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ABSTRACT

Counting constitutes a core skill underlying a wide range of tasks, such as formal
language recognition, multi-hop reasoning and simulating algorithms. Generaliz-
ing counting inductively is central to task success on out-of-distribution (OOD)
instances where testing inputs are longer than those seen in training. While there is
a large body of literature reporting poor length generalization in language models,
few papers have tried to distill the “reasoning” failure to the simplest case of count-
ing failure. We aim to provide a broader picture on whether various language model
architectures can a) learn to count, and b) generalize counting inductively. This
work provides extensive empirical results on architectures ranging from RNNs,
Transformers, State-Space Models and RWKV. We present carefully-designed task
formats, auxiliary tasks and positional embeddings to avoid limitations in general-
ization with OOD-position and OOD-vocabulary. We find that while traditional
RNNss trivially achieve inductive counting, Transformers have to rely on positional
embeddings (PEs) to count OOD. Further analyses on interpreting the learned
solution reveal that different PEs encode different inductive biases that facilitate
counting in different task formats. As counting is the basis for many arguments
concerning the expressivity of Transformers, our finding calls for the community
to reexamine the application scope of primitive functions defined in formal charac-
terizations. Finally, modern RNNs also largely underperform traditional RNNs in
generalizing counting inductively, hinting at the tradeoff modern RNNs struggle to
balance between parallelized training and maintaining their recurrent nature.

1 INTRODUCTION

“Difficulty in generalizing to longer instances” is a recurring theme in the discussion of Transformer
limitations, regardless of the task domain (Dzir1 et al.| [2023; |Saparov et al.; 2023} Zhang et al.| [2023]
Del’etang et al.,|[2022; [Liu et al.,|2022; |Bhattamishra et al.,[2020). We find that, although the notion of
length may vary across domains (e.g. sequence length, recursion depth, counter states for DSAs, stack
sizes for PDAs), counting is always involved as a required component to successfully handle the task.
In fact, counting might be leveraged by Transformers more often than necessary as it circumvents
the need to implement recurrence. For example, |Liu et al. (2022) indicates that Transformers may
rely on internal representations of counts to model counter languages, as a remedy for its lack of a
recurrent mechanism, but failing immediately on instances with OOD counts. Further,|Zhang et al.
(2023) indicates that for recursive problem-solving, specialized attention heads count the recursion
depth, dependent on which depth-specific solutions are learned. Therefore, counting is crucial for
Transformers to perform a variety of tasks, from formal language recognition to algorithmic reasoning.
And generalizing to OOD counts is crucial for handling longer instances. However, it remains unclear
whether Transformers can learn to count inductively.

On the other hand, RASP (Weiss et al.,2021), a programming language designed to mimic Trans-
former computations, treats counting as a primitive function based on which more complex algorithms
are built (e.g. sorting, reverse, Dyck). We question the generality of counting as a primitive building
block for Transformer computation. This paper conveys an important message that counting does not
come effortlessly as one might expect for a primitive function. Nontrivial requirements on positional
embeddings, input formats, and the amount of training have to be satisfied in order for a Transformer
to learn counting in-domain. Moreover, Transformers do not learn to count inductively, e.g. when
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the model knows increment (50) =51, it still cannot output the length of a 51-symbol sequence
as 51 if it has only been trained on up to 50-length sequences. Notably, in this work we do a direct
comparison with both modern and classical recurrent architectures to begin elucidating the source of
this modern limitation, not shared by previous approaches.

We conduct extensive experiments training Transformers to count inductively. We carefully design
the input-output formats, auxiliary tasks and positional embeddings to overcome the OOD-position
and OOD-vocabulary issues. However, we find negative evidence. Shallow 1L or 2L Transformers
struggle to generalize inductively. Successful generalization is observed with 4L Transformers, but
requiring different positional embeddings for different forms of counting. Expanding our comparison
to recurrent architectures, we find that RNN and LSTM succeed at everything we have asked,
whereas newer RNN architectures (e.g. State-Space Models and RWKV) have degraded performance.
Our work opens up attractive challenges for augmenting Transformers with a counter-equivalent
mechanism, as well as hybridizing Transformer and RNN without breaking their inherent strengths.

2 BACKGROUND

The inductive counting principle: If a word in an ordered number word list refers
to sets with cardinality n, then the next word refers to sets with cardinality n + 1
(Rips et al., 2006; [Piantadosi et al., 2012).

2.1 DEFINITION OF COUNTING

We define counting as the ability to map a number word to the cardinality of a set containing a
corresponding number of items. The crucial inductive step requires that, having learned the mapping
of the first n words to the first n cardinality values, one has to infer that adding one more item results
in a cardinality value corresponding to the (n + 1) word in the number word list. This definition
of counting is extensively studied in a branch of cognitive science concerning how children learn to
count (Davidson et al.||2012; |[Rousselle & Vossius, |2021;Sarnecka & Carey, 2008; Spaepen et al.|
2018)). The cognitive science research informs that children learn to count from 1 to 5 independently
in early ages, then drastically generalize to the entire natural number system by inductively inferring
how the number words in one’s native language map to cardinality values (Wynn, |1992; Margolis
& Laurencel 2008). Further, the structure of the language (e.g. avoiding special cases or change of
bases) correspond to learning to count earlier in childhood (Rousselle & Vossius||2021)).

