 49 00 303 00 124 00 83 00 7.1 00 12.1 0.0
1B 443 14 143 00 145 0.1 354 00 126 03 149 0.1 31.7 04 240 03
InternVL3 2B 170 03 286 00 208 00 433 0.1 147 01 182 02 275 0.1 243 0.1
8B 23 00 214 09 68 00 258 00 127 00 68 01 87 0.0 121 02
Phi-4-Multimodal ~ 6B 125 06 119 02 186 00 186 0.1 201 01 172 02 312 06 186 0.3

» ImageNet-C (Hendrycks & Dietterich, [2019): Apache License 2.0.
* QuickDraw (Jongejan et al., |2016): CC-BY-4.0.

* Changelt (Soucek et al.,2022): MIT License.

* MS-COCO (Lin et al.,[2014): CC-BY-4.0.

e LLaVA-1.5 (Liu et al.,[2024a)): Llama?2.

e LLaVA-NeXT Vicuna (Liu et al., 2024a): Llama2.

e LLaVA-NeXT Mistral (Liu et al.||2024a): Apache License 2.0.
e LLaVA-OV (Li et al.,[2025): Apache License 2.0.

* Qwen2.5-VL (Bai et al.| 2025): Apache License 2.0.

¢ SmolVLM2 (Marafioti et al., [2025)): Apache License 2.0.

¢ Idefics3 (Laurencon et al.,[2024): Apache License 2.0.

e InternVL3 (Zhu et al.,[2025): Apache License 2.0.

e InstructBLIP (Dai et al., [2023)): Llama2.

¢ Phi-4-Multimodal (Abouelenin et al., [2025): MIT License.

F DATASET EXAMPLES

Figures [22]to 28] report dataset examples returned by the environment in the first state.
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Figure 20: Action distributions with random proactive options. Lighter bars describe variations
using random proactive suggestions for all evaluated models.

Table 7: MLLMs results on ProactiveBench by hinting at proactive suggestions. We report the
accuracy (acc) in percentages (%) and average number of proactive suggestions (ps) for all datasets,
with global averages in the last column.

ROD VSOD MVP-N IN-C QD CIT Coco avg.

family =~ model acc ps acc ps acc ps acc ps acc ps acc ps acc ps  acc ps
LLaVA-15 7B 477 49 286 259 147 23 11.1 13 379 18 487 22 410 15 328 57
LLaVA-NeXT Mistral—7B 23 37 00 47 25 24 143 11 48 10 58 1.1 113 05 59 21
Vicuna-7B 443 49 143 433 140 23 178 12 104 23 50.8 34 464 13 283 84

0.5B 443 56 95 294 177 10 191 19 365 21 442 65 389 1.1 300 6.8

LLaVA-OV 7B 205 0.6 238 07 277 10 406 21 285 05 88 05 92 02 227 08
72B 00 00 143 01 196 07 412 20 201 06 144 05 144 03 177 0.6

SmolVLM2  2.2B 00 01 143 02 161 05 292 22 112 08 513 18 78 0.1 186 08
Idefics3 8B 295 94 286 373 137 07 332 09 159 14 247 09 344 1.0 257 74
InstructBLIP 7B .1 05 167 49 74 01 79 0.1 142 0.1 227 02 100 00 114 0.8
3B 489 13 333 42 126 05 338 26 11.1 05 119 06 105 0.1 231 14

Qwen-2.5-VL 7B 00 00 95 01 126 03 500 21 238 09 63 02 63 00 155 05
32B 102 08 24 02 254 12 409 14 264 1.1 157 09 241 06 207 09
72B 00 05 95 06 282 13 447 24 268 19 237 1.1 321 09 236 12
1B 625 29 238 14 330 1.6 264 20 257 23 399 21 310 07 346 19

2B 420 1.1 524 144 344 1.1 413 15 292 18 328 25 528 09 407 33

InternVL3 8B 23 00 190 0.1 190 06 386 1.1 267 1.1 96 03 137 02 184 05
38B 34 00 333 20 382 13 535 19 357 18 298 15 560 09 357 13
78B 00 00 310 14 182 03 570 0.8 114 04 290 13 239 02 243 0.6
Phi-4-Multimodal ~ 6B 91 04 95 1.1 214 02 351 23 343 13 232 05 260 04 227 09
OpenAl GPT—f‘-‘.l 00 00 71 08 522 28 308 30 330 25 247 07 928 0.1 344 14
04-mini 205 02 548 46 314 05 668 08 620 13 598 1.8 946 0.1 557 13

G LLM USAGE DECLARATION

During the writing of this paper, we used LLMs for polishing writing and proofreading the
manuscript.
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Figure 21: Action distributions with hints. Bars describe action distributions with (light) and
without (dark) hints in the prompt for all evaluated models.

