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ABSTRACT

Generating accurate functional annotations for protein sequences presents a sig-
nificant challenge, especially when dealing with lengthy captions that contain
concise descriptions. Recent advancements in diffusion models have shown im-
pressive empirical performance in sequence-to-sequence generation tasks. In
this paper, we propose ProCDM, a conditional diffusion generative model that
utilizes protein sequence representations to generate functional descriptions for
proteins. ProCDM employs a contrastive learning framework to extract and
align protein embeddings with their functionality and then generates functional
descriptions by denoising within the continuous embedding space. Our ap-
proach, ProCDM, demonstrates the capability to generate a wide range of func-
tional descriptions for proteins that align with their actual functionality. Com-
prehensive experiments are conducted on the EC-Caption datasets to evaluate the
effectiveness of our proposal.

1 INTRODUCTION

Accurately predicting protein functions from protein sequences is a crucial task. Traditionally, it
relied on extensive biochemical experiments (Thompson et al., 2020). Despite the effort, the ex-
perimental annotations available for these sequences remain scarce, comprising less than 1% of the
total (Dohan et al., 2021). In recent years, deep learning-based methods have emerged as powerful
tools for protein functional annotation (Sanderson et al., 2023; Yu et al., 2023).

In this work, we aim to provide a textual description of unseen protein’s functions. Current deep
learning methods only predict categorical labels, which only capture a small fraction of the infor-
mation about protein function, and hinder a comprehensive understanding of protein functionalities.
As a result, non-experts face challenges when attempting to utilize these sparse annotations to char-
acterize proteins comprehensively and accurately predict their properties. However, by harnessing
the power of natural language, we can offer more detailed descriptions that are easier to understand
compared to task-specific predictions and concise annotations.

We present a novel framework, referred to as ProCDM, that focuses on encoding protein information
and generating comprehensive textual descriptions. To achieve this, we utilize a contrastive learning
approach on a pretrained ESM model (Lin et al., 2023a) to encode amino acid sequences of proteins
and align them with their functional annotations, specifically the EC number, which is the numerical
code used to classify and categorize enzymes based on the reactions they catalyze (Bairoch, 2000).
We employ a classifier-free conditional diffusion model inspired by the DDPM framework to gen-
erate textual descriptions for protein functions, which iteratively eliminates noise from a Gaussian
distribution and results in concise and coherent descriptions. To facilitate the training and evalua-
tion of protein captioning models, we introduce a protein-caption dataset called EC-Caption. This
dataset consists of approximately 144k protein-text pairs, encompassing a wide range of proteins
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with diverse functions. We showcase the effectiveness of our proposed approach through extensive
experiments conducted on the EC-Caption dataset. Experimental results showcase the effectiveness
of ProCDM in generating protein descriptions.

2 PROBLEM FORMULATION AND PRELIMINARIES

Extensive research has been carried out on the utilization of diffusion models in sequence-to-
sequence generation tasks. In this study, we delve into the application of diffusion models specifi-
cally to the sequences of proteins. Our objective is to develop a model capable of generating textual
description that captures the functional characteristics of proteins. Unlike traditional diffusion mod-
els, our approach focuses primarily on tackling the encoding of biological information pertaining to
proteins and ensuring its effectiveness.

Preliminaries. Diffusion models have achieved remarkable success in generating high-quality sam-
ples across various modalities, including images, videos, and texts. As a score-based generative
model falling under the category of latent variable generative models, the diffusion model con-
sists of three fundamental components: the forward process, the reverse process, and the sampling
procedure (Chang et al., 2023). The key objective of diffusion models is to gain insights into the
probability distribution that underlies a given dataset. This is accomplished by capturing the latent
structure of the data through modeling the diffusion process experienced by the data points within
their latent space (Song et al., 2020; Ho & Salimans, 2022).

Forward Process. Given x0 sampled from a data distribution q(·), the forward diffusion process
aims to add a small amount of Gaussian noise to the sample in T steps, producing a sequence of
samples with noises, namely x1, . . . ,xT . The step sizes, which are controlled by a variance schedule
{βt ∈ (0, 1)}Tt=1. The forward process process could be modeled as Equation 1:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

The data sample x0 gradually loses its distinguishable features as the step t becomes larger.
Eventually when T → ∞, xT is equivalent to an isotropic Gaussian distribution.