Note how counting differs from knowing the ordered list of number words: reciting the number
word list constitutes an important prerequisite of counting, but establishing the mapping of numbers
from the language context to the cardinal context is the core problem of interest. Also note that the
complexity of number words may vary across languages. This would only affect the difficulty of
learning the number word list, without changing the requirements for establishing the mapping and
performing induction. Thus, the counting task studied in this paper is language-independent, and
we use arabic numerals, without loss of generality, for notational consistency. To avoid confusion
between number words and cardinality values, in our writings we use arabic numerals with single
quotation to denote numbers in the language context (e.g. ‘3’), and use arabic numerals with vertical
bars (e.g. 131) to denote numbers in the cardinal context. Numbers in the language context are treated
in the same way as input/output tokens in a language model, whereas numbers in the cardinal context
may only appear as internal states and its exact form may vary across individuals.

2.2 THE TRANSFORMER ARCHITECTURE

A Transformer takes a discrete sequence as input and outputs a discrete sequence. The input and
output sequences share a vocabulary >. The embedding and unembedding layers project a one-hot
vector with dim = |X| to the Transformer’s hidden_dim and back to |X|.

Between the embedding and unembedding layers are L layers of interleaved self-attention and MLP
blocks, with LayerNorm and residual connections inserted at appropriate locations. For an intuitive
understanding, self-attention layers communicate information across tokens, while MLP layers
allow each token to update information across the feature dimension (i.e. hidden_dim) individually.
Importantly, parameters are shared across tokens, and all input tokens perform the same operation in
parallel rather than sequentially. Equation [T[|mathematically defines the self-attention function.
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Since all input tokens perform the same operation in parallel, the Transformer does not intrinsically
distinguish tokens based on positions. Thus, positional information is needed to break this symmetry.

Sinusoidal Positional Embedding (SinePE)(Vaswani et al., 2017) SinePE computes positional
embeddings based on sine waves, which is added to token embeddings at the input layer.

Absolute Positional Embedding (APE)(Devlin et al., 2019) APE assigns learnable vectors to
position ids 1, ..., P, which is added to token embeddings at the input layer.

Rotary Positional Embedding (RoPE)(Su et al.,|2021) RoPE multiplies query and key vectors by
an unlearnable rotation matrix, such that the relative rotation angle between two positions captures
relative position. It requires a maximum sequence length P to be predetermined.

Scaler Positional Embedding (SPE)(Yao et al., 2021) SPE sides aside one dimension from the
Transformer’s hidden_dim and inserts positional information through a scaler value. Proposed by Yao
et al. (2021) who found SPE’s advantage over APE in modeling Dyck languages with bounded depth.

No Positional Embedding (NoPE) NoPE denotes the vanilla Transformer without positions. [Haviv
et al. (2022) suggests that the causal mask could leak positional information, by potentially allowing
each token to count the number of predecessors. However, this raises the same question of whether
Transformers can count. Thus, our experiments with NoPE will also inform how reliable Transformers
figure out absolute positions solely from causal masks.

A model easily falls apart if it has never seen the embedding for a position beyond the training length.
To tackle the OOD-position issue Kiyono et al. (2021) proposes to augment the input position_ids
(PIDs) with a random shift (shifted PEs) so that you start numbering positions from a random integer
between 1 and P, instead of always starting from 1. This ensures that all position embeddings will be
trained. [Ruoss et al. (2023) proposes a more general augmentation (randomized PEs), where the PIDs
for a length=k sequence is the sorted list of k integers randomly drawn from [1, P]. We empirically
find that randomized PEs perform much worse than shifted PEs. Thus we adopt shifted PEs.

2.3 AXES OF SEQUENTIAL COMPUTATION IN DIFFERENT ARCHITECTURES

The induction step of counting can be trivially afforded by sequential modeling, where “adding one
more item to the set” is operationalized as the model consuming one more input, and the increment
on cardinality is operationalized as unrolling one more step along the sequential axis. Table [
summarizes the axes for sequential computation in Transformers as well as in five representative
recurrent architectures. It is important to highlight the contrast between architectures dominated
by parallel computation and architectures dominated by sequential computation. Our work reveals
the implication of these differences on counting. In Transformers, due to the parallel processing of
attention, in order for a token to build on the computation results of its predecessors, it has to proceed
to the next layer. Thus, sequential computation occurs along the axis of Transformer layers. In RNNs,
sequential computation is realized through state transitions. SSMs share the concept of state transition
with RNNs, but have varied implementations specific to individual models. For further information,
Appendix reviews the design of recurrent architectures and Appendix [F.3]discusses the trade-off
between recurrence and parallelization.

