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ABSTRACT

Stochastic parameter-agnostic minimax optimization provides a novel avenue for
adjusting learning rates without relying on problem-dependent parameters, bridging
the gap between theoretical and empirical machine learning results. While previous
studies have successfully decoupled the timescales of primal and dual variables
and proposed unified parameter-agnostic algorithms for minimax optimizations,
the problem of varying inherent variances within the stochastic setting persists.
Such variance degradation affects the desired ratio of learning rates. Intuitively,
variance-reduced techniques hold the potential to address this issue efficiently.
However, they require manually tuning problem-dependent parameters to attain
an optimal solution. In this paper, we introduce the Variance-Reduced Adaptive
algorithm (VRAda), a solution addressing varying inherent variances and enabling
the parameter-agnostic manner in stochastic minimax optimizations. Theoretical
results show that VRAda achieves an optimal sample complexity of O(1/ϵ3)
without large data batches, enabling it to find an ϵ-stationary point on non-convex-
strongly-concave and non-convex-Polyak-Łojasiewicz objectives. To the best of
our knowledge, VRAda is the first variance-reduced adaptive algorithm designed
specifically for parameter-agnostic minimax optimization. Extensive experiments
conducted across diverse applications validate the effectiveness of VRAda.

1 INTRODUCTION

In this paper, we consider the following stochastic minimax optimization problem:
min
x∈Rd1

max
y∈Y

f(x, y) = Eξ∈D[F (x, y, ξ)], (1)

where D is a dataset with unknown data distribution, from which we can draw i.i.d. samples, Y ⊂ Rd2

is closed and convex, and f : Rd1 × Rd2 → R is non-convex in x. We call x the primal variable
and y the dual variable. In fact, problem in equation 1 is widely used in many machine learning
applications, such as adversarial training Goodfellow et al. (2014b); Miller et al. (2020), Generative
Adversarial Network (GAN) Arjovsky et al. (2017); Goodfellow et al. (2014a), deep Area Under the
Curve (AUC) Yuan et al. (2021; 2022), reinforcement learning Dai et al. (2017); Modi et al. (2021),
and sharpness-aware minimization Foret et al. (2020); Qu et al. (2022).

While numerous studies Nouiehed et al. (2019); Lin et al. (2020); Lu et al. (2020) have devised
efficient algorithms to tackle the minimax problem in equation 1, they require knowledge of problem-
dependent parameters, e.g., smoothness parameter L, bounded gradient G, and strong concavity
µ. However, acquiring these problem-dependent parameters is very difficult in realistic machine
learning applications, leading to a significant gap between theory and empirical performance and
limiting the practical utility of these algorithms. To bridge this gap, adopting a parameter-agnostic
approach has proven effective Ward et al. (2020); Xie et al. (2020); Antonakopoulos et al. (2020).
Parameter-agnostic algorithms enable automatic adjustment of learning rates without prior knowledge
of problem-dependent parameters, relying solely on cumulative gradient information to achieve the
desired convergence ratio. Some studies have designed corresponding algorithms on non-convex
optimizations by adaptive optimizers, like AdaGrad Duchi et al. (2011), AMSGrad Reddi et al. (2018),
and STORM+ Levy et al. (2021). These approaches are appealing due to their robust handling of
hyper-parameter selection and their ability to achieve rapid empirical convergence.
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(a) Trajectory (b) Vary ρx and ρy (c) Vary learning rates ηx and ηy

Figure 1: Comparison between VRAda and TiAda on the test function f(x, y) = −x3+xy−y2, with
more noise on y than x. Here, ρx and ρy are the forces with which the scales of x and y are separated,
ηx and ηy are the initial learning rates in Li et al. (2022). Figure 1a shows the trajectory of the two
algorithms and the background color demonstrates the function value f(x, y). In Figure 1b, although
varying the values ρx and ρy in TiAda, VRAda still outperforms TiAda continuously. Figure 1c
illustrates the convergence results varying the learning rates of TiAda.

However, a recent study TiAda Li et al. (2022) has highlighted that the direct extension of adaptive
optimizers to minimax optimizations may not guarantee convergence without prior knowledge of
problem-dependent parameters. Additionally, TiAda develops an efficient time-scale separation
algorithm to fit the parameter-agnostic manner. Although they have obtained significant achievement
in the deterministic setting, they dismiss the varying inherent variances, coming from ∇xf(x, y, ξ

x)
and ∇yf(x, y, ξ

y)1, in the stochastic setting. As a result, this issue may degrade the capability of
automatically adjusting to the desired ratio of learning rates. Therefore, reducing the two inherent
variances should be helpful for stochastic parameter-agnostic minimax optimizations.

Recently, variance-reduced techniques have demonstrated their effectiveness in handling noisy
gradients Fang et al. (2018); Zhou et al. (2020); Nguyen et al. (2021). These techniques utilize well-
designed estimators for updates, replacing the sole reliance on stochastic gradients. While showing
improved convergence rates in non-convex optimization Allen-Zhu & Hazan (2016), they often
require specific conditions, such as large batch sizes or fine-tuning problem-dependent parameters to
achieve optimal solutions. Moreover, when addressing minimax optimizations, it becomes crucial
not only to mitigate varying inherent variances without resorting to large batches or anchor points but
also to automatically adjust the learning rate ratio on the separating two-time scales.

In this paper, we introduce an effective parameter-agnostic algorithm named Variance-Reduced
Adaptive (VRAda). To handle inherent variances, VRAda rapidly detects and responds to errors in
both variables x and y. When VRAda detects a substantial error in either variable, it reduces the
update rate further based on historical gradient estimations. Regarding time-scale separation, VRAda
regulates the update of x based on the current state of y. Specifically, if y has not yet reached the
current optimum, VRAda will slow down the update of x in response to y’s update situation. Once y
approaches optimality, x will update at its original speed, achieving adaptive time-scale separation.

We use the non-convex-strongly-concave function f(x, y) = −x3 + xy − y2 as a toy example to
assess the efficacy of VRAda. As depicted in Figure 1a, the trajectory of TiAda Li et al. (2022)
exhibits noticeable divergence compared to the optimal path, especially on y-axis. This divergence
may be attributed to TiAda’s limited ability to autonomously adjust learning rates to counteract the
adverse effects of substantial inherent variance on y, particularly during the initial epochs. Figures 1b-
1c demonstrate that VRAda consistently outperforms TiAda across all scenarios. Furthermore,
TiAda requires meticulous parameter selection for time-scale enforcement and initial learning rates;
otherwise, it struggles to achieve convergence. This observation underscores the robustness of VRAda.
In summary, the main contributions of this paper can be summarized as follows:

• We introduce VRAda, a fully parameter-agnostic variance-reduced adaptive algorithm
designed for stochastic Non-Convex-Strongly-Concave (NC-SC) and Non-Convex-Polyak-
Łojasiewicz minimax (NC-PL) optimization settings. VRAda effectively reduces the varying
inherent variances of both variables after necessary time-scale separation without the need

1Note that even when ξx and ξy originate from the same dataset, i.e., ξx, ξy ∈ D, distinct sub-problems
concerning variables x and y still entail varying inherent variances during gradient calculations.
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for large batch sizes or any prior knowledge of problem-dependent parameters. It achieves
the identification of an ϵ-stationary point with an optimal complexity of O(1/ϵ3) in both
settings, outperforming the parameter-agnostic algorithm TiAda Li et al. (2022) and aligning
with existing parametric minimax algorithms.

• We conduct our proposed VRAda algorithm on several learning tasks and datasets compared
with TiAda by varying its initial learning rates and ratios. (1) Four different test functions
for showing the robustness of VRAda on different minimax optimization problems, (2)
deep AUC Yuan et al. (2021) with an NC-SC objective, and (3) training Wasserstein-GANs
Arjovsky et al. (2017) to validate the NC-PL objective. In all tasks, VRAda performs
consistently better than TiAda or TiAda-Adam.

2 RELATED WORK

Stochastic Minimax Optimizations. Stochastic minimax optimization has gained significant traction
in various machine learning applications, like adversarial training, deep AUC, GANs, and policy
evaluation. The predominant algorithms for addressing this challenge are rooted in stochastic gradient
descent ascent Nouiehed et al. (2019); Lin et al. (2020); Lu et al. (2020); Yan et al. (2020). These
algorithms typically involve one primal variable update followed by one or multiple steps of dual
variable updates. Notably, they can achieve a sample complexity of O(ϵ−4) in stochastic settings
Nouiehed et al. (2019); Lin et al. (2020); Yang et al. (2020). Later on, some accelerated algorithms
based on adaptive learning rates have been extended to minimax optimization, both in theory and
practice, SC-SC Antonakopoulos et al. (2020), NC-SC Yang et al. (2022a); He et al. (2022); Huang
et al. (2023), NC-PL Huang (2023); Guo et al. (2023). For example, Huang et al. (2023) designs a
fast AdaGDA method based on the momentum technique, and Guo et al. (2023) proposes PES by
concerning the primal objective gap and the duality gap under the NC-PL setting.

Parameter-Agnostic Algorithms.The parameter-agnostic manner requires the algorithms to automat-
ically adjust the hyper-parameters, such as learning rate, without relying on any problem-dependent
parameters to achieve convergence. Some adaptive optimizers obtain this property Duchi et al. (2011);
Reddi et al. (2016); Levy et al. (2021). However, they only focused on non-convex optimizations,
which cannot be directly used on minimax optimizations. Later on, TiAda Li et al. (2022) extends
their ability to minimax optimizations by separating the two-time scales. In addition, parameter-
agnostic algorithms have been widely developed in online learning, e.g., Beygelzimer et al. (2015)
for online boosting, Xu et al. (2020a) for online reinforcement learning with Gaussian processes, and
Hanneke et al. (2023) for multi-class online learning, where the goal of the learner is to compete with
the performance of the best function f to achieve small regret.

Variance-Reduced Techniques. Variance-reduced techniques have gained prominence in stochastic
optimization, enhancing algorithm efficiency in the presence of noise. Notable approaches include
SVRG Johnson & Zhang (2013); Reddi et al. (2016), SPIDER Fang et al. (2018), and STORM
Cutkosky & Orabona (2019); Levy et al. (2021), contributing to the acceleration of stochastic
optimization algorithms. SPIDER leads to fast HAPG Shen et al. (2019) and SRVR-PG Xu et al.
(2020b). Momentum-based techniques like ProxHSPGA Pham et al. (2020) and IS-MBPG Huang
et al. (2020) arise from STORM’s principles. More recently, Zhang et al. (2021) introduces Truncated
Stochastic Incremental Variance-Reduced Gradient (TSIVR-PG) to mitigate unverifiable importance
weight assumptions, establishing global convergence, even with policy overparameterization.

3 THE PROPOSED ALGORITHM

3.1 DESIGN CHALLENGES

Although TiAda Li et al. (2022) has been demonstrated a parameter-agnostic algorithm capable
of automatically adjusting learning rates to the desired ratio, eliminating the problem-dependent
parameters like smoothness parameter L, gradient bound G, and strong concavity parameter µ.
However, a persistent challenge in the stochastic parameter-agnostic minimax setting is the unresolved
issue of varying inherent variances of the primal variable x and the dual variable y. When these
inherent variances have obvious differences, the optimizer faces difficulties adapting to the optimal
trajectory, leading to deteriorating convergence rates. In addition, the presence of inherent variance in

3



Under review as a conference paper at ICLR 2024

stochastic gradients can negate the theoretical advantages of momentum terms Yuan et al. (2016).
Therefore, the selection of learning rate decay values for the momentum decay parameter must be
customized to accommodate the varying inherent variances associated with x and y.

