
SPADE: Inferring Transcriptional Dynamics from
Spatial Transcriptomics with Physics-Informed Deep

Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In situ sequencing–based spatial transcriptomics technologies, such as 10x Ge-1

nomics Xenium and Vizgen MERSCOPE, have recently emerged as powerful2

platforms that enable subcellular-resolution mapping of RNA transcripts within3

intact tissues. While existing computational models developed for pixel-based4

spatial transcriptomics can be applied to in situ sequencing data, these approaches5

overlook molecule-level information and thus underutilize the full potential of6

the high-resolution measurements. Recognizing that post-transcriptional mRNA7

localization arises from a hybrid process of active transport and diffusion, we8

hypothesized that the spatial distribution of transcripts relative to the transcription9

start site encodes information about transcriptional activity within short time win-10

dows, offering a new paradigm for inferring transcriptional dynamics. To realize11

this capability, we present SPADE, a physics- and systems biology–informed deep12

learning framework that leverages the spatial organization of RNA molecules to13

infer transcriptional dynamics. SPADE first constructs a trajectory for each cell,14

ordered along a pseudo-time axis defined by local shifts in molecule distributions,15

and then employs a recurrent neural network to disentangle RNA synthesis from16

drift–diffusion processes under a bistate transcriptional regulation model. Exten-17

sive evaluations on both simulated and in-house spatial transcriptomics datasets18

demonstrate that SPADE accurately reveals gene-specific bursting patterns, recov-19

ers dynamic transcription rates, and uncovers regulatory delays between genes. As20

the first framework to estimate temporal variations in transcription rates from static21

spatial transcript distributions, SPADE establishes a novel paradigm for studying22

transcriptional dynamics and their underlying biological mechanisms.23

1 Introduction24

Recent in-situ sequencing-based spatially resolved transcriptomics (SRT) technologies [14, 15, 16],25

such as 10x Genomics Xenium and Vizgen MERSCOPE, measure the exact locations of mRNA26

molecules that enable subcellular or even higher resolution quantification of their abundance. By27

measuring molecule-wise spatial coordinates of transcripts, these platforms provide unprecedented28

information to study the dynamics of transcription and intracellular transport of mRNA molecules.29

Despite this promise, existing computational approaches for SRT data were mainly designed for30

pixel-based SRT data [3, 11, 12], which quantify gene expression at the cellular level and tend to31

overlook the fine-grained spatial distributions of individual molecules. The intracellular distribution32

of mRNA is shaped by three processes: synthesis at transcription start sites, active transport, and33

diffusion throughout the cytoplasm[6, 1, 2]. These mechanisms jointly determine the number of34

transcripts and where these transcripts are observed within a cell. Thus, the spatial coordinates of35
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Figure 1: Bi-State transcription model. a) on/off state of transcription. Top: off state, no new
transcripts generated; Bottom: on state, RNA molecules generated at the transcription start site. b)
RNA dynamics under different states. Top: drift-diffusion of existing molecules from nucleus to
cytosol; Bottom: on state, besides the movement of existing molecules, new molecules are generated
and will undergo the same diffusion process.

mRNA molecules, ranging from those distributed near the transcriptional start site, reflecting newly36

synthesized transcripts, to those dispersed in the cytosol, representing transcripts synthesized earlier,37

provide rich information to study the dynamics of transcription and the subsequent motion of mRNAs.38

The spatial distribution of mRNA molecules arises from the combined effects of transcription, active39

transport, and random diffusion. Consequently, the distance of molecules from the transcriptional40

start site encodes the integration of these processes, allowing spatial patterns to serve as a short-term41

temporal proxy of transcriptional dynamics. In this study, building on the dynamic model of mRNA42

transcription and motion [20], we developed a disentangled deep learning framework that separates43

the contributions of transcription and active transport, enabling inference of transcriptional rate44

changes over short time intervals. Unlike existing approaches such as RNA velocity, which estimate45

transcriptional activity from static omics data at the moment of measurement, our method leverages46

spatial distributions to predict short-range transcriptional dynamics, thereby capturing regulatory47

delays and establishing a new paradigm for modeling transcriptional processes.48

Based on these ideas, we developed SPAtial Dynamics infErence (SPADE), a physics- and systems49

biology-informed deep learning framework to model transcriptional dynamics using in-situ sequenc-50

ing based SRT data. For each cell, SPADE first infers a pseudo-time trajectory of cells within its local51

neighborhood by quantifying the shifts of transcript distribution using a Kolmogorov-Smirnov statistic52