Architectures Repetitive components that realize sequential computation
Transformer Attention + MLP Blocks
RNN Matrix Multiplication + J~
LSTM Matrix multiplication + J~ + Multiplicative gating
S4, Mamba Matrix multiplication
Linear Attention (e.g. RWKYV) Moving avg. of history with discounted weights

Table 1: Sequential computation enjoys the reuse of computation performed in previous steps and is
realized along different axes in different architectures.
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Task Design Examples Training/IND Testing OOD Testing
Input aaa . .. .aaa
Vanilla Count(2) € [1, 50] Count(a) € [51, 100]
Output 1 2 3 . .. . .. 484950
Vanilla Input aaa . .. .aaa 123 . . . ..9798100
. Count(a) €[1, 50] Count(a) € [51, 100]
+ Succession Output 1 2 3 . . . .. 484950 234 ... . 9899100
Input aaa . .. .aaa bbb....bbb Count() € [1, 50] Count(a) € [51, 100]
Helper token .
Outpul 123 . . . ..484950 123 . . . ..9899100 | Count(b)e [l,100]
Input 31bbbbb. ... ... .bbbbbbbbd Count() € (1, 50] Count(a) € [51, 100]
Oulput 313233343536 .. .. .. . . .. ..93949596979899100 Count(b) € [1, 100]
Helper token . » ) .
+ Shifted start Input 202 a . . . . aaa 6 a a . . . . aaa shiftedstart+Count(a) € [1,100] | shiftedstart+Count(a) € [51,100]
Output 202122 .. . . . 616263 666768 .. .. . . 0899100 | Sirtedstart+Count(b) & [1,100]
Input 10aa . . . .aaa 20aa .. ..aaa
Output 101112 .. .. . . 505152 202122 . .. . .. 616263 |Count(a)&ll, 50] Count(a) € [51, 100]
Shifted start shiftedstart+Count(a) € [1,100] | shiftedstart+Count(a) € [51,100]
Input 452 a . . . . aaa 66a a . .. .aaa
Oulput 454647 .. .. .. .. 697071 666768 .. .. .. .. 9899100
Input a4 aaaaaaaaaaaaaaaaaaaa
Modular (mod 10) Count() € [1, 50] Count(a) € [51, 100]
Output 1 23456789101 234567389101
) Input @ 2 @@ a o s 2aaessasaasny Count(a,) € [0, 10] Count(a,) €10, 10]
Selective
Output 1 12234 1536742384910556
Count(a,) € [0, 10] Count(a,;) €10, 10]
Count(a,) + ...+ Count(a,,) Count(a,) + ...+ Count(a,;)
e [1, 50] € [51, 100]
3 Count(a,) € [0, 10] Count(a,) € [0, 10]
Selective Input a @ a2 @ ar a; a3 @ a a; 4 a a3 a3 4 a3 a] a; a3 a a3
+Modular (mod4) | Output 1 122341 13234234412112 Count(a,) € [0, 10] Count(a,) €0, 10]
Count(a,) +...+ Count(a,) Count(a,) +... + Count(a,)
e[l, 64] € [65, 128]

Figure 1: Illustration of input-output formats. Every integer, as well as a, b, aq, ..., a1o are individual
tokens. Row 1: Vanilla counting, where each token outputs the count of a’s seen from the beginning
of the sequence up to itself. Row 2: Vanilla counting augmented with input-output pairs that inform
the order of number tokens. Row 3-4: b is the helper token, to be seen with larger counts. a is the
main token of interest, to bes seen with restricted counts during training and tested with OOD counts.
Row 7-8: a1, ..., a19 are distinct tokens. Each of them should maintain its own counter.

3 GENERAL EXPERIMENTAL SETUP

3.1 DATA CREATION

When generating the data, there are two important hyperparameters at play: MAX_TRAIN_SEQLEN
and MAX_OOD_SEQLEN. Note, MAX_IND_SEQLEN = MAX_TRAIN_SEQLEN. Please refer
to the rightmost two columns of Figure [T for their exact values. Since loss is computed at every
token, rather than only at the last token, there is no need to include shorter training sequences.
In fact, all training sequences have identical lengths equal to MAX_TRAIN_SEQLEN, in order
to max out supervision on larger counts. Similarly, every testing sequence has a length equals to
MAX_IND/OOD_SEQLEN.

Data creation for selective counting requires additional effort to balance the distribution. As Figure|T]
shows, each input sequence in selective counting can consist up to 10 unique tokens, a...a1g. If we
sample a;...a1g at random, their counts, Count(‘a;’), ..., Count(‘a1(’), will heavily bias towards
small values. It is desirable to balance the distribution so that each of Count(‘a;’), ..., Count(‘a1q’)
is uniformly distirbuted over [0, 10] in training. Thus, during training data generation, we upweigh
sequences where some tokens have larger counts, resulting in the distribution shown in Figure[A7]
The distribution of Count(‘a;’), ..., Count(‘a;(’) in the OOD test set is skewed towards larger values
because they are longer while we restrict each unique token to appear less than ten times.
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3.2 IMPLEMENTATION

‘We follow the standard GPT-2 implementatiorﬂ and train 1, 2, 4-layer Transformers to count. Our
models are restricted to be shallow because counting should not take much computation if it truly
serves as the primitive building block for other complex functions. Weiss et al.|(2021) suggested that
computing the length of a sequence can be done within one layer. We generously increase the budget
to four layers. The input-output formats are summarized in Figure |l{and detailed in Section 4| Each
number word is tokenized into an individual token, corresponding to whole-number tokenization in
the LLM literature. We note an alternative where numbers are tokenized into digits. We opt not to
use single-digit tokenization because previous studies show that when numbers are represented by
multiple tokens, early Transformer layers serve to “detokenize" , while late Transformer layers take the
additional reponsibility to "re-tokenize" (Elhage et al.||[2022). This suggests that whole-numbers are
the preferable processing units in Transformers, while single-digit tokenization adds extra complexity
of mapping token spans and numbers back and forth. This work adopts whole-number tokenization
to avoid conflating the complexity of counting with that introduced by tokenization.