Variance-reduced techniques Johnson & Zhang (2013); Reddi et al. (2016), have gained recognition
due to their commendable convergence analysis and optimal theoretical results. They excel in
obtaining more accurate gradient values by employing specific estimators tailored for stochastic
settings. However, these variance-reduced algorithms mainly focus on theoretical aspects, where they
need to manage anchor points alongside judicious choices of large batch sizes or manual adjustments
to problem-dependent parameters, posing additional hurdles.

In summary, our objective is to devise an efficient algorithm capable of identifying an ϵ-stationary
point for the minimax optimization problem in equation 1. This endeavor addresses three key
challenges: (1) eliminating the necessity for large batches or anchor points; (2) adaptively reducing
the inherent variance for both the two sub-problems, pertaining to variables x and y; (3) achieving
the fully parameter-agnostic manner without any problem-dependent parameters. To tackle these
challenges, we introduce a corresponding algorithm called Variance-Reduced Adaptive (VRAda),
detailed in Algorithm 1, which we will comprehensively present in the following subsection.

Algorithm 1 Learning procedure of AVRAM method.

Initialization: (x1, y1), 0 < γ < λ;
1: for t = 1 to T do
2: sample ξxt and ξyt ;
3: if t = 1 then
4: vt = ∇xf(xt, yt; ξ

x
t ), wt = ∇yf(xt, yt; ξ

y
t );

5: else
6: Update the estimators vt and wt via equation 2;
7: end if
8: Update the momentum βt+1 via equation 3;
9: Update αx

t and αy
t via equation 6;

10: Update learning rates ηxt and ηyt via equation 7;
11: xt+1 = xt − ηxt vt, yt+1 = yt + ηyt wt

12: end for

3.2 ALGORITHM DESCRIPTION

Some variance-reduction techniques Johnson & Zhang (2013); Reddi et al. (2016); Fang et al. (2018)
need either the maintenance of an anchor point or the utilization of large data batches in each epoch,
resulting in high sample complexity. STORM Cutkosky & Orabona (2019); Levy et al. (2021)
breaks new ground by achieving the nearly optimal results while sidestepping the aforementioned
requirements, which can address the first challenge. By implementing a refined momentum-based
gradient update, implicit variance reduction is achieved for both variables. We modify the estimator
of STORM to our focused minimax optimization as follows:

vt = ∇xf(xt, yt; ξ
x
t ) + (1− βt)(vt−1 −∇xf(xt−1, yt−1; ξ

x
t )),

wt = ∇yf(xt, yt; ξ
y
t ) + (1− βt)(wt−1 −∇yf(xt−1, yt−1; ξ

y
t )).

(2)

Though STORM has achieved success in many scenarios Kavis et al. (2022); Jiang et al. (2022);
Liu et al. (2023), they still need to manually adjust the problem-dependent parameters to achieve
optimal results. More specifically, the momentum parameter βt in original STORM Cutkosky &
Orabona (2019) is βt = cη2t−1, where c depends on L,G, σ. As a result, STORM cannot be directly
in the focused parameter-agnostic objective, and we need new ways to build βt to tackle the second
challenge. Inspired by Levy et al. (2021), to adaptively reduce the inherent variance of x and y
respectively, we give the definition of βt as follows:

βt+1 =
1(

1 +
∑t

i=1 max{∥∇xf(xi, yi; ξxi )∥2,∇yf(xi, yi; ξ
y
i )∥2}

)2/3 . (3)

Note that Levy et al. (2021) is only designed for stochastic non-convex optimization problems, and it
leverages the historical information of x to calculate βt. When using different βt values for variables
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x and y, denoted as βx
t and βy

t , managing variance becomes challenging due to the varying variances
originating from gradient calculations of the two sub-problems: ∇xf(x, y, ξ

x) and ∇yf(x, y, ξ
y).

This makes it difficult to maintain consensus agreement in minimax optimizations and achieve the
optimal solution, potentially causing slower updates for x compared to y Lin et al. (2020); Yang et al.
(2022b). As such, it cannot be directly used in our focused problem, and hence we will introduce the
reason why we update βt based on equation 3 in detail.

For notational convenience in the proofs, we denote ϵxt := vt−∇xf(xt, yt), ϵ
y
t := wt−∇yf(xt, yt).

When getting the stochastic gradient on each epoch t, both the primal variable x and the dual variable
y will create some variance compared to the estimators vt and wt. Specifically, based on the update
rule of vt and wt, we have the following error dynamics:

ϵxt = (1− βt)ϵ
x
t−1 + βt(∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)) + (1− βt)Z

x
t ,

ϵyt = (1− βt)ϵ
y
t−1 + βt(∇yf(xt, yt; ξ

y
t )−∇yf(xt, yt)) + (1− βt)Z

y
t ,

(4)

where Zx
t = (∇xf(xt, yt; ξ

x
t )−∇xf(xt−1, yt−1; ξ

x
t ))− (∇xf(xt, yt)−∇xf(xt−1, yt−1)), Z

y
t =

(∇yf(xt, yt; ξ
y
t )−∇yf(xt−1, yt−1; ξ

y
t ))−(∇yf(xt, yt)−∇yf(xt−1, yt−1)). In equation 4, we can

find that the momentum parameter βt is the key factor to control both variance term ∇xf(xt, yt; ξ
x
t )−

∇xf(xt, yt) and ∇yf(xt, yt; ξ
y
t )−∇yf(xt, yt). To avoid reliance on problem-dependent parameters

and account for the varying inherent variances, we adopt a strategy that considers the historical
gradient information for both variables and selects the maximum gradient Euclidean norm. Essentially,
βt serves as a filter in this context, influenced by the stochastic gradients of x and y. When one
of the variables exhibits a substantial error and generates a larger stochastic gradient, βt responds
by quickly decreasing its own value. Conversely, when one of the variables has a larger error but
produces a smaller stochastic gradient, βt filters this information and adjusts its value based on
another relatively reasonable stochastic gradient value. This adaptive mechanism is crucial for our
convergence guarantee. Since cumulative historical gradient information is incremental, βt naturally
decreases as the number of epochs increases, resulting in reduced variance.

The key point to address the last challenge is how to separate the time scales of x and y. Based on our
analysis, Zx

t and Zy
t can be upper-bounded by ∥Zx

t ∥2 ≤ 8L2((γηxt−1)
2∥vt−1∥2+(ληyt−1)

2∥wt−1∥2)
and ∥Zy

t ∥2 ≤ 8L2((γηxt−1)
2∥vt−1∥2 + (ληyt−1)

2∥wt−1∥2). It can be observed that they are very
related to the learning rates due to the smooth property. Therefore, it is necessary to properly select
learning rates to eliminate the impact of the smooth parameter L. Note that the learning rate ηt in
STORM Cutkosky & Orabona (2019) is defined as follows:

ηt =
k

(w +
∑t

i=1 ∇∥f(xt; ξt)∥2)1/3
, (5)

In particular, both the two hyper-parameters k and w (related to L and G) are barriers to our parameter-
agnostic entry. Consequently, we replace the cubic root term on the denominator in equation 5, and
give our choice for the primal variable x and the dual variable y as follows:

αx
t =

t∑
i=1

∥vi∥2

βi+1
, αy

t =

t∑
i=1

∥wi∥2

βi+1
. (6)

We combine the historical sequence of the estimator and βt to enjoy βt’s ability to perceive errors.
According to the above choice, we can find that ηt is equally capable of handling errors in both
subproblems. No matter who generates a larger error, both αx

t and αy
t can respond to it and slow

down the update. As for separating the updated scale of x and y, a consensus idea Lin et al. (2020);
Li et al. (2022) requires that the variable y should be updated by a larger learning rate than x to make
y to achieve stationary first. Therefore, we should not aggressively update x if the inner maximization
sub-problem has not yet been solved accurately. In order to meet the step size automatic adjustment,
we use the following strategy to achieve adaptive time scale separation:

ηxt =
γ

max{αx
t , α

y
t }1/3

, ηyt =
λ

(αy
t )

1/3
. (7)

Note that γ and λ aim to ensure the update of x is slower than y. In addition, we can properly set their
values γ ≤ λ to adapt more quickly to different applications. Even if γ = λ = 1, our theorems also
hold. Based on the above statement, VRAda can choose the larger historical estimator cumulative
value after being adjusted by βt. Accordingly, we can make sure that if the inner maximization
sub-problem has not yet been solved accurately, the update of x is always slowed down. With the
above approach, we can achieve adaptive and scale separation and efficient updating.
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4 THEORETICAL ANALYSIS

In this section, we present the convergence and sample complexity of our proposed VRAda un-
der Non-Convex-Strongly-Concave (NC-SC) and Non-Convex-Polyak-Łojasiewicz (NC-PL) ob-
jectives, respectively. We define (x, y) as an ϵ-stationary point if both E∥∇xf(x, y)∥ ≤ ϵ and
E∥∇yf(x, y)∥ ≤ ϵ, where the expectation accounts for all algorithmic randomness. As shown in
Yang et al. (2022b), this definition of stationarity can be conveniently translated to the near-stationarity
of the primal function Φ(x) = maxy∈Y f(x, y). Before presenting the theoretical results, we first
state some useful assumptions to facilitate our analysis.
Assumption 1. (Smoothness) There exists a constant L > 0, such that

∥∇f(x1, y1)−∇f(x2, y2)∥ ≤ L∥(x1, y1)− (x2, y2)∥,
where x1, x2 ∈ Rd1 and y1, y2 ∈ Y .
Assumption 2. (Bounded Gradient) For any x ∈ Rd1 and y ∈ Y , there exists a constant G such that

∥∇xF (x, y; ξx)∥ ≤ G, ∥∇yF (x, y; ξy)∥ ≤ G.

Assumption 3. (Bounded Variance) There exists a constant σ such that the variance of each gradient
estimator is bounded by:

E[∥∇xf(x, y; ξ
x)−∇xf(x, y)∥2] ≤ σ2, E[∥∇yf(x, y; ξ

y)−∇yf(x, y)∥2] ≤ σ2,

where x1, x2 ∈ Rd1 and y1, y2 ∈ Y .

It is worth noting that these assumptions are only presented to facilitate our proof. In the imple-
mentation of VRAda, we do not need any information from them to achieve the final result. In
equation 1, we represent y∗(x) := argmaxy∈Y f(x, y) as the solution of the inner maximization
sub-problem, where y∗(x) resides within the interior of Y for any x ∈ Rd1 . This property ensures
that ∇yf(x, y

∗(x)) = 0, which uses the sum of squared norms of past gradients in the denominator.
Without this condition, the learning rate would decrease, even in the proximity of the optimal point,
resulting in slow convergence. In addition, we aim to find a near stationary point for the minimax
problem, denoted by E[∥∇xf(x, y)∥] ≤ ϵ and E[∥∇yf(x, y)∥] ≤ ϵ, with the expectation encompass-
ing all algorithmic sources of randomness. As such, this stationary notion can be easily translated to
the near-stationary of the primal function Φ(x) := f(x, y∗(x)) Yang et al. (2022a;b); Huang et al.
(2023); Liu et al. (2023). Accordingly, we introduce an additional assumption as follows:
Assumption 4. (Bounded Primal Function Value) There exists a constant Φ∗ such that for any
x ∈ Rd1 , Φ(xt) is upper bounded by Φ∗.