[13]. These time-series sequences are then input to a long-short term memory[8] (LSTM)-based53

neural network to learn the transition functions between consecutive states. By the systems biology54

of transcription dynamics, each transition is formed of two components, a transcription generation55

module that models the biosynthesis of mRNA, and a diffusion module that models the movements of56

mRNA molecule. By implementing biological and physical principles into the network architecture,57

SPADE is able to explicitly learn the underlying factors that drive the transcriptional dynamics.58

We evaluate SPADE on both simulated datasets and in-house collected in situ sequencing data.59

Experimental results demonstrate that SPADE accurately recovers dynamic transcription rates,60

identifies gene-specific bursting patterns, and uncovers regulatory delays between genes. To the61

best of our knowledge, SPADE is the first framework to infer temporal variations in transcriptional62

rates from single snapshots of spatial observations. By integrating biophysical principals with63

disentangled deep learning, SPADE established a new paradigm for studying the dynamical behaviors64

of transcription. We believe it brings valuable insights for revealing dynamic biological processes65

from high-resolution spatial data.66

2 Background67

2.1 RNA dynamics in cells68

The observed abundance and spatial localization of RNA molecules are resulted from three processes.69

Biosynthesis generates new mRNA transcripts at transcription start sites, regulated by transcription70

factors or epigenetic regulators. The newly generated molecules will then be transported from the71

nucleus to the cytosol, ER, or other subcellular compartments, driven by both active transport and72
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diffusion. The molecules will undergo this drift-diffusion process throughout the cytoplasm until73

degradation.74

A commonly used systems biology model of transcription is the Bi-State model[18, 5, 9] (see75

Figure 1), where genes switch between “off” and “on” states. In the “off” state, no new molecule76

will be produced, and the spatial distribution of the transcripts only reflects drift–diffusion of77

already transcribed molecules. In the “on” state, synthesis and diffusion act jointly. The spatial78

distributions are shaped by both the synthesis of new mRNAs and the diffusion of newly synthesized79

and existing mRNAs. Noted, this model captures most patterns of transcriptional dynamics such80

as cis-transcriptional regulation and transcriptional bursting, which links the spatial distribution of81

mRNA molecules with their underlying transcription mechanisms.82

The biological hypothesis of our model is that the snapshots of transcript spatial distributions encode83

temporal transcriptional signals: transcripts near the nucleus often correspond to recent generations,84

while more dispersed molecules are more likely to be related to older events.85

2.2 Task definition and formulation86

We first introduce the notations and features used in our model. Because transcriptional dynamics are87

gene-specific, SPADE models each gene independently by using the spatial distribution of its mRNA88

molecules within each cell. To train a deep disentangling model, we first derive a feature vector from89

the spatial distribution of transcripts within each cell. For each cell, we discretize the radial distance90

from the nuclear center to the cell boundary into a series of intervals. Denote the nuclear center as d0,91

and the width of each interval as ∆d, the boundary of the j-th interval can be defined as:92

dj = d0 + j ·∆d (1)

For each gene, denote the feature vector of a cell as x. Its j-th entry xj is the number of mRNA93

molecules of the gene located between dj−1 and dj . By this definition, the intracellular spatial94

distribution of the mRNA will be encoded by x.95

Based on our biological assumptions, the feature vector xti at any time ti can be denoted as the96

summation of two components:97

xti = mti + gti (2)
, where m denotes the contribution of the drift-diffusion process of the existing molecules and g98

represents the contribution of the newly generated transcripts.99

By this definition, the dynamics of the system can be represented by how the feature vector evolves100

between consecutive time points xti to xti+1 :101

xti+1
= f(xti) (3)