3.3 CHECKPOINTING AND EVALUATION

We checkpoint and perform IND/OOD testing every 30K steps. The evaluation is accuracy averaged
across the sequence dimension. The total length of training is typically 312.5K or 625K steps. These
stopping times are empirically chosen, by which the model has either experienced a long overfitting
period with plateaued testing accuracy, or already saturated to perfect. For each model, we report
performance on the best checkpoint over the entire course of training. We find different patterns in
the training and testing curves across task variants and types of positional embeddings. While IND
testing scores usually increase monotonically, OOD testing scores may bump and drop if the model
overfits. Due to the space limit, we only report the maximum performance along the curves as we
believe the performance upperbound is of more interest in this study, and leave the examination of
learning dynamics to future work. There is a possible connection between the bumps observed in
some of our counting tasks to the grokking (Nanda et al.,|2023) phenomena. While it is impossible to
rule out late grokking that would have happen after we stopped our training jobs, we already allow a
long patience window within the training duration of 312.5K or 625K steps. Usually, no improvement
was observed in the latter half of training. Moreover, every experiment has been repeated with five
seeds, which further enlarges the search range for grokking if it could ever happen. Unless otherwise
noted, we report the best performance out of five seeds. Appendix [B]reports the median performance
out of five seeds which complement the main Transformer and RNN results in Table [2]and Table[AT.

4 COUNTING

Training a model to count inductively requires us to provide 1) An ordered number word list covering
the full set of cardinality values, 2) Examples of mapping between number words and sets of objects
for small cardinalities. Crucially, the full list of ordered number words should be taught without
exposing the model to any set of objects with an out-of-distribution cardinality. Considering this,
a vanilla approach would be to add the succession sequence, i.e. ‘1, ‘2’, ..., to the training data.
However, this is largely ineffective, as shown in Table 2} Top. This is because the model would easily
master the succession sequence by modeling the bi-gram statistics, which brings no help to counting.

A more helpful approach is to teach counting with a helper token, which is seen up to the cardinality
of M. The cardinality of the main object remains to be bounded by N in training. In fact, the helper
token trivializes generalization. Intuitively, this task asks: “If you have learned to count bananas up
to 100, but you have never seen as many as 100 apples, can you count apples up to 100?" (Figure|l}
row1). Though generalization under this setting does not require induction, we view this task as a
useful sanity-check because it is undesirable to establish the counting ability tied to specific objects.

Next, we propose “shiftedstart”, a modification to the input-output format, to simultaneously achieve
1) full exposure of the vocabulary (as well as its ordering) and 2) bounded exposure of cardinalities.
Given that, we can test generalization with the OOD cardinalities. Concretely, we insert a number
word (k) at the initial position to shift the beginning of the output counting sequence from 1 to k+1.
We illustrate this in Figure[T, row 3. Compared to the helper token setting, the shiftedstart setting

18 heads, 1,024 dim and 4,096 MLP-dim. LR=1e-4 with 3k steps of linear warmup. Batch size is 32.
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NoPE Sine APE RoPE SPE

Task L IND OOD|IND OOD|IND OOD|IND OOD| IND OOD
Vanilla 2 20 00 [100 00 | 100 00 | 20 00 | 100 00
+ Succession 4 20 00 | 100 00 |100 00 | 20 00 | 100 00
I 2 100 100 | 100 764 | 100 80.6 | 100 100 | 100  92.9
p 4 100 100 | 100 71.7 | 100 693 | 100 100 | 100 99.8
Heloer Tok 1 100 41 997 00 | 100 136 | 100 7.4 | 100 4.1
gﬁ’? dosen 2 100 100 | 100 100 | 100 81.34| 100 787 | 100 183
o Rl S 4 100 100 | 100 956 | 100 100 | 100 100 | 100  99.8
1 100 167 | 100 43 | 100 505 | 100 377 | 100 9.0

Shifted Start 2 100 250 | 100 787 | 100 27.8 | 100 925 | 100 578
4 100 461 | 100 486 | 100 519 | 100 98.86| 100  83.8

1 11.8 11.8 | 100 100 | 100 712 | 11.8 11.8 | 100 8.2

Modular (mod10) 2 120 11.8 | 100 100 | 100 100 | 11.8 11.8 | 100 8.2
4 118 11.8 | 100 100 | 100 100 | 11.8 11.8 | 100 12.1

1 960 93 | 995 688 | 100 106 | 99.7 299 | 99.8 61.3

Selective 2 997 941 | 99.8 326 | 100 139 | 997 49.1 | 99.7 869
4 997 100 | 100 100 | 100 100 | 99.7 525 | 994 982

Selective 2 923 564 | 965 474 | 998 272 | 98.1 323 | 997 46.8
+Modular (mod4) 4 974 918 | 100 982 | 999 973 | 985 39.8 | 982 54.6

