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Abstract

In situ sequencing—based spatial transcriptomics technologies, such as 10x Ge-
nomics Xenium and Vizgen MERSCOPE, have recently emerged as powerful
platforms that enable subcellular-resolution mapping of RNA transcripts within
intact tissues. While existing computational models developed for pixel-based
spatial transcriptomics can be applied to in situ sequencing data, these approaches
overlook molecule-level information and thus underutilize the full potential of
the high-resolution measurements. Recognizing that post-transcriptional mRNA
localization arises from a hybrid process of active transport and diffusion, we
hypothesized that the spatial distribution of transcripts relative to the transcription
start site encodes information about transcriptional activity within short time win-
dows, offering a new paradigm for inferring transcriptional dynamics. To realize
this capability, we present SPADE, a physics- and systems biology—informed deep
learning framework that leverages the spatial organization of RNA molecules to
infer transcriptional dynamics. SPADE first constructs a trajectory for each cell,
ordered along a pseudo-time axis defined by local shifts in molecule distributions,
and then employs a recurrent neural network to disentangle RNA synthesis from
drift—diffusion processes under a bistate transcriptional regulation model. Exten-
sive evaluations on both simulated and in-house spatial transcriptomics datasets
demonstrate that SPADE accurately reveals gene-specific bursting patterns, recov-
ers dynamic transcription rates, and uncovers regulatory delays between genes. As
the first framework to estimate temporal variations in transcription rates from static
spatial transcript distributions, SPADE establishes a novel paradigm for studying
transcriptional dynamics and their underlying biological mechanisms.

1 Introduction

Recent in-situ sequencing-based spatially resolved transcriptomics (SRT) technologies [[14} [15} [16],
such as 10x Genomics Xenium and Vizgen MERSCOPE, measure the exact locations of mRNA
molecules that enable subcellular or even higher resolution quantification of their abundance. By
measuring molecule-wise spatial coordinates of transcripts, these platforms provide unprecedented
information to study the dynamics of transcription and intracellular transport of mRNA molecules.

Despite this promise, existing computational approaches for SRT data were mainly designed for
pixel-based SRT data [3} [11} [12], which quantify gene expression at the cellular level and tend to
overlook the fine-grained spatial distributions of individual molecules. The intracellular distribution
of mRNA is shaped by three processes: synthesis at transcription start sites, active transport, and
diffusion throughout the cytoplasm[6, (1} [2]]. These mechanisms jointly determine the number of
transcripts and where these transcripts are observed within a cell. Thus, the spatial coordinates of
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Figure 1: Bi-State transcription model. a) on/off state of transcription. Top: off state, no new
transcripts generated; Bottom: on state, RNA molecules generated at the transcription start site. b)
RNA dynamics under different states. Top: drift-diffusion of existing molecules from nucleus to
cytosol; Bottom: on state, besides the movement of existing molecules, new molecules are generated
and will undergo the same diffusion process.

mRNA molecules, ranging from those distributed near the transcriptional start site, reflecting newly
synthesized transcripts, to those dispersed in the cytosol, representing transcripts synthesized earlier,
provide rich information to study the dynamics of transcription and the subsequent motion of mRNAs.

The spatial distribution of mRNA molecules arises from the combined effects of transcription, active
transport, and random diffusion. Consequently, the distance of molecules from the transcriptional
start site encodes the integration of these processes, allowing spatial patterns to serve as a short-term
temporal proxy of transcriptional dynamics. In this study, building on the dynamic model of mRNA
transcription and motion [20], we developed a disentangled deep learning framework that separates
the contributions of transcription and active transport, enabling inference of transcriptional rate
changes over short time intervals. Unlike existing approaches such as RNA velocity, which estimate
transcriptional activity from static omics data at the moment of measurement, our method leverages
spatial distributions to predict short-range transcriptional dynamics, thereby capturing regulatory
delays and establishing a new paradigm for modeling transcriptional processes.

Based on these ideas, we developed SPAtial Dynamics infErence (SPADE), a physics- and systems
biology-informed deep learning framework to model transcriptional dynamics using in-situ sequenc-
ing based SRT data. For each cell, SPADE first infers a pseudo-time trajectory of cells within its local
neighborhood by quantifying the shifts of transcript distribution using a Kolmogorov-Smirnov statistic
[L3]. These time-series sequences are then input to a long-short term memory[8]] (LSTM)-based
neural network to learn the transition functions between consecutive states. By the systems biology
of transcription dynamics, each transition is formed of two components, a transcription generation
module that models the biosynthesis of mRNA, and a diffusion module that models the movements of
mRNA molecule. By implementing biological and physical principles into the network architecture,
SPADE is able to explicitly learn the underlying factors that drive the transcriptional dynamics.