, where f is the transition function that encodes the transcription dynamics following the bistate102

transcription model and motion of mRNA molecules. The objective of our model is to learn f from103

the observed spatial patterns of the transcripts.104

3 Method105

3.1 Overview of SPADE106

SPADE is a systems biology-informed deep learning framework designed to infer transcriptional107

dynamics using in-situ sequencing-based SRT data (see Figure 2). SPADE is based on two com-108

putational assumptions: 1) the transcriptional dynamics of one gene in an individual cell can be109

reconstructed from snapshots of the gene’s expression pattern in multiple cells at different states, and110

2) the spatial distribution of mRNA molecules can recapitulate the processes of its synthesis and111

movements. The input of SPADE is the spatial distribution of mRNA molecules, the boundary, and112

the transcription start site of each cell. The output is the transcription rate in a small time interval for113

each gene in each cell.114

For each cell and each gene, SPADE first infers a pseudo-time trajectory by aligning neighboring115

cells, achieved by quantifying shifts in the spatial distribution of mRNA molecules across cells116

(Figure 2a). An LSTM-based recurrent neural network is then trained to model transitions between117

consecutive states over the trajectory (Figure 2b). Guided by the Bi-State transcription model, each118
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Figure 2: SPADE framework. a) Construction of pseudo-time trajectories. top left: molecules in the
starting cell; right: starting from cell ci, estimate possible next state after diffusion, and compare with
neighbors to derive transition probabilities; bottom left: random walk from the starting cell. b) Fitting
the trajectories with a sequencing model, disentangling each state transition into molecule movement
and generation components using systems biology constraints.

transition is decomposed into a generation module that captures mRNA synthesis and a movement119

module that models drift–diffusion of existing molecules. By implementing systems biology model120

into its neural network architecture, SPADE explicitly disentangles the observed spatial distribution121

of mRNA molecules by their synthesis and movement.122

3.2 Inference of pseudo-time trajectory in the neighborhood of each cell123

A central challenge in learning transcriptional dynamics from omics data is the absence of true124

time-series measurements. Prior studies have shown that snapshots of cells at different stages can125

be aligned to approximate temporal progression [4, 10]. Building on this concept, we hypothesize126

that cells with similar spatial distributions of an mRNA molecule can be aligned along a pseudo-time127

trajectory. SPADE implements this idea by constructing a pseudo-trajectory for each gene and128

each cell, by aligning the spatial distribution of the mRNA molecule in the cells within a spatial129

neighborhood, and fitting them with a deep disentangling model to reconstruct transcription rate,130

transport, and diffusion dynamics from the nucleus to the cytosol of the mRNA in each cell.131

To construct the pseudo-time trajectory, for each cell ci and a given gene, we first identify its k-nearest132

neighbors n1, n2, · · · , nk ∈ N(ci) by the spatial coordinates of the cell centers. We then estimate the133

empirical cumulative distribution function (CDF) F̂ (ci) of the transcripts of the gene and simulate134
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possible next states {F̂s(ci)}3s=1 by diffusing the molecules for 1–3 steps. For each neighbor nj , we135

also compute the CDF and then derive a dissimilarity score by employing the Kolmogorov–Smirnov136

(KS) distance:137

dij = min
s=1,2,3

KS
(
F̂ (nj), F̂s(ci)

)
. (4)

A smaller dij indicates a higher likelihood that ci transitions to nj . Transition probabilities are then138

computed via a softmax transformation:139

pij =
exp(−α · dij)
k∑

l=1

exp(−α · dil)
. (5)

, where α is a hyperparameter that controls the sharpness of the transition probabilities. Using140

these probabilities, we perform random walks of length T from N randomly chosen starting cells,141

producing an N × T collection of pseudo-trajectories. Each row corresponds to the approximate142

time-series of a single cell and serves as training input for SPADE. As illustrated in Figure 2a, local143

transcript distributions are compared via KS distance, and the resulting transition matrix is used to144

sample candidate trajectories.145

3.3 Modeling Transitions146

SPADE models the transition between consecutive states xti 7→ xti+1 by decomposing it into two147

components: (1) the drift–diffusion of existing molecules and (2) the generation of new molecules. An148