Remark 1. Assumptions 1-3 find common application in numerous studies involving adaptive
algorithms and minimax optimizations, as evidenced by research such as Carmon et al. (2019); Yang
et al. (2020); Levy et al. (2021); Kavis et al. (2022); Huang et al. (2023); Liu et al. (2023). Particularly
noteworthy is Assumption 4, which signifies the bounded nature of the domain of y-a condition
also considered in the analyses of AdaGrad Levy (2017); Levy et al. (2018). In neural networks
featuring rectified activations, the scale-invariance property Dinh et al. (2017) renders the imposition
of boundedness on y compatible with expressive modeling. Additionally, Wasserstein GANs Arjovsky
et al. (2017) utilize critic projections to confine weights within a small cube centered around the origin.
Importantly, our proof does not necessitate the assumption of second-order Lipschitz continuity for y,
setting our proof on more rigorous compared to Li et al. (2022).

4.1 ANALYSIS OF THE NC-SC SETTING

We use the following assumption to show the concavity in y.
Assumption 5. (Strongly Concave in y) Function f(x, y) is µ-strongly-concave (µ > 0) in y, that is,
for any x ∈ Rd1 and y1, y2 ∈ Y , we have

f (x, y1) ≥ f (x, y2) + ⟨∇yf (x, y1) , y1 − y2⟩+
µ

2
∥y1 − y2∥2 .

Theorem 1. Under Assumptions 1-5, VRAda in Algorithm 1 satisfies,

1

T

[
E

T∑
t=1

∥∇xf(xt, yt)∥+ E
T∑

t=1

∥∇yf(xt, yt)∥

]
≤ O(T−1/3).
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In our proof, we divide the two variables into four cases, i.e., E
∑T

t=1 ∥∇xf(xt, yt)∥2, E
∑T

t=1 ∥ϵxt ∥2,
and E

∑T
t=1 ∥∇yf(xt, yt)∥2, E

∑T
t=1 ∥ϵ

y
t ∥2, to represent the corresponding accumulative errors and

estimators. When the cumulative error term is relatively large, it acts as an upper bound for the
cumulative gradient. However, when the accumulated error term is small, we may not establish an
upper bound for the cumulative gradient based solely on the error term. In these situations, we can
provide additional information to determine the upper bound for the cumulative gradient.

Remark 2. The convergence result O(T−1/3) in Theorem 1 is summarized among the four cases.
If we aim to achieve the ϵ-stationary point by VRAda, the total number of training epochs should
satisfy that T = O(1/ϵ−3). In addition, because VRAda only needs two samples, i.e., O(1), to
compute estimators and gradients in each training epoch, the total sample complexity is O(1/ϵ−3).
It is important to note that both γ and λ are all constants, i.e., O(1), which does not change the
convergence rate O(T−1/3). As we mentioned before, simply set the two parameters to 1, and
according to the above analysis, Theorem 1 also holds true. The purpose of introducing these two
additional parameters is to better adapt to different scenarios. To the best of our knowledge, VRAda
outperforms the only existing parameter-agnostic algorithm TiAda Li et al. (2022) in stochastic
minimax optimizations, i.e., O(ϵ−4) and aligns the sample complexity to the parametric algorithms
Huang et al. (2022; 2023).

Remark 3. Note that the sample complexity of TiAda is O(ϵ−(4+δ)), for any small δ > 0. To achieve
the optimal complexity O(ϵ−4), they need to manually set the proper values of separated parameters
α and β, e.g., α = 0.5 + δ/(8 + 2δ) and β = 0.5 − δ/(8 + 2δ). However, if we choose a large δ
value, it cannot achieve the optimal complexity, i.e., O(ϵ−4). In contrast, if we choose a small δ value,
then the adjustment of step size will be very weak. Therefore, it is difficult to balance the adjustment
effect of learning rates and the speed of convergence from theoretical and empirical perspectives
simultaneously. In Theorem 1, we can see that it does not have any problem-dependent parameters,
which indicates that VRAda is fully parameter-agnostic and makes VRAda more stable on real-world
machine learning applications.

4.2 ANALYSIS OF THE NC-PL SETTING

In the NCPL setting, we investigate the case that the sub-problem in y satisfies the PL condition2,
which is a commonly used condition in Charles & Papailiopoulos (2018); Nouiehed et al. (2019); Xie
et al. (2020); Huang et al. (2023). As such, we replace Assumption 5 with the following assumption
to indicate the PL condition.
Assumption 6. (PL condition in y) Assume function f(x, y) satisfies µy-PL condition in variable y
for any fixed x ∈ Rd1 and y ∈ Y , such that

∥∇yf(x, y)∥2 ≥ 2µy

(
max
y∗

f(x, y∗)− f(x, y)

)
. (8)

Theorem 2. Under Assumptions 1-4 and 6, VRAda in Algorithm 1 satisfies, after T epochs,

1

T

[
E

T∑
t=1

∥∇xf(xt, yt)∥+ E
T∑

t=1

∥∇yf(xt, yt)∥

]
≤ O(T−1/3).

In this setting, obtaining a direct upper bound for E
∑T

t=1 ∥∇yf(xt, yy)∥2 proves challenging due to
the absence of the strong concavity condition. However, by leveraging the smoothness properties
of both variables and the µy-PL condition, we can establish an upper bound for E

∑T
t=1[Φ(xt) −

f(xt, yt)]. Furthermore, we can transform this into E
∑T

t=1[∥∇xf(xt, yt)∥2] using the quadratic
growth condition Karimi et al. (2016), which is the condition is interchangeable with the µy-PL
condition. It allows us to derive the final result. Therefore, modifying this setting affects solely the
upper bound of E

∑T
t=1 ∥∇yf(xt, yt)∥2, which impacts the above case 2 and case 4.

Remark 4. Note that VRAda maintains a sample complexity of O(ϵ−3) in Theorem 2, mirroring
the result in the NC-SC setting. This demonstrates the scalability of VRAda and underscores the
rigor of our proof analysis. In addition, both γ and λ are constants, and as a result, they do not

2This commemorates the mathematical Boris Polyak (1935-2023).
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change the O(T−1/3) convergence rate. To the best of our knowledge, VRAda stands as the inaugural
parameter-agnostic algorithm designed specifically for stochastic minimax optimizations to fit the
NC-PL setting.

5 EXPERIMENTS

In this section, we evaluate the performance of VRAda based on three different scenarios: (1) two test
functions with synthetic datasets, (2) optimizing the deep AUC loss (an NC-SC objective) proposed
by Yuan et al. (2021), and (3) training the Non-Convex-Non-Concave (NC-NC)3 Wasserstein-GAN
with Gradient Penalty (WGAN-GP) Sinha et al. (2017). Based on the three experiments, we believe
that this not only validates our theoretical results but also shows the potential of our proposed VRAda
algorithm in real-world scenarios. Additional experimental restuls and setups will be deferred to
Appendix A in detail.

5.1 TEST FUNCTIONS

(a) Trajectory (b) Vary ρx and ρy (c) Vary learning rates ηx and ηy

Figure 2: Numerical results on the test function f(x, y) = log(1 + x2)− xy + y2/2

We test VRAda and TiAda on another function, that is, logarithmic and linear combinations. Similarly,
we add a larger noise on the variable y and a smaller noise on the variable x. From Figures 2a We can
find that VRAda chooses a better route close to the optimal, and that VRAda’s radius of convergence
is significantly smaller than TiAda. Figure 2b and 2c illustrate TiAda’s convergence rate against
VRAda on function f(x, y) = log(1 + x2)− xy + y2/2, after adjusting the initial learning rate and
the parameters ρx and ρy , VRAda consistently outperforms TiAda for both functions.

5.2 DEEP AUC

An impactful application of the minimax problem, particularly in the NC-SC setting, is to optimize
margin-based min-max surrogate losses. These surrogate losses as practical proxies across various
learning scenarios, adeptly capturing the trade-offs inherent in specific objectives. Furthermore, the
minimax framework proves valuable in optimizing AUC scores. In situations where imbalanced
datasets can skew a model’s performance metrics, the optimization of AUC scores has paramount
significance. Employing the minimax approach in such contexts not only ensures the model’s
predictions are accurate but also bolsters their robustness against the challenges posed by data
representation disparities. The formulation of the AUC margin Loss Yuan et al. (2021) is as follows:

min
x∈Rd1 (a,b)∈R2

max
y∈Y

f(x, a, b, y) := Eξ[F (x, a, b, y; ξ)]. (9)

We conducted experiments using three distinct image classification datasets: CIFAR10, CIFAR100,
and STL10 Elson et al. (2007); Coates et al. (2011); Krizhevsky et al. (2009), all characterized by an
imbalance ratio of 10%. The segment of AUC test results is illustrated in Figure 3, clearly showcasing
VRAda’s consistent superiority over TiAda and TiAda-Adam. For instance, VRAda achieves an
impressive AUC score of 0.914 on CIFAR10, while TiAda and TiAda-Adam lag behind at 0.758 and
0.898, respectively. Notably, VRAda’s performance advantage over TiAda and TiAda-Adam ranges
from approximately 2% to 3% across the various datasets.

3PL condition is considered as a special case of NC-NC Chen et al. (2022); Huang et al. (2023). Therefore,
we use W-GAN to support the efficiency of our VRAda in the NC-PL setting.
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Figure 3: Convergence curves of deep AUC on three datasets with an imbalance ratio of 10%.

5.3 WGAN-GP

GANs Arjovsky et al. (2017) highlight the effectiveness of minimax optimization. Here, a discrimi-
nator determines if an image is from the dataset while a generator creates samples to fool it. We use
the WGAN-GP Sinha et al. (2017) loss in our tests on CIFAR10, CIFAR100, and STL10, ensuring
the discriminator functions optimally. Figure 4 shows inception scores on all scenarios.

Figure 4: Inception score on WGAN-GP.

During the initial stages of training across all datasets, there is a notable drop in the inception
score. This decline is likely attributed to the discriminator rapidly categorizing most generated
images as ”fake”. However, as training progresses, the discriminator becomes increasingly adept at
distinguishing real images from generated ones. This feedback loop contributes to the generator’s
improvement, resulting in an upward trend in the inception score. In our experiments, VRAda
achieves an AUC score of 5.65 on CIFAR100, surpassing TiAda, TiAda-Adam, and Adam, which
yield scores of 4.69, 4.87, and 4.89, respectively. Notably, VRAda not only outperforms these
alternatives but also attains these higher scores more rapidly and consistently as it converges. These
results suggest that TiAda may not perform optimally in the NC-NC setting, highlighting VRAda’s
potential as the first widely applicable parameter-agnostic algorithm for this scenario.

6 CONCLUSION

While the parameter-agnostic algorithm TiAda has made significant strides in the realm of minimax
optimizations, we have observed its limitations in mitigating the adverse effects of varying inherent
variances originating from the primal and dual variables x and y. This limitation becomes especially
pronounced during the initial stages of training, resulting in degraded learning performance. To
address this challenge, our paper introduces VRAda, a variance-reduced adaptive parameter-agnostic
algorithm tailored for stochastic minimax optimizations. VRAda effectively reduces the impact of
varying inherent variances and autonomously adjusts learning rates after time-scale separation, all
without the need for large batches or initial anchor points. Our theoretical analysis demonstrates that
VRAda achieves the sample complexity of O(ϵ−3) on both NC-SC and NC-PL settings, surpassing
TiAda and aligning with results from existing parametric algorithms. Extensive experimental evidence
reinforces the effectiveness and robustness of VRAda across various scenarios, including simple test
functions and real-world applications in the NC-SC and NC-NC domains. VRAda holds the potential
to bridge the gap between learning theory and empirical practice, offering new opportunities for
advancement.
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A ADDITIONAL EXPERIMENTAL

A.1 RESULTS OF ADDITIONAL TEST FUNCTIONS

In addition to the test functions presented in Sections 1 and 5, we’ve incorporated two further test
results to further validate the robustness and versatility of our VRAda algorithm. We initialized both
functions with a starting point of (−1,−1). To emulate the stochastic gradient, we applied Gaussian
distribution noise with a mean of 0 to the function gradient of the primal variable x, having a variance
of 0.1, and to the gradient of the dual variable y with a variance of 0.3. This configuration aligns with
the settings used in the aforementioned sections.