Table 8: MLLMs results on ProactiveBench by conditioning on conversation histories. We
report the accuracy (acc) in percentages (%) and average number of proactive suggestions (ps) for
all datasets, with global averages in the last column. We omit models not supporting multi-image

inference.
ROD VSOD  MVP-N IN-C QD CIT COCo avg.

family =~ model acc ps acc ps acc ps acc ps acc ps acc ps acc ps  acc ps
0.5B 11 60 95 109 85 04 54 16 152 18 177 68 169 07 106 4.0
LLaVA-OV 45 00 00 143 58 64 0.1 107 13 229 07 124 14 35 01 100 13
SmolVLM2  2.2B 00 00 71 04 99 01 45 09 48 04 207 10 55 00 75 04
Idefics3 8B 136 13 119 38 63 0.1 244 15 95 07 187 09 87 02 133 12
Quen2.svL B 00 00 119 00 50 00 142 25 80 03 141 1.0 64 00 85 06
7B 00 00 00 00 44 00 243 18 83 02 91 03 49 00 73 03
1B 00 64 167 81 117 06 115 17 75 08 106 26 152 02 104 29
InternVL3 2B 00 01 286 63 164 02 59 22 86 09 144 42 301 03 148 20
8B 00 00 95 75 57 01 92 13 69 10 45 19 69 00 61 17
Phi-4-Multimodal ~ 6B 00 00 7.1 127 189 00 86 20 149 08 263 65 159 04 13.1 32

Table 9: MLLM:s results on ProactiveBench by conditioning on few-shots. We report the accuracy
(acc) in percentages (%) and average number of proactive suggestions (ps) for all datasets, with
global averages in the last column. We omit models not supporting multi-image inference.

1 sample 3 samples

ROD MVP-N ROD MVP-N
family ~ model acc ps acc ps acc ps acc ps
0.5B 21.6 7.4 12.8 0.6 21.6 6.6 132 0.6
LLaVA-Ov 7B 9.1 0.2 17.9 0.7 19.3 0.4 20.0 0.9
SmolVLM2  2.2B 0.0 0.1 7.1 0.2 0.0 0.1 0.4 0.0
Idefics3 8B 31.8 1.3 8.6 0.1 34.1 1.2 10.0 0.4
3B 2.3 0.2 8.0 0.1 2.3 0.0 9.1 0.3
Quen25-VL - 7 00 00 79 0.1 45 0.1 20.2 06
1B 0.0 9.8 12.2 0.7 0.0 9.5 13.4 0.8
InternVL3 2B 0.0 0.7 17.3 0.5 0.0 0.6 16.4 0.5
8B 0.0 0.0 6.2 0.1 0.0 0.0 6.4 0.1
Phi-4-Multimodal ~ 6B 2.3 0.2 17.0 0.1 38.6 3.7 12.7 1.5
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What missing details are obscured by the red blocks?
Choose from the following options. Options:

A. Move the red blocks to the left.

B. Move the red blocks to the right.

C. I cannot tell.

D. Screwdriver.

E. Banana.

F. Vase.

G. Spatula.

Please only return one of the options without any other words.

Figure 22: ROD input example. In the first step, the ROD environment returns images of completely
occluded target objects.

This is a frame extracted from a video. Answer the following
question.

Can you say who is speaking?

Choose from the following options. Options:

A. I cannot answer this question.

B. Rewind the video.

C. Wait for the occlusion to disappear.

D. Monika schnitzer.

E. Ursula von der leyen.

F. Ge you.

G. José mourinho.

Please only return one of the options without any other words.

Figure 23: VSOD input example. In the first step, the VSOD environment returns video frames of
occluded subjects.

Could you name the object in this image?
Choose from the following options. Options:

A. Change the camera angle of the object.

. I do not know what is this object.

. Selex whey protein drink peach.

. Selex sports whey protein powder peach.

. Selex sports whey protein powder chocolate.
. Selex whey protein drink chocolate.

C
D
E
F
Please only return one of the options without any other words.

Figure 24: MVP-N input example. In the first step, the MVP-N environment returns uninformative
object views.

Provide the classification of the object in the image.
Choose from the following options. Options:

A. Denoise the image.

B. I do not know what is this object.

C. Increase image resolution.
D. Reduce brightness.
E. Deblur the image.
F. Perfume.

G. Great pyrenees.
H. Alligator lizard.

I. Cello.

Please only return one of the options without any other words.

Figure 25: ImageNet-C input example. In the first step, the IN-C environment returns heavily
corrupted images.
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A.

C
D
E.
F
P

Describe the object in the quickdraw in terms of its category.
Choose from the following options. Options:

I cannot answer this question.

B. Make this drawing more complete.
. The eiffel tower.
. Potato.

Bed.
Tooth.

lease only return one of the options without any other words.

Figure 26: QuickDraw input example. In the first step, the QD environment returns the first stroke

of a sketch.

. LANSING s
'S Chronicle PATRIO

PRI
DETROIT

THE ANN ARBOR NEWS

THE FLINT

S d
S;Einaw News JOURNAL

This is a frame extracted from a video. Answer the following
question.

Describe the object in the video in terms of its category.
Choose from the following options. Options:

A. I cannot answer this question.

B. Wait for the object to appear.
C. Rewind the video.
D. Eggs.
E. Butter.
F. Apple.

G. Avocado.

Please only return one of the options without any other words.

Figure 27: Changelt input example. In the first step, the CIT environment returns video frames
where the target object or action will appear in the future.

C

A.

B
C
D.
E.
F
G
P

hoose from
Move the
I cannot
Move the
Bowl.
Sink.
Cup.

. Toilet.
lease only

Identify the object in this image.

the following options. Options:
camera to the left.

answer this question.

camera down.

return one of the options without any other words.

Figure 28: MS-COCO input example. In the first step, the COCO environment returns images
where object details are removed.
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