LSTM-based recurrent neural network parameterizes both modules, embedding historical information149

in the hidden state hti (see Figure 2b).150

Drift–diffusion of existing molecules. We describe the dynamics of m using a drift–diffusion151

process:152

dm(t) = µ(m(t)) dt+ σ(m(t)) dBt, (6)
, where µ corresponds to active transport (constant velocity) and σ accounts for diffusion (stochastic153

Brownian motion). Using Euler’s approximation, the update after a time interval ∆t would be:154

m(t+∆t) = m(t) + µ(m(t))∆t+ σ(m(t))Bt. (7)

In our framework, this process will be embedded into the LSTM latent space. Given a feature155

sequence {xt0 , . . . ,xtT } derived from the trajectories in last section, the hidden state is updated as:156

hti = LSTMCell(hti−1 ,xti). (8)

From the hidden state, we employ a variational auto-encoder (VAE) inspired encoder-decoder module157

to learn the molecule movement process during the time interval between ti and ti+1. Specifically,158

the latent representation of the drift and diffusion components are embedded via encoder networks159

µθ and σθ:160

zti ∼ N (µθ(h
ti), σθ(h

ti)), (9)
161

m̂ti+1 = xti + fM (zti), (10)
, where fM is a decoder mapping the latent variable to the original feature space. This allows the162

output state at the current time step to approximate the molecule movement component of the next163

time step.164

Generation of new molecules. New transcripts are assumed to appear near the nuclear center within165

a certain time, making gti+1 a vector with a single non-zero entry at the first dimension. Following166

our bistate transcription model, two variables will be involved in this process: (1) the on/off state of167

the transcription, denoted by a Bernoulli variable αti , and (2) the transcription rate at the on state,168

denoted as vti . Based on the hidden state, a switch module is employed to learn the on/off state, while169

a generation module will be used to infer the transcription rate:170

αti ∼ Bernoulli(fG1(h
ti)), (11)

171
vti = ReLU(fG2

(hti)), (12)
172

ĝti+1 = αti · vti · e1, (13)
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, where fG1 and fG2 are fully connected networks denoting the switch module and the generation173

module, respectively, e1 is a one-hot vector indicating the nuclear compartment, and ReLU ensures174

positivity of the transcription rate.175

Transition. The overall state update is then given by the summation of these two components:176

x̂ti+1 = m̂ti+1 + ĝti+1 . (14)

Location-aware learning. Transcriptional activity of the same gene can vary across tissue regions177

due to spatial heterogeneity, arising from differences in cell type composition, differentiation states,178

and microenvironmental factors[19]. To account for this, SPADE incorporates a spatial embedding179

module that conditions the initial hidden state on the cell’s spatial coordinates. Since the LSTM180

propagates information recursively through hidden states, the initial state ht0 will influence subsequent181

dynamics. Rather than a random initialization, we map the spatial coordinates (Cx, Cy, Cz) into the182

hidden space via a fully connected embedding layer:183

ht0 = fs(Cx, Cy, Cz), (15)

, where fs denotes the embedding function. By conditioning ht0 on spatial locations, SPADE184

learns location-specific patterns of the transcriptional dynamics, enabling it to better capture spatial185

heterogeneity within tissues.186

Training objective. The overall loss function combines a reconstruction term with regularization187

informed by the bistate transcription model. Given a sequence with T time steps, the reconstruction188

loss penalizes the difference between the predicted and observed feature vectors:189

Lrecon =
1

T

T∑
i=1

∥x̂ti − xti∥22, (16)

, where each prediction is decomposed as x̂ti = m̂ti + ĝti .190

Since x̂ti is the sum of two components, training only with Lrecon may lead to trivial solutions. To191

address this, we introduce a regularization loss on the Bernoulli transcription state αti :192

Lreg =
1

T

T∑
i=1

(
αti + β |αti − αti−1 |

)
, (17)

, where the first term controls the total fraction of time transcription is “on”, and the second penalizes193

excessive on/off switching to enforce temporal smoothness.194

The final objective is a weighted combination of the two:195

L = Lrecon + λLreg, (18)

, where λ balances reconstruction accuracy with biological plausibility. After training, the inferred196

transcription rates vti provide dynamic estimates of gene activity in each local neighborhood.197