We evaluate SPADE on both simulated datasets and in-house collected in situ sequencing data.
Experimental results demonstrate that SPADE accurately recovers dynamic transcription rates,
identifies gene-specific bursting patterns, and uncovers regulatory delays between genes. To the
best of our knowledge, SPADE is the first framework to infer temporal variations in transcriptional
rates from single snapshots of spatial observations. By integrating biophysical principals with
disentangled deep learning, SPADE established a new paradigm for studying the dynamical behaviors
of transcription. We believe it brings valuable insights for revealing dynamic biological processes
from high-resolution spatial data.

2 Background

2.1 RNA dynamics in cells

The observed abundance and spatial localization of RNA molecules are resulted from three processes.
Biosynthesis generates new mRNA transcripts at transcription start sites, regulated by transcription
factors or epigenetic regulators. The newly generated molecules will then be transported from the
nucleus to the cytosol, ER, or other subcellular compartments, driven by both active transport and
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diffusion. The molecules will undergo this drift-diffusion process throughout the cytoplasm until
degradation.

A commonly used systems biology model of transcription is the Bi-State model[[18} |5, O] (see
Figure E]), where genes switch between “off”” and “on” states. In the “off” state, no new molecule
will be produced, and the spatial distribution of the transcripts only reflects drift—diffusion of
already transcribed molecules. In the “on” state, synthesis and diffusion act jointly. The spatial
distributions are shaped by both the synthesis of new mRNAs and the diffusion of newly synthesized
and existing mRNAs. Noted, this model captures most patterns of transcriptional dynamics such
as cis-transcriptional regulation and transcriptional bursting, which links the spatial distribution of
mRNA molecules with their underlying transcription mechanisms.

The biological hypothesis of our model is that the snapshots of transcript spatial distributions encode
temporal transcriptional signals: transcripts near the nucleus often correspond to recent generations,
while more dispersed molecules are more likely to be related to older events.

2.2 Task definition and formulation

We first introduce the notations and features used in our model. Because transcriptional dynamics are
gene-specific, SPADE models each gene independently by using the spatial distribution of its mRNA
molecules within each cell. To train a deep disentangling model, we first derive a feature vector from
the spatial distribution of transcripts within each cell. For each cell, we discretize the radial distance
from the nuclear center to the cell boundary into a series of intervals. Denote the nuclear center as d,
and the width of each interval as Ad, the boundary of the j-th interval can be defined as:

dy=do+j-Ad (1)

For each gene, denote the feature vector of a cell as x. Its j-th entry x; is the number of mRNA
molecules of the gene located between d;_; and d;. By this definition, the intracellular spatial
distribution of the mRNA will be encoded by x.

Based on our biological assumptions, the feature vector x, at any time ¢; can be denoted as the
summation of two components:

x" =m'" +g" 2)
, where m denotes the contribution of the drift-diffusion process of the existing molecules and g
represents the contribution of the newly generated transcripts.

By this definition, the dynamics of the system can be represented by how the feature vector evolves
between consecutive time points X, t0 Xy, :

Xt = f(x,) 3

, where f is the transition function that encodes the transcription dynamics following the bistate
transcription model and motion of mRNA molecules. The objective of our model is to learn f from
the observed spatial patterns of the transcripts.

3 Method

3.1 Overview of SPADE

SPADE is a systems biology-informed deep learning framework designed to infer transcriptional
dynamics using in-situ sequencing-based SRT data (see Figure [2). SPADE is based on two com-
putational assumptions: 1) the transcriptional dynamics of one gene in an individual cell can be
reconstructed from snapshots of the gene’s expression pattern in multiple cells at different states, and
2) the spatial distribution of mRNA molecules can recapitulate the processes of its synthesis and
movements. The input of SPADE is the spatial distribution of mRNA molecules, the boundary, and
the transcription start site of each cell. The output is the transcription rate in a small time interval for
each gene in each cell.