Table 2: Top: When the vocabulary corresponding to OOD-cardinality is exposed via the succession
sequence, models achieve perfect accuracy on reciting the Succession sequence, yet perform pooly
on counting. This clearly show that augmenting training data with the ordered number word list
offers no assistance to counting. We teach the model number words covering both IND
and OOD counts, without exposing the model to OOD cardinalities. This is ensured via either
an auxiliary task involving a Helper Token, or modifying the input-output format with a Shifted
Start. Transformer counting for the Modular or Selective variants (or both). Positional
embeddings are augmented with random shift by default. We denote Layers, L, and In/Out-of
distribution as IND/OOD. OOD accuracies are only calculated at extrapolation positions.

imposes a greater challenge since a cardinality above N is strictly absent from training data. Moreover,
shifted starts discourages a model to exploit a rigid mapping from input positions to outputs — an
undesirable solution that may inflate performance. Finally, we also experiment with a “Helper Token
+ Shifted Start" to enrich the evidence that our task design does not permit easily-hackable solutions.

Table 2} Middle shows the counting performance of Transformers, with the training data augmented
with a helper token, shifted starts, or both. A helper token indeed makes the task easier, as evidenced
by near-perfect OOD accuracy of all five positional embeddings. When the order of number words is
only exposed by virtue of the shifted starts, only a 4L RoPE Transformer is able to generalize. The
poor results for 1L and 2L models suggest that counting in Transformers may require a non-trivial
computation budget. This initial result already calls into question the validity of treating counting as
a primitive operation in existing papers. Further, reasoning problems that treat counting as a primitive
operation would impose larger demands in order for inductive generalizations. Otherwise, instances
with larger counter states should be explicitly demonstrated during training. Extrapolation to larger
counter states do not trivially emerge as a result of mastering in-domain data. A more generous read
is that current results relying on counting should only be interpreted as valid for in-domain settings —
not as general computational engines as papers often characterize them.

Modular Counting In the previous section, we found that Transformers largely failed to generalize
inductively except for those equipped with RoPE. This calls for the next question: If it is too hard
for Transformers to simulate “unbounded counters”, can they simulate modular counters — only
requiring a finite counter states? Modular counting will not run into the OOD-vocabulary issue,
so remedies we apply in the last section, including the helper token or shifted starts are no longer
necessary. However, modular counting introduces additional complexity for modelling periodicity.
We believe modular counting should be as powerful as “unbounded counting” because, for example, a
stack of mod10 counters, coordinating appropriately, would give us the entire natural number system.
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Table 2 row 5 shows that only APE and SinePE generalize well on modular counting. NoPE and
ROPE failed catastrophically, not even fitting the training data. The failure of RoPE is particularly
interesting because one would expect its formulation to inherently inform periodicity. Section[5
provides explanation. Briefly, RoPE only modifies queries and keys, which does not help with
symmetry breaking of a homogeneous input where all value vectors are identical in the first place. In
this sense, RoPE behaves similarly to NoPE. Appendix [C|provides results showing that NoPE and
RoPE must rely on an explicit beginning-of-sequence token to achieve modular counting in-domain.
SPE achieves perfect in-domain accuracy but breaks immediately once extrapolation is required.

Selective Counting We examine whether Transformers can selectively count predecessors satis-
fying a condition. In the counting context, selective counting is worth exploring because when an
unbounded counter is approximated via a modular counter stack, counters above the first level will
have to perform selective-modular counting. More broadly, selectivity is important because obser-
vations that carry useful information are sparse — the same consideration that motivates Mamba’s
proposal of selective-scan (Gu & Daol [2023)). In the general form of selective-counting, a predicate
function pred can be learned such that each token x outputs the number of predecessors x; where
pred(z, z;) = True. This corresponds to the “selector_width" primitive in RASP. Our experiments
simply regard the identity indicator function as the selection condition. Learning predicate functions
adds complexity along an axis orthogonal to inductive counting, which we leave for future research.

Note, we remove the requirement for generalizing to OOD counts via induction on the mapping
between vocabulary and cardinality, because this is the primary subject of discussion in Sectiond] In
this section, we focus on the additional challenge related to selectivity. We generate the training data
containing ten unique tokens such that the count of each unique token ranges from zero to ten. In the
testing data, we also ensure that the counts do not exceed ten. However, our testing sequences are
longer than the maximum training length. Thus, the summation of counts for all tokens, as well as
the range of dependency in order to perform selection, are OOD.

Table 2/ row 6 shows the results for selective counting. All PEs except for RoPE succeed given 4
layers. The observation that NoPE outperforms other PEs on selective counting is interesting. It
suggests that causal masking may indeed aid in symmetry breaking. And, in fact, our results indicate
that PEs might unintentionally introduce exploitable shortcuts or inductive biases unfavorable to
generalization. Finally, we perform experiments on selective-modular counting. We adopt a smaller
base (4 instead of 10), in order to prevent a substantial growth of sequence length, since a selective
counting sequence contains 10 unique tokens interleaved together, unlike a homogeneous sequence
in previous counting tasks. Results are shown in Table 2]row 6, which demonstrate a clear message:
only PEs — SinePE and APE — which generalizes on both modular counting and selective counting
performs well on selective-modular counting. NoPE also achieves a fairly good performance on
selective-modular counting, in contrast to its poor performance on modular counting. To explain this
observation, NoPE’s limitation on modular counting stems from its inability to break the symmetry
of a homogeneous sequence. Such a limitation no longer applies to selective-modular counting as the
input becomes heterogeneous. Section [5|and Appendix [D[E provide further evidence.