Backward process. We will be able to recreate the true sample from a Gaussian noise input
xT ∼ N (0, I), by reversing the above forward process and sample from q(xt−1|xt). we train a
model pθ to approximate these conditional probabilities to run the reverse diffusion process, and the
sequential reverse process could be modeled as Equation 2:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

DiffuSeq (Gong et al., 2023) is a diffusion model designed for text generation tasks such as open-
ended sentence generation in a seq2seq framework. Unlike traditional approaches such as, (Dhariwal
& Nichol, 2021; Kim et al., 2022; Shi et al., 2023) that rely on separate classifiers, it is a classifier-
free framework that directly predicts the conditional probability of generating a target sentence based
on the context. This unique paradigm allows for comprehensively capturing the data distribution and
effectively utilizing conditional guidance.

Protein Functional Annotations. Given a protein sequence (denoted as wseq) and a textual de-
scription of the protein’s function (denoted as wfunc), our objective is to train a model that takes
wseq as input and generates a sentence that accurately describes its functionality, closely aligning
with wfunc. fθ is denoted as our transformer model which takes the noised input and predicts the
denoised output in their embedding space.

3 PROCDM: A DIFFUSION FRAMEWORK FOR PROTEIN CAPTION

We present ProCDM, a framework that focuses on generating protein functional description condi-
tioning on their sequences. The overall framework is shown in Figure 1.

Forward Process. For the forward process, ProCDM follows the protocol of Diffusion LM (Li et al.,
2022) to map the protein sequences (as ”source” sequences) and corresponding text descriptions of
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Figure 1: The conditional diffusion process of our model. The source protein sequences are con-
verted into the target continuous space using a functional embedding extractor. Simultaneously, the
textual description of protein functions undergoes transformation using a separate embedding layer.
The partial Gaussian noise is iteratively added on the continuous space zt.

their functions (as ”target” sequences) from discrete to continuous embedding space. ProCDM em-
ploys different embedding mapping functions for protein sequences and their functional descriptions
due to their differing modalities. For protein sequences, we leverage CLEAN (Yu et al., 2023), a con-
trastive learning framework for protein functional annotation, to train a feature extractor and obtain
the embeddings (denoted as Eseq) of protein sequences wseq. This allows for better encoding of
functionally related information (refer to Section 4.2) thereby improving the quality of generated
textual descriptions. As for the functional description, we use a learnable word embedding function
to extract their embeddings (denoted as Efunc) from textual description wfunc.

After obtaining the respective embeddings of proteins’ sequences and functional description, Eseq
and Efunc are concatenated as a unified embedding, referred to as E, which is subsequently fed as the
input to the forward process of the diffusion model. This extension of the original forward chain to
a new Markov transition, qϕ

(
z0|wseq⊕fun

)
= N (E, β0I), enables the adaptation of discrete inputs.

For brevity, we simplify the notation using zt = Et
seq ⊕ Et

func, where Et
seq and Et

func represent the
hidden state of the protein sequences and the functional description at time step t, respectively. To
achieve the final distribution, ProCDM introduce Gaussian noise through the conditional diffusion
forward process qϕ (zt|zt−1), which selectively injects noises only into Et

func at each time step.

Conditional Denoising Process. In the denoising process, ProCDM iteratively removes the noise
at each time step, aiming to recover Et

func to E0
func. Specifically, we train fθ to model the conditional

denoising process in a classifier-free manner following the settings of DiffuSeq (Gong et al.,
2023). The training objective LVLB is defined as follows:

min
θ

LVLB = min
θ

[
T∑

t=2

∥z0 − fθ (zt, t) ∥2 + ∥E− fθ (z1, 1) ∥2 − log pθ
(
wseq⊕fun|z0

)]

→ min
θ

[
T∑

t=2

∥E0
func − f̃θ (zt, t) ∥2 + ∥Efunc − f̃θ (z1, 1) ∥2 +R

(
∥z0∥2

)]
,

(3)

where pθ(zt|zt−1) = N (zt−1;µθ(zt, t), σθ(zt, t)). µθ (·) and σθ (·) is the parameterization of the
predicted mean and standard deviation of q (zt−1|zt) in forward process. In Equation 3, f̃θ (zt, t)
represents our recovered E0

func, and R
(
∥z0∥2

)
represents the regularization on embedding learning.