For each cell and each gene, SPADE first infers a pseudo-time trajectory by aligning neighboring
cells, achieved by quantifying shifts in the spatial distribution of mRNA molecules across cells
(Figure[2p). An LSTM-based recurrent neural network is then trained to model transitions between
consecutive states over the trajectory (Figure 2p). Guided by the Bi-State transcription model, each



119
120
121
122

123

124
125
126
127
128
129
130
131

132
133

134

Molecule Distribution

Qci

7 3 H 3
Distance Distance

>
Qn

o‘{o
@

. 2 ‘ 51 2 3«
Distance Distance

Next state

Transcription

Figure 2: SPADE framework. a) Construction of pseudo-time trajectories. top left: molecules in the
starting cell; right: starting from cell ¢;, estimate possible next state after diffusion, and compare with
neighbors to derive transition probabilities; bottom left: random walk from the starting cell. b) Fitting
the trajectories with a sequencing model, disentangling each state transition into molecule movement
and generation components using systems biology constraints.

transition is decomposed into a generation module that captures mRNA synthesis and a movement
module that models drift—diffusion of existing molecules. By implementing systems biology model
into its neural network architecture, SPADE explicitly disentangles the observed spatial distribution
of mRNA molecules by their synthesis and movement.

3.2 Inference of pseudo-time trajectory in the neighborhood of each cell

A central challenge in learning transcriptional dynamics from omics data is the absence of true
time-series measurements. Prior studies have shown that snapshots of cells at different stages can
be aligned to approximate temporal progression [4} [10]. Building on this concept, we hypothesize
that cells with similar spatial distributions of an mRNA molecule can be aligned along a pseudo-time
trajectory. SPADE implements this idea by constructing a pseudo-trajectory for each gene and
each cell, by aligning the spatial distribution of the mRNA molecule in the cells within a spatial
neighborhood, and fitting them with a deep disentangling model to reconstruct transcription rate,
transport, and diffusion dynamics from the nucleus to the cytosol of the mRNA in each cell.

To construct the pseudo-time trajectory, for each cell ¢; and a given gene, we first identify its k-nearest
neighbors ny,ng, - -+ ,ng € N(¢;) by the spatial coordinates of the cell centers. We then estimate the
empirical cumulative distribution function (CDF) F'(¢;) of the transcripts of the gene and simulate
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possible next states {Fs(ci) 3_, by diffusing the molecules for 1-3 steps. For each neighbor n;, we
also compute the CDF and then derive a dissimilarity score by employing the Kolmogorov—Smirnov
(KS) distance: A R

dij = 521%12{3 KS(F(H7),FS(CZ)) (4)
A smaller d;; indicates a higher likelihood that ¢; transitions to n;. Transition probabilities are then
computed via a softmax transformation:

exp(—a - dij)

k (5)
lz exp(—a - dy)
—1

Dij =

, where « is a hyperparameter that controls the sharpness of the transition probabilities. Using
these probabilities, we perform random walks of length 7" from /N randomly chosen starting cells,
producing an N x T collection of pseudo-trajectories. Each row corresponds to the approximate
time-series of a single cell and serves as training input for SPADE. As illustrated in Figure 2, local
transcript distributions are compared via KS distance, and the resulting transition matrix is used to
sample candidate trajectories.

3.3 Modeling Transitions

SPADE models the transition between consecutive states x** — x'i+1 by decomposing it into two
components: (1) the drift-diffusion of existing molecules and (2) the generation of new molecules. An
LSTM-based recurrent neural network parameterizes both modules, embedding historical information
in the hidden state h;, (see Figure @)).

Drift—diffusion of existing molecules. We describe the dynamics of m using a drift-diffusion
process:

dm(t) = p(m(t)) dt + o (m(t)) dB, (©)
, where p corresponds to active transport (constant velocity) and o accounts for diffusion (stochastic
Brownian motion). Using Euler’s approximation, the update after a time interval At would be:

m(t + At) = m(t) + p(m(t))At + o(m(t))B;. @)

In our framework, this process will be embedded into the LSTM latent space. Given a feature
sequence {x%, ..., x'"} derived from the trajectories in last section, the hidden state is updated as:
h'i = LSTMCell(h'i-* x"). ®)

From the hidden state, we employ a variational auto-encoder (VAE) inspired encoder-decoder module

to learn the molecule movement process during the time interval between ¢; and ¢;,. Specifically,

the latent representation of the drift and diffusion components are embedded via encoder networks
Lo and og:

2~ N (g (h), 09 (h')), ©)

= x4 fa ("), (10)

, where f) is a decoder mapping the latent variable to the original feature space. This allows the
output state at the current time step to approximate the molecule movement component of the next
time step.