(a) Trajectory (b) Vary ρx and ρy (c) Vary learning rates ηx and ηy

Figure 5: Results on the test function f(x, y) = cosx− xy.

From Figure 5, it is evident that VRAda efficiently adjusts the time-scales of x and y. Once the
appropriate positions are established, they remain constant, leading directly to the optimal solution.
In contrast, TiAda continuously adjusts the x and y time-scales throughout the process. The path
towards the optimal solution resembles a spiral due to these constant adjustments, resulting in a
slower convergence speed.

(a) Trajectory (b) Vary ρx and ρy (c) Vary learning rates ηx and ηy

Figure 6: Results on the test function f(x, y) = e−x − xy + y3.

Figure 6 reveals that both VRAda and its counterpart are designed to automatically adjust the time
scales of x and y to avert divergence. However, VRAda exhibits a superior ability to make precise
adjustments, enabling it to navigate towards the optimum solution more efficiently and quickly. This
edge in performance is further corroborated by Figure 6b, which underscores the risk of divergence
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when manually modulating the force of the separation scale without a comprehensive grasp of the
underlying problem.

The robustness of VRAda becomes even more pronounced when additional noise is introduced to the
variable y. As evidenced in Figure 5a, TiAda, encumbered by noise, demonstrates diminished efficacy
in adjusting along the y-axis. It overshoots the optimal point before recalibrating its trajectory. A
similar pattern is observable in Figure 6a. Despite both algorithms overshooting the optimum on the
y-axis, VRAda exhibits a commendable resilience. It not only corrects its trajectory more effectively
but also converges to the optimal solution with enhanced speed and precision.

A.2 EXPERIMENTAL SETUPS

A.2.1 SETUPS OF DEEP AUC

To generate imbalanced data, we utilized the approach described by Yuan et al. (2021). In particular,
we divided the training data into two equal portions based on class ID, designating them as positive
and negative classes. We then randomly eliminated certain samples from the positive class to create
the imbalance, while the testing set remained unchanged. Our experiments were conducted using
ResNet20, and we examined imbalance ratios of 5%, 10%, and 30%. For optimization purposes, we
executed 100 epochs with a stagewise learning rate. We adjusted the initial stepsize of x within the
range [0.1, 0.5] and that of y within [0.6, 1], decaying the rate at the 50% and 75% milestones of the
total training epochs across all tests. To streamline the process, we narrowed our parameter search for
βt to [0.5, 0.7, 0.9, 0.99]. The batch size was standardized at 128 for all datasets, with the exception
of STL10, which was adjusted to 32 due to its smaller size. We implemented a weight decay of 1e-4
consistently across all methodologies. For each dataset, three separate runs were carried out using
different random sets (achieved by removing some positive examples with varied random seeds), and
we calculated the mean and standard deviations from these results.

A.2.2 SETUPS OF W-GAN

On CIFAR10 and CIFAR100, we iterated 40,000 times on discriminators and generators, and 2,000
times due to the small dataset of STL10. In this section, we adapted code from Li et al. (2022)
for our experiments. For the implementation, we employed a four-layer CNN for the discriminator
and another four-layer CNN with transpose convolution layers for the generator, in line with the
architecture specified in Daskalakis et al. (2017). We configured the batch size to 512, set the
dimension of the latent variable to 50, and assigned a weight of 10−4 for the gradient penalty term. To
further simplify our experiment, we search for our parameter βt in [0.5, 0.7, 0.9, 0.99]. To compute
the inception score, we utilized a pre-trained inception network, processing 8000 synthesized samples.
For Adam, TiAda and TiAda-Adam, we use the recommended parameters. Since VRAda, TiAda and
TiAda-Adam are single-loop algorithms, for fair comparisons, we also update the discriminator only
once for each generator update in Adam.

A.3 ADDITIONAL RESULTS OF DEEP AUC

In Table 1, the outcomes of three imbalance ratios for four optimizers across three datasets are
presented. It is evident that VRAda outperforms other optimizers in the majority of scenarios.
Specifically, VRAda excels notably in extremely imbalanced settings with an imbalance ratio of
5%. In comparisons with TiAda and TiAda-Adam at this imbalance ratio, VRAda demonstrates an
improvement of approximately 7% and 5% on the CIFAR10 and CIFAR100 datasets, respectively. It’s
important to note that as the imbalance ratio rises , the data becomes more balanced, simplifying the
classification task. When the imbalance ratio reaches 30%, VRAda’s improvement over TiAda and
TiAda-Adam stands at about 0.5%, 0.7%, and 0.4% for CIFAR10, CIFAR100, and STL10 datasets,
respectively.

A.4 ADDITIONAL RESULTS OF WGAN-GP

We evaluated three distinct learning rates 0.003, 0.004, and 0.01 for the CIFAR10 and CIFAR100
datasets. However, due to STL10’s smaller dataset size, we opted for slightly different learning
rates: 0.003, 0.004, and 0.006. Figures 7 through 9 reveal that VRAda consistently outperforms the
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Table 1: Testing performance on different datasets

For AUC Maximization
Datases imratio 5% 10% 30%

CIFAR10

Adam 0.746 ± 0.018 0.758 ± 0.014 0.790 ± 0.013
TiAda 0.828 ± 0.011 0.898 ± 0.004 0.937 ± 0.004

TiAda-Adam 0.853 ± 0.006 0.896 ± 0.008 0.935 ± 0.004
VRAda 0.890 ± 0.003 0.914 ± 0.002 0.940 ± 0.004

CIFAR100

Adam 0.605 ± 0.005 0.614 ± 0.005 0.619 ± 0.001
TiAda 0.637 ± 0.004 0.705 ± 0.002 0.764 ± 0.002

TiAda-Adam 0.658 ± 0.006 0.703 ± 0.001 0.760 ± 0.004
VRAda 0.672 ± 0.003 0.718 ± 0.006 0.765 ± 0.010

STL10

Adam 0.607 ± 0.013 0.592 ± 0.001 0.633 ± 0.016
TiAda 0.718 ± 0.002 0.709 ± 0.008 0.727 ± 0.008

TiAda-Adam 0.703 ± 0.007 0.705 ± 0.005 0.725 ± 0.005
VRAda 0.706 ± 0.009 0.726 ± 0.006 0.728 ± 0.007

Figure 7: WGAN-GP’s Inception score on CIFAR10.

Figure 8: WGAN-GP’s Inception score on CIFAR100.

Figure 9: WGAN-GP’s Inception score on STL10.
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competition across all datasets and parameter configurations. Although a decline in the Inception
score can be observed early in training, VRAda rapidly ascends to higher scores, boasting both speed
and stability.

For a more precise evaluation of the Inception score, we computed the mean scores of the four
optimizers on CIFAR10, specifically averaging over the last 20,000 iterations during the phase when
the score stabilized. For CIFAR10 with a learning rate of 0.003, the average scores for Adam, TiAda,
TiAda-Adam, and VRAda were 4.89, 4.68, 4.79, and 5.42 respectively. At a learning rate of 0.004, the
scores were 4.80, 4.63, 4.79, and 5.45, and at a learning rate of 0.01, they stood at 4.65, 5.10, 4.63, and
5.37. For CIFAR100 with a learning rate of 0.01, the average scores for Adam, TiAda, TiAda-Adam,
and VRAda mirrored the previous dataset, being 4.65, 5.10, 4.63, and 5.37, respectively.

B USEFUL LEMMAS

Lemma 1. (Lemma A.2 in Yang et al. (2022b)) Let x1, · · · , xT be a sequence of non-negative real
numbers, α ∈ (0, 1), then we have:

(
T∑

t=1

xt

)1−α

≤
T∑

t=1

xt(∑t
k=1 xk

)α ≤ 1

1− α

(
T∑

t=1

xt

)1−α

.

Lemma 2. (Lemma A.5 in Nouiehed et al. (2019)) Under Assumptions 1 and 6, we have

∥∇Φ(x1)−∇Φ(x2)∥ ≤ LΦ∥x1 − x2∥, ∀x1, x2 (10)

where LΦ = L+ κL
2 .

C ANALYSIS OF THEOREM 1

In this section, we reiterate our primary goal of pinpointing a near-stationary point for the minimax
problem, represented by E[∥∇xf(x, y)∥] ≤ ϵ and E[∥∇yf(x, y)∥] ≤ ϵ. Here, the expectation
incorporates every element of algorithmic randomness, ensuring a comprehensive and nuanced
understanding of the system’s behavior amidst varying conditions and inputs.

C.1 INTERMEDIATE LEMMAS OF THEOREM 1

Lemma 3. Under Assumptions 1-2, the two error dynamics E[
∑T

t=1 ∥ϵxt ∥2] and E[
∑T

t=1 ∥ϵ
y
t ∥2] can

be upper-bounded as follows:

E

[
T∑

t=1

∥ϵxt ∥2
]

≤ 72 + 12G2

ββ̃
+

144L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

144L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 6G2

+ 144L2γ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

+ 144L2λ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

+ 36E
(
1 +

T∑
t=1

∥∇xf(xt, yt; ξ
x
t )∥2

)1/3
,
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E
T∑

t=1

∥ϵyt ∥2

≤ 72 + 12G2

ββ̃
+

144L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

144L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 6G2

+ 144L2γ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

+ 144L2λ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

+ 36E
(
1 +

T∑
t=1

∥∇yf(xt, yt; ξ
y
t )∥2

)1/3
.

Proof. Since the error bounds in proving the two are highly similar, we only need to give proof of one
of them. Similarly to Levy et al. (2021), we consider the term ϵxt and split it into the following two
terms:

T∑
t=1

∥ϵt∥2 =

τ∗∑
t=1

∥ϵt∥2 +
T∑

t=τ∗+1

∥ϵt∥2 (11)

Here, τ∗ represents a time-step beyond which we can guarantee 1/βt+1 − 1/βt ≤ 2/3. The precise
definition of τ∗ will be provided subsequently. Next, we present an example to clarify the rationale
behind this split.

Taking the square of the above equation and then taking the expectation, we have:

E[∥ϵxt ∥2]
≤ (1− βt)

2E[∥ϵxt−1∥2] + 2(1− βt)
2∥Zx

t ∥2 + 2β2
tE[∥∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)∥2].

(12)

Dividing equation 12 by βt, and re-arranging implies:

E
T∑

t=1

∥ϵt−1∥2 ≤ −E ∥ϵT ∥2

βT
+

T−1∑
t=1

(
1

βt+1
− 1

βt

)
E ∥ϵt∥2 + 2E

T∑
t=1

[
2(1− βt)

2∥Zx
t ∥2

βt

]

+ 2

T∑
t=1

βt∥∇xf(xt, yt; ξ
x
t )−∇xf(xt, yt)∥2.

(13)

Drawing from Cutkosky & Orabona (2019), the crucial property of βt is the condition 1/βt+1 −
1/βt ≤ 2/3 to effectively bound the term

∑T−1
t=1

(
1

βt+1
− 1

βt

)
E ∥ϵt∥2. However, under Algorithm 1,

it’s uncertain whether the term
∑T−1

t=1

(
1

βt+1
− 1

βt

)
E ∥ϵt∥2 fulfills this condition. This uncertainty

led us to introduce the split as shown in equation 11.

