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Abstract

In situ sequencing–based spatial transcriptomics technologies, such as 10x Ge-
nomics Xenium and Vizgen MERSCOPE, have recently emerged as powerful
platforms that enable subcellular-resolution mapping of RNA transcripts within
intact tissues. While existing computational models developed for pixel-based
spatial transcriptomics can be applied to in situ sequencing data, these approaches
overlook molecule-level information and thus underutilize the full potential of
the high-resolution measurements. Recognizing that post-transcriptional mRNA
localization arises from a hybrid process of active transport and diffusion, we
hypothesized that the spatial distribution of transcripts relative to the transcription
start site encodes information about transcriptional activity within short time win-
dows, offering a new paradigm for inferring transcriptional dynamics. To realize
this capability, we present SPADE, a physics- and systems biology–informed deep
learning framework that leverages the spatial organization of RNA molecules to
infer transcriptional dynamics. SPADE first constructs a trajectory for each cell,
ordered along a pseudo-time axis defined by local shifts in molecule distributions,
and then employs a recurrent neural network to disentangle RNA synthesis from
drift–diffusion processes under a bi-state transcriptional regulation model. Exten-
sive evaluations on both simulated and in-house spatial transcriptomics datasets
demonstrate that SPADE accurately reveals gene-specific bursting patterns, recov-
ers dynamic transcription rates, and uncovers regulatory delays between genes. As
the first framework to estimate temporal variations in transcription rates from static
spatial transcript