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ABSTRACT

Graph neural networks (GNNs) are of significant importance in diverse real-world
applications since they leverage powerful graph learning techniques to solve prob-
lems pertaining to social network mining and medical data analysis. Despite their
practical relevance, GNNs remain vulnerable to adversarial attacks such as mem-
bership inference attacks (MIAs) which pose privacy risks by revealing whether
specific data records were part of the training set of the model. While most ex-
isting research has focused on designing defense mechanisms for known node-
level MIAs, and in particular, for determining if a certain node was used during
training, only limited attention has been paid to subgraph-structure MIA (SMIA)
problems. SMIA methods seek to infer whether a set of nodes forms a partic-
ular target structure of interest (such as a graph motif, e.g., clique or multi-hop
path) in the training graph. The main contributions of our work are three-fold.
The first is a novel robust defense mechanism for GNNs against SMIA attacks.
It combines an alternating train-test schedule with a flattening strategy to miti-
gate the attacks. The second contribution is a new end-to-end SMIA attack model
that outperforms existing attacks by using multiset functions to generate learnable
embeddings for collections of nodes. Extensive simulations reveal that the new at-
tack model outperforms prior state-of-the-art attack models on GNNs by 12.31%
across four datasets when no defense mechanism is present. With the new defense
mechanism, one can achieve an average decrease of 14.30% in the attack AU-
ROC and an 10.05% improvement in target model utility compared to classical
defenses, even when using the improved attack scheme. The third contribution
is a study that shows that our defense mechanism extends to node-level MIAs as
well, offering similar improvements in attack resistance and utility.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as indispensable learning modalities for diverse real-
world problems, ranging from social network mining and recommendation system design to biolog-
ical data analysis (Wu et al., 2021b; Zhang et al., 2024). For example, GNNs have been used to
improve personalized search and recommendations for customers on e-commerce platforms (e.g.,
AliGraph at Alibaba (Zhu et al., 2019) and GIANT at Amazon (Chien et al., 2021a)) and to per-
form inference and prediction on social networks (e.g., PinnerSage at Pinterest (Pal et al., 2020) and
LiGNN at LinkedIn (Borisyuk et al., 2024)). GNNs, unlike standard neural networks, make full
use of both the discrete graph topology and node and edge features via special embedding methods
based on graph convolutions or random walks (Wu et al., 2020). For example, graph convolutions
allow GNNs to generate informative embeddings that are well-suited for different downstream tasks.

Despite the successful deployment of GNNs, several weaknesses of GNN models have been pointed
out in the literature. One major concern pertains to data privacy, which is becoming an issue of ever
increasing importance. GNNs have exhibited privacy vulnerabilities to various attacks (Sun et al.,
2023) such as membership inference attacks (MIAs) (Shokri et al., 2017; Hu et al., 2022; Olatunji
et al., 2021), whose aim is to determine if a certain sample is used in model training; attribute
inference attacks (AIAs), whose focus is on inferring statistical information about the data, such as
the number of nodes and edges (Gong & Liu, 2018) and others. Among all existing attacks, the most
commonly observed and studied attacks are MIAs. As already pointed out, MIAs have the goal to
reveal whether a given record is part of the training dataset used to build a specific target model,
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and are usually based on the model itself, the record and information about the dataset. Typically,
MIAs use prediction logits of shadow models to train attack models, where the shadow training
data is obtained either through inference of the target model or through access to a potentially noisy
version of the original training dataset. Clearly, successful attacks lead to unacceptable information
leakage through the model. For example, if a GNN is trained on nodes belonging to a private group
within a large social network – e.g., a support group for sensitive medical issues, successful MIAs
on GNNs can reveal both the patient identity and their medical condition. As MIAs exploit the
differences of the outputs of target model on training and test datasets, most defense mechanisms
work towards suppressing the common patterns that quality attacks rely on (Shokri et al., 2017; Jia
et al., 2019; Choquette-Choo et al., 2021; Hayes et al., 2017; Leino & Fredrikson, 2020; Salem et al.,
2018; Kaya & Dumitras, 2021; Yu et al., 2021; Wang et al., 2020; Chen et al., 2022).

Recent studies have focused on node (or edge) MIAs for node (or edge) classification downstream
tasks (Olatunji et al., 2021; Wu et al., 2021a; He et al., 2021; Conti et al., 2022). Compared to these
standard MIAs on GNNs, little attention has been paid to subgraph-structure MIAs (SMIAs) (Wang
& Wang, 2024). SMIAs can lead to an especially problematic form of privacy leakage, where at-
tackers can infer not only if certain nodes were present in the training graph but also if there were
certain relationships between them. These relationships are usually captured via graph motives (tri-
angles, cliques, paths etc). For instance, in a medical data network, cliques may involve members of
the same family and indicative of genetic/familial diseases. In this case, SMIA attacks can compro-
mise not only individual medical histories, but – by association – whole family medical conditions.
In comparison, standard MIA methods can only reveal if the nodes were used for training a node
classifier, but not what the relationships between themselves and other nodes in the graph are (one
may think it plausible to perform individual node MIA attacks and then use link inference attacks to
infer the subgraph induced by these nodes, but this process is both ineffective and usually of poor
utility). It is also important to point out that SMIA attacks differ from subgraph inference attacks
(SIAs) (Zhang et al., 2022) whose goal is to determine if a certain type of subgraph is present in the
training dataset (without revealing the nodes that constitute the subgraph).

The only prior line of work on SMIAs is Wang & Wang (2024). There, the authors propose an
attack method based on the use of similarities between posterior vectors of the target nodes which
allows them to generate training data for the attack model. On the defense side, the authors calculate
the importance of each dimension of the node embeddings using the SHAP algorithm (Scott et al.,
2017), and add noise to the least important dimensions in an attempt to balance out the quality of the
defence against SMIAs and the utility of the model. However, this attack and defense mechanisms
have several notable limitations. First, the similarity metrics used for the attack are fixed and cannot
be adapted even when the data distribution has changed. Second, the attack performs well only on
homophilic graphs, but as we subsequently show, offers poor performance on heterophilic graphs.
Third, the similarity calculations split the attack process into two different parts, preventing an end-
to-end approach, which results in an increase of the complexity of practical implementation. Finally,
the defense still relies on the addition of noise to the embeddings, which inevitably compromises the
model utility. To address these issues, we propose both a new attack and improved defense system
that can counter both the attack of the original SMIA and our improved attack. The gist of our
approach is to replace the fixed similarity calculation with learnable multiset functions that allow
for an end-to-end attack that dynamically adapts the training data generation process to the dataset,
thereby offering excellent performance on both homophilic and heterophilic datasets. Furthermore,
we propose a novel two-stage defense (TSD) strategy followed by flattening (Chen et al., 2022) that
does not significantly sacrifice model utility but provides stronger defense capabilities compared to
noise addition. The key intuition behind the defense is to obfuscate the posterior distributions via
controlled overfitting and to add flattening noise that can also obfuscate the graph information (note
that flattening noise cannot be directly “translated” to adding noise to node embeddings). Under
the TSD approach, the attack approach learned on GNNs without defense mechanisms cannot be
easily adapted to those which use defense, leading to a drop in the attack performance. In parallel,
flattening (Chen et al., 2022) allows us to increase the variance of the training loss distribution and
provides another mechanism for ensuring different posterior distribution for test and trainsets (since
different loss distributions lead to different posterior distributions). A detailed description of the
approach is delegated to Section 4.

To demonstrate the utility of our novel SMIA attack and defense, we adopt the following standard
modeling assumptions. First, we focus on black-box attacks. Second, unlike some other approaches
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Figure 1: (a) Diagram of the defense method SHAP-based noise addition (SHNA) proposed by Wang
& Wang (2024). Here GNNs are split into two parts: graph encoder (GE) that embeds node features
and graph topology as node embeddings, and fully connected (FC) layer that transform node em-
beddings into posteriors. (b) Diagram of the two-stage training schedule that leads to an improved
defense against SMIAs. The key idea behind the TSD approach is to use the predicted labels of
test nodes from the first stage as psudolabels and switch the train and testset in the second stage.
During both training stages, flattening is performed as well to alleviate overfitting (see Section 4).
(c) Comparison of standard SMIA (similarity-based) and our new end-to-end SMIA approach with
improved and generalized attacks. The standard SMIA model uses pairwise similarity of posteriors
to generate data for training the attack model. In contrast our end-to-end SMIA replaces similarity
metrics with multiset functions that directly deal with posteriors in a permutation invariant fashion.
This allows the attacker to be trained end-to-end from data preparation to model training.

that only describe attacks for specific GNN architectures or fixed defense mechanisms (Olatunji
et al., 2021), we design our defense strategy to be generally applicable to different graph learning
paradigms, datasets and resistant to both standard and improved SMIA attacks. Our extensive ex-
periments, performed on three homophilic (CiteSeer, Facebook, LastFM) and one heterophilic dat-
set (Chameleon), coupled with GCN, GAT, SGC and GPRGNN networks (Kipf & Welling, 2016;
Velickovic et al., 2017; Wu et al., 2019; Chien et al., 2020), reveal that our end-to-end attack model
outperforms the standard SMIA by 12.31% when no defense is used. We also demonstrate an aver-
age 14.30% decrease in attack AUROC and an 10.05% improvement in target model utility trained
with our new defense technique compared to classical defenses, and under the improved attack.

2 RELATED WORKS

Due to space limitations, we only provide a brief summary of related results and delegate a more
detailed discussion to Appendix A.

MIAs. The concept of MIA was first proposed in Homer et al. (2008) and later extended in various
directions, ranging from white-box settings (Nasr et al., 2019; Rezaei & Liu, 2021; Melis et al.,
2019; Leino & Fredrikson, 2020) to black-box setting (Shokri et al., 2017; Salem et al., 2018; Song
& Mittal, 2020; Li & Zhang, 2021; Choquette-Choo et al., 2021; Carlini et al., 2022). Upon iden-
tification of the informative features (e.g., posterior predictions, loss values, gradient norms, etc.)
that reveal the sample membership, the attacker can choose to learn either a binary classifier (Shokri
et al., 2017) or metric-based decisions (Yeom et al., 2018; Salem et al., 2018) from a shadow model
trained on a shadow dataset to extract patterns within features of the training samples to determine
the membership. The description of a standard MIA pipeline is available in Appendix C.

Defense Against MIAs. As MIAs exploit the behavioral differences of the target model on train-
sets and testsets, most defense mechanisms work by suppressing the common patterns among the
two. Frequently used defense methods include confidence score masking (Shokri et al., 2017; Jia
et al., 2019; Yang et al., 2020; Li et al., 2021; Choquette-Choo et al., 2021; Hanzlik et al., 2021),
regularization (Hayes et al., 2017; Salem et al., 2018; Leino & Fredrikson, 2020; Wang et al., 2020;
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Choquette-Choo et al., 2021; Kaya & Dumitras, 2021; Yu et al., 2021; Chen et al., 2022), knowledge
distillation (Shejwalkar & Houmansadr, 2020; Tang et al., 2022), and differential privacy (Naseri
et al., 2020; Saeidian et al., 2021). For example, confidence score masking aims to hide the true
prediction vector returned by the target model and it thus mitigates the effectiveness of MIAs by
providing only top-k logits per inference (Shokri et al., 2017), or adding noise to the prediction
vector in an adversarial manner (Jia et al., 2019). Regularization aims to reduce the degree of over-
fitting of target models to mitigate MIAs (Choquette-Choo et al., 2021; Hayes et al., 2017; Leino &
Fredrikson, 2020; Salem et al., 2018; Kaya & Dumitras, 2021; Yu et al., 2021; Wang et al., 2020;
Chen et al., 2022). Knowledge distillation aims to transfer the knowledge from an unprotected
model to a protected model (Shejwalkar & Houmansadr, 2020), while differential privacy (Saeidian
et al., 2021) protects membership information via noise injection and offers theoretical performance
guarantees, at the cost of substantial utility drop.

MIAs and Defense Strategies for GNNs. There are a handful of research that focuses on extending
MIA and corresponding defense mechanisms to graph learning framework. Olatunji et al. (2021)
analyzed graph MIA in two settings (train on subgraph, test on subgraph/full), and proposed the
LBP defense based on the confidence score masking idea, He et al. (2021) proposed zero-hop and
two-hop attacks designed for inductive GNNs, Wang & Wang (2023) studied the link membership
inference problem in an unsupervised fashion, and Chen et al. (2024) developed MaskArmor based
on masking and distillation technique. Besides node and edge MIAs, Zhang et al. (2022); Wang &
Wang (2024) also explored the subgraph attacks along with perturbation-based defense mechanism.

k-node Structure Membership Inference (k-SMIA) is a new form of a privacy attack (Wang &
Wang, 2024). The aim of this attack is to determine whether a collection of k nodes within the
training set belongs to a subgraph structure of interest (e.g., path or clique). k-SMIA hence uses a
new definition of membership: members are substructures of k nodes that form a relevant topology.
The original SMIA work outlines a novel black-box SMIA attack that combines training a three-
label classifier with training shadows. This attack outperforms node-level MIAs followed by link
prediction. The defense against SMIA relies on perturbing embedding of the nodes with the smallest
“contribution” to the accuracy of the model and it results in a performance comparable to that offered
by differential privacy. Despite these positive initial findings, one has to point out that a performance
matched by differential privacy methods may not be desirable, since the latter is usually significantly
reduced compared to defenseless models. Note that k-SMIA still constitutes an attack against node-
level models, so that the downstream task of the target model remains node classification.