We now return to the primary proof, aiming to bound the cumulative expectation of errors
∑τ∗

t=1 ∥ϵt∥2.
As derived from equation 12, we have:

τ∗∑
t=1

∥ϵxt ∥2 ≤
τ∗∑
t=1

(1−βt)∥ϵxt−1∥2+2

τ∗∑
t=1

∥Zx
t ∥2+2

τ∗∑
t=1

β2
t ∥∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)∥2. (14)

Now we define β := min{1, 1/G2}, τ∗ = max{t ∈ [T ] : βt ≥ β}. Re-arranging the above and
using the definition of τ∗, we have:

β

τ∗∑
t=1

∥ϵxt ∥
2 ≤ ∥ϵxτ∗∥2 +

τ∗−1∑
t=1

βt+1 ∥ϵxt ∥
2

≤ 2

T∑
t=1

∥Zx
t ∥

2

︸ ︷︷ ︸
(i)

+2

T∑
t=1

β2
t ∥∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)∥2︸ ︷︷ ︸

(ii)

.
(15)
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Next, we bound the expected value of the above terms.

Bounding the term (i). By employing the definition of Zx
t and invoking Assumption 1, we can

deduce that ∥Zx
t ∥2 ≤ 8L2

(
(γηxt−1)

2∥vt−1∥2 + (ληyt−1)
2∥wt−1∥2

)
. Further, using the formulation

for ηxt−1 in conjunction with Lemma 1, we can demonstrate the following:

(i) ≤ 8L2γ2

(
T∑

t=1

∥vt−1∥2(∑t
i=1

∥vi∥2

βi+1

) 2
3

)
+ 8L2λ2

(
T∑

t=1

∥wt−1∥2(∑t
i=1

∥wi∥2

βi+1

) 2
3

)

≤ 8L2γ2

(
T∑

t=1

∥vt−1∥2(∑t
i=1 ∥vi∥2

) 2
3

)
+ 8L2λ2

(
T∑

t=1

∥wt−1∥2(∑t
i=1 ∥wi∥2

) 2
3

)

≤ 24L2γ2

(
T∑

t=1

∥vt∥2
) 1

3

+ 24L2λ2

(
T∑

t=1

∥wt∥2
) 1

3

,

(16)

where the second inequality follows that βt ≤ 1, ∀t ∈ [T ].

Bounding the term (ii). Given that E[∇xf(xt, yt; ξ
x
t )] = ∇xf(xt, yt), we deduce:

E
[
β2
t ∥∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)∥2

]
≤ E

[
β2
t ∥∇xf(xt, yt; ξ

x
t )∥2

]
. (17)

Utilizing the above inequality, we can infer:

E(ii) ≤ E
T∑

t=1

∥∇xf(xt, yt; ξ
x
t )∥2

(1 +
∑t−1

i=1 max{∥∇xf(xi, yi; ξxi )∥2, ∥∇yf(xi, yi; ξ
y
i )∥2})4/3

≤ E
T∑

t=1

∥∇xf(xt, yt; ξ
x
t )∥2

(1 +
∑t−1

i=1 ∥∇xf(xi, yi; ξxi )∥2)4/3
≤ 12 + 2G2,

(18)

The final inequality is supported by Lemma 6 in Levy et al. (2021), which states that for any sequence
of non-negative real numbers a1, · · · , an ∈ [0, amax]:

n∑
i=1

ai(
1 +

∑i−1
j=1 aj

)4/3 ≤ 12 + 2amax. (19)

Combining the above inequalities implies that:

E
τ∗∑
t=1

∥ϵxt ∥2 ≤ 24 + 4G2

β
+

48L2γ2

β

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

β

[
E(

T∑
t=1

∥wt∥2)1/3
]
. (20)

Next, we bound the term
∑T

t=1 ∥ϵt∥2. Dividing both side of equation 12 by
√
βt, and taking the

square, we have:

∥ϵxt ∥2

βt
≤ (

1

βt
− 1)∥ϵxt−1∥2 + 2

∥Zx
t ∥2

βt
+ 2βt∥∇xf(xt, yt; ξ

x
t )−∇xf(xt, yt)∥2, (21)

where we use βt ≤ 1 in the above inequality. Re-arranging the above and summing gives,
T∑

t=1

∥∥ϵxt−1

∥∥2 ≤ − 1

βT
∥ϵxT ∥

2︸ ︷︷ ︸
(iii)

+

T∑
t=1

(
1

βt+1
− 1

βt

)
∥ϵxt ∥

2

︸ ︷︷ ︸
(iv)

+2

T∑
t=1

∥Zx
t ∥

2

βt︸ ︷︷ ︸
(v)

+ 2

T∑
t=1

βt ∥∇xf(xt, yt; ξ
x
t )−∇xf(xt, yt)∥2︸ ︷︷ ︸

(vi)

.

(22)
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Next, we bound the expected value of the above terms.

Bounding the term (iii). Since βT ≤ 1 , we have −E∥ϵxT ∥2/βT ≤ −E∥ϵxT ∥2.

Bounding the term (iv). We first give the upper bound of 1
βt+1

. Following Lemma 7 in Levy et al.

(2021), given 1/β̃ = (1/β3/2 + G2)2/3, we have 1/βt+1 ≤ 1/β̃, ∀t ≤ τ∗ and 1/βt+1 − 1/βt ≤
2/3, ∀t ≥ τ∗ + 1, then we have:

(iv) =

τ∗∑
t=1

(
1

βt+1
− 1

βt
)∥ϵxt ∥2 +

T∑
t=τ∗+1

(
1

βt+1
− 1

βt
)∥ϵxt ∥2

≤ 1

β̃

τ∗∑
t=1

∥ϵxt ∥2 +
2

3

T∑
t=τ∗+1

∥ϵxt ∥2

≤ 24 + 4G2

ββ̃
+

48L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+

2

3

T∑
t=1

∥ϵxt ∥2,

(23)
where the last inequality holds by equation 20.

Bounding the term (v). Recalling that ∥Zx
t ∥2 ≤ 8L2

(
(γηxt−1)

2∥vt−1∥2 + (ληyt−1)
2∥wt−1∥2

)
,

using Lemma 1, we have:
T∑

t=1

∥Zx
t ∥2

βt

≤ 8L2γ2
( T∑

t=1

(ηxt−1)
2∥vt−1∥2

βt

)
+ 8L2λ2

( T∑
t=1

(ηyt−1)
2∥wt−1∥2

βt

)
= 8L2γ2

( T∑
t=1

∥vt−1∥2/βt

(
∑t−1

i=1 ∥vi∥2/βi+1)2/3

)
+ 8L2λ2

( T∑
t=1

∥wt−1∥2/βt

(
∑t−1

i=1 ∥wi∥2/βi+1)2/3

)
≤ 24L2γ2

( T−1∑
t=1

∥vt∥2/βt+1

)1/3
+ 24L2λ2

( T−1∑
t=1

∥wt∥2/βt+1

)1/3
≤ 24L2γ2

(βT )1/3

( T−1∑
t=1

∥vt∥2
)1/3

+
24L2λ2

(βT )1/3

( T−1∑
t=1

∥wt∥2
)1/3

≤ 24L2γ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

+ 24L2λ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

.

(24)

Bounding the term (vi). Note that E[∇xf(xt, yt; ξ
x
t )] = ∇xf(xt, yt), we have

E[βt∥∇xf(xt, yt; ξ
x
t )−∇xf(xt, yt)∥2] ≤ E[βt∥∇xf(xt, yt; ξ

x
t )∥2], then we have:

E(vi) ≤ E
T∑

t=1

βt∥∇xf(xt, yt; ξ
x
t )∥2

= E
T∑

t=1

∥∇xf(xt, yt; ξ
x
t )∥2

(1 +
∑t−1

i=1 max{∥∇xf(xt, yt; ξxt )∥2, ∥∇yf(xt, yt; ξ
y
t )∥2})2/3

≤ E
T∑

t=1

∥∇xf(xt, yt; ξ
x
t )∥2

(1 +
∑t−1

i=1 ∥∇xf(xt, yt; ξxt )∥2)2/3

≤ G2 + 6E
(
1 +

T∑
t=1

∥∇xf(xt, yt; ξ
x
t )∥2

)1/3
,

(25)
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where the last inequality holds by Lemma 3 in Levy et al. (2021), i.e., let b1, · · · , bn ∈ (0, b] be a
sequence of non-negative real numbers for some positive real number b, b0 > 0 and p ∈ (0, 1] a
rational number, then,

n∑
i=1

bi(
b0 +

∑i−1
j=1 bj

)p ≤ b

(b0)
p +

2

1− p

(
b0 +

n∑
i=1

bi

)1−p

. (26)

Combining the above inequalities, we have:

1

3
E

T∑
t=1

∥ϵxt ∥2

≤ 24 + 4G2

ββ̃
+

48L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 2G2

+ 48L2γ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

+ 48L2λ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

+ 12E
(
1 +

T∑
t=1

∥∇xf(xt, yt; ξ
x
t )∥2

)1/3
,

(27)

Similarly, we have:

1

3
E

T∑
t=1

∥ϵyt ∥2

≤ 24 + 4G2

ββ̃
+

48L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 2G2

+ 48L2γ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

+ 48L2λ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

+ 12E
(
1 +

T∑
t=1

∥∇yf(xt, yt; ξ
y
t )∥2

)1/3
.

(28)

This completes the proof. □

Lemma 4. Under Assumptions 1-4 ,term
∑T

t=1 ∥∇xf(xt, yt)∥2 can be upper-bounded as follows:

T∑
t=1

∥∇xf(xt, yt)∥2 ≤
T∑

t=1

∥ϵxt ∥2 +
4Φ∗

γ
(1/βT+1)

1/3(

T∑
t=1

∥vt∥2)1/3 + 3Lγ2(

T∑
t=1

∥vt∥2)1/3.

Proof. From Assumption 1 we know that f(x, y) is smooth with respect to x, so we have:

f(xt+1, yt)− f(xt, yt) ≤ −γηxt ⟨∇xf(xt, yt), vt⟩+
L(γηxt )

2

2
∥vt∥2

≤ −γηxt ∥∇xf(xt, yt)∥2 − γηxt ⟨∇xf(xt, yt), ϵ
x
t ⟩+

L(γηxt )
2

2
∥vt∥2

≤ −γηxt
2

∥∇xf(xt, yt)∥2 +
γηxt
2

∥ϵxt ∥2 +
L(γηxt )

2

2
∥vt∥2.

(29)
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Define ∆1 = f(x1, y1) and ∀t ≥ 2,

∆t =

{
f(xt, yt−1) + f(xt, yt), f(xt, yt) ≥ f(xt, yt−1),
f(xt, yt), f(xt, yt) < f(xt, yt−1).

(30)

From Assumption 4 we can get ∆t ≤ Φ(xt) + Φ(xt−1) ≤ 2Φ∗. Re-arranging the above, and
summing over t, we have:

T∑
t=1

∥∇xf(xt, yt)∥2

≤ 2

γ

T∑
t=1

1

ηxt
(f(xt, yt)− f(xt+1, yt)) +

T∑
t=1

∥ϵxt ∥2 +
T∑

t=1

L(γηxt )
2∥vt∥2

≤ 2

γ

T∑
t=2

(
1

ηxt
− 1

ηxt−1

)∆t −
2∆T+1

γηxT
+

2Φ∗

γηx1
+

T∑
t=1

∥ϵxt ∥2 +
T∑

t=1

L(γηxt )
2∥vt∥2

≤
T∑

t=1

∥ϵxt ∥2 +
4Φ∗

γηxT
+ Lγ2

T∑
t=1

∥vt∥2

(
∑t

i=1 ∥vi∥2)2/3

≤
T∑

t=1

∥ϵxt ∥2 +
4Φ∗

γ
(1/βT+1)

1/3(

T∑
t=1

∥vt∥2)1/3 + 3Lγ2(

T∑
t=1

∥vt∥2)1/3,

(31)

where the last second inequality holds by βt < 1.