4 Experiments198

We evaluate SPADE on both synthetic datasets and in-house generated Xenium SRT data. The199

synthetic data-based experiments allow quantitative assessment of the framework’s capability and200

accuracy in recovering known transcription rate and mRNA movement, while the real data-based201

experiments demonstrate the biological interpretability and discoveries enabled by SPADE. Our202

evaluation focuses on three aspects: (1) accuracy in reconstructing transcriptional rates and changes,203

such as transcription bursting, (2) ability to disentangle the synthesis and movement of mRNA in204

explaining the spatial distribution of the molecules, and (3) biological insights such as delayed205

transcriptional regulatory relations.206

4.1 Synthetic data and evaluation metrics207
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Figure 3: Simulated experiments. Top: transcrip-
tion rate (red = ground truth, blue = SPADE pre-
diction). Bottom: on/off state.

To systematically evaluate SPADE, we simu-208

lated the transcription using the Bi-State model209

and diffusion of mRNA molecules using Fick’s210

law of diffusion within individual cells under211

different kinetic parameters. Each scenario var-212

ied in transcriptional on/off states, transcrip-213

tion rates, and diffusion and transport velocities,214

thereby creating diverse dynamic patterns. The215

simulated data provides ground-truth dynamic216

parameters, enabling quantitative evaluation of217

SPADE’s ability to recover transcriptional dy-218

namics. Detailed simulation design and param-219

eter settings are available in Appendix A.220

We assess the performance of SPADE using two221

metrics: (1) the accuracy of on/off state inferred222

at each time step, and (2) the coefficient of determination (R²) between predicted and ground-truth223

transcription rates. As shown in Figure 3, SPADE accurately captures both the shifts between on and224

off states and the continuous transcription rates across all the scenarios. The predicted on/off states225

closely matched ground truth, and transcription rate estimates achieved R² scores above 0.6 across all226

settings, with higher performance in simpler kinetic setups. These results demonstrate that SPADE227

can faithfully disentangle the generation and movement processes from static spatial distributions of228

the observed mRNA molecules. Results on all other scenarios are available in Appendix B Figure 7229

4.2 Trajectory230

Figure 4: Example pseudo-trajectory at
a local region.

Constructing pseudo-trajectories for each cell–gene pair is231

a key step in SPADE, as the sampled sequences provide the232

training data for dynamics inference. To validate that these233

pseudo-trajectories capture meaningful sequential patterns,234

we visualized sampled trajectories from real spatial tran-235

scriptomics data. Figure 4 shows an example trajectory236

at a local spatial region (illustrated by red arrows), and237

Figure 5 visualizes both the spatial distributions of the238

mRNA molecules in each cell and the density of mRNA239

molecules with respect to the distance to the transcription240

start site.241

Examining the molecule-level patterns along the trajectory242

(Figure 5 top) shows that successive time steps recapit-243

ulate the expected outward diffusion of transcripts from244

the nucleus. Consistently, the radial density plots (Fig-245

ure 5 bottom) revealed smooth shifts in transcript distri-246

butions, confirming that the sampled trajectories capture247

biologically interpretable temporal progressions. More248

visualizations are available in Figure 9.249

These results demonstrated that our diffusion-based random-walk method effectively leverages local250

neighborhood information to construct pseudo-time series while preserving coherent spatiotemporal251

patterns, thus providing reliable input sequences for model training.252

4.3 SPADE reveals delay effect patterns253

In cis-transcriptional regulation, transcription factors (TFs) activate or suppress downstream targets254

with an inherent time delay because of the time required for their own transcription and translation255

[7]. The transcription rate in a small time interval inferred by SPADE first time enables the direct256

detection of delay effects in cis-regulation using static data.257

We evaluated known TF–target pairs by testing the lagged dependencies between their inferred258

transcription rate with Granger causality test[17]. As shown in Figure 6b, SPADE captures clear259

delay patterns in which TF activation curves lead to the corresponding target gene responses (see260
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Figure 5: Intracellular RNA molecule distributions (top) and corresponding density plots (bottom) of
the selected trajectory.

more examples in Figure 8). In addition, we aggregated the results of each TF-target pair across261

all cells. The boxplots of p-values of the Granger causality (Figure 6a) suggested that the known262

TF–target pairs consistently exhibit stronger causal signals than randomly sampled TF-target pairs.263

These findings indicate that transcription rates inferred by SPADE over short time intervals can264

capture regulatory delays, thereby providing evidence of causal relationships between TFs and their265

targets.266

Figure 6: Transcriptional delay effects detected by SPADE. a) Causality test results on transcription
rates of TF-target pairs. b) Examples of transcription rate curves of TF-target pairs inferred by
SPADE.