We use the different embedding functions for the source and target and apply an MLP layer to map
the source to the target’s embedding space to match their dimension.

Training and Inference Sampling Method. To mitigate inadequate training caused by prolonged
diffusion steps, ProCDM adopts the importance sampling technique (Nichol & Dhariwal, 2021) as
the alternative to uniform time-step sampling. The formulation of its loss objective is subsequently
expressed as Lvlb = Et∼pt

[
Lt

pt

]
, where pt ∝

√
E [L2

t ] and
∑

pt = 1. Samples are generated by
conditioning on the random variable zT , drawn from a standard normal distribution N (0, I). Our
experiments indicate that integrating the rounding technique (Gong et al., 2023) into the target em-
bedding during each denoising step has led to the emergence of duplicated sequences. Consequently,
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in ProCDM, we opt against employing the rounding process. Instead, we extend the denoising pro-
cess to maintain the diversity within the generated descriptions of protein functions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Tasks. We collect proteins’ sequences and their corresponding functional de-
scription from the Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset 1. We
randomly select seven thousand protein-description pairs for inclusion in our study, with a
train/valid/test split of 60%/20%/20%. We set two tasks for evaluating the performance of ProCDM:
(1) Long Description Generation (Long for short), where the model is instructed to generate a func-
tional description that has maximally 50 words; and (2) Short Description Generation), where the
model is required to generate description that has no more than 12 words. To generate the ground-
truth label, we summarize the crawled original functional description into short sequences with
GPT-4. More details of the summarization process can be found in Appendix B.2.

Baselines. We compare the performance of ProCDM with both autoregressive (AR) and non-
autoregressive (NAR) models that are commonly employed for sequence-to-sequence generation
tasks. For the AR models, we use the encoder-decoder architecture of the Transformer (Vaswani
et al., 2017) and LSTM (Bahdanau et al., 2016), which are extensively employed for machine trans-
lation tasks. As for the NAR models, we employ a fine-tuned large pre-trained language model
(PLM), specifically GPT-2 (Radford et al., 2019), known for its remarkable success across vari-
ous sequence-to-sequence tasks. Additionally, we perform experiments on baseline models using
various pretrained feature extractors to obtain protein embeddings (i.e., CLEAN, and ESM-2) and
compare their performances with randomly initialized feature extractors. Detailed implementations
can be found in Appendix B.3.

Evaluation Metrics. We assess the generated sequences focus on two aspects, namely the quality
and diversity of the sequences. To evaluate the quality, we employ established metrics such as
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) scores. However, it is important to note that
metrics solely based on string similarity may not be optimal for open-ended generation scenarios.
Therefore, we incorporate BERTScore (Zhang et al., 2019) as an additional metric for assessment.
Additionally, we measure the diversity aspect using the dist-1 metric, which quantifies the intra-
diversity within each generated sentence by quantifying the occurrence of repeated words.

Implementation. Our model is based on BERT-base-uncased (Devlin et al., 2018), where the
time-step embedding is plugged akin to the position embedding. The maximum protein sequence
length is 300, with an embedding dimension d of 128. We set the diffusion steps T to be 2000,
with a square-root noise schedule. Due to the presence of biological words, we use the vocabulary
list and tokenizer of PubmedBERT (Gu et al., 2020) in our model for better handling. We generate
embeddings for protein sequences using ESM-2 with 150M number of parameters.