Generation of new molecules. New transcripts are assumed to appear near the nuclear center within
a certain time, making g'i+! a vector with a single non-zero entry at the first dimension. Following
our bistate transcription model, two variables will be involved in this process: (1) the on/off state of
the transcription, denoted by a Bernoulli variable i, and (2) the transcription rate at the on state,
denoted as v%. Based on the hidden state, a switch module is employed to learn the on/off state, while
a generation module will be used to infer the transcription rate:

o't ~ Bernoulli( fg, (h')), (b
v' = ReLU(fg, (h")), (12
glitt = ol .yl . ey, (1)
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, where fq, and fg, are fully connected networks denoting the switch module and the generation
module, respectively, e; is a one-hot vector indicating the nuclear compartment, and ReL.U ensures
positivity of the transcription rate.

Transition. The overall state update is then given by the summation of these two components:

)A(tH»l — IhtH»l + gti+1. (14)

Location-aware learning. Transcriptional activity of the same gene can vary across tissue regions
due to spatial heterogeneity, arising from differences in cell type composition, differentiation states,
and microenvironmental factors[[19]. To account for this, SPADE incorporates a spatial embedding
module that conditions the initial hidden state on the cell’s spatial coordinates. Since the LSTM
propagates information recursively through hidden states, the initial state i, will influence subsequent
dynamics. Rather than a random initialization, we map the spatial coordinates (Cy, Cy, C.) into the
hidden space via a fully connected embedding layer:

hto :fS(Ca:)Cy)Cz>7 (]5)

, where f, denotes the embedding function. By conditioning h% on spatial locations, SPADE
learns location-specific patterns of the transcriptional dynamics, enabling it to better capture spatial
heterogeneity within tissues.

Training objective. The overall loss function combines a reconstruction term with regularization
informed by the bistate transcription model. Given a sequence with 7" time steps, the reconstruction
loss penalizes the difference between the predicted and observed feature vectors:

1 T
Lrecon = T Z H)A(t7 - Xti

=1

5 (16)

, where each prediction is decomposed as X' = m'i + gti.

Since %% is the sum of two components, training only with L., may lead to trivial solutions. To
address this, we introduce a regularization loss on the Bernoulli transcription state o/’ :

T

1 ‘ t ‘s

Lreg:TZ(a,q,J’_ﬁ'aq_a1—1|)7 (17)
i=1

, where the first term controls the total fraction of time transcription is “on”, and the second penalizes

excessive on/off switching to enforce temporal smoothness.

The final objective is a weighted combination of the two:
L = Liecon + )\Lreg7 (13)

, where )\ balances reconstruction accuracy with biological plausibility. After training, the inferred
transcription rates v*¢ provide dynamic estimates of gene activity in each local neighborhood.

4 [Experiments

We evaluate SPADE on both synthetic datasets and in-house generated Xenium SRT data. The
synthetic data-based experiments allow quantitative assessment of the framework’s capability and
accuracy in recovering known transcription rate and mRNA movement, while the real data-based
experiments demonstrate the biological interpretability and discoveries enabled by SPADE. Our
evaluation focuses on three aspects: (1) accuracy in reconstructing transcriptional rates and changes,
such as transcription bursting, (2) ability to disentangle the synthesis and movement of mRNA in
explaining the spatial distribution of the molecules, and (3) biological insights such as delayed
transcriptional regulatory relations.

4.1 Synthetic data and evaluation metrics
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We assess the performance of SPADE using two
metrics: (1) the accuracy of on/off state inferred
at each time step, and (2) the coefficient of determination (R?) between predicted and ground-truth
transcription rates. As shown in Figure 3] SPADE accurately captures both the shifts between on and
off states and the continuous transcription rates across all the scenarios. The predicted on/off states
closely matched ground truth, and transcription rate estimates achieved R? scores above 0.6 across all
settings, with higher performance in simpler kinetic setups. These results demonstrate that SPADE
can faithfully disentangle the generation and movement processes from static spatial distributions of
the observed mRNA molecules. Results on all other scenarios are available in Appendix [B]Figure[7]

4.2 Trajectory

Cells Colored by Velocity with Sequence Path and Arrows

Constructing pseudo-trajectories for each cell-gene pair is

akey step in SPADE, as the sampled sequences provide the
training data for dynamics inference. To validate that these
pseudo-trajectories capture meaningful sequential patterns,
we visualized sampled trajectories from real spatial tran-
scriptomics data. Figure [] shows an example trajectory

at a local spatial region (illustrated by red arrows), and
Figure [3] visualizes both the spatial distributions of the :
mRNA molecules in each cell and the density of mRNA
molecules with respect to the distance to the transcription

start site.