3 PROBLEM FORMULATION

In this paper we focus on the downstream task as supervised node classifications; nevertheless, our
method is applicable to different graph learning scenarios. Let G = (X,A, Y,VTrain,VTest) denote
the graph dataset with node features X ∈ Rn×d, adjacent matrix A ∈ Rn×n, one-hot encoded node
labels Y ∈ Rn×C , trainset VTrain and testset VTrain. Here n is the number of nodes, d is the feature
dimension, C is the number of classes, VTrain and VTest are disjoint and |VTrain| + |VTest| = n. We
later on use Y Train to denote the labels of VTrain, and Ŷ Test to denote the predicted labels of VTest.
Since X and A are already known during training, the goal of k-SMIA is determing the subgraph-
substructure membership: given a set of k nodes Vatt ⊂ VTrain ∪ VTest, determine if Vatt forms
either a k-clique or a (k− 1)-hop path in G (member) or not (non-member). Meanwhile, the goal of
MIA is determing the label membership: given a node v ∈ VTrain ∪ VTest, determine if v ∈ VTrain

(member) or not (non-member). Following the practice of SMIA and MIA, we also need a shadow
dataset Gs = (Xs, As, Ys,VTrain

s ,VTest
s ) to train the shadow model, and Gs can be different from G.

4 THE TSD METHOD

To defend against SMIAs, we introduce a two-stage defense method (TSD) to train target GNNs,
depicted in Algorithm 1. The key intuition behind our method is to change the posterior distribution.

The first stage of TSD involves using G to train a model checkpoint M1(θ1) with parameters θ1.
We adopt a flattening strategy in the first stage as a form of regularization, inspired by (Chen et al.,
2022). The flattening is implemented by transforming hard labels (one-hot) to soft labels (probability
vectors) when the loss on the trainset falls below a threshold α. For simplicity, we assign the value
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β to the ground-truth class, and 1−β
C−1 to the other classes. Here α, β are hyperparameters while C

denotes the number of classes. Note that we only use soft labels to compute the loss when the loss
is small enough to keep the model utility as high as possible. The key of flattening is to increase the
mean and variance of the training loss distribution while introducing noise to the label distribution.

Algorithm 1 TSD Training Procedure

Input: Dataset G = (X,A, Y,VTrain,VTest),
number of training epochs E, learning rate γ,
number of classes C, loss threshold α, flatten-
ing parameter β.
Output: Second stage target model M2(θ2)
First stage:
Perform random initialization for the first stage
model M1(θ1)
for epoch ∈ [1, E] do

if loss L(M1(θ1), Y
Train) ≥ α then

θ1 ← θ1 − γ · ∇θ1L(M1(θ1), Y
Train)

else
Construct soft labels STrain where sTrain

c ={
β, if yTrain

c = 1;

(1− β)/(C − 1), otherwise
θ1 ← θ1 − γ · ∇θ1L(M1(θ1), S

Train)
end if

end for
Second stage:
Initialize the second stage model M2(θ2) with
M1(θ1), and generate pseudolabels Ŷ Test for
the original testset by inference via M1(θ1)
for epoch ∈ [1, E] do

if loss L(M2(θ2), Ŷ
Test) ≥ α then

θ2 ← θ2 − γ · ∇θ2L(M2(θ2), Ŷ
Test)

else
Construct soft labels STest where sTest

c ={
β, if ŷTest

c = 1;

(1− β)/(C − 1), otherwise
θ2 ← θ2 − γ · ∇θ2L(M2(θ2), S

Test)
end if

end for

The second stage of TSD is similar to the first
one, with the main difference that we instead
use (X,A, Ŷ Test) for training. The pseudola-
bels Ŷ Test are generated via inference of the
checkpoint M1(θ1) on the testset. Instead of
random initialization, we use checkpoint ini-
tialization for the second stage model M2(θ2)
to resume training. The subsequent train-
ing process also proceeds with flattening, and
M2(θ2) is the final output target model. The
role of the second stage is to include the test-
set into training, even without having access to
their groundtruth labels Y Test. In this case, the
testset is also “trained”, as it undergoes through
the same process as the trainset.

SHAP-based noise addition (SHNA) defense.
The SHNA defense (Wang & Wang, 2024) aims
to weaken the attack by introducing noise into
the node embeddings. To reduce the impact
of noise on the model performance, SHNA
uses the SHAP algorithm (Scott et al., 2017)
to quantify the contribution of each embed-
ding dimension to the final classification ac-
curacy, and selectively adds noise to the l =
⌊r × d⌋ dimensions with the smallest contribu-
tions, where r ∈ (0, 1] is a hyperparameter, and
d is the embedding dimension. The added noise
is Laplacian, with scale b and mean µ.

Comparison with SHNA. The reasons why
TSD can outperform SHNA are two-fold. First,
as we explain in Section 5, the attacker tar-
gets the posterior distributions directly rather
than the node embeddings. Therefore, adding
noise to the node embeddings is only an indirect
method of perturbing the attack model’s input,

and the relationship between the noise scale and the attackers performance is unclear. In contrast,
TSD directly alters the posterior distribution, as evidenced by the significant change in the loss dis-
tribution. Figure 2 illustrates this point: without TSD (standard training), the average training loss
is lower than the testing loss. With TSD, however, the discrepancy in the loss distribution is notably
reduced. Additionally, we conduct another simulation to examine the correlation between attack
performance and loss distribution. Note that when a clique exists in the graph, three scenarios are
possible: (1) all nodes belong to the trainset; (2) nodes belong to both the train and testset; and
(3) all nodes belong to the testset. The attack accuracy for triangle identification in these cases is
0.9722, 0.9347, and 0.8526, respectively. These results confirm that the attack accuracy is positively
correlated with how well the posterior distribution is learned.

5 END-TO-END SMIA: A MULTISET FUNCTION APPROACH

To demonstrate that our defense mechanism is effective against various types of SMIAs, we evaluate
it using both the similarity-based attacks introduced by Wang & Wang (2024) and a novel attack
based on multiset functions. We begin by reviewing the similarity-based attacks, highlighting their
strengths and limitations, before introducing our new end-to-end attack scheme.
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Similarity-Based Attacks. The core of similarity-based SMIA lies in processing the shadow
model’s output to generate data for attack model training. For example, for a k = 3 clique, the
shadow model provides three posterior vectors for three nodes. Pairwise similarities between these
vectors are computed and sorted in ascending order to form a new vector. This process is repeated
for three different similarity metrics, namely the dot product, cosine similarity, and ℓ2 distance. The
sorted vectors for each metric are concatenated to create the training data for the attack model along
with the structure labels (see also Appendix B).

Figure 2: Comparison of training and test
loss distribution under (a) standard training; (b)
TSD training. The simulation is conducted on
Chameleon with NLGCN as the backbone. The
attack is our end-to-end SMIA.

While similarity-based attacks have been
shown to outperform other link-level attacks for
SMIA, they have limitations. First, the choice
of similarity metrics is heuristic and may not
be effective in all scenarios. Second, the com-
putational complexity is O(k3)1, which is pro-
hibitive for large k.

Multiset Function-Based Attacks. To ad-
dress the limitations of similarity-based attacks,
we propose using multiset functions to aggre-
gate posterior vectors, rather than relying on
heuristic similarity measures. The primary ad-
vantage of multiset functions is that they can
directly process posterior vectors without ad-
ditional preprocessing. Furthermore, multiset
functions treat inputs as sets, ensuring that the output remains unaffected by the input order. We
implement the multiset function using Deep Sets (Zaheer et al., 2017), which has proven effective
in other contexts requiring permutation invariance, such as hypergraph GNNs (Chien et al., 2021b).
For example, consider three nodes v1, v2, v3 with corresponding posterior distributions p1, p2, p3.
The final embedding used for training the attacker is computed as ρ(ϕ(p1)+ϕ(p2)+ϕ(p3)), where
ρ and ϕ are neural networks (specifically, two-layer MLPs in our simulations), which makes the
attack model trainable in an end-to-end fashion. Based on the performance guarantees of Deep
Sets and the universal approximation theorem, it is straightforward to show that the similarity-based
approach is a special case of the multiset function-based method.

6 EXPERIMENTS

6.1 EXPERIMENTS PERTAINING TO SMIA DEFENSE

Datasets and GNN Baselines. We train four GNN (GCN (Kipf & Welling, 2016), GAT (Velickovic
et al., 2017), SGC (Wu et al., 2019), GPRGNN (Chien et al., 2020)) on three homophilic datasets
(CiteSeer, Facebook (Yang et al., 2023), LastFM (Rozemberczki & Sarkar, 2020)), and four GNN
(NLGCN, NLGAT, NLMLP (Wang et al., 2018), GPRGNN (Chien et al., 2020)) on one heterophilic
datasets (Chameleon (Rozemberczki et al., 2021)). Detailed experimental setups, properties and
statistics of the datasets are available in Appendix F.

Evaluation Metrics. We follow previous literature to use the following two metrics for evaluation.
We report classification accuracy of the target model on the testset (CA) to measure model utility,
and AUROC scores of the attack model (AU), which is a widely used approach in the field of
MIA (Carlini et al., 2022). Note that good defenses should lead to large CAs and small AUs.

6.1.1 COMPARISON OF SMIA DEFENSE METHODS AND ATTACK METHOD

Table 1 and 2 present a comparison of End2end-SMIA with Standard-SMIA, as well as the defense
performance of TSD and SHAN. Additional results can be found in Appendix G. Standard-SMIA
refers to similarity-based attacks while End2end-SMIA refers to the multiset function-based attack.
For simplicity, we refer to them as S-SMIA and E-SMIA, respectively. In the experiments, SHAN
uses the noise addition strategy from the original work for homophilic datasets, r = 0.4 and b = 0.3,
and for the heterophilic dataset, r = 0.1 and b = 0.01.

1O(k2) pairs with O(k) computational complexity per pair.
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Table 1: 3-SMIA attack performance comparison between Standard-SMIA and End2end-SMIA &
Defense performance comparison between SHNA and TSD. Compared to SHNA, TSD achieves a
decrease in attack AUROC by 16.64% against Standard-SMIA & 14.30% against End2end-SMIA,
and increases in utility performance by 10.05% (on average). Full table with variance information
is available in Appendix Table 8.

Dataset Models CA(SHNA) CA(TSD) S-SMIA AU (SHNA) S-SMIA AU (TSD) E-SMIA AU(SHNA) E-SMIA AU(TSD)

CiteSeer

GCN 0.6887 0.7729 0.9157 0.7767 0.9684 0.8703
GAT 0.7082 0.7548 0.8784 0.7145 0.9336 0.8519
SGC 0.6982 0.7454 0.9015 0.7978 0.9862 0.8904
GPRGNN 0.6736 0.7864 0.8222 0.5969 0.9006 0.7364

Facebook

GCN 0.6028 0.7095 0.7143 0.5463 0.7942 0.6127
GAT 0.5321 0.6435 0.6854 0.5382 0.8229 0.6068
SGC 0.5011 0.6423 0.7028 0.5253 0.7903 0.5945
GPRGNN 0.5529 0.6544 0.6512 0.5562 0.8081 0.6213

LastFM

GCN 0.8256 0.8523 0.9215 0.8337 0.9825 0.8702
GAT 0.8379 0.8662 0.8528 0.8664 0.9274 0.8821
SGC 0.8154 0.8400 0.9305 0.8835 0.9840 0.9060
GPRGNN 0.8320 0.8577 0.9004 0.8268 0.9543 0.8687

Chameleon

NLGCN 0.6373 0.6725 0.8904 0.4538 0.9196 0.7875
NLGAT 0.6437 0.6835 0.7025 0.5611 0.8848 0.7958
NLMLP 0.5010 0.5484 0.7128 0.5342 0.8152 0.7057
GPRGNN 0.6637 0.6835 0.7191 0.6259 0.8929 0.7711

Table 2: 4-SMIA attack performance comparison between Standard-SMIA and End2end-SMIA &
Defense performance comparison between SHNA and TSD. Compared to SHNA, TSD achieves a
decrease in attack AUROC by 16.56% against Standard-SMIA & 13.89% against End2end-SMIA,
and increases in utility performance by 10.05% (on average). Full table with variance information
is available in Appendix Table 9.