4.2 EXPERIMENTS RESULTS

Based on the results presented in Table 1, our model demonstrates superior performance in gen-
erating diverse and high-quality text captions for protein sequences across all four tasks compared
to baseline models. Table 3 in the appendix presents generated captions and reference captions for
diverse protein sequences produced by our model, along with the corresponding UniProt ID indicat-
ing the protein category. The findings indicate that utilizing fixed CLEAN embedding for protein
sequences leads to better outcomes than fine-tuning ESM for protein sequence embedding. These
results suggest the necessity of functional alignment between protein and text modalities to obtain a
distribution of text captions conditioned on protein sequences.

Figure 3 displays the t-SNE visualization of 800 pairs of protein sequences’ text captions from the
testing set, along with the corresponding captions generated by our model in the embedding space.
The clusters correspond to distinct protein sequences that align with identical or similar functional
text descriptions, often observed among proteins sharing the same EC number. The figure highlights

1https://www.kegg.jp/kegg/annotation/enzyme.html
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Task Method BLEU R-L Score dist-1 Avg. Len

Long Caption

ProCDM (CLEAN) 0.149 0.262 0.614 0.838 36.14
ProCDM (ESM-2) 0.127 0.199 0.540 0.897 48.26

LSTM 0.018 0.150 0.430 0.287 25.4
Transformer 0.079 0.208 0.570 0.900 26.29

GPT-2 0.034 0.130 0.546 0.930 21.2

Summary

ProCDM (CLEAN) 0.182 0.267 0.681 0.940 14.55
ProCDM (ESM-2) 0.227 0.302 0.674 0.833 14.76

LSTM 0.068 0.201 0.591 0.319 14.61
Transformer 0.000 0.000 0.339 0.077 15

GPT-2 0.013 0.061 0.494 0.919 7.455

Short Caption
ProCDM (CLEAN) 0.169 0.336 0.620 0.960 11.99

LSTM 0.080 0.289 0.589 0.930 12
GPT-2 0.013 0.081 0.546 0.970 10.20

EC Number
ProCDM (CLEAN) 0.134 0.452 0.786 0.870 6

LSTM 0.001 0.004 0.319 0.750 6
GPT-2 0.096 0.326 0.752 0.883 3.98

Table 1: The overall results of different methods on different captioning tasks. ProCDM (CLEAN)
represents using fixed protein representation extracted from CLEAN in ProCDM, ProCDM (ESM-2)
represents fine-tuned representation extracted from ESM-2 in ProCDM. The best results are bold.

the difficulty faced by the fine-tuned ESM in capturing the data distribution of captions. To address
this challenge, we experimented with incorporating an additional MLP layer after the ESM encoder
and applying L2 norm loss to align the protein and text distributions in the embedding space during
training. However, the results indicate that directly learning the alignment between modalities under
the diffusion process remains challenging, so we choose to use CLEAN which gives the aligned
representation by pretraining. The generated caption samples can be found in Table 3. To enhance
the accuracy assessment of our model, we randomly choose two protein sequences that share simi-
lar functions but have low alignment scores. The alignment between these proteins, as depicted in
Figure 2, indicates a sequence identity of merely 34% based on MMseqs2 (Mirdita et al., 2021).
ProCDM generates identical descriptions for these two proteins, aligning with their recorded func-
tions in the UniProt database. Notably, our model with diffusion outperforms the baseline AR and
NAR models in terms of generating more diverse sentences with fewer repeated words.

Open sequence generation tasks often encounter challenges related to the limited diversity of gen-
erated text and an increased occurrence of repetitive words. Sequence-based diffusion models com-
monly rely on two mechanisms: denoising the discrete space (tokens) and the continuous space
(word embedding). Inadequate training in either of these mechanisms can result in degenerate so-
lutions, such as generating a substantial number of repeated words or sentences, and lead to a low
diversity score as shown in Figure 5. This issue becomes particularly pronounced in sequence dif-
fusion within the word embedding space. Besides, conditional diffusion also faces the problem
that the diffusion process could neglect source conditions in training (Ye et al., 2023). Several ap-
proaches have been proposed to address this issue. These solutions include techniques such as noise
manipulation, integration of anchor loss within the denoising process, and word embedding normal-
ization (Gao et al., 2022). In our experiments, we observe that the condition’s distribution plays
a crucial role in guiding the diffusion model to generate data that aligns with the desired distribu-
tion. It influences the effectiveness of generated captions based on the given conditions with the
same sampling algorithm. Specifically, when the condition distribution is highly uniform, it poses
challenges in effectively guiding the denoising process toward generating captions that satisfy the
conditional probability. Figure 4 illustrates that the protein sequences embedding obtained from
CLEAN exhibit more prominent clusters compared to those extracted from the ESM encoder. Con-
sequently, utilizing embeddings from CLEAN is expected to yield superior performance in caption
generation, even when employing the same implementation.