Before bounding the term E
∑T

t=1 ∥∇yf(xt, yt)∥2, we first provide some useful lemmas.

Lemma 5. Given Assumptions 1 to 5, if for t = t0 to t1 − 1 and any λt > 0, St,

∥yt+1 − y∗t+1∥2 ≤ (1 + λt)∥yt+1 − y∗t ∥2 + St,

then we have:

E

[
t1−1∑
t=t0

(f (xt, y
∗
t )− f (xt, yt))

]

≤ E

[
t1−1∑

t=t0+1

(
1− ηyt µ

2ηyt
∥yt − y∗t ∥

2 − 1

2ηyt (1 + λt)

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
t1−1∑
t=t0

ηyt
2

∥wt∥2
]
+ E

[
t1−1∑
t=t0

St

2ηyt (1 + λt)

]
.

Proof. For any value of λt, we have:

∥yt+1 − y∗t+1∥2 ≤ (1 + λt)∥yt+1 − y∗t ∥2 + St

= (1 + λt)∥yt + ηyt wt − y∗t ∥2 + St

≤ (1 + λt)
(
∥yt − y∗t ∥2 + (ηyt )

2∥wt∥2 + 2ηyt ⟨wt, yt − y∗t ⟩

+ ηyt µ∥yt − y∗t ∥2 − ηyt µ∥yt − y∗t ∥2
)
+ St.

(32)

Rearranging the terms, we have:

⟨wt, y
∗
t − yt⟩ − µ∥yt − y∗t ∥2

= ⟨∇yf(xt, yt; ξ
y
t ), y

∗
t − yt⟩+ ⟨wt −∇yf(xt, yt; ξ

y
t ), y

∗
t − yt⟩ −

µ

2
∥yt − y∗t ∥2

≤ 1− µηyt
2ηyt

∥yt − y∗t ∥2 −
1

2ηyt (1 + λt)
∥yt+1 − y∗t+1∥2 +

ηyt
2
∥wt∥2 +

St

2ηyt (1 + λt)
.

(33)

21



Under review as a conference paper at ICLR 2024

For the term ⟨wt −∇yf(xt, yt; ξ
y
t ), y

∗
t − yt⟩, we have:

E [wt −∇yf(xt, yt; ξ
y
t )] = (1− βt)E [wt−1 −∇yf(xt−1, yt−1; ξ

y
t )]

= (1− βt)E [wt−1 −∇yf(xt−1, yt−1)]

= (1− βt)E
[
wt−1 −∇yf(xt−1, yt−1; ξ

y
t−1)

]
...

= (1− βt)(1− βt−1) · · · (1− β2)E [w1 −∇yf(x1, y1)]

= 0,

(34)

then we have:
E [⟨wt −∇yf(xt, yt; ξ

y
t ), y

∗
t − yt⟩] = 0. (35)

Using strongly concave we can get

E
[
⟨∇yf(xt, yt; ξ

y
t ), y

∗
t − yt⟩+ ⟨wt −∇yf(xt, yt; ξ

y
t ), y

∗
t − yt⟩ −

µ

2
∥yt − y∗t ∥2

]
≥ (f(xt, y

∗
t )− f(xt, yt)).

(36)

Telescoping from t = t0 to t− 1, and taking the expectation we finish the proof.

Lemma 6. Given Assumptions 1 to 3, we have:

E

[
T∑

t=1

(f (xt, y
∗
t )− f (xt, yt))

]

≤ E

[
T∑

t=2

(
1− ηyt µ

2ηyt
∥yt − y∗t ∥

2 − 1

ηyt (2 + µηyt )

∥∥yt+1 − y∗t+1

∥∥2)]

+
3λ

4
E

(
T∑

t=1

∥wt∥2
)2/3

+
3κ2γ

4λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
κ2γ2

λ2
E

(
T∑

t=1

∥vt∥2
)
.

Proof. By Young’s inequality, we have:∥∥yt+1 − y∗t+1

∥∥2 ≤ (1 + λt) ∥yt+1 − y∗t ∥
2
+

(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2 . (37)

Then letting λt =
µηy

t

2 and by Lemma 5, we have:

E

[
T∑

t=1

(f (xt, y
∗
t )− f (xt, yt))

]

≤ E

[
T∑

t=2

(
1− ηyt µ

2ηyt
∥yt − y∗t ∥

2 − 1

ηyt (2 + µηyt )

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
T∑

t=1

ηyt
2

∥wt∥2
]
+ E

[
T∑

t=1

(1 + 2
µηy

t
)

ηyt (2 + µηyt )
∥y∗t+1 − y∗t ∥2

]
.

(38)

We bound the term E
[∑T

t=1

(1+ 2

µη
y
t
)

ηy
t (2+µηy

t )
∥y∗t+1 − y∗t ∥2

]
.

E

[
T∑

t=1

(1 + 2
µηy

t
)

ηyt (2 + µηyt )
∥y∗t+1 − y∗t ∥2

]

≤ E

[
T∑

t=1

(1 + 2
µηy

t
)

2ηyt
∥y∗t+1 − y∗t ∥2

]
≤ κ2E

[
T∑

t=1

(1 + 2
µηy

t
)

2ηyt
(ηxt )

2∥vt∥2
]

= κ2E

[
T∑

t=1

(
(ηxt )

2

2
+

(ηxt )
2

µ(ηyt )
2

)
∥vt∥2

]
= κ2E

[
T∑

t=1

(
γ

2λ
ηxt +

γ2

λ2

)
∥vt∥2

]

≤ 3κ2γ

4λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
κ2γ2

λ2
E

(
T∑

t=1

∥vt∥2
)
.

(39)

22



Under review as a conference paper at ICLR 2024

Combining the above two inequalities, we finish the proof.

Lemma 7. Given Assumptions 1 to 3, we have

E

[
T∑

t=1

(
1− ηyt µ

2ηyt
∥yt − y∗t ∥

2 − 1

ηyt (2 + µηyt )

∥∥yt+1 − y∗t+1

∥∥2)]

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

G2

µ2ηyT
.

Proof.

E

[
T∑

t=1

(
1− ηyt µ

2ηyt
∥yt − y∗t ∥

2 − 1

ηyt (2 + µηyt )

∥∥yt+1 − y∗t+1

∥∥2)]

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

1

2

T−1∑
t=2

(
1

ηyt+1

− 1

ηyt
− µ

2

)
∥yt − y∗t ∥2

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

1

2µ2

T−1∑
t=2

(
1

ηyt+1

− 1

ηyt
− µ

2

)
∥∇yf(xt, yt)∥2

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

G2

2µ2

T−1∑
t=2

(
1

ηyt+1

− 1

ηyt
− µ

2

)

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

G2

2µ2ηyT
.

(40)

This completes the proof.

Lemma 8. Based on Lemmas 6 and 7, we can upper-bound E
[∑T

t=1 ∥∇yf (xt, yt)∥2
]

as follows:

E

[
T∑

t=1

∥∇yf (xt, yt)∥2
]

≤

(
LκG

2
3

λ
− µLκ

)
∥y0 − y∗0∥2 +

3λLκ

2
E

(
T∑

t=1

∥wt∥2
)2/3

+
9κ3Lγ

2λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
3κ3Lγ2

2λ2
E

(
T∑

t=1

∥vt∥2
)

+
LκG2

µ2

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

.

Proof. Combining Lemma 6 and 7 we have:

E

[
T∑

t=1

(f (xt, y
∗
t )− f (xt, yt))

]

≤

(
G

2
3

2λ
− µ

2

)
∥y0 − y∗0∥2 +

G2

2µ2ηyT

+
3λ

4
E

(
T∑

t=1

∥wt∥2
)2/3

+
3κ2γ

4λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
κ2γ2

λ2
E

(
T∑

t=1

∥vt∥2
)
.

(41)
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According to the µ strongly concave in Assumption 5, we have:

E

[
T∑

t=1

∥∇yf (xt, yt)∥2
]
≤ L2E

[
T∑

t=1

∥yt − y∗t ∥
2

]
≤ 2LκE

[
T∑

t=1

(f (xt, y
∗
t )− f (xt, yt))

]
(42)

Then we have:

E

[
T∑

t=1

∥∇yf (xt, yt)∥2
]

≤

(
LκG

2
3

λ
− µLκ

)
∥y0 − y∗0∥2 +

3λLκ

2
E

(
T∑

t=1

∥wt∥2
)2/3

+
9κ3Lγ

2λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
3κ3Lγ2

2λ2
E

(
T∑

t=1

∥vt∥2
)

+
LκG2

µ2

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

.

(43)

This completes the proof.

C.2 PROOF OF THEOREM 1

Now, we come to the proof of Theorem 1.

Proof. For simplicity, we denote θ = max{γ, λ}. Due to equation 34, we have E[wt −
∇yf(xt, yt; ξ

y
t )] = 0, similarly, we have E[vt − ∇xf(xt, yt; ξ

x
t )] = 0, then we have ∥vt∥2 ≤

∥∇xf(xt, yt)∥2 + ∥ϵxt ∥2 and ∥wt∥2 ≤ ∥∇yf(xt, yt)∥2 + ∥ϵyt ∥2, we divide the final part of the proof
into four subcases:

Case 1: Assume E
∑T

t=1 ∥∇xf(xt, yt)∥2 ≤ 6E
∑T

t=1 ∥ϵxt ∥2 and E
∑T

t=1 ∥∇yf(xt, yt)∥2 ≤
6E
∑T

t=1 ∥ϵ
y
t ∥2. Using the condition of this subcase implies

E
T∑

t=1

(∥vt∥2 + wt∥2) ≤ 7E
T∑

t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2). (44)

Combining equation 27 and equation 28, we have:

1

3
E

T∑
t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2)

≤ 48 + 8G2

ββ̃
+

96L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

96L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 4G2

+ 96L2γ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(I)

+ 96L2λ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

︸ ︷︷ ︸
(II)

+ 24E

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

))1/3

(45)
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According to Young’s inequality, for any a, b > 0, and p, q > 1 : 1
p+

1
q = 1 we have ab ≤ ap/p+bq/q.

Setting p = 3/2, q = 3, we have

a2/9b1/3 =
(
aρ9/2

)2/9 (
b/ρ3

)1/3 ≤
(
aρ9/2

)2p/9
p

+

(
b/ρ3

)q/3
q

=
2

3
a1/3ρ3/2 +

b

3ρ3
. (46)

Setting ρ = (1344L2γ2)1/3 for Term (I) and ρ = (1344L2λ2)1/3 for Term (II) we have:

1

3
E

T∑
t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2)

≤ 48 + 8G2

ββ̃
+

96L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

96L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 4G2

+ (24 + 2347L3(γ3 + λ3))
(
1 + E

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )1/3
+

1

42
E

T∑
t=1

∥vt∥2 +
1

42
E

T∑
t=1

∥wt∥2.