Dataset Models CA(SHNA) CA(TSD) S-SMIA AU(SHNA) S-SMIA AU(TSD) E-SMIA AU(SHNA) E-SMIA AU(TSD)

CiteSeer

GCN 0.6887 0.7729 0.9685 0.9013 0.9786 0.9267
GAT 0.7082 0.7548 0.9718 0.8868 0.9891 0.9191
SGC 0.6982 0.7454 0.9839 0.9316 0.9955 0.9442
GPRGNN 0.6736 0.7864 0.9010 0.8523 0.9692 0.8894

Facebook

GCN 0.6028 0.7095 0.7377 0.5308 0.7964 0.6033
GAT 0.5321 0.6435 0.6732 0.5027 0.7436 0.5978
SGC 0.5011 0.6423 0.6992 0.5097 0.7520 0.6325
GPRGNN 0.5529 0.6544 0.6520 0.4978 0.7090 0.5885

LastFM

GCN 0.8256 0.8523 0.9649 0.8296 0.9972 0.8561
GAT 0.8379 0.8662 0.8936 0.7442 0.9354 0.7654
SGC 0.8154 0.8401 0.9574 0.8184 0.9979 0.8270
GPRGNN 0.8320 0.8577 0.9144 0.8044 0.9844 0.8444

Chameleon

NLGCN 0.6373 0.6725 0.7663 0.5668 0.9952 0.8346
NLGAT 0.6437 0.6835 0.7849 0.5901 0.9816 0.8409
NLMLP 0.5010 0.5484 0.7531 0.6076 0.9186 0.8359
GPRGNN 0.6637 0.6835 0.8358 0.5924 0.9486 0.8127

When comparing the attack AUROC on the same dataset, using the same model and defense method,
End2end-SMIA is noticeably better than Standard-SMIA, especially on the heterophilic Chameleon.
This is due to the trainable Deep Sets, which extract structural information of the node sets from their
posterior vectors, significantly reducing the learning difficulty for the attack model. Additionally,
whereas the similarity metrics chosen in Standard-SMIA may not be well-suited to the attacked node
sets, Deep Sets can continuously adjust during training to offer improved performance.

When comparing TSD and SHAN under the same conditions, we observe that TSD offers superior
defensive capabilities while maintaining higher classification accuracy for the target model. This
is because TSD alters the posterior distribution through an additional training phase and the intro-
duction of flattening. These two methods are applied only after the target model has already com-
pleted learning from the data, so the classification performance of the target model remains largely
unaffected. In contrast, SHAN aims to minimize the impact on the target model’s classification
performance by adding noise only to the least important dimensions of the embeddings. However,
this also means that the noise’s ability to disrupt the attack decreases due to the reduced importance
of those dimensions. Therefore, it is difficult to achieve both high model utility and strong defense
ability, regardless of how the noise is added.
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6.1.2 DATA TRANSFER

Figure 3: Result for 3-SMIA Attack AUROC on GCN under data transfer setting for (a) TSD
against Standard-SMIA; (b) SHAN against Standard-SMIA; (c) TSD against End2end-SMIA; and
(d) SHAN against End2end-SMIA.

In practical applications, the training data of the target model is typically unknown to the attacker.
Therefore, to train a shadow model, attackers often use publicly available datasets as training data,
which usually have different distributions from the training data of the target model. To better
evaluate the effectiveness of the TSD defense method, we set up an experimental scenario that
resembles real-world SMIA, where experiments are conducted for the data transfer setting. Data
transfer refers to the situation where the training data for the target model and the shadow model
come from different datasets. Evidently, when the training data for the target and shadow models
come from the same dataset, the attack on the target model is the strongest, corresponding to the
lower bound of the defense method’s effectiveness.

Figure 3 presents the results obtained using GCN as both the target and shadow model under the 3
SMIA attack. The experimental settings remain the same as described in Section 6.1.1. The results
demonstrate the continued effectiveness of the TSD defense method in the data transfer setting.
Across all dataset combinations, TSD consistently outperformed SHAN, indicating that TSD can
maintain excellent performance against SMIA attacks that may occur in real-world scenarios. Ad-
ditionally, it is worth noting that End2end-SMIA exhibits stronger attack performance compared to
Standard-SMIA, which can be attributed to the powerful generalization capability of DeepSets.

6.1.3 ABLATION STUDY OF TSDS

Table 3: Ablation study for the contributors to the utility/attack gains/mitigation for TSD under
3-SMIA Attack.

Method Dataset GNN Models Classify Acc Attack AUROC

Standard Training

CiteSeer GCN 0.8012 ± 0.0093 0.9745 ± 0.0084
Facebook GCN 0.7353 ± 0.0085 0.8759 ± 0.0091
LastFM GCN 0.8823 ± 0.0088 0.9841 ± 0.0094
Chameleon NLGCN 0.7052 ± 0.0085 0.9664 ± 0.0084

Flattening (One-Stage)

CiteSeer GCN 0.7956 ± 0.0082 0.9428 ± 0.0081
Facebook GCN 0.7291 ± 0.0080 0.8249 ± 0.0084
LastFM GCN 0.8762 ± 0.0096 0.9520 ± 0.0075
Chameleon NLGCN 0.7009 ± 0.0094 0.9187 ± 0.0093

Two-Stage (without Flattening)

CiteSeer GCN 0.7804 ± 0.0087 0.9013 ± 0.0081
Facebook GCN 0.7168 ± 0.0080 0.6644 ± 0.0091
LastFM GCN 0.8610 ± 0.0076 0.9008 ± 0.0091
Chameleon NLGCN 0.6863 ± 0.0085 0.8324 ± 0.0074

TSD (Two-Stage & Flattening)

CiteSeer GCN 0.7729 ± 0.0021 0.8703 ± 0.0075
Facebook GCN 0.7095 ± 0.0034 0.6127 ± 0.0096
LastFM GCN 0.8523 ± 0.0027 0.8702 ± 0.0088
Chameleon NLGCN 0.6725 ± 0.0054 0.7875 ± 0.0098
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Our TSD method differs from the conventional training methods in two aspects: (1) the use of
flattening operations; and (2) two-stage training. To demonstrate their roles in enhancing defense
capability, we conducted the following ablation experiments.

In the experiments, we examined four variants: (1) standard training; (2) two-stage (without flatten-
ing); (3) flattening (one-stage); and (4) TSD. Here, standard training refers to training a target model
only on the trainset; two-stage trains a target model in a train-test alternate fashion, equivalent to
TSD without flattening; flattening is the same as described in Section 4, combined with one-stage
training. Clearly, TSD is two-stage combined with flattening. We conduct our experiments using
End2end-SMIA.

Table 3 presents the results of the ablation study for these four variants on four datasets and one
GNN backbone – GCN. Additional results can be found in Appendix I. The findings indicate that the
primary source of improvement for TSD is the two-stage training technique. Moreover, compared
to the defense improvement brought by flattening, its impact on model utility is acceptable.

6.2 EXPERIMENTS PERTAINING TO MIA DEFENSE

TSD is also capable of defending against node-level MIA. Previous studies on MIA (Homer et al.,
2008; Shokri et al., 2017; Salem et al., 2018; Song & Mittal, 2020) have pointed out that the key
to a successful MIA attack is to allow overfitting in the target model. Since TSD has the ability
to reduce overfitting, it should intuitively have the capability to defend against MIA: the two-stage
training process in TSD can help reduce the gap between the average losses of training and testing
nodes, while the use of flattening reduces the difference in the variance of loss distributions between
the training and testing nodes. We demonstrate the effectiveness of TSD’s defense by comparing it
with other defense methods. We choose two representative defense methods, Laplacian Binned Pos-
terior Perturbation (LBP) (Olatunji et al., 2021) on GNNs and Distillation for Membership Privacy
(DMP) (Shejwalkar & Houmansadr, 2020) on graphless models, as our defense baselines. LBP is
the state-of-the-art defense method for GNNs and it works by adding Laplacian noise to the poste-
rior before it is released to the user. To reduce the amount of noise needed to distort the posteriors,
LBP does not add noise to each element of the posterior, but to binned posterior. In our experiments,
we first randomly shuffle the posteriors and then assign each posterior to a partition/bin. The total
number of bins N is predefined based on the number of classes. For each bin, we sample noise with
scale b from the Laplace distribution. The sampled noise is added to each element in the bin. After
the noise added to each bin, we restore the initial positions of the noisy posteriors and release them.
Appendix Table 13 shows the best set of parameters for LBP that we used in our experiments.

On the other hand, we adapted DMP to the case of GNN training. DMP consists of three phases,
namely pre-distillation, distillation and post-distillation. The pre-distillation phase trains an unpro-
tected model on a private training data without any privacy protection. Next, in the distillation phase,
DMP selects reference data and transfers the knowledge of the unprotected model into predictions
om the reference data. Notice that private training data and the reference data have no intersec-
tion. Finally, in the post-distillation phase, DMP uses the predictions to train a protected model.
Our experiments use the same model structure for the unprotected and protected models. To follow
the DMP procedure, we need to further split the trainset into a private dataset and reference dataset,
where the private dataset trains the unprotected models, and the reference dataset trains the protected
target model. Compared to DMP, TSD can directly train the target model with the full trainset.

In our experiments, the split ratio of trainsets and testsets for TSD and LBP is 1:1, and the split ratio
of private datasets, reference datasets and testsets in DMP is 0.45:0.45:0.1. Since MIA is easier to
defend against than SMIAs, our experiments are conducted on more complex and diverse datasets.
Table 4 and Table 5 shows partial result of our experiments, and the complete results can be found in
Appendix J.1 and J.2. The results indicate that our method achieves defense capabilities comparable
to LBP and DMP, while achieving better model utility performance. It is important to emphasize
that a lower attack AUROC does not necessarily indicate stronger defense. The stronger the defense,
the closer the AUROC should be to 0.5, as 0.5 represents random guessing. When the AUROC is
less than 0.5, the attackers can flip the prediction results to make the AUROC greater than 0.5.
Compared to LBP, TSD significantly improved the model utility. The main reason is that LBP is a
perturbation-based method, which can potentially hurt the target model performance significantly.
However, TSD achieves defense by alleviating overfitting, which delves deeper into the core issue,
instead of adversely affecting target models. In addition, compared to DMP, TSD still achieves

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

higher model utility. This gain is expected, as TSD not only can make use of the full trainsets, but
also utilizes testsets in the second stage, thus enhancing the model’s generalization ability.

Table 4: Performance comparison between TSD and LBP. Compared to LBP, TSD has an average
increase in utility by 17.28%, with a comparable attack AUROC.

Dataset Models Classify Acc (LBP) Classify Acc (TSD) Attack AUROC (LBP) Attack AUROC (TSD)

PubMed

GCN 0.6886 ± 0.0041 0.8381 ± 0.0023 0.4998 ± 0.0050 0.4990 ± 0.0048
GAT 0.7631 ± 0.0037 0.8400 ± 0.0028 0.5021 ± 0.0084 0.4911 ± 0.0061
SGC 0.6564 ± 0.0035 0.8080 ± 0.0020 0.5007 ± 0.0065 0.5005 ± 0.0057
GPRGNN 0.7843 ± 0.0029 0.8553 ± 0.0014 0.5003 ± 0.0038 0.4967 ± 0.0034

Facebook

GCN 0.5195 ± 0.0041 0.6778 ± 0.0049 0.4912 ± 0.0021 0.4993 ± 0.0023
GAT 0.5460 ± 0.0037 0.6519 ± 0.0039 0.5120 ± 0.0025 0.5010 ± 0.0028
SGC 0.4833 ± 0.0044 0.6249 ± 0.0043 0.4901 ± 0.0026 0.5004 ± 0.0031
GPRGNN 0.4627 ± 0.0032 0.5890 ± 0.0035 0.4807 ± 0.0031 0.5014 ± 0.0020

Lastfm

GCN 0.6509 ± 0.0037 0.8378 ± 0.0035 0.5118 ± 0.0024 0.4971 ± 0.0022
GAT 0.7210 ± 0.0034 0.8683 ± 0.0032 0.5136 ± 0.0031 0.4980 ± 0.0029
SGC 0.6395 ± 0.0040 0.8336 ± 0.0045 0.5121 ± 0.0030 0.4965 ± 0.0034
GPRGNN 0.6875 ± 0.0038 0.8443 ± 0.0033 0.5101 ± 0.0035 0.4999 ± 0.0025

Chameleon

NLGCN 0.5987 ± 0.0068 0.6657 ± 0.0062 0.5233 ± 0.0062 0.4954 ± 0.0065
NLGAT 0.5926 ± 0.0072 0.6585 ± 0.0070 0.5246 ± 0.0065 0.4902 ± 0.0063
NLMLP 0.4281 ± 0.0078 0.4824 ± 0.0074 0.5623 ± 0.0057 0.4848 ± 0.0051
GPRGNN 0.5230 ± 0.0054 0.6550 ± 0.0058 0.5107 ± 0.0060 0.4936 ± 0.0049

Table 5: Performance comparison between TSD and DMP. Compared to DMP, TSD has an average
increase in utility by 4.35%, with a comparable attack AUROC.