5 CONCLUSION

This paper addresses the challenging task of generating accurate functional descriptions of proteins’
functions. We propose ProCDM, a conditional diffusion generative model specifically designed for
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Figure 2: Two different Protein sequences that have the same functions but with a low alignment score. The
highlight region indicates their sequence alignment positions which are marked by UniProt tools with the cut-
off to be 0.1. The generated captions from ProCDM of these two sequences are the same, indicating they have
similar functions even though their alignment score is only 34%.

sequence-to-sequence generation tasks. ProCDM introduces a novel approach to leveraging protein
sequence representations for generating functional descriptions of proteins. By employing a con-
trastive learning framework, ProCDM effectively extracts and aligns protein embeddings with their
corresponding functionality. This alignment process forms the foundation for generating functional
descriptions by denoising within the continuous embedding space. The findings presented in this
paper contribute valuable insights and pave the way for further advancements in the field of protein
sequence captions and bioinformatics research.
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A RELATED WORKS

A.1 CONDITIONAL DIFFUSION MODEL

Considerable studies have been conducted on the application of diffusion models for text generation.
GENIE (Lin et al., 2023b), for instance, employs a progressive transformation of a random noise
sequence into a coherent text sequence. It encourages the diffusion-decoder to reconstruct a text
paragraph from a corrupted version. Austin et al. (2021) extended the scope of discrete text diffu-
sion models by introducing the concept of an absorbing state ([MASK]). However, discrete diffusion
models face challenges in scaling one-hot row vectors and are limited to generating text samples
solely in discrete space without incorporating conditional constraints. In contrast, the Diffusion-
LM (Li et al., 2022) and Analog Bits (Chen et al., 2022) models introduce innovative language
models that utilize continuous latent representations. These models employ distinct mapping func-
tions to establish a connection between the discrete and continuous realms of text. Additionally,
Diffseq (Gong et al., 2023) specializes in SEQ2SEQ tasks for text generation in the continuous
space with conditional constraints.

B MORE EXPERIMENT SETTINGS

B.1 PROTEIN PUBLIC DATASET

We list the datasets we have used in our experiments below:

1. Uniprot, which is available at https://www.uniprot.org/.
2. PDB, which is available at https://www.rcsb.org/.
3. KEGG (based on EC number), available at https://www.kegg.jp/kegg/

annotation/enzyme.html.

B.2 PROMPTS TO GENERATE A SUMMARY FOR PROTEIN SEQUENCES’ FUNCTIONAL
DESCRIPTIONS

We use the following prompt to query GPT-4 to generate the description of functions for our EC-
Caption dataset:

“This is a functional description of a protein. Based on your biological knowledge,
please pick the five most important words in this sentence to best summarize the
function of this protein. Please separate these five words with a space, just answer
the five words. Functional description: xxx xx xxx xx.”

B.3 HYPERPARAMETER SETTING

We list the hyperparameter we used in Table 2.

C MORE EXPERIMENTAL RESULTS

We present the generation performance after different numbers of training steps in Table 5. In
Figure 3 and Figure 4 we provide the t-SNE visualization of the embeddings of the description of
functions and the protein sequences, respectively.