5 Conclusion267

In this work, we introduced SPADE, a systems biology–informed deep learning framework for268

inferring transcriptional rates and mRNA dynamics from static spatial transcriptomics data. By269

leveraging molecule-level spatial distributions, SPADE reconstructs pseudo-trajectories, disentangles270

transcriptional activity into generation and drift–diffusion processes, and embeds spatial heterogeneity271

through location-aware modeling. Experiments on both synthetic and real-world datasets demonstrate272

that SPADE accurately recovers transcriptional rates, reliably infers transcriptional on/off states, and273

uncovers regulatory delays between transcription factors and their targets.274

Our analysis also underscores the broader potential of coupling biophysical constraints with deep275

learning to learn the dynamics of biological processes using static snapshots of omics data. Future276

extensions will incorporate additional modalities, such as epigenomic and proteomic data. Overall,277

SPADE establishes a foundation for AI-driven discovery of causal and dynamic mechanisms in278

complex biological systems.279
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[2] Josep Biayna and Gabrijela Dumbović. Decoding subcellular rna localization one molecule at a284

time. Genome Biology, 26(1):45, 2025.285

[3] Hao Chen, Dongshunyi Li, and Ziv Bar-Joseph. Scs: cell segmentation for high-resolution286

spatial transcriptomics. Nature methods, 20(8):1237–1243, 2023.287

[4] Zhanlin Chen, William C King, Aheyon Hwang, Mark Gerstein, and Jing Zhang. Deepvelo:288

Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations.289

Science advances, 8(48):eabq3745, 2022.290

[5] Shasha Chong, Chongyi Chen, Hao Ge, and X Sunney Xie. Mechanism of transcriptional291

bursting in bacteria. Cell, 158(2):314–326, 2014.292

[6] Sulagna Das, Maria Vera, Valentina Gandin, Robert H Singer, and Evelina Tutucci. Intracellular293

mrna transport and localized translation. Nature reviews Molecular cell biology, 22(7):483–504,294

2021.295

[7] Feng He, Jan Buer, An-Ping Zeng, and Rudi Balling. Dynamic cumulative activity of tran-296

scription factors as a mechanism of quantitative gene regulation. Genome Biology, 8(9):R181,297

2007.298

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,299

9(8):1735–1780, 1997.300

[9] Anton JM Larsson, Per Johnsson, Michael Hagemann-Jensen, Leonard Hartmanis, Omid R301

Faridani, Björn Reinius, Åsa Segerstolpe, Chloe M Rivera, Bing Ren, and Rickard Sandberg.302

Genomic encoding of transcriptional burst kinetics. Nature, 565(7738):251–254, 2019.303

[10] Shengyu Li, Pengzhi Zhang, Weiqing Chen, Lingqun Ye, Kristopher W Brannan, Nhat-Tu Le,304

Jun-ichi Abe, John P Cooke, and Guangyu Wang. A relay velocity model infers cell-dependent305

rna velocity. Nature biotechnology, 42(1):99–108, 2024.306

[11] Y Long, KS Ang, M Li, KLK Chong, R Sethi, C Zhong, et al. Spatially informed clustering,307

integration, and deconvolution of spatial transcriptomics with graphst. nat commun 2023; 14308

(1): 1155.309

[12] Yahui Long, Kok Siong Ang, Raman Sethi, Sha Liao, Yang Heng, Lynn van Olst, Shuchen310