There are two major takeaways from our Transformer counting experiments: 1) When counting is
treated as a primitive towards more complicated reasoning, it is better to cover all possible counter
states in-domain, as Transformers struggle to count inductively and rely on supervised encounter with
each cardinality value. 2) Different PE schemas exhibit strength in different forms of counting. Put
concisely, RoPE succeeds at unbounded counting with shifted starts; SinePE and APE generalize at
both modular and selective counting; NoPE and SPE are only competitive on selective counting. Our
results motivate the integration of multiple PE schemas to take advantage of orthongonal strengths.

5 WHY DO EACH OF THE PE STRATEGIES BEHAVE DIFFERENTLY ?

We proceed to find hidden factors that account for the observed performance differences among
PE schemas. We proposes two generalizable mechanisms, for modular and selective counting,
respectively. Each mechanism demands particular inductive biases. Each PE schema either supports
or goes against certain inductive biases. The strengths and shortcomings of each PE schema revealed
in our analysis consolidate our core argument that language models need inductive biases to count
inductively. Our contributions are novel in two regards: 1) recognizing unique sets of inductive
biases for modular and selective counting that are plausible for a Transformer to implement — where
parallel computation dominates, and 2) studying how these inductive biases are realized by PEs. We
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believe our findings will both inspire theoretical studies to quantify how much expressivity is added
to Transformers by separate PE schemas, and advise downstream applications on the choice of PE
based on the demand for inductive biases.

Modular Counting The mechanism that allows for perfect generalization to the OOD test set
consists of two steps: First Token Recognition and Position-based Modular Subtraction. The first
step, First Token Recognition, is necessary to address the additional complexity introduced by the
position-shift technique (Section[2.2). The model must locate the first token in each input sequence
in order to figure out the position-shift value. In the second step (Equation[2)), each token attends to
the first token and compute the difference in their PIDs modulo 10, which gives the desired output.

OUtPUt = ((PIDﬁrstftok%lo) - (PIDcurrentftok%lo))%lo (2)

First Token Recognition demands the inductive bias for breaking symmetry. Since the input sequences
in our modular counting task are homogeneous, the model must leverage PEs to distinguish among
identical tokens. To test for how well each PE schema supports this inductive bias, we design a first
token recognition task (dubbed first_tok_homogeneous) whose details are described in Appendix D,
We train 1L Transformers with five PE schemas and find that only APE, SinePE and SPE are able
to fit the training data and generalize to unseen sequence lengths. NoPE and RoPE’s inability to
recognize the first token explains their failure in modular counting, as the position-shift technique
renders any rigid mapping from PID to the output useless.

Position-based Modular Subtraction requires the capability to cluster token representations based on
their PID modulo 10. Both APE and SinePE support such constructions, as evidenced by the PCA
plots of hidden states. Figure[A3|plots the first two principal components of intermediate states, color
coded by PID modulo 10. Tight clusters indicate that the model produce close representations for
tokens whose PIDs modulo 10 have the same value. Such clustering pattern is only observed for APE
and SinePE, but not for SPE models. We believe that injecting positional information only through
a single dimension limits an SPE Transformer’s ability to build richer features based on positions,
which probably explains why SPE succeeds at first token recognition but fails at modular counting.

Selective Counting The generalizable mechanism suitable for the Transformer architecture again
consists of two critical steps: First Token Recognition and Token-based Attention. This mechanism
closely resembles the construction in |Chiang & Cholak (2022) for recognizing PARITY, which
crucially depends on 1) a beginning-of-sequence (BOS) symbol and 2) uniform attention over tokens
that are either the BOS or identical to self. Though our task format does not include a BOS, we
argue that causal masking is sufficient for first token recognition, as long as the input sequence is
largely heterogeneous. This is verified through a variant of the first token recognition task (dubbed
first_tok_heterogeneous), in which the input is a shuffled sequence containing 10 unique tokens, each
occurring a random number of times. We find that a NoPE 1L causal Transformer is able to generalize
well on first_tok_heterogeneous. Appendix E provides details about first_tok_heterogeneous and
mechanistically describes how causal masking helps to accomplish it.