Average Velocity

Examining the molecule-level patterns along the trajectory
(Figure |§| top) shows that successive time steps recapit-
ulate the expected outward diffusion of transcripts from o
the nucleus. Consistently, the radial density plots (Fig- _. ) ecomranete .

ure [5| bottom) revealed smooth shifts in transcript distri- Figure 4: Example pseudo-trajectory at
butions, confirming that the sampled trajectories capture 2 local region.

biologically interpretable temporal progressions. More

visualizations are available in Figure[9]

£

These results demonstrated that our diffusion-based random-walk method effectively leverages local
neighborhood information to construct pseudo-time series while preserving coherent spatiotemporal
patterns, thus providing reliable input sequences for model training.

4.3 SPADE reveals delay effect patterns

In cis-transcriptional regulation, transcription factors (TFs) activate or suppress downstream targets
with an inherent time delay because of the time required for their own transcription and translation
[7]. The transcription rate in a small time interval inferred by SPADE first time enables the direct
detection of delay effects in cis-regulation using static data.

We evaluated known TF—target pairs by testing the lagged dependencies between their inferred
transcription rate with Granger causality test[17]. As shown in Figure [6b, SPADE captures clear
delay patterns in which TF activation curves lead to the corresponding target gene responses (see
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Figure 5: Intracellular RNA molecule distributions (top) and corresponding density plots (bottom) of
the selected trajectory.

more examples in Figure [§). In addition, we aggregated the results of each TF-target pair across
all cells. The boxplots of p-values of the Granger causality (Figure [6h) suggested that the known
TF-target pairs consistently exhibit stronger causal signals than randomly sampled TF-target pairs.

These findings indicate that transcription rates inferred by SPADE over short time intervals can
capture regulatory delays, thereby providing evidence of causal relationships between TFs and their
targets.

b. TF-target delay patterns
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Figure 6: Transcriptional delay effects detected by SPADE. a) Causality test results on transcription
rates of TF-target pairs. b) Examples of transcription rate curves of TF-target pairs inferred by
SPADE.

5 Conclusion

In this work, we introduced SPADE, a systems biology—informed deep learning framework for
inferring transcriptional rates and mRNA dynamics from static spatial transcriptomics data. By
leveraging molecule-level spatial distributions, SPADE reconstructs pseudo-trajectories, disentangles
transcriptional activity into generation and drift—diffusion processes, and embeds spatial heterogeneity
through location-aware modeling. Experiments on both synthetic and real-world datasets demonstrate
that SPADE accurately recovers transcriptional rates, reliably infers transcriptional on/off states, and
uncovers regulatory delays between transcription factors and their targets.

Our analysis also underscores the broader potential of coupling biophysical constraints with deep
learning to learn the dynamics of biological processes using static snapshots of omics data. Future
extensions will incorporate additional modalities, such as epigenomic and proteomic data. Overall,
SPADE establishes a foundation for Al-driven discovery of causal and dynamic mechanisms in
complex biological systems.
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A Simulation Design

To quantitatively evaluate SPADE with ground-truth parameters, we simulated the transcriptional
dynamics of RNA molecules within single cells based on a bistate (on/off) model combined with
drift—diffusion processes.

Cellular environment. Each cell was modeled as a circular domain of fixed radius, within which
molecules undergo directed drift and Brownian diffusion until degradation. Simulations were
performed at a time resolution of 0.1 for a total of 7' = 20 time units.

Transcriptional dynamics. RNA synthesis followed a bistate process: during the on state, transcripts
are generated at a constant rate and initiated near the nuclear center; during the off state, no new
molecules are produced. In all cases, synthesized molecules will undergo the drift—diffusion dynamics.

Simulation scenarios. To capture a range of transcriptional behaviors, we designed five scenarios
varying in the sequence of on/off states, their durations, and transcription rates (Table|I)).

Table 1: Simulation scenarios used to benchmark SPADE.

Scenario State sequence Rate Durations

Off — On 5 50, 150
Off — On — Off 5 50, 100, 50
On — Off — On 5 50, 100, 50
Off = On— Off 10 80, 80,40
On — Off — On 10 30,70, 100

(O RSNV S

These scenarios were chosen to reflect diverse transcriptional patterns, including different on/off
switch patterns, and variable transcriptional intensities. The resulting data provides ground-truth
dynamic parameters for benchmarking SPADE’s inference of transcriptional states and rates.

B Additional example results of the experiments
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Figure 7: Inferred transcription rates and states of simulated scenarios which are not shown in main
text.
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Figure 8: Additional examples of detected delay effects.
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Figure 9: More examples showing the molecule distributions of sampled pseudo-trajectories.
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