(47)

Re-arranging and using Case 1, we have:

1

6
E

T∑
t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2)

≤ 48 + 8G2

ββ̃
+

96L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

96L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 4G2

+ (24 + 2347L3(γ3 + λ3))
(
1 + E

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )1/3

≤ 48 + 8G2

ββ̃
+

192L2θ2

ββ̃

(
7E

T∑
t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2)

)1/3

+ 4G2

+ (24 + 2347L3(γ3 + λ3))

(
1 + 2σ2T +

T∑
t=1

(
∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2

))1/3

≤ 48 + 8G2

ββ̃
+

192L2θ2

ββ̃

(
7E

T∑
t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2)

)1/3

+ 4G2

+ (24 + 2347L3(γ3 + λ3))

(
1 + 2σ2T + 6

T∑
t=1

(
∥ϵxt ∥2 + ∥ϵyt ∥2

))1/3

(48)

Above implies,

E
T∑

t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ 6E
T∑

t=1

(∥ϵxt ∥2 + ∥ϵyt ∥2) ≤ O
(
T 1/3

)
. (49)
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Case 2: Assume E
∑T

t=1 ∥∇xf(xt, yt)∥2 ≤ 6E
∑T

t=1 ∥ϵxt ∥2 and E
∑T

t=1 ∥∇yf(xt, yt)∥2 ≥
6E
∑T

t=1 ∥ϵ
y
t ∥2. Combining equation 27 and equation 43 we have:

1

3
E

T∑
t=1

∥ϵxt ∥2 +
λ2

54κ3Lγ2
E

T∑
t=1

∥∇yf(xt, yt)∥2

≤ 24 + 4G2

ββ̃
+ 2G2 +

λ2

(
LκG

2
3

λ − µLκ

)
27κ2L2γ2

Φ∗︸ ︷︷ ︸
C1

+
96L2θ2

ββ̃

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))1/3

+

(
3λ3L

108κ2γ2
+

λ

108γ

)
︸ ︷︷ ︸

C2

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))2/3

+ 48L2γ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(III)

+

(
48L2λ2 +

G2λ2

54L2γ2

)(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

︸ ︷︷ ︸
(IV)

+ 12E
(
1 +

T∑
t=1

∥∇xf(xt, yt; ξ
x
t )∥2

)1/3
+

1

36
E

(
T∑

t=1

∥vt∥2
)
.

(50)
According to equation 46, letting C3 = 48L2λ2+ G2λ2

54L2γ2 , setting ρ = (2016L2γ2)1/3 for Term (III)

and ρ = (42C3κ
3Lγ2/λ2)1/3 for Term (IV) we have:

1

3
E

T∑
t=1

∥ϵxt ∥2 +
λ2

54κ3Lγ2
E

T∑
t=1

∥∇yf(xt, yt)∥2

≤ C1 +
96L2θ2

ββ̃

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))1/3

+ C2

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))2/3

+ (1437L3γ3 +
5C

2
3
3 κγL

1
2

λ
+ 12)︸ ︷︷ ︸

C4

E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )1/3

+
λ2

126κ3Lγ2
E

T∑
t=1

∥wt∥2 +
1

36
E

(
T∑

t=1

∥vt∥2
)

+
1

126
E

T∑
t=1

∥vt∥2.

(51)
Using Case 2 implies

E
T∑

t=1

∥wt∥2 ≤ E
T∑

t=1

∥∇yf(xt, yt)∥2 + E
T∑

t=1

∥ϵyt ∥2 ≤ 7

6
E

T∑
t=1

∥∇yf(xt, yt)∥2. (52)
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Then, we have:

1

12
E

T∑
t=1

∥ϵxt ∥2+
λ2

108κ3Lγ2
E

T∑
t=1

∥∇yf(xt, yt)∥2

≤ C1 +
192L2θ2

ββ̃

(
7E

T∑
t=1

(
∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2

))1/3

+ 2C2

(
7E

T∑
t=1

(
∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2

))2/3

+ C4E
(
1 + 2σ2T + 6E

T∑
t=1

(
∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2

) )1/3
(53)

Denote m1 = min{ 1
12 ,

λ2

108κ3Lγ2 }, we have:

2E
T∑

t=1

∥ϵxt ∥2+2E
T∑

t=1

∥∇yf(xt, yt)∥2

≤ 2C1

m1
+

384L2θ2

m1ββ̃

(
7E

T∑
t=1

(∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2)
)1/3

+
4C2

m1

(
7E

T∑
t=1

(
∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2

))2/3

+
2C4

m1

(
1 + 2σ2T + 6E

T∑
t=1

(∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2
)1/3

.

(54)

It implies that:

E
T∑

t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ 6E
T∑

t=1

(
∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2

)
≤ O(T 1/3).

(55)
Case 3: Assume E

∑T
t=1 ∥∇xf(xt, yt)∥2 ≥ 6E

∑T
t=1 ∥ϵxt ∥2 and E

∑T
t=1 ∥∇yf(xt, yt)∥2 ≤

6E
∑T

t=1 ∥ϵ
y
t ∥2. Following equation 31 we have:

T∑
t=1

∥∇xf(xt, yt)∥2

≤
T∑

t=1

∥ϵxt ∥2 +
4Φ∗

γ
(1/βT+1)

1/3(

T∑
t=1

∥vt∥2)1/3 + 3Lγ2(

T∑
t=1

∥vt∥2)1/3

≤
T∑

t=1

∥ϵxt ∥2 + 3Lγ2(

T∑
t=1

∥vt∥2)1/3

+
4Φ∗

γ

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

.

(56)
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Combining equation 28 and equation 56 we have:

1

3
E

T∑
t=1

∥ϵyt ∥2 + E
T∑

t=1

∥∇xf(xt, yt)∥2

≤ 24 + 4G2

ββ̃
+

48L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 2G2

+ (48L2γ2 +
4Φ∗

γ
)
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(V)

+ 48L2λ2
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

︸ ︷︷ ︸
(VI)

+ 12E
(
1 +

T∑
t=1

∥∇yf(xt, yt; ξ
y
t )∥2

)1/3
+

T∑
t=1

∥ϵxt ∥2 + 3Lγ2(

T∑
t=1

∥vt∥2)1/3

(57)
According to equation 46, letting C5 = 48L2γ2 + 4Φ∗

γ , setting ρ = ( 2C5

3 )1/3 for Term (V) and
ρ = (1344L2λ2)1/3 for Term (VI) we have:

1

3
E

T∑
t=1

∥ϵyt ∥2 + E
T∑

t=1

∥∇xf(xt, yt)∥2

≤ (12 + C
3
2
5 + 1174L3λ3)

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )1/3

+
24 + 4G2

ββ̃
+

(
96L2θ2

ββ̃
+ 3Lγ2

)(
E

T∑
t=1

(∥vt∥2 + ∥wt∥2)

)1/3

+

T∑
t=1

∥ϵxt ∥2

+
1

2

(
T∑

t=1

∥vt∥2
)

+
1

84

(
T∑

t=1

∥wt∥2
)
.

(58)

Using Case 3 implies

E
T∑

t=1

∥vt∥2 ≤ E
T∑

t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥ϵxt ∥2 ≤ 7

6
E

T∑
t=1

∥∇xf(xt, yt)∥2. (59)

Then we have

E
T∑

t=1

∥ϵyt ∥2 + E
T∑

t=1

∥∇xf(xt, yt)∥2

≤ (12 + C
3
2
5 + 1174L3λ3)

(
1 + 2σ2T + 6E

T∑
t=1

(
∥ϵyt ∥2 + ∥∇xf(xt, yt)∥2

) )1/3

+
24 + 4G2

ββ̃
+

(
96L2θ2

ββ̃
+ 3Lγ2

)(
E

T∑
t=1

6
(
∥ϵyt ∥2 + ∥∇xf(xt, yt)∥2

))1/3

.

(60)

It implies that:

E
T∑

t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ 6E
T∑

t=1

(
∥ϵyt ∥2 + ∥∇xf(xt, yt)∥2

)
≤ O(T 1/3).

(61)
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Case 4: Assume E
∑T

t=1 ∥∇xf(xt, yt)∥2 ≥ 6E
∑T

t=1 ∥ϵxt ∥2 and E
∑T

t=1 ∥∇yf(xt, yt)∥2 ≥
6E
∑T

t=1 ∥ϵ
y
t ∥2. Following equation 43 and equation 56 we have:

T∑
t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤
(
Lκ

ηy1
− µLκ

)
∥y0 − y∗0∥2 +

3λLκ

2
E

(
T∑

t=1

∥wt∥2
)2/3

+

T∑
t=1

∥ϵxt ∥2

+
9κ3Lγ

2λ
E

(
T∑

t=1

∥vt∥2
)2/3

+
3κ3Lγ2

2λ2
E

(
T∑

t=1

∥vt∥2
)

+ 3Lγ2(

T∑
t=1

∥vt∥2)1/3

+
LκG2

µ2

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

+
4Φ∗

γ

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

≤

(
2κ2G

2
3

λ
− 2Lκ

)
Φ∗ + 3Lγ2

(
E

T∑
t=1

(∥vt∥2 + ∥wt∥2)

)1/3

+

(
3λLκ

2
+

9κ3Lγ

2λ

)(
E

T∑
t=1

(∥vt∥2 + ∥wt∥2)

)2/3

+

T∑
t=1

∥ϵxt ∥2

+
G2

µ2

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

︸ ︷︷ ︸
(VII)

+
4Φ∗

γ

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(VIII)

(62)

According to equation 46, setting ρ = (7G2/6µ2)1/3 for Term (VII) and ρ = (29Φ∗/9γ)
1/3 for

Term (VIII) we have:

T∑
t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤

(
2κ2G

2
3

λ
− 2Lκ

)
Φ∗ + 3Lγ2

(
E

T∑
t=1

(∥vt∥2 + ∥wt∥2)

)1/3

+
2

7

T∑
t=1

∥vt∥2

+

(
3λLκ

2
+

9κ3Lγ

2λ

)(
E

T∑
t=1

(∥vt∥2 + ∥wt∥2)

)2/3

+

T∑
t=1

∥ϵxt ∥2 +
3

7

T∑
t=1

∥wt∥2

+

(
4G3

3µ3
+

16Φ
3
2
∗

γ
3
2

)(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )1/3
.

(63)
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Using Case 4 implies that:
T∑

t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤

(
4κ2G

2
3

λ
− 4Lκ

)
Φ∗ + 6Lγ2

(
2E

T∑
t=1

(∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2)

)1/3

+

(
3λLκ+

9κ3Lγ

λ

)(
2E

T∑
t=1

(∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2)

)2/3

+

(
8G3

3µ3
+

32Φ
3
2
∗

γ
3
2

)(
1 + 2σ2T +

T∑
t=1

(
∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2

) )1/3
(64)

It implies that: [
E

T∑
t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2
]
≤ O(T 1/3). (65)

Conclude all the above cases, using Cauchy-Schwarz inequality, we can easily get

1

T

[
E

T∑
t=1

∥∇xf(xt, yt)∥+ E
T∑

t=1

∥∇yf(xt, yt)∥

]

≤
√
2√
T


√√√√E

T∑
t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2

 ≤ O(
1

T 1/3
)

(66)

This completes the proof.

D ANALYSIS OF THEOREM 2

In this section, we will replace Assumption 5 with Assumption 6. We present a revised upper bound
for E

∑T
t=1 ∥∇yf(xt, yt)∥2, taking into account the µy-PL condition.