The first token, once recognized, can serve the role of BOS for subsequent layers. Following [Chiang
& Cholak| (2022), subsequent layers should construct features that represent two quantities for each
token: 1/n and k/n, where k is the desired output (i.e. the count of identity tokens on or before
the current token) and n is the total count of tokens up to the current token. Next, LayerNorm and
MLP will learn the map (1/n, k/n) — k. The key to construct representations for &k /n is computing
attention weights purely based on token identity, regardless of PIDs. Indeed, given the task format,
positional information is not needed to solve selective counting. Therefore, one of the critical factors
accounting for the different performance between PE schemas is whether the model can ignore PEs.
A NoPE Transformer effortlessly achieves this, thereby already generalizing well with 2L.. SPE
only minimally injects positional information through a single dimension, thus not imposing much
difficulty when the PEs are supposed to be ignored. In that sense, SPE performs closer to NoPE, in
accordance with our results in Table[2]row 6. APE and SinePE only generalize well with 4L, due to
two possible reasons: 1) It requires non-trivial effort for APE/SinePE Transformers to ignore PEs.
2) PEs are actually helpful for first token recognition, a prerequisite subtask, thus complicating the
picture. We additionally experiment with Selective Counting + BOS and the results corroborate our
hypothesis. Explicitly feeding BOS lowers the complexity and removes the supervision signals which
might be at odds with the need for disregarding PEs. Table[A7 shows that both APE and SinePE are
able to emulate NoPE with 1L when BOS is included.
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Nevertheless, RoPE does not benefit from BOS, indicating that its struggle may majorly come from
the second subtask, Token-based Attention. Unlike APE, SinePE and SPE, where positions affect the
input representations, RoPE directly use positions to modify queries and keys. Such modifications
encode a recency bias (Su et al.| 2021) — an unfavorable inductive bias in this case — which we
believe is hard to be escaped by the rest of the network through learning. We hypothesize that the
enforcement of recency bias leads to the difficulty of implementing pure token-based attention. One
indicative piece of evidence is the variation of attention scores as the input PIDs varies, keeping the
same input token ids (TIDs). Figure [A6| visualizes the standard error of attention score (i.e. entries of
QKT) between each pair of TIDs, across all PID pairs they can take. For models trained on selective
counting, attention scores in RoPE subject to the largest amount of variation influenced by PIDs,
while attention scores in APE are the least sensitive to PIDs. There may be other explanations for why
ROPE struggles more than other PE schemas at selective counting, which is left for future work. We
hope the counting tasks proposed in this work provide a lens through which inductive biases enabled
by PEs that are not otherwise encoded in self-attention can be studied in isolation. Future work may
extend this work by exploring how those inductive biases carry over to broader arithmetic domains.

Shifted Start Counting For shifted start counting, we are unaware of a generalizable solu-
tion, which calls into question the seemingly successful generalization of RoPE 4L in Table [2
row 4. However, the ability for RoPE to generalize is fragile. Successful generalization when
MAX_TRAIN_SEQLEN = 50, MAX_OOD_SEQLEN = 100 does not imply success when the
ratio between them is arbitrarily extreme. In fact, we have easily challenged RoPE 4L to failure
by making MAX_OOD_SEQLEN four times larger than MAX_TRAIN_SEQLEN. Table @] sum-
marizes the performance of RoPE 4L with different combinations of MAX_TRAIN_SEQLEN,
MAX_OOD_SEQLEN, clearly demonstrating a worsening trend as the ratio makes generalization
harder. The fragility of RoPE, as well as the failure of other PE schemas indicate that the OOD-
cardinality issue remains unsolved, which is the core obstacle to inductive counting in Transformers.
Our work raises the importance of OOD-cardinality as a harder barrier hindering generalization on in-
ductive counting. OOD-cardinality poses a separate difficulty from OOD-position, OOD-vocabulary,
or OOD-range-of-dependency problems, and shall not be confused with these problems that the liter-
ature on length generalization (Press et al., 2021} Kiyono et al., 2021} Ruoss et al., {2023} |Kazemnejad
et al., 2024} |Anil et al.| [2022; [Zhou et al., 2024) has been targeting at.

6 COUNTING IN OTHER LM ARCHITECTURES

As counting is a fundamentally recurrent task, it is natural to validate our conditions on recurrent
architectures. Both the explicit modeling of hidden state transitions, and the sequential unrolling of
computation along the input sequence dimension, naturally facilitate inductive counting. Note, there
exists prior work hinting at counting in such architectures (Shi et al.| 2016;|Suzgun et al.,[2019)), but
not directly evaluated in a systematic comparison. We find that traditional recurrent architectures,
RNN (Elman, |1990) and LSTM (Hochreiter & Schmidhuber, |1997), achieve perfect generalization
with a single layer, except that RNN slightly falls short on selective counting (Table [AT). This
highlights that a recurrent bias is likely key for inductive counting, which is precisely what the
Transformer lacks and must therefore rely on PEs as substitute.

The recent literature has seen a resurgence of modern RNN architectures (Gu & Daol 2023} |(Gu et al.,
2021a; |Peng et al., 2023;|2024) claiming to enjoy the best of both worlds: parallelizable training, like
Transformers, and recurrent inference, like RNNs. It is important to investigate whether the recurrent
formulation of these architectures affords inductive counting in the same way as traditional RNNs.
To this end, we experiment with three modern RNNs — S4 (Gu et al.|[2021a), Mamba (aka S6) (Gu
& Dao, 2023) and RWKV-v6 (aka Finch)(Peng et al., | 2024) that rival Transformers on large-scale
LM benchmarks. The key observation is that modern RNNs generalize much worse than traditional
RNNs on counting. We suspect the reason lies in less flexible state transitions, especially for Mamba
and RWKV. The very design that enables parallel training through reformulating the model into the
“convolutional mode" also limits the expressivity of state transitions. As illustrated in Table[T and
Appendix [A.T] while traditional RNNs apply a nonlinearity to state transitions, modern RNNs only
apply matrix multiplication or linear interpolation to history states, for the sake of easy contraction of
multiple sequential updates into a single computation step. A potential limitation of this design is
manifested through our counting tasks, opening up questions about what architectural elements imbue
the necessary inductive biases for counting, and how these can be transferred to hybrid architectures.
Appendix [A provides implementation details and results for counting on other LM architectures.
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7 RELATED WORKS