Ye, Chengwei Zhong, Hang Xu, Di Zhang, et al. Deciphering spatial domains from spatial311

multi-omics with spatialglue. Nature Methods, 21(9):1658–1667, 2024.312

[13] Raul HC Lopes. Kolmogorov-smirnov test. In International encyclopedia of statistical science,313

pages 718–720. Springer, 2011.314

[14] Sergio Marco Salas, Louis B Kuemmerle, Christoffer Mattsson-Langseth, Sebastian Tismeyer,315

Christophe Avenel, Taobo Hu, Habib Rehman, Marco Grillo, Paulo Czarnewski, Saga Helgadot-316

tir, et al. Optimizing xenium in situ data utility by quality assessment and best-practice analysis317

workflows. Nature Methods, pages 1–11, 2025.318

[15] Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. Nature methods, 19(5):534–319

546, 2022.320

[16] Xuyu Qian, Kyle Coleman, Shunzhou Jiang, Andrea J Kriz, Jack H Marciano, Chunyu Luo,321

Chunhui Cai, Monica Devi Manam, Emre Caglayan, Abbe Lai, et al. Spatial transcriptomics322

reveals human cortical layer and area specification. Nature, pages 1–11, 2025.323

[17] Ali Shojaie and Emily B Fox. Granger causality: A review and recent advances. Annual Review324

of Statistics and Its Application, 9(1):289–319, 2022.325

9



[18] Yaolai Wang, Tengfei Ni, Wei Wang, and Feng Liu. Gene transcription in bursting: a unified326

mode for realizing accuracy and stochasticity. Biological Reviews, 94(1):248–258, 2019.327

[19] Jing Xiao, Xinyang Yu, Fanlin Meng, Yuncong Zhang, Wenbin Zhou, Yonghong Ren, Jingxia Li,328

Yimin Sun, Hongwei Sun, Guokai Chen, et al. Integrating spatial and single-cell transcriptomics329

reveals tumor heterogeneity and intercellular networks in colorectal cancer. Cell Death &330

Disease, 15(5):326, 2024.331

[20] Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems biology informed332

deep learning for inferring parameters and hidden dynamics. PLoS computational biology,333

16(11):e1007575, 2020.334

A Simulation Design335

To quantitatively evaluate SPADE with ground-truth parameters, we simulated the transcriptional336

dynamics of RNA molecules within single cells based on a bistate (on/off) model combined with337

drift–diffusion processes.338

Cellular environment. Each cell was modeled as a circular domain of fixed radius, within which339

molecules undergo directed drift and Brownian diffusion until degradation. Simulations were340

performed at a time resolution of 0.1 for a total of T = 20 time units.341

Transcriptional dynamics. RNA synthesis followed a bistate process: during the on state, transcripts342

are generated at a constant rate and initiated near the nuclear center; during the off state, no new343

molecules are produced. In all cases, synthesized molecules will undergo the drift–diffusion dynamics.344

Simulation scenarios. To capture a range of transcriptional behaviors, we designed five scenarios345

varying in the sequence of on/off states, their durations, and transcription rates (Table 1).346

Table 1: Simulation scenarios used to benchmark SPADE.

Scenario State sequence Rate Durations
1 Off → On 5 50, 150
2 Off → On → Off 5 50, 100, 50
3 On → Off → On 5 50, 100, 50
4 Off → On → Off 10 80, 80, 40
5 On → Off → On 10 30, 70, 100

These scenarios were chosen to reflect diverse transcriptional patterns, including different on/off347

switch patterns, and variable transcriptional intensities. The resulting data provides ground-truth348

dynamic parameters for benchmarking SPADE’s inference of transcriptional states and rates.349

B Additional example results of the experiments350
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Figure 7: Inferred transcription rates and states of simulated scenarios which are not shown in main
text.

Figure 8: Additional examples of detected delay effects.
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Figure 9: More examples showing the molecule distributions of sampled pseudo-trajectories.

12


	Introduction
	Background
	RNA dynamics in cells
	Task definition and formulation

	Method
	Overview of SPADE
	Inference of pseudo-time trajectory in the neighborhood of each cell
	Modeling Transitions

	Experiments
	Synthetic data and evaluation metrics
	Trajectory
	SPADE reveals delay effect patterns

	Conclusion
	Simulation Design
	Additional example results of the experiments