Sampled Generation Results. In Table 3, we present generation results generated by
ProCDM and compare with the references.
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Hyperparameter ProCDM GPT-2 LSTM Transformer

Learning Rate 1× 10−4 5× 10−4 1× 10−4 5× 10−4

Seed 102 42 1234 1234

Hidden Dimension 128 - 512 256

Batch Size 10 10 10 10

Protein Sequence Length 300 300 300 300

Vocab PubMed GPT-2 PubMed PubMed

Init PLM CLEAN/ESM-2 (150M) - CLEAN/ESM-2 (150M) CLEAN/ESM-2 (150M)

Noise Schedule Sqrt - - -

Schedule Sampler Loss-Aware - - -

Diffusion Steps 2000 - - -

Learning Steps 50000 10000 10000 20000

Warm-up Steps - 100 - -

ϵ - 1× 10−8 - -

Dropout - - 0.5 0.1

Table 2: The hyperparameters adopted by ProCDM and baseline models.

(a) Samples generated by our model using CLEAN’s
embedding.

(b) Samples generated by our model fine-tuning
ESM’s embedding.

Figure 3: t-SNE of textual description’s embeddings for samples in the testing dataset. The samples
in blue color represent the generated captions’ embedding and the samples in yellow represent the
reference captions’ embedding.

(a) Protein sequences’ embedding from CLEAN. (b) Protein sequences’ embedding from ESM-2.

Figure 4: Protein sequences’ embedding of training set. Embedding extracted from CLEAN has
more clusters which give better conditions in the diffusion process than ESM-2.

9
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Figure 5: The horizontal axis represents the number of learning steps, and the vertical axis represents
the metrics for generating captions. As can be seen from the curve, the overall score gradually
increases and converges as the learning steps increase. Based on dist-1, from 10000 to 20000 steps,
the diversity of captions generated increases greatly, which indicates that insufficient training will
result in a large number of word repetitions.

Samples ProCDM Reference UniProt Id
1 ”[CLS] ec 3 . 1 . 21 . 4 is a type 2

site - specific deoxyrib onuclease
enzyme involved in dna cleavage

and is part of a large group of
enzymes . [CLS]”

”EC 3.1.21.4 is a type 2
site-specific deoxyribonuclease

enzyme involved in DNA cleavage
and is part of a large group of

enzymes.”

Q07605

2 ”[CLS] EC two . 1 . 4 . 46 enzyme
a type methylation of sarc which r
1 2 coli converting beta from part

coli and phosphate group at
fructose form 2 pathway 6

catalyzes membrane by glucose
metabolism dimethyl intermediate

porphobilinogen regulating the
adenosyl”

”EC 2.5.1.61
(hydroxymethylbilane synthase)

catalyzes the formation of
uroporphyrinogen III from

porphobilinogen.”

A8FF13

3 ”[CLS] rna helicases utilize atp
hydrolysis to unw ind rna with

either 3 ’ to 5 ’ or 5 ’ to 3 ’ polarity.
some also unw ind dna . they may

be identical to dna
helicases.[CLS]”

”RNA helicases utilize ATP
hydrolysis to unwind RNA with
either 3’ to 5’ or 5’ to 3’ polarity.

Some also unwind DNA. They may
be identical to DNA helicases.”

O45244

4 ”[CLS] the enzyme catalyzes
biosynthesis use nadh transfer

activated ov residues specificity
binding c can processes membrane
chain pathway eukaryotes position

bacteria active group by protons
chain activity reaction. [CLS]”

”The enzyme catalyzes the
breakdown of

(L-cysteinylglycine)-S-conjugate
into L-cysteine and glycine, by

transferring a L-glutamate
molecule to the

(L-cysteinylglycine) molecule.

Q6IE08

5 ”[CLS] cer ul oplasm in is a multic
op per oxidase enzyme that oxid

izes fe ( ii ) to fe ( iii ) in the blood
plasma , allowing for incorporation

into proteins . an iron oxidizing
bacterium enzyme contains

heme.[CLS]”

Ceruloplasmin is a multicopper
oxidase enzyme that oxidizes
Fe(II) to Fe(III) in the blood

plasma, allowing for incorporation
into proteins. An iron-oxidizing

bacterium enzyme contains heme
a.”

P41822

Table 3: Samples generated from the testing set with ProCDM and their corresponding protein
sequences’ UniProt ID and reference captions.
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