Formal Theories on Transformer Expressivity Transformer expressivity can be formally analyzed
from the perspectives of functional libraries (Weiss et al., [2021; |Lindner et al., |2023; |Zhou et al.|
2023), boolean circuits (Cong et al., [1996;|Yang & Chiang, |2024; Strobl et al.| [2024; Merrill et al.|
2022), or Automata Theory (Del’etang et al., 2022} |Yao et al.,[2021; |Liu et al., {2022} [Ebrahimi et al.,
2020). We expand the discussion on this large body of literature in Appendix [Fl Formal studies have
established proofs for Transformers’ inability to count in a length-generalization regime (Hahn, [2020;
Bhattamishra et al.|2020) (usually in the context of modeling counter languages). However, the proofs
involve assumptions such as 1) hard attention, i.e. hardmax instead of softmax, 2) infinite sequence
length, 3) pure-attention architecture, i.e. without layernorm or PEs, 4) infinite or log precision. It is
unclear how certain assumptions in theoretical proof translate to real applications. Although we do
not contribute new theoretical results, our work complements formal studies in important ways. First,
we provide empirical evidence that echoes the theoretical proofs, under a realistic setting. Second,
theories on Transformer or self-attention seldomly treat different PEs as separate cases. We argue
that PEs in fact encode various inductive biases the worth detailed examination. Third, PE shift is
another important realistic consideration which may affect expressivity but has been simplified away
in theories. Overall, our work lays the ground where future theoretical discussions may branch out
according to PE types, as well as inspiring practical design choices revolving around PEs.

Empirically assessing Transformer expressivity Abundant prior works have empirically studied
the capacity of Transformer-based LMs. Categorizing by scale, these works include 1) testing
Transformers with hand-constructed weights (Chiang & Cholak, [2022); 2) testing Transformers
trained from scratch (Del’etang et al., [2022; |Abbe et al., 2023; |[Ebrahimi et al.|, 2020; Zhou et al.|
2023; McLeish et al., 2024); and 3) testing pretrained LMs with finetuning (Anil et al., [2022) or
prompting (Zhou et al.,[2022). Categorizing by task design, prior works usually adopt synthetic tasks
organized into hierarchies, with a notion of complexity informed by formal languages (Del’etang et al.,
2022;[Zhou et al.,2023; |Hao et al., 2022; [Liu et al.| |2022; |Kazemnejad et al.,2024; Ebrahimi et al.,
2020; Ruoss et al.,[2023) or boolean functions (Bhattamishra et al.,|[2022; |Abbe et al., 2023). Our
work contributes to this body of empirical evidence. Our task design additionally draws inspiration
from cognitive science (Rousselle & Vossius, 2021;Sarnecka & Carey, 2008). Of particular note is
that|Zhou et al.|(2023)) also studied counting, which differs from ours by definition: the input includes
a start and an end token, the output is an incremental expansion, e.g. 12 16 > 12 13 14 15 16. We
believe that this can be handled by mastering the succession sequence plus a termination checking.
Hence, their definition of counting involves neither numbers in the cardinality context nor induction.

We additionally review the literature on modern recurrent architectures in Appendix [F:3.

8 CONCLUSION

Building on a growing body of work on formalizing the computation in Transformers, this work
investigates counting, which is believed to be a primitive function enabling a Transformer to perform
a wide range of complex tasks, such as modeling counter languages (Bhattamishra et al., 2022}
Hao et al., |2022; [Ebrahimi et al., [2020), simulating algorithms (Anil et al., |2022; [Zhong et al.,
2024; |Velickovic et al., 2022), and tracking the depth of reasoning chain (Saparov et al., 2023).
However, there is an important distinction between counting in-domain and counting infinitely, which
is understudied in the literature. While counting in-domain can be achieved with various approxi-
mations, counting infinitely imposes a significant challenge concerning induction and extrapolation.
We provide extensive empirical evidence showing that 1) Counting is not a primitive function of
Transformer computation as others have claimed, as it may require multiple layers to succeed at
counting in-domain; 2) Different positional embeddings enable out-of-domain generalization in
different forms of counting. Our findings have implications for avoiding out-of-distribution counter
states in practical scenarios and the promise of integrating different positional embeddings. We also
extend our investigation to recurrent architectures, including both traditional and modern models.
We observe that while traditional RNNs easily generalize counting inductively, no single modern
RNN generalizes on all six variants of our counting tasks, implying that inductive counting not only
requires a recurrent formulation, but also demands expressive state dynamics. Thus, our investigation
reveals a potential limitation where modern RNN architectures pay the cost for their lauded parallel
training, motivating better solutions to combine the merits of Transformer and RNNs.
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