D.1 INTERMEDIATE LEMMA OF THEOREM 2

Lemma 9. Under Assumption 1, 2 and 6, we have

E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ (16κ2L2 + 2κLLΦ +
2κLλ

G
2
3

)E
T∑

t=1

(ηxt )
2∥vt∥2. (67)

Proof. Using the smoothness of f(x, ·) we have:

f(xt+1, yt) ≤ f(xt+1, yt+1)− ηyt ⟨∇yf(xt+1, yt), wt⟩+
L

2
∥yt+1 − yt∥2. (68)

For the term −ηyt ⟨∇yf(xt+1, yt), wt⟩, we have

− ηyt ⟨∇yf(xt+1, yt), wt⟩

≤ −ηyt
2

(
∥∇yf(xt+1, yt)∥2 + ∥wt∥2 − ∥∇yf(xt+1, yt)−∇yf(xt, yt) +∇yf(xt, yt)− wt∥2

)
≤ −ηyt

2
∥∇yf(xt+1, yt)∥2 −

ηyt
2
∥wt∥2 +

ηyt L
2

2
∥xt+1 − xt∥2 +

ηyt
2
∥∇yf(xt, yt)− wt∥2

≤ −ηyt µy (Φ(xt+1)− f(xt+1, yt))−
ηyt
2
∥wt∥2 +

ηyt L
2

2
∥xt+1 − xt∥2 +

ηyt
2
∥∇yf(xt, yt)− wt∥2,

(69)
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where the last inequality holds by µy-PL condition. Then we have

f(xt+1, yt) ≤ f(xt+1, yt+1)− ηyt µy (Φ(xt+1)− f(xt+1, yt))−
ηyt
2
∥wt∥2

+
ηyt L

2

2
∥xt+1 − xt∥2 +

ηyt
2
∥∇yf(xt, yt)− wt∥2.

(70)

Rearranging the above, we have:

Φ(xt+1)− f(xt+1, yt+1) ≤ (1− µyη
y
t ) (Φ(xt+1)− f(xt+1, yt))−

ηyt
2
∥wt∥2

+
ηyt L

2

2
∥xt+1 − xt∥2 +

ηyt
2
∥∇yf(xt, yt)− wt∥2.

(71)

Next, using smoothness of f(·, y), we have:

f(xt, yt) + ⟨∇xf(xt, yt), xt+1 − xt⟩ −
L

2
∥xt+1 − xt∥2 ≤ f(xt+1, yt). (72)

Then we have

f(xt, yt)− f(xt+1, yt)

≤ −⟨∇xf(xt, yt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= ηxt ⟨∇xf(xt, yt)−∇Φ(xt), vt⟩ − ⟨∇Φ(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

≤ ηxt ωt∥∇Φ(xt)−∇xf(xt, yt)∥2 +
ηxt
ωt

∥vt∥2 +Φ(xt)− Φ(xt+1) +
(ηxt )

2LΦ

2
∥vt∥2 +

L(ηxt )
2

2
∥vt∥2

≤ L2ωtη
x
t ∥yt − y∗t ∥2 +

ηxt
ωt

∥vt∥2 +Φ(xt)− Φ(xt+1) + LΦ(η
x
t )

2∥vt∥2

≤ 2L2ωtη
x
t

µ
(Φ(xt)− f(xt, yt)) +

ηxt
ωt

∥vt∥2 +Φ(xt)− Φ(xt+1) + LΦ(η
x
t )

2∥vt∥2,
(73)

where the two inequality hold by L < LΦ and the last two inequality holds by smoothness of Φ(xt),
and the parameter ωt will be determined later. Then we have

Φ(xt+1)− f(xt+1, yt+1) = Φ(xt+1)− Φ(xt) + Φ(xt)− f(xt, yt) + f(xt, yt)− f(xt+1, yt)

≤ (1− µyη
y
t )(1 +

2L2ωtη
x
t

µ
) (Φ(xt)− f(xt, yt))

+ (1− µyη
y
t )(

ηxt
ωt

+ LΦ(η
x
t )

2)∥vt∥2 −
ηyt
2
∥wt∥2

+
ηyt L

2

2
∥xt+1 − xt∥2 +

ηyt
2
∥∇yf(xt, yt)− wt∥2.

(74)
Because E[wt] = ∇yf(xt, yt), so we have E[∥wt − ∇yf(xt, yt)∥2] ≤ E[∥wt∥2]. If ηyt ≥ 1

µ for
t = 1, · · · , t = t0, then we have

E
t0+1∑
t=2

[(Φ(xt)− f(xt, yt))] ≤ E
t0∑
t=1

ηyt L
2

2
∥xt+1 − xt∥2, (75)

Now we consider t = t0, · · · , T . Rearranging the above and summing up, we also have:

E
T∑

t=t0+1

(
µηyt + 2L2ωtη

x
t (η

y
t − 1

µ
)

)
(Φ(xt)− f(xt, yt))

≤ E
T∑

t=t0

(1− µyη
y
t )(

ηxt
ωt

+ LΦ(η
x
t )

2)∥vt∥2 + E
T∑

t=t0

ηyt L
2

2
∥xt+1 − xt∥2.

(76)
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Setting ωt =
1

4L2ηx
t (

1
µ−ηy

t )
, we have µηyt +2L2ωtη

x
t (η

y
t − 1

µ ) ≥
1
2 , and (1−µyη

y
t )(1+

2L2ωtη
x
t

µ ) ≤
(4κL+ LΦ)(η

x
t )

2 for t > t0. Then we have

1

2
E

T∑
t=t0+1

[(Φ(xt)− f(xt, yt))]

≤ (4κL+ LΦ)E
T∑

t=t0

(ηxt )
2∥vt∥2 + E

T∑
t=t0

ηyt L
2

2
∥xt+1 − xt∥2.

(77)

Summing above two cases, we have

E
T∑

t=1

[Φ(xt)− f(xt, yt)] ≤ (8κL+ 2LΦ + ηy1 )E
T∑

t=1

(ηxt )
2∥vt∥2

≤ (8κL+ 2LΦ +
λ

G
2
3

)E
T∑

t=1

(ηxt )
2∥vt∥2

(78)

From Karimi et al. (2016), we know a function is L-smooth and satisfies PL conditions with constant
µy , it also satisfies the quadratic growth (QG) condition. Using QG growth we have:

∥∇y(xt, yt)∥2 ≤ L2∥y∗t − yt∥2 ≤ 2κL(Φ(xt)− f(xt, yt)). (79)

Then we have

E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ (16κ2L2 + 2κLLΦ +
2κLλ

G
2
3

)E
T∑

t=1

(ηxt )
2∥vt∥2. (80)

D.2 PROOF OF THEOREM 2

If we change the Assumption from strongly concave to µ-PL condition, this will only affect Case 2
and Case 4. In the following part, we give the new version of the bound.

Case 2: Assume E
∑T

t=1 ∥∇xf(xt, yt)∥2 ≤ 6E
∑T

t=1 ∥ϵxt ∥2 and E
∑T

t=1 ∥∇yf(xt, yt)∥2 ≥
6E
∑T

t=1 ∥ϵ
y
t ∥2. Combining equation 27 and equation 80, we have:

1

3
E

T∑
t=1

∥ϵxt ∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2

≤ 24 + 4G2

ββ̃
+

48L2γ2

ββ̃

[
E(

T∑
t=1

∥vt∥2)1/3
]
+

48L2λ2

ββ̃

[
E(

T∑
t=1

∥wt∥2)1/3
]
+ 2G2

+ 48L2γ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(P1)

+ 48L2λ2E
(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥wt∥2
)1/3

︸ ︷︷ ︸
(P2)

+ 12E
(
1 +

T∑
t=1

∥∇xf(xt, yt; ξ
x
t )∥2

)1/3
+ (16κ2L2 + 2κLLΦ +

2κLλ

G
2
3

)E
T∑

t=1

(ηxt )
2∥vt∥2.

(81)
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According to equation 46, setting ρ = (1344L2γ2)1/3 for Term (P1) and ρ = (150L2λ2)1/3 for
Term (P2) we have:

1

3
E

T∑
t=1

∥ϵxt ∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2

≤ 24 + 4G2

ββ̃
+ 2G2 +

1

72
E

T∑
t=1

∥vt∥2 +
3

28
E

T∑
t=1

∥wt∥2

+ (
96L2θ2

ββ̃
+ 16κ2L2 + 2κLLΦ +

2κLλ

G
2
3

)

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))1/3

+ (12 + 1174L3γ3 + 392L3λ3)
(
1 +

T∑
t=1

(∥∇xf(xt, yt; ξ
x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2)

)1/3
(82)

Using Case 2, we have:

1

4
E

T∑
t=1

∥ϵxt ∥2 +
1

4
E

T∑
t=1

∥∇yf(xt, yt)∥2

≤ 24 + 4G2

ββ̃
+ 2G2 + 4κL+

2κΦ∗

L

+ (
96L2θ2

ββ̃
+ 16κ2L2 + 2κLLΦ +

2κLλ

G
2
3

)

(
7E

T∑
t=1

(
∥ϵxt ∥2 + ∥∇y(xt, yt)∥2

))1/3

+ (12 + 1174L3γ3 + 392L3λ3)
(
1 + 2σ2T + E

T∑
t=1

(∥ϵxt ∥2 + ∥∇yf(xt, yt)∥2)
)1/3

(83)

It implies that

E
T∑

t=1

∥∇xf(xt, yt)∥2+E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ 6E
T∑

t=1

∥ϵxt ∥2+6E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ O(T 1/3).

(84)

Case 4: Assume E
∑T

t=1 ∥∇xf(xt, yt)∥2 ≥ 6E
∑T

t=1 ∥ϵxt ∥2 and E
∑T

t=1 ∥∇yf(xt, yt)∥2 ≥
6E
∑T

t=1 ∥ϵ
y
t ∥2. Following equation 56 and equation 80 we have:

T∑
t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤
T∑

t=1

∥ϵxt ∥2 + (16κ2L2 + 2κLLΦ +
2κLλ

G
2
3

+ 3Lγ2)E
T∑

t=1

(ηxt )
2∥vt∥2

+
4Φ∗

γ

(
1 +

T∑
t=1

(
∥∇xf(xt, yt; ξ

x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2

) )2/9( T∑
t=1

∥vt∥2
)1/3

︸ ︷︷ ︸
(P3)

.

(85)
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According to equation 46, setting ρ = ( 14Φ∗
3γ )1/3 for Term (P3) we have

T∑
t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤
T∑

t=1

∥ϵxt ∥2 + (16κ2L2 + 2κLLΦ +
2κLλ

G
2
3

+ 3Lγ2)︸ ︷︷ ︸
C6

E
T∑

t=1

(ηxt )
2∥vt∥2

+
12Φ∗

γ

(
1 +

T∑
t=1

(∥∇xf(xt, yt; ξ
x
t )∥2 + ∥∇yf(xt, yt; ξ

y
t )∥2)

)1/3
+

2

7
E

T∑
t=1

∥vt∥2,

(86)

Using Case 4 implies that

1

2

T∑
t=1

∥∇xf(xt, yt)∥2 +
T∑

t=1

∥∇yf(xt, yt)∥2

≤ 4κL+
3C6

2

T∑
t=1

(
E

T∑
t=1

(
∥vt∥2 + ∥wt∥2

))1/3

+
12Φ∗

γ

(
1 + 2σ2T +

T∑
t=1

(∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2)
)1/3

≤ 4κL+
3C6

2

T∑
t=1

(
2E

T∑
t=1

(
∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2

))1/3

+
12Φ∗

γ

(
1 + 2σ2T +

T∑
t=1

(∥∇xf(xt, yt)∥2 + ∥∇yf(xt, yt)∥2)
)1/3

(87)

It implies that:

E
T∑

t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2 ≤ O(T 1/3). (88)

Conclude all the above cases, using Cauchy-Schwarz inequality, we can easily get

1

T

[
E

T∑
t=1

∥∇xf(xt, yt)∥+ E
T∑

t=1

∥∇yf(xt, yt)∥

]

≤
√
2√
T


√√√√E

T∑
t=1

∥∇xf(xt, yt)∥2 + E
T∑

t=1

∥∇yf(xt, yt)∥2

 ≤ O(
1

T 1/3
)

(89)

Then we finish the proof.
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