Dataset Models Classify Acc (DMP) Classify Acc (TSD) Attack AUROC (DMP) Attack AUROC (TSD)

PubMed

GCN 0.8235 ± 0.0037 0.8387 ± 0.0034 0.5026 ± 0.0039 0.4978 ± 0.0042
GAT 0.8027 ± 0.0047 0.8434 ± 0.0024 0.5013 ± 0.0036 0.5005 ± 0.0043
SGC 0.8013 ± 0.0041 0.8096 ± 0.0045 0.5024 ± 0.0042 0.5003 ± 0.0038
GPRGNN 0.8104 ± 0.0031 0.8423 ± 0.0036 0.5020 ± 0.0027 0.4994 ± 0.0023

Facebook

GCN 0.6896 ± 0.0046 0.7054 ± 0.0045 0.4806 ± 0.0032 0.4964 ± 0.0030
GAT 0.6420 ± 0.0040 0.6797 ± 0.0043 0.4768 ± 0.0042 0.4910 ± 0.0037
SGC 0.6152 ± 0.0049 0.6351 ± 0.0040 0.4821 ± 0.0038 0.4969 ± 0.0039
GPRGNN 0.5784 ± 0.0051 0.5920 ± 0.0046 0.4780 ± 0.0045 0.4964 ± 0.0032

Lastfm

GCN 0.8162 ± 0.0057 0.8401 ± 0.0055 0.5115 ± 0.0030 0.4978 ± 0.0027
GAT 0.8434 ± 0.0054 0.8769 ± 0.0041 0.5142 ± 0.0028 0.4972 ± 0.0023
SGC 0.8112 ± 0.0050 0.8414 ± 0.0044 0.5091 ± 0.0036 0.4967 ± 0.0031
GPRGNN 0.8140 ± 0.0042 0.8485 ± 0.0037 0.5119 ± 0.0026 0.4979 ± 0.0019

Chameleon

NLGCN 0.6681 ± 0.0064 0.6963 ± 0.0065 0.5210 ± 0.0064 0.5182 ± 0.0062
NLGAT 0.6516 ± 0.0066 0.7082 ± 0.0073 0.5116 ± 0.0061 0.5159 ± 0.0059
NLMLP 0.4643 ± 0.0079 0.4955 ± 0.0070 0.5054 ± 0.0053 0.5017 ± 0.0056
GPRGNN 0.6471 ± 0.0060 0.6934 ± 0.0068 0.5172 ± 0.0067 0.5163 ± 0.0045

7 CONCLUSIONS AND LIMITATIONS

We proposed a novel two-stage defense method (TSD) against SMIAs for GNNs, and leveraged
multiset functions to enhance SMIA attacks (End2end-SMIA). Our evaluation showed that TSD
surpasses SHAN in defending against various types of SMIAs, establishing a new state-of-the-art
benchmark. Additionally, we compared TSD with LBP and DMP in defending against classical
node-level MIAs, demonstrating that TSD also performs effectively in protecting against the normal
attacks. We conducted ablation studies and validated the origin of TSD’s defense capability. TSD
exhibits superior performance and is easy to integrate into various GNNs training processes.

Limitations and Future Work. The current form of TSD has the following limitations: (1) It can
lead to lower model utility because the labels used in second stage are pseudolabels of test nodes,
instead of groud-truth labels; (2) The flattening parameter β is not end-to-end learnable, and uniform
flattening may not be the optimal way to counter SMIAs and MIAs. To address these limitations,
we are exploring to use only the test nodes with high confidence predictions and change the formula
of soft labels to make β learnable.
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A EXTENDED RELATED WORKS

Membership Inference Attacks. MIA on ML models aim to infer whether a data record was used
to train a target ML model or not. This concept is firstly proposed by Homer et al. (2008) and later
on extended to various directions, ranging from white-box setting where the whole target model is
released (Nasr et al., 2019; Rezaei & Liu, 2021; Melis et al., 2019; Leino & Fredrikson, 2020), to
black-box setting where only (partial of) output predictions are accessible to the adversary (Shokri
et al., 2017; Salem et al., 2018; Song & Mittal, 2020; Li & Zhang, 2021; Choquette-Choo et al.,
2021; Carlini et al., 2022). As a general guideline for MIA, the attacker first need to determine the
most informative features that distinguish the sample membership. This feature can be posterior
predictions (Shokri et al., 2017; Salem et al., 2018; Jia et al., 2019), loss values (Yeom et al., 2018;
Sablayrolles et al., 2019), or gradient norms (Nasr et al., 2019; Rezaei & Liu, 2021). Upon identify-
ing the informative features, the attacker can choose to learn either a binary classifier (Shokri et al.,
2017) or metric-based decisions (Yeom et al., 2018; Salem et al., 2018) from shadow model trained
on shadow dataset to extract patterns in these features among the training samples for identifying
membership. The shadow dataset can be either generated from target model inferences, or a noisy
version of the original dataset depending on the assumptions of the attacker.

Defense Against Membership Inference Attacks. As MIA exploit the behavioral differences of
the target model on trainset and testset, most defense mechanisms work towards suppressing the
common patterns that an optimal attack relies on. Popular defense methods include confidence
score masking, regularization, knowledge distillation, and differential privacy. Confidence score
masking aims to hide the true prediction vector returned by the target model and thus mitigates the
effectiveness of MIAs, including only providing top-k logits per inference (Shokri et al., 2017), or
add noise to the prediction vector in an adversarial manner (Jia et al., 2019). Regularization aims
to reduce the overfitting degree of target models to mitigate MIAs. Existing regularization methods
including L2-norm regularization (Choquette-Choo et al., 2021; Hayes et al., 2017), dropout (Leino
& Fredrikson, 2020; Salem et al., 2018), data argumentation (Kaya & Dumitras, 2021; Yu et al.,
2021), model compression (Wang et al., 2020), and label smoothing (Chen et al., 2022). Knowledge
distillation aims to transfer the knowledge from a unprotected model to a protected model (She-
jwalkar & Houmansadr, 2020), and differential privacy (Saeidian et al., 2021) naturally protects the
membership information with theoretical guarantees at the cost of lower model utility.

B STANDARD SMIA PROCESS

The Standard SMIA contains three phases: shadow GNN model training, attack model training,
and membership inference. (1) shadow GNN model training: The adversary trains a set of shadow
models Φs

1 to Φs
T on shadow graphs to mimic the behaviors of the target model. In fact, training a

single shadow model is sufficient to achieve performance comparable to training T models. To train
Φs

1 to Φs
T , the attackers will randomly sample the training dataset Gsi for each shadow model from

shadow dataset Gs. Then the attackers train Φs
1 to Φs

T by using (Xs
i , A

s
i , Y

Train, s
i ,VTrain, s

i ). (2) attack
model training: The attackers firstly generate a training datasetATrain from the output of the shadow
models on the shadow graph. The generation of ATrain follows four steps. First, for each shadow
graph sample Gsi , the attackers select a set of k-node sets Vi

att. Each node set Vatt ∈ Vi
att comprises

k nodes randomly selected from Gsi . Second, for each node set Vatt ∈ Vi
att, the attackers obtain the

posterior probability vector for each node in Vatt output by the shadow model Φs
i , so there will be k

posterior probability vectors for Vatt. Third, these k posterior probability vectors are aggregated into
a single vector which will serve as the attack feature vector x. Specifically, the attackers measure the
pairwise similarity of the k posterior probability vectors and obtains

(
k
2

)
pairwise similarity values

accordingly. Next, the attackers sort these similarity values in ascending order, and concatenates the
sorted values as a vector. Following the the same choice in Wang & Wang (2024), we consider three
similarity metrics, namely, dot product, cosine similarity, and euclidean distance. Therefore, there
will be 3 sorted vectors accordingly, where each vector corresponds to a similarity metric. These
3 vectors are further concatenated as one vector, acting as the attack feature x. After the attackers
generate the feature x of the node set Vatt, they associates x with its label y. In particular, y = 1
if Vatt forms a k-clique in the Gsi , y = 2 if Vatt contains a (k − 1)-hop path, and y = 0 otherwise.
Finally, the attackers add the newly formed data sample (x, y) toATrain. AfterATrain is generated, the
attackers proceed to train the attack classifier A on ATrain. (3) membership inference: The attackers
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employ the same methodology as the generation of training dataset ATrain to derive the feature xa

for the target node set Va, utilizing the same similarity functions. It is important to note that, unlike
the attack features of the training data Vatt that uses the probability output by the shadow model, the
attackers employ the posterior probability output of Va by the target model to calculate xa. Finally,
the attackers feed xa into A to obtain predictions. The complete standard SMIA process can be
found in Wang & Wang (2024).

C STANDARD MIA PROCESS

The standard MIA process also has three phases: shadow GNN model training, attack model train-
ing, and membership inference. (1) shadow GNN model training: shadow GNN model S is a model
trained by attackers to replicate the behavior of the target GNN model M , providing training data
for the attack model A. To train S, we assume that the shadow dataset Gs comes from the same or
similar underlying distribution as Gt. Then the attackers train S by using (Xs, As, Y

Train
s ,VTrain

s ) (2)
attack model training: To train A, attackers use the trained S to predict all nodes in VTrain

s and VTest
s

and obtain the corresponding posteriors. For each node, attackers take its posteriors as input of the
attack model and assigns a label “1” if the node is from VTrain

s and “0” if the node is from VTest
s to

supervise. (3) membership inference: To implement membership inference attack on a given node
v, attackers query M with v’s feature to obtain its posterior. Then attackers input the posterior into
the attack model to obtain the membership information. The complete standard MIA process can be
found in Olatunji et al. (2021).

D COMPARISON WITH LBP AND DMP

Compared to state-of-the-art defense methods based on perturbations and distillation, such as
LBP (Olatunji et al., 2021) for GNNs and DMP (Shejwalkar & Houmansadr, 2020) for graphless
models, TSD can achieve a better balance between model utility and defense performance. LBP
employs noise addition to the posteriors of the target model, grouping the elements randomly and
adding noise from the same Laplace distribution to each group to reduce the required amount of
noise. While LBP offers strong defense capabilities, the added noise significantly degrades the tar-
get model utility. DMP, on the other hand, tunes the data used for knowledge transfer to enhance
membership privacy. It utilizes an unprotected model trained on private data to guide the training of
a protected target model on reference data, optimizing the tradeoff between membership privacy and
utility. However, DMP necessitates the collection of an additional dataset for training the protected
model, which complicates the whole process. Meanwhile, our method addresses the overfitting
problem implicitly by ensuring that both the training set and testset undergo the same procedure.
Consequently, our method offers several advantages over LBP and DMP: (1) it avoids explicitly
adding noise to the target model predictions, thereby preserving model utility; (2) it does not require
additional data; and (3) it fully leverages the whole graph data through a train-test alternate training
schedule.

E DETAILS OF DMP LOSS FUNCTION

In our experiments, the post-distillation phase of DMP consists of two parts of loss to train the
protected model, with the proportion adjusted by a hyperparameter. One loss is the cross-entropy
loss, supervised by the true labels of the reference data. The other loss is the KL divergence between
the prediction of the protected model and the unprotected model on the reference data. The former
is to ensure that the protected model has a high classification accuracy on the testset, while the
latter is to guide the protected model by using the knowledge from the unprotected model. In our
experiments, we adjust the hyperparameters to balance the testset classification accuracy and defense
capability of the protected model.

F COMPLETE EXPERIMENTAL SETTINGS

Appendix Table 6 contains properties and statistics about benchmark datasets we used in SMIA
experiments. For target models and shadow models, we used 2-layer GCN, 2-layer GAT, 2-layer
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SGC, NLGCN, NLGAT, NLMLP, and GPRGNN architecture for CiteSeer, lastFM, Chameleon and
3-layer GCN, 3-layer GAT, 3-layer SGC, GPRGNN for Facebook. The attack model is a 3-layer
MLP model. The optimizer we used is Adam. All target and shadow models are trained such
that they achieve comparable performance as reported by the authors in the literature. We used one
NVIDIA GeForce RTX 3090 for training. The time for finishing one experiment is about 10 minutes
to 30 minutes depends on the complexity of datasets.

Table 6: Benchmark dataset properties and statistics of SMIA experiments: |V| and |E| denote the
number of vertices and edges in the corresponding graph dataset.

Dataset |V| |E| Features Classes

CiteSeer 3327 4552 3703 6
Facebook 4039 88234 1283 193
LastFM 7624 55612 128 18
Chameleon 2277 31371 2325 5

Table 7: Benchmark dataset properties and statistics of MIA experiments: |V| and |E| denote the
number of vertices and edges in the corresponding graph dataset.

Dataset |V| |E| Features Classes

PubMed 19717 44324 500 5
Computers 13752 245861 767 10
Photo 7650 119081 745 8
Ogbn-Arxiv 169343 1166243 128 40
Texas 183 279 1703 5
Squirrel 5201 198353 2089 5

Appendix Table 7 provides additional information on the properties and statistics of the datasets
used in the MIA experiments. For target models and shadow models, we used 2-layer GCN, 2-layer
GAT, 2-layer SGC, NLGCN, NLGAT, NLMLP, and GPRGNN architecture for PubMed, Computers,
Photo, lastFM, Texas, Chameleon, Squirrel and 3-layer GCN, 3-layer GAT, 3-layer SGC, GPRGNN
for Facebook and Ogbn-Arxiv. The attack model is a 3-layer MLP model. The optimizer we used
is Adam. All target and shadow models are trained such that they achieve comparable performance
as reported by the authors in the literature. We used one NVIDIA GeForce RTX 3090 for training.
The time for finishing one experiment is about 10 minutes to 5 hours depends on the complexity of
datasets.

G COMPLETE RESULTS OF SMIA DEFENSE COMPARISON AND SMIA
ATTACK COMPARISON

Appendix Table 8 and 9 show the complete results including standard deviation.

H ADAPTIVE SMIA ATTACK

Adaptive SMIA attack refers to scenarios where the attacker is aware that the target model employs
the TSD defense method. We consider two scenarios of adaptive attack.

The first scenario of an adaptive attack occurs when the attacker knows that the target model uti-
lizes the TSD defense method and is familiar with the target model’s architecture. Additionally,
the attacker coincidentally selects the same dataset to train a shadow model. However, they are
completely unaware of how the training and testing sets are partitioned within TSD, making the
thresholds used for Flattening and the test set in the two-stage training unknown. In this case, it is
difficult for the attacker to adjust their attack strategy to better counter the TSD method, even if they
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Table 8: 3-SMIA attack performance comparison between Standard-SMIA and End2end-SMIA &
Defense performance comparison between SHNA and TSD. Compared to SHNA, TSD achieves a
decrease in attack AUROC by 16.64% against Standard-SMIA & 14.30% against End2end-SMIA,
and increases in utility performance by 10.05% on average.

Dataset Models CA(SHNA) CA(TSD) S-SMIA AU (SHNA) S-SMIA AU (TSD) E-SMIA AU(SHNA) E-SMIA AU(TSD)

CiteSeer

GCN 0.6887 ± 0.0066 0.7729 ± 0.0080 0.9157 ± 0.0072 0.7767 ± 0.0080 0.9684 ± 0.0084 0.8703 ± 0.0075
GAT 0.7082 ± 0.0063 0.7548 ± 0.0092 0.8784 ± 0.0084 0.7145 ± 0.0075 0.9336 ± 0.0093 0.8519 ± 0.0094
SGC 0.6982 ± 0.0077 0.7454 ± 0.0084 0.9015 ± 0.0069 0.7978 ± 0.0082 0.9862 ± 0.0089 0.8904 ± 0.0103
GPRGNN 0.6736 ± 0.0069 0.7864 ± 0.0079 0.8222 ± 0.0080 0.5969 ± 0.0066 0.9006 ± 0.0078 0.7364 ± 0.0084

Facebook

GCN 0.6028 ± 0.0076 0.7095 ± 0.0081 0.7143 ± 0.0061 0.5463 ± 0.0064 0.7942 ± 0.0086 0.6127 ± 0.0096
GAT 0.5321 ± 0.0073 0.6435 ± 0.0098 0.6854 ± 0.0057 0.5382 ± 0.0066 0.8229 ± 0.0085 0.6068 ± 0.0084
SGC 0.5011 ± 0.0075 0.6423 ± 0.0091 0.7028 ± 0.0052 0.5253 ± 0.0058 0.7903 ± 0.0076 0.5945 ± 0.0129
GPRGNN 0.5529 ± 0.0070 0.6544 ± 0.0079 0.6512 ±0.0069 0.5562 ± 0.0072 0.8081 ± 0.0079 0.6213 ± 0.0072

LastFM

GCN 0.8256 ± 0.0072 0.8523 ± 0.0086 0.9215 ± 0.0088 0.8337 ± 0.0068 0.9825 ± 0.0078 0.8702 ± 0.0088
GAT 0.8379 ± 0.0067 0.8662 ± 0.0077 0.8528 ± 0.0072 0.8664 ± 0.0087 0.9274 ± 0.0068 0.8821 ± 0.0075
SGC 0.8154 ± 0.0064 0.8400 ± 0.0094 0.9305 ± 0.0089 0.8835 ± 0.0065 0.9840 ± 0.0087 0.9060 ± 0.0109
GPRGNN 0.8320 ± 0.0071 0.8577 ± 0.0078 0.9004 ± 0.0093 0.8268 ± 0.0073 0.9543 ± 0.0074 0.8687 ± 0.0069

Chameleon

NLGCN 0.6373 ± 0.0071 0.6725 ± 0.0091 0.8904 ± 0.0076 0.4538 ± 0.0083 0.9196 ± 0.0074 0.7875 ± 0.0098
NLGAT 0.6437 ± 0.0083 0.6835 ± 0.0078 0.7025 ± 0.0077 0.5611 ± 0.0079 0.8848 ± 0.0082 0.7958 ± 0.0074
NLMLP 0.5010 ± 0.0069 0.5484 ± 0.0096 0.7128 ± 0.0096 0.5342 ± 0.0091 0.8152 ± 0.0091 0.7057 ± 0.0130
GPRGNN 0.6637 ± 0.0059 0.6835 ± 0.0085 0.7191 ± 0.0087 0.6259 ± 0.0069 0.8929 ± 0.0092 0.7711 ± 0.0097

DBLP
GCN 0.6201 ± 0.0131 0.7652 ± 0.0117 0.5462 ± 0.0153 0.5312 ± 0.0134 0.7124 ± 0.0140 0.6544 ± 0.0128
GAT 0.6146 ± 0.0145 0.7721 ± 0.0135 0.5631 ± 0.0114 0.5116 ± 0.0137 0.6921 ± 0.0124 0.5974 ± 0.0134
SAGE 0.6254 ± 0.0116 0.7486 ± 0.0131 0.5398 ± 0.0151 0.5267 ± 0.0115 0.6691 ± 0.0134 0.6235 ± 0.0122

IMDB
GCN 0.4366 ± 0.0125 0.5167 ± 0.0131 0.5132 ± 0.0134 0.5107 ± 0.0120 0.6518 ± 0.0153 0.5811 ± 0.0113
GAT 0.4297 ± 0.0143 0.5283 ± 0.0121 0.5094 ± 0.0137 0.5026 ± 0.0135 0.6324 ± 0.0129 0.5637 ± 0.0111
SAGE 0.4172 ± 0.0134 0.5244 ± 0.0135 0.5068 ± 0.0150 0.5024 ± 0.0127 0.6063 ± 0.0128 0.5644 ± 0.0124

Table 9: 4-SMIA attack performance comparison between Standard-SMIA and End2end-SMIA &
Defense performance comparison between SHNA and TSD. Compared to SHNA, TSD achieves a
decrease in attack AUROC by 16.56% against Standard-SMIA & 13.89% against End2end-SMIA,
and increases in utility performance by 10.05% on average.

Dataset Models CA(SHNA) CA(TSD) S-SMIA AU(SHNA) S-SMIA AU(TSD) E-SMIA AU(SHNA) E-SMIA AU(TSD)

CiteSeer

GCN 0.6887 ± 0.0066 0.7729 ± 0.0080 0.9685 ± 0.0079 0.9013 ± 0.0076 0.9786 ± 0.0081 0.9267 ± 0.0088
GAT 0.7082 ± 0.0063 0.7548 ± 0.0092 0.9718 ± 0.0080 0.8868 ± 0.0079 0.9891 ± 0.0073 0.9191 ± 0.0079
SGC 0.6982 ± 0.0077 0.7454 ± 0.0084 0.9839 ± 0.0082 0.9316 ± 0.0080 0.9955 ± 0.0068 0.9442 ± 0.0074
GPRGNN 0.6736 ± 0.0069 0.7864 ± 0.0079 0.9010 ± 0.0077 0.8523 ± 0.0072 0.9692 ± 0.0091 0.8894 ± 0.0094

Facebook

GCN 0.6028 ± 0.0076 0.7095 ± 0.0081 0.7377 ± 0.0080 0.5308 ± 0.0082 0.7964 ± 0.0069 0.6033 ± 0.0074
GAT 0.5321 ± 0.0073 0.6435 ± 0.0098 0.6732 ± 0.0078 0.5027 ± 0.0074 0.7436 ± 0.0085 0.5978 ± 0.0077
SGC 0.5011 ± 0.0075 0.6423 ± 0.0091 0.6992 ± 0.0086 0.5097 ± 0.0089 0.7520 ± 0.0073 0.6325 ± 0.0073
GPRGNN 0.5529 ± 0.0070 0.6544 ± 0.0079 0.6520 ± 0.0075 0.4978 ± 0.0078 0.7090 ± 0.0076 0.5885 ± 0.0089

LastFM

GCN 0.8256 ± 0.0072 0.8523 ± 0.0086 0.9649 ± 0.0094 0.8296 ± 0.0071 0.9972 ± 0.0094 0.8561 ± 0.0086
GAT 0.8379 ± 0.0067 0.8662 ± 0.0077 0.8936 ± 0.0086 0.7442 ± 0.0082 0.9354 ± 0.0087 0.7654 ± 0.0080
SGC 0.8154 ± 0.0064 0.8401 ± 0.0094 0.9574 ± 0.0079 0.8184 ± 0.0070 0.9979 ± 0.0092 0.8270 ± 0.0081
GPRGNN 0.8320 ± 0.0071 0.8577 ± 0.0078 0.9144 ± 0.0089 0.8044 ± 0.0094 0.9844 ± 0.0076 0.8444 ± 0.0097

Chameleon

NLGCN 0.6373 ± 0.0071 0.6725 ± 0.0091 0.7663 ± 0.0074 0.5668 ± 0.0079 0.9952 ± 0.0086 0.8346 ± 0.0079
NLGAT 0.6437 ± 0.0083 0.6835 ± 0.0078 0.7849± 0.0080 0.5901 ± 0.0087 0.9816 ± 0.0091 0.8409 ± 0.0063
NLMLP 0.5010 ± 0.0069 0.5484 ± 0.0096 0.7531 ± 0.0070 0.6076 ± 0.0082 0.9186 ± 0.0076 0.8359 ± 0.0078
GPRGNN 0.6637 ± 0.0059 0.6835 ± 0.0085 0.8358 ± 0.0075 0.5924 ± 0.0089 0.9486 ± 0.0094 0.8127 ± 0.0088

are aware that the defense mechanism is TSD. If the attacker attempts to better simulate the target
model by training the shadow model using the same approach as TSD, any significant differences
in the partitioning of training and testing sets between the shadow and target models would actually
weaken the effectiveness of the attack. Under such circumstances, the best strategy for the attacker
is to train the shadow model in a standard manner without applying TSD.

The second scenario occurs when the attacker, in addition to the first case, also knows the target
model’s method for partitioning the dataset (though they still do not know the actual dataset used
by the target model and have merely coincidentally chosen the same one). In this situation, if the
attacker trains the shadow model in a standard manner, the results will be consistent with those in
Tables 1 and 2, since the experimental setup in Section 6.1.1 aligns with the second scenario of the
adaptive attack. However, in the case where the attacker employs the same training strategy as TSD,
the attack will become stronger. Therefore, we conducted experiments under these circumstances to
better test TSD defense method, and the experimental results are presented in Table10.

In experiments, we used both Standard-SMIA and End2end-SMIA. The experimental results indi-
cate that compared to standard attacks, adaptive attacks indeed achieve higher AUROC and present
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Table 10: The performance of TSD under Adaptive 3-SMIA attack. no d indicates that no defense
method was employed, no a indicates that adaptive attacks were not used when the TSD defense
was applied, a indicates that adaptive attacks were employed when the TSD defense was applied.

Dataset Models S-SMIA AU(no d) S-SMIA AU (no a) S-SMIA AU (a) E-SMIA AU (no d) E-SMIA AU (no a) E-SMIA AU (a)

CiteSeer GCN 0.9587 ± 0.0078 0.7767 ± 0.0086 0.8316 ± 0.0074 0.9821 ± 0.0069 0.8703 ± 0.0091 0.9245 ± 0.0086

Facebook GCN 0.8362 ± 0.0074 0.5463 ± 0.0079 0.6581 ± 0.0082 0.9014 ± 0.0077 0.6127 ± 0.0084 0.7061 ± 0.0081

LastFM GCN 0.9728 ± 0.0076 0.8337 ± 0.0077 0.8986 ± 0.0078 0.9931 ± 0.0082 0.8702 ± 0.0094 0.9211 ± 0.0080

Chameleon NLGCN 0.9267 ± 0.0073 0.4538 ± 0.0070 0.6358 ± 0.0081 0.9747 ± 0.0088 0.7875 ± 0.0085 0.8553 ± 0.0079

greater challenges for defense mechanisms. However, when comparing the AUROC of attacks with-
out any defense to that of adaptive attacks employing the TSD defense method, it is evident that TSD
still maintains a significant defensive ability. Therefore, TSD is a highly effective defense method
against SMIA attacks.

I COMPLETE ABLATION STUDY RESULTS OF TSD’S DEFENSE
PERFORMANCE AGAINST SMIA

Appendix Table 11 and 12 shows the complete ablation study results of TSD’s defense performance
against SMIA. The experimental results show that the same conclusions as in Section 6.1.3 can be
drawn across all datasets and GNN architectures. Additionally, it is worth noting the performance
of MLP under Standard Training. MLP exhibits strong defense capabilities but poor classification
performance. This aligns with intuition, as MLP does not use message passing and is therefore
completely unaware of the structural information between nodes.

J COMPLETE EXPERIMENTS OF MIA DEFENSE

J.1 COMPARISON WITH LBP

The parameters we used for LBP is shown in Appendix Table 13. For each experiment, we repeated
5 times and presented the mean and standard deviation of the results in Appendix Table 14.

Our analysis corresponding to different datasets is as follows: For PubMed, Computers, Photo,
Facebook, LastFm and Ogbn-Arxiv, TSD achieves much better classify performance. However,
there is a slight improvement in defense capability. This is because the average degree of nodes in
these datasets is relatively large, and similar nodes tend to cluster in greater numbers. The target
model can learn classification capabilities through a large number of similar node features, leading
to more severe overfitting on the testsets, making the attack model more dangerous. Although LBP
defense method can also achieve decent defense capability, it comes at the cost of significant loss in
target model classification capability.

For Texas dataset, TSD shows significant improvements in both classification and defense capabili-
ties. This is because the Texas dataset has a smaller number of nodes, leading to insufficient training
data for the target model and severe overfitting. However, TSD converts the testset into training
data for the target model, greatly enhancing the model’s generalization ability and thus strengthen-
ing its defense capabilities. In contrast, the LBP defense method excessively sacrifices the model’s
classification ability, making it difficult to be utilized effectively.

For Chameleon and Squirrel dataset, it can be seen that even with very low model classification accu-
racy, the attack model can still achieve membership inference with a probability exceeding random
selection. TSD demonstrates significant improvements in model classification on two datasets. We
note that NLMLP’s defense capability has been greatly enhanced, this is because the improvement
in its generalization ability.
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Table 11: Complete ablation study on the source of gains for TSD under 3-SMIA Attack.

Method Dataset GNN Models Classify Acc Attack AUROC

Standard Training

CiteSeer

GCN 0.8012 ± 0.0093 0.9745 ± 0.0084
GAT 0.7855 ± 0.0086 0.9628 ± 0.0088
SGC 0.7708 ± 0.0094 0.9743 ± 0.0128
GPRGNN 0.8247 ± 0.0079 0.8672 ± 0.0086
MLP 0.6988 ± 0.0095 0.6531± 0.0098

Facebook

GCN 0.7353 ± 0.0085 0.8759 ± 0.0091
GAT 0.6745 ± 0.0096 0.8641 ± 0.0094
SGC 0.6721 ± 0.0121 0.8528 ± 0.0105
GPRGNN 0.7001 ± 0.0094 0.8740 ± 0.0080
MLP 0.3502 ± 0.0079 0.5746 ± 0.0085

LastFM

GCN 0.8823 ± 0.0088 0.9841 ± 0.0094
GAT 0.8930 ± 0.0094 0.9854 ± 0.0087
SGC 0.8726 ± 0.0093 0.9832 ± 0.0097
GPRGNN 0.8991 ± 0.0081 0.9897 ± 0.0073
MLP 0.6808 ± 0.0092 0.6539 ± 0.0082

Chameleon

NLGCN 0.7052 ± 0.0085 0.9664 ± 0.0084
NLGAT 0.7013 ± 0.0097 0.9748 ± 0.0078
MLMLP 0.5752 ± 0.0115 0.9086 ± 0.0099
GPRGNN 0.7054 ± 0.0083 0.9701 ± 0.0093
MLP 0.4569 ± 0.0096 0.5603 ± 0.0087

Flattening (One-Stage)

CiteSeer

GCN 0.7956 ± 0.0082 0.9428 ± 0.0081
GAT 0.7814 ± 0.0074 0.9331 ± 0.0089
SGC 0.7657 ± 0.0098 0.9452 ± 0.0096
GPRGNN 0.8194 ± 0.0068 0.8351 ± 0.0072

Facebook

GCN 0.7291 ± 0.0080 0.8249 ± 0.0084
GAT 0.6684 ± 0.0093 0.8121 ± 0.0096
SGC 0.6667 ± 0.0094 0.7901 ± 0.0091
GPRGNN 0.6974 ± 0.0083 0.8298 ± 0.0083

LastFM

GCN 0.8762 ± 0.0096 0.9520 ± 0.0075
GAT 0.8881 ± 0.0091 0.9461 ± 0.0069
SGC 0.8679 ± 0.0126 0.9487 ± 0.0094
GPRGNN 0.8924 ± 0.0089 0.9511 ± 0.0080

Chameleon

NLGCN 0.7009 ± 0.0094 0.9187 ± 0.0093
NLGAT 0.6961 ± 0.00101 0.9258 ± 0.0081
NLMLP 0.5691 ± 0.00134 0.8609 ± 0.0118
GPRGNN 0.6977 ± 0.0096 0.9176 ± 0.0090

J.2 COMPARISON WITH DMP

For each experiment, we repeated 5 times and presented the mean and standard deviation of the
results in Appendix Table 15.

Our analysis corresponding to different datasets is as follows: For all datasets, compared to the DMP,
TSD has a slight lead in both classification accuracy and defense performance. The knowledge
distillation of the DMP method is pronounced in guiding the protected target model, and its defense
capability is comparable to the TSD. However, the DMP method still results in a reduction in the
amount of training data, which still has a significant negative impact on the model’s classification
ability.

In the experiments, we also observed that controlling the hyperparameters that determine the propor-
tions of the two different losses in the post distillation phase of DMP is crucial. It requires achieving
a tradeoff between classification accuracy and defense capability. Adjusting these hyperparameters
will increase the implementation cost of the DMP method.
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Table 12: Complete ablation study on the source of gains for TSD under 3-SMIA Attack. Continu-
ation of Appendix Table 11.

Method Dataset GNN Models Classify Acc Attack AUROC

Two-Stage (without Flattening)

CiteSeer

GCN 0.7804 ± 0.0087 0.9013 ± 0.0081
GAT 0.7627 ± 0.0084 0.8832 ± 0.0086
SGC 0.7529 ± 0.0095 0.9130 ± 0.0090
GPRGNN 0.7935 ± 0.0078 0.7628 ± 0.0079

Facebook

GCN 0.7168 ± 0.0080 0.6644 ± 0.0091
GAT 0.6567 ± 0.0086 0.6621 ± 0.0082
SGC 0.6554 ± 0.0094 0.6510 ± 0.0086
GPRGNN 0.6639 ± 0.0087 0.6715 ± 0.0084

LastFM

GCN 0.8610 ± 0.0076 0.9008 ± 0.0091
GAT 0.8749 ± 0.0072 0.9082 ± 0.0087
SGC 0.8532 ± 0.0085 0.9336 ± 0.0104
GPRGNN 0.8679 ± 0.0081 0.9017 ± 0.0094

Chameleon

NLGCN 0.6863 ± 0.0085 0.8324 ± 0.0074
NLGAT 0.6944 ± 0.0082 0.8396 ± 0.0082
NLMLP 0.5571 ± 0.0091 0.7689 ± 0.0118
GPRGNN 0.6948 ± 0.0071 0.8302 ± 0.0068

TSD (Two Stage & Flattenning)

CiteSeer

GCN 0.7729 ± 0.0080 0.8703 ± 0.0075
GAT 0.7548 ± 0.0092 0.8519 ± 0.0094
SGC 0.7454 ± 0.0084 0.8904 ± 0.0103
GPRGNN 0.7864 ± 0.0079 0.7364 ± 0.0084

Facebook

GCN 0.7095 ± 0.0081 0.6127 ± 0.0096
GAT 0.6435 ± 0.0098 0.6068 ± 0.0084
SGC 0.6423 ± 0.0091 0.5945 ± 0.0129
GPRGNN 0.6544 ± 0.0079 0.6213 ± 0.0072

LastFM

GCN 0.8523 ± 0.0086 0.8702 ± 0.0088
GAT 0.8662 ± 0.0077 0.8821 ± 0.0075
SGC 0.8400 ± 0.0094 0.9060 ± 0.0109
GPRGNN 0.8577 ± 0.0078 0.8687 ± 0.0069

Chameleon

NLGCN 0.6725 ± 0.0091 0.7875 ± 0.0098
NLGAT 0.6835 ± 0.0078 0.7958 ± 0.0074
NLMLP 0.5484 ± 0.0096 0.7057 ± 0.0130
GPRGNN 0.6835 ± 0.0085 0.7711 ± 0.0097

Table 13: Parameters for LBP

Dataset N b

PubMed 2 1
Computers 2 0.2
Photo 2 0.2
Facebook 2 0.2
LastFM 2 0.2
Ogbn-Arxiv 2 10
Texas 2 0.2
Chameleon 2 0.2
Squirrel 2 0.2

J.3 TSD DEFENSE METHOD REDUCE THE GENERALIZATION GAP

In this section, we analyzed the changes in training loss and testing loss distribution before and after
TSD training. Experiments are conducted on the heterophilic dataset Chameleon.

Through experiments, we demonstrated that TSD can: (1) reduce the gap between the average
losses of training and testing nodes, thereby alleviating overfitting; (2) increase the variance of both
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Table 14: Performance comparison between TSD and LBP. Compared to LBP, TSD achieves an
increase in utility performance by 17.28% on average, while achieving comparable attack AUROC
to LBP.

Dataset Models Classify Acc(LBP) Classify Acc(TSD) Attack AUROC(LBP) Attack AUROC(TSD)

PubMed

GCN 0.6886 ± 0.0041 0.8381 ± 0.0023 0.4998 ± 0.0050 0.4990 ± 0.0048
GAT 0.7631 ± 0.0037 0.8400 ± 0.0028 0.5021 ± 0.0084 0.4911 ± 0.0061
SGC 0.6564 ± 0.0035 0.8080 ± 0.0020 0.5007 ± 0.0065 0.5005 ± 0.0057
GPRGNN 0.7843 ± 0.0029 0.8553 ± 0.0014 0.5003 ± 0.0038 0.4967 ± 0.0034

Computers

GCN 0.6900 ± 0.0023 0.8818 ± 0.0018 0.5128 ± 0.0039 0.5068 ± 0.0035
GAT 0.7414 ± 0.0026 0.9086 ± 0.0025 0.5165 ± 0.0053 0.5039 ± 0.0051
SGC 0.6383 ± 0.0038 0.8310 ± 0.0023 0.5112 ± 0.0041 0.5074 ± 0.0043
GPRGNN 0.7203 ± 0.0023 0.8942 ± 0.0012 0.5154 ± 0.0033 0.5050 ± 0.0030

Photo

GCN 0.7737 ± 0.0034 0.9299 ± 0.0023 0.5179 ± 0.0046 0.5110 ± 0.0041
GAT 0.8051 ± 0.0040 0.9453 ± 0.0029 0.5123 ± 0.0045 0.5066 ± 0.0039
SGC 0.7361 ± 0.0039 0.9001 ± 0.0028 0.5159 ± 0.0039 0.5106 ± 0.0035
GPRGNN 0.8187 ± 0.0027 0.9430 ± 0.0015 0.5153 ± 0.0025 0.5088 ± 0.0028

Facebook

GCN 0.5195 ± 0.0041 0.6778 ± 0.0049 0.4912 ± 0.0021 0.4993 ± 0.0023
GAT 0.5460 ± 0.0037 0.6519 ± 0.0039 0.5120 ± 0.0025 0.5010 ± 0.0028
SGC 0.4833 ± 0.0044 0.6249 ± 0.0043 0.4901 ± 0.0026 0.5004 ± 0.0031
GPRGNN 0.4627 ± 0.0032 0.5890 ± 0.0035 0.4807 ± 0.0031 0.5014 ± 0.0020

Lastfm

GCN 0.6509 ± 0.0037 0.8378 ± 0.0035 0.5118 ± 0.0024 0.4971 ± 0.0022
GAT 0.7210 ± 0.0034 0.8683 ± 0.0032 0.5136 ± 0.0031 0.4980 ± 0.0029
SGC 0.6395 ± 0.0040 0.8336 ± 0.0045 0.5121 ± 0.0030 0.4965 ± 0.0034
GPRGNN 0.6875 ± 0.0038 0.8443 ± 0.0033 0.5101 ± 0.0035 0.4999 ± 0.0025

Ogbn-Arxiv

GCN 0.5097 ± 0.0025 0.7200 ± 0.0019 0.5005 ± 0.0037 0.4995 ± 0.0032
GAT 0.5134 ± 0.0030 0.7223 ± 0.0024 0.5001 ± 0.0045 0.4978 ± 0.0038
SGC 0.5021 ± 0.0032 0.7272 ± 0.0027 0.4998 ± 0.0040 0.4923 ± 0.0034
GPRGNN 0.5221 ± 0.0021 0.7315 ± 0.0016 0.5017 ± 0.0031 0.5002 ± 0.0026

Texas

NLGCN 0.5113 ± 0.0033 0.6152 ± 0.0031 0.5954 ± 0.0061 0.4812 ± 0.0054
NLGAT 0.5327 ± 0.0037 0.5882 ± 0.0026 0.5710 ± 0.0045 0.4785 ± 0.0043
NLMLP 0.5713 ± 0.0062 0.6686 ± 0.0043 0.5585 ± 0.0035 0.5532 ± 0.0038
GPRGNN 0.6166 ± 0.0041 0.7224 ± 0.0029 0.6201 ± 0.0038 0.4559 ± 0.0032

Chameleon

NLGCN 0.5987 ± 0.0068 0.6657 ± 0.0062 0.5233 ± 0.0062 0.4954 ± 0.0065
NLGAT 0.5926 ± 0.0072 0.6585 ± 0.0070 0.5246 ± 0.0065 0.4902 ± 0.0063
NLMLP 0.4281 ± 0.0078 0.4824 ± 0.0074 0.5623 ± 0.0057 0.4848 ± 0.0051
GPRGNN 0.5230 ± 0.0054 0.6550 ± 0.0058 0.5107 ± 0.0060 0.4936 ± 0.0049

Squirrel

NLGCN 0.4056 ± 0.0078 0.4910 ± 0.0073 0.5239 ± 0.0059 0.4913 ± 0.0060
NLGAT 0.4503 ± 0.0082 0.5446 ± 0.0077 0.5260 ± 0.0053 0.4920 ± 0.0049
NLMLP 0.2964 ± 0.0085 0.3137 ± 0.0068 0.5659 ± 0.0058 0.4746 ± 0.0054
GPRGNN 0.3449 ± 0.0066 0.4013 ± 0.0060 0.5225 ± 0.0055 0.4922 ± 0.0050

member and non-member loss distributions and reduce the disparity between their means; and (3)
decrease the distinguishability between member and non-member loss distributions.

Reduce the gap between the average losses of training and testing nodes. Appendix Figure 4
shows the variations of the average losses of training and testing nodes with increasing training
epochs for both standard training and two-stage training on Chameleon dataset. We also recorded
the losses of all models from Appendix Figure 4 at the end of training to Appendix Table 16, and
additionally added the result of comparative experiments on model utility and defense capability.
Comparing Appendix Figure 4 (a) with (b), it can be observed that the difference between the aver-
age losses of training and testing nodes in the standard training increases as epochs increase, indicat-
ing that overfitting exists and becomes worse as training proceeds. However, when using two-stage
training, although overfitting cannot be completely avoided, the difference between training and
testing losses decreases in the second stage as training proceeds, indicating a gradual alleviation of
overfitting. Appendix Table 16 also shows that our method achieved lower average loss gap after the
entire training process. All experimental results demonstrate the capability of our method to reduce
overfitting and the generalization gap.

Increase the variance of both member and non-member loss distributions and reduce the dis-
parity between their means. Appendix Figure 5 illustrates the loss distributions of member and
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Table 15: Performance comparison between TSD and DMP. Compared to DMP, TSD achieves an
increase in utility performance by 4.35% on average, while achieving comparable attack AUROC to
DMP.

Dataset Models Classify Acc (DMP) Classify Acc (TSD) Attack AUROC (DMP) Attack AUROC (TSD)

PubMed

GCN 0.8235 ± 0.0037 0.8387 ± 0.0034 0.5026 ± 0.0039 0.4978 ± 0.0042
GAT 0.8027 ± 0.0047 0.8434 ± 0.0024 0.5013 ± 0.0036 0.5005 ± 0.0043
SGC 0.8013 ± 0.0041 0.8096 ± 0.0045 0.5024 ± 0.0042 0.5003 ± 0.0038
GPRGNN 0.8104 ± 0.0031 0.8423 ± 0.0036 0.5020 ± 0.0027 0.4994 ± 0.0023

Computers

GCN 0.8756 ± 0.0038 0.8808 ± 0.0040 0.5055 ± 0.0042 0.5004 ± 0.0045
GAT 0.9071 ± 0.0044 0.9127 ± 0.0038 0.5097 ± 0.0045 0.4933 ± 0.0051
SGC 0.8323 ± 0.0042 0.8434 ± 0.0040 0.5086 ± 0.0045 0.5023 ± 0.0047
GPRGNN 0.8683 ± 0.0029 0.8898 ± 0.0021 0.5045 ± 0.0020 0.5036 ± 0.0032

Photo

GCN 0.9228 ± 0.0046 0.9304 ± 0.0042 0.5061 ± 0.0052 0.5004 ± 0.0048
GAT 0.9415 ± 0.0052 0.9493 ± 0.0038 0.5072 ± 0.0058 0.4966 ± 0.0055
SGC 0.8933 ± 0.0042 0.8988 ± 0.0037 0.5105 ± 0.0060 0.5018 ± 0.0059
GPRGNN 0.9215 ± 0.0032 0.9315 ± 0.0026 0.5043 ± 0.0044 0.4976 ± 0.0042

Facebook

GCN 0.6896 ± 0.0046 0.7054 ± 0.0045 0.4806 ± 0.0032 0.4964 ± 0.0030
GAT 0.6420 ± 0.0040 0.6797 ± 0.0043 0.4768 ± 0.0042 0.4910 ± 0.0037
SGC 0.6152 ± 0.0049 0.6351 ± 0.0040 0.4821 ± 0.0038 0.4969 ± 0.0039
GPRGNN 0.5784 ± 0.0051 0.5920 ± 0.0046 0.4780 ± 0.0045 0.4964 ± 0.0032

Lastfm

GCN 0.8162 ± 0.0057 0.8401 ± 0.0055 0.5115 ± 0.0030 0.4978 ± 0.0027
GAT 0.8434 ± 0.0054 0.8769 ± 0.0041 0.5142 ± 0.0028 0.4972 ± 0.0023
SGC 0.8112 ± 0.0050 0.8414 ± 0.0044 0.5091 ± 0.0036 0.4967 ± 0.0031
GPRGNN 0.8140 ± 0.0042 0.8485 ± 0.0037 0.5119 ± 0.0026 0.4979 ± 0.0019

Ogbn-Arxiv

GCN 0.6876 ± 0.0039 0.6921 ± 0.0020 0.4920 ± 0.0045 0.4952 ± 0.0049
GAT 0.6869 ± 0.0037 0.6907 ± 0.0018 0.4913 ± 0.0042 0.4934 ± 0.0048
SGC 0.6798 ± 0.0023 0.6884 ± 0.0023 0.4924 ± 0.0048 0.4991 ± 0.0043
GPRGNN 0.6903 ± 0.0025 0.6993 ± 0.0020 0.5035 ± 0.0037 0.4972 ± 0.0040

Texas

NLGCN 0.6846 ± 0.0069 0.7027 ± 0.0044 0.4966 ± 0.0060 0.4970 ± 0.0056
NLGAT 0.6916 ± 0.0074 0.7263 ± 0.0038 0.4923 ± 0.0063 0.4976 ± 0.0058
NLMLP 0.6948 ± 0.0070 0.7282 ± 0.0042 0.4926 ± 0.0068 0.4953 ± 0.0063
GPRGNN 0.6115 ± 0.0054 0.7445 ± 0.0031 0.5187 ± 0.0052 0.5032 ± 0.0046

Chameleon

NLGCN 0.6681 ± 0.0064 0.6963 ± 0.0065 0.5210 ± 0.0064 0.5182 ± 0.0062
NLGAT 0.6516 ± 0.0066 0.7082 ± 0.0073 0.5116 ± 0.0061 0.5159 ± 0.0059
NLMLP 0.4643 ± 0.0079 0.4955 ± 0.0070 0.5054 ± 0.0053 0.5017 ± 0.0056
GPRGNN 0.6471 ± 0.0060 0.6934 ± 0.0068 0.5172 ± 0.0067 0.5163 ± 0.0045

Squirrel

NLGCN 0.5011 ± 0.0074 0.5102 ± 0.0076 0.5053 ± 0.0064 0.5001 ± 0.0058
NLGAT 0.5502 ± 0.0087 0.5723 ± 0.0071 0.5146 ± 0.0058 0.4934 ± 0.0055
NLMLP 0.3240 ± 0.0090 0.3393 ± 0.0073 0.5035 ± 0.0055 0.5098 ± 0.0050
GPRGNN 0.4424 ± 0.0061 0.4581 ± 0.0068 0.5102 ± 0.0051 0.5054 ± 0.0052

Table 16: The performance comparison between standard training and TSD training.

Dataset Models Avg Train Loss Avg Test Loss Classify Acc Attack AUROC
Standard TSD Standard TSD Standard TSD Standard TSD

Chameleon

NLGCN 0.4988 0.6192 1.1278 1.2631 0.6631 0.6657 0.5267 0.4954
NLGAT 0.1617 0.5782 1.1650 1.28911 0.6603 0.6585 0.5304 0.4902
NLMLP 0.1555 0.9322 3.6396 2.0010 0.4857 0.4824 0.7681 0.4848
GPRGNN 0.3575 0.8498 1.6416 1.3626 0.6582 0.6550 0.5837 0.4936

non-member nodes on the Chameleon dataset with NLGCN after training with both standard and
two-stage methods. In the figure, members refer to the nodes in the trainset of the target model,
while non-members refer to the nodes in the testset. Therefore, Figure 5 can also be viewed as
the training and testing loss distributions of the target model after using different training methods.
Comparing Figure 5 (a) with (b), it can be observed that the loss distributions of members and non-
members after standard training have relatively small variances, and their means differ significantly.
This conclusion is consistent with the results of the average losses in Appendix Table 16. However,
after using two-stage training, significant changes occur in the loss distributions: the variances of
both two distributions increase. And combined with the results in Appendix Table 16, it is obvious
that their means become closer.
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Figure 4: Comparison of average training loss and testing loss on Chameleon for (a) standard train-
ing, (b) two-stage training (TSD). In (b), the left half of the orange dashed line indicates the first
training stage of our method, while the one on the right indicates the second stage.

Figure 5: Loss distribution histograms for (a) standard training on Chameleon, (b) two-stage training
(TSD) on Chameleon

Decrease the distinguishability between member and non-member loss distributions. From
Figure 5, it can be seen that the overlap between the member and non-member loss distributions
of the target model after two-stage training is significantly larger than that of standard training.
Combined with the conclusions obtained above, we can confirm that the distinguishability between
member and non-member distributions has decreased, which will increase the difficulty of MIA.

In summary, the changes of the target model induced by our two-stage training method are signifi-
cant. Appendix Table 16 also demonstrates that such changes not only substantially enhance defense
capability but also result in only subtle decline in downstream classification accuracy.

J.4 DATA TRANSFER

Figure 6, 7 display the experimental results using GCN as backbones. The results demonstrate that
TSD also exhibits excellent defense capability in the data transfer setting. Since model utility is only
related to the target dataset, combining the classification performance of TSD in Appendix Table 14
and 15, it is evident that TSD can still achieve an outstanding balance between model utility and
defense capability in the data transfer setting, which means that TSD can be effectively deployed in
real-world applications.

J.5 ABLATION STUDY OF TSD’S DEFENSE PERFORMANCE AGAINST MIA

In the experiments, we set up the same four variants as described in Section 6.1.3. Additionally,
we also considered RelaxLoss (Chen et al., 2022), which is essentially a combination of alternate
flattening and gradient ascent when the training loss falls below a predefined threshold. We use
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Figure 6: Comparison of TSD and LBP’s defense performance under data transfer setting. (a) Attack
AUROC of TSD; (b) Attack AUROC of LBP.

Figure 7: Comparison of TSD and DMP’s defense performance under data transfer setting. (a)
Attack AUROC of TSD; (b) Attack AUROC of DMP.

RelaxLoss as an example to show the difference between the defense methods effective for graph
and graphless models, and necessities to design defense mechanisms specially for graph models.
Note that the split ratio of trainsets and testsets for TSD is 9:1.

Appendix Table 17, 18,19 presents the results of ablation study regarding five variants. Our analysis
is as follow: We first focus on the improvement of defense capability. It can be observed that two-
stage (without flattening), flattening, and gradient ascent all enhance the defense capability of the
target model compared to standard training. The effect of two-stage (without flattening) on reducing
the AUROC of the attack model is the most pronounced, followed by flattening, while gradient as-
cent slightly reduces it. These results align with expectations because two-stage (without flattening)
directly enables the model to learn the distribution of the testing data and flattening decrease the
difference between the loss distributions’ variances of training and testing nodes. Surprisingly, gra-
dient ascent hardly improves the model’s defense capability, suggesting that our method’s exclusion
of gradient ascent is reasonable.

Then we focus on the decline of classification accuracy caused by these variants. From the results,
it can be seen that two-stage (without flattening) and gradient ascent hardly lead to a decrease in
classification accuracy, and flattening only results in a slight decline. These results are interpretable:
two-stage (without flattening) only used testing data for an extra training; gradient ascent has a min-
imal impact on the model’s defense capability, which also means that it hardly change the model;
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flattening slightly alters the model’s mapping when using soft labels, so the classification accuracy
decrease. However, the degree of decline caused by flattening is acceptable compared to its en-
hancement in defense capability. In summary, our TSD method (two stage with flattening) is the
best.

Table 17: Ablation Study of TSD’s Defense performance against MIA.

Method Dataset GNN Models Classify Acc Attack AUROC

Standard Training

PubMed

GCN 0.8423 ± 0.0027 0.5306 ± 0.0032
GAT 0.8421 ± 0.0025 0.5306 ± 0.0043
SGC 0.8129 ± 0.0024 0.5335 ± 0.0047
GPRGNN 0.8637 ± 0.0026 0.5388 ± 0.0045

Computers

GCN 0.8865 ± 0.0025 0.5331 ± 0.0032
GAT 0.9145 ± 0.0026 0.5360 ± 0.0043
SGC 0.8419 ± 0.0022 0.5334 ± 0.0041
GPRGNN 0.8917 ± 0.0023 0.5377 ± 0.0047

Photo

GCN 0.9349 ± 0.0022 0.5381 ± 0.0030
GAT 0.9471 ± 0.0023 0.5388 ± 0.0039
SGC 0.9122 ± 0.0025 0.5362 ± 0.0042
GPRGNN 0.9499 ± 0.0028 0.5390 ± 0.0042

Facebook

GCN 0.6797 ± 0.0034 0.5352 ± 0.0041
GAT 0.6465 ± 0.0038 0.5426 ± 0.0031
SGC 0.6275 ± 0.0042 0.5341 ± 0.0035
GPRGNN 0.5635 ± 0.0043 0.5378 ± 0.0039

LastFM

GCN 0.8355 ± 0.0033 0.5362 ± 0.0036
GAT 0.8692 ± 0.0036 0.5375 ± 0.0041
SGC 0.8334 ± 0.0030 0.5360 ± 0.0045
GPRGNN 0.8465 ± 0.0029 0.5400 ± 0.0050

Chameleon

NLGCN 0.6817 ± 0.0054 0.5469 ± 0.0051
NLGAT 0.6451 ± 0.0053 0.5790 ± 0.0058
NLMLP 0.5077 ± 0.0060 0.7868 ± 0.0049
GPRGNN 0.6841 ± 0.0057 0.5939 ± 0.0042

Flattenning (One-Stage)

PubMed

GCN 0.8345 ± 0.0025 0.5278 ± 0.0041
GAT 0.8328 ± 0.0023 0.5213 ± 0.0054
SGC 0.8040 ± 0.0023 0.5263 ± 0.0053
GPRGNN 0.8541 ± 0.0016 0.5224 ± 0.0036

Computers

GCN 0.8821 ± 0.0026 0.5254 ± 0.0044
GAT 0.9124 ± 0.0023 0.5236 ± 0.0038
SGC 0.8389 ± 0.0028 0.5267 ± 0.0042
GPRGNN 0.8892 ± 0.0034 0.5276 ± 0.0039

Photo

GCN 0.9302 ± 0.0032 0.5297 ± 0.0038
GAT 0.9435 ± 0.0035 0.5268 ± 0.0047
SGC 0.9087 ± 0.0035 0.5275 ± 0.0049
GPRGNN 0.9468 ± 0.0033 0.5308 ± 0.0046

Facebook

GCN 0.6751 ± 0.0037 0.5275 ± 0.0039
GAT 0.6458 ± 0.0033 0.5335 ± 0.0034
SGC 0.6236 ± 0.0035 0.5263 ± 0.0042
GPRGNN 0.5614 ± 0.0040 0.5267 ± 0.0045

LastFM

GCN 0.8321 ± 0.0037 0.5245 ± 0.0036
GAT 0.8659 ± 0.0039 0.5255 ± 0.0044
SGC 0.8309 ± 0.0036 0.5282 ± 0.0048
GPRGNN 0.8430 ± 0.0043 0.5325 ± 0.0046

Chameleon

NLGCN 0.6720 ± 0.0068 0.5327 ± 0.0055
NLGAT 0.6364 ± 0.0066 0.5685 ± 0.0064
NLMLP 0.4954 ± 0.0075 0.7787 ± 0.0056
GPRGNN 0.6757 ± 0.0053 0.5833 ± 0.0039

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 18: Ablation Study of TSD’s Defense performance against MIA. Continuation of Appendix
Table 17.

Method Dataset GNN Models Classify Acc Attack AUROC

Flattenning & Gradient Asent (One-Stage)

PubMed

GCN 0.8310 ± 0.0043 0.5282 ± 0.0050
GAT 0.8430 ± 0.0040 0.5201 ± 0.0054
SGC 0.8190 ± 0.0066 0.5289 ± 0.0050
GPRGNN 0.8657 ± 0.0041 0.5242 ± 0.0042

Computers

GCN 0.8798 ± 0.0033 0.5248 ± 0.0045
GAT 0.9084 ± 0.0027 0.5245 ± 0.0044
SGC 0.8378 ± 0.0024 0.5253 ± 0.0047
GPRGNN 0.8849 ± 0.0027 0.5257 ± 0.0045

Photo

GCN 0.9268 ± 0.0029 0.5264 ± 0.0047
GAT 0.9389 ± 0.0024 0.5275 ± 0.0045
SGC 0.9057 ± 0.0026 0.5245 ± 0.0043
GPRGNN 0.9399 ± 0.0025 0.5288 ± 0.0048

Facebook

GCN 0.6732 ± 0.0025 0.5243 ± 0.0044
GAT 0.6363 ± 0.0024 0.5342 ± 0.0047
SGC 0.6180 ± 0.0028 0.5251 ± 0.0048
GPRGNN 0.5591 ± 0.0030 0.5278 ± 0.0046

LastFM

GCN 0.8284 ± 0.0026 0.5264 ± 0.0042
GAT 0.8592 ± 0.0028 0.5235 ± 0.0041
SGC 0.8284 ± 0.0024 0.5264 ± 0.0046
GPRGNN 0.8372 ± 0.0027 0.5342 ± 0.0049

Chameleon

NLGCN 0.6707 ± 0.0068 0.5302 ± 0.0074
NLGAT 0.6402 ± 0.0074 0.5561 ± 0.0077
NLMLP 0.4933 ± 0.0075 0.7741 ± 0.0063
GPRGNN 0.6753 ± 0.0064 0.5829 ± 0.0062

Two-Stage (without Flattening)

PubMed

GCN 0.8328 ± 0.0035 0.5049 ± 0.0043
GAT 0.8489 ± 0.0031 0.5041 ± 0.0070
SGC 0.8055 ± 0.0028 0.5038 ± 0.0063
GPRGNN 0.8685 ± 0.0023 0.5044 ± 0.0035

Computers

GCN 0.8868 ± 0.0033 0.5026 ± 0.0045
GAT 0.9149 ± 0.0026 0.5035 ± 0.0043
SGC 0.8393 ± 0.0031 0.5036 ± 0.0039
GPRGNN 0.8921 ± 0.0023 0.5045 ± 0.0047

Photo

GCN 0.9326 ± 0.0028 0.5046 ± 0.0042
GAT 0.9464 ± 0.0022 0.5041 ± 0.0045
SGC 0.9125 ± 0.0025 0.5056 ± 0.0041
GPRGNN 0.9512 ± 0.0032 0.5034 ± 0.0051

Facebook

GCN 0.6775 ± 0.0034 0.5031 ± 0.0046
GAT 0.6443 ± 0.0036 0.5026 ± 0.0043
SGC 0.6280 ± 0.0037 0.5045 ± 0.0047
GPRGNN 0.5630 ± 0.0029 0.5039 ± 0.0044

LastFM

GCN 0.8364 ± 0.0031 0.5044 ± 0.0039
GAT 0.8689 ± 0.0034 0.5037 ± 0.0042
SGC 0.8327 ± 0.0032 0.5018 ± 0.0043
GPRGNN 0.8472 ± 0.0037 0.5040 ± 0.0048

Chameleon

NLGCN 0.6745 ± 0.0060 0.5132 ± 0.0063
NLGAT 0.5965 ± 0.0069 0.4849 ± 0.0066
NLMLP 0.4923 ± 0.0077 0.5357 ± 0.0054
GPRGNN 0.6541 ± 0.0064 0.5145 ± 0.0053
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Table 19: Ablation Study of TSD’s Defense performance against MIA. Continuation of Appendix
Table 18.

Method Dataset GNN Models Classify Acc Attack AUROC

TSD (Two Stage & Flattenning)

PubMed

GCN 0.8381 ± 0.0023 0.4997 ± 0.0048
GAT 0.8400 ± 0.0028 0.4981 ± 0.0061
SGC 0.8080 ± 0.0020 0.5005 ± 0.0057
GPRGNN 0.8553 ± 0.0014 0.4987 ± 0.0034

Computers

GCN 0.8845 ± 0.0034 0.4996 ± 0.0042
GAT 0.9122 ± 0.0036 0.5005 ± 0.0041
SGC 0.8364 ± 0.0032 0.4989 ± 0.0043
GPRGNN 0.8918 ± 0.0029 0.5013 ± 0.0039

Photo

GCN 0.9301 ± 0.0030 0.4987 ± 0.0037
GAT 0.9432 ± 0.0032 0.4992 ± 0.0046
SGC 0.9089 ± 0.0038 0.5008 ± 0.0040
GPRGNN 0.9491 ± 0.0027 0.5006 ± 0.0034

Facebook

GCN 0.6744 ± 0.0034 0.4981 ± 0.0037
GAT 0.6426 ± 0.0029 0.4979 ± 0.0031
SGC 0.6256 ± 0.0037 0.4990 ± 0.0045
GPRGNN 0.5609 ± 0.0040 0.4985 ± 0.0039

LastFM

GCN 0.8340 ± 0.0031 0.4994 ± 0.0041
GAT 0.8672 ± 0.0032 0.4999 ± 0.0042
SGC 0.8325 ± 0.0039 0.4983 ± 0.0045
GPRGNN 0.8441 ± 0.0027 0.5005 ± 0.0036

Chameleon

NLGCN 0.6657 ± 0.0062 0.4954 ± 0.0065
NLGAT 0.6585 ± 0.0070 0.4902 ± 0.0063
NLMLP 0.4824 ± 0.0074 0.5248 ± 0.0051
GPRGNN 0.6550 ± 0.0058 0.4956 ± 0.0049

28


	Introduction
	Related Works
	Problem Formulation
	The TSD Method
	End-to-End SMIA: A Multiset Function Approach
	Experiments
	Experiments Pertaining to SMIA Defense
	Comparison of SMIA Defense Methods and Attack Method
	Data Transfer
	Ablation Study of TSDs

	Experiments Pertaining to MIA Defense

	Conclusions and Limitations
	Extended Related Works
	Standard SMIA Process
	Standard MIA Process
	Comparison with LBP and DMP
	Details of DMP loss function
	Complete Experimental Settings
	Complete results of SMIA Defense Comparison and SMIA Attack Comparison
	Adaptive SMIA Attack
	Complete Ablation Study Results of TSD's Defense Performance against SMIA
	Complete Experiments of MIA Defense
	Comparison with LBP
	Comparison with DMP
	TSD Defense Method Reduce the Generalization Gap
	Data Transfer
	Ablation Study of TSD's Defense performance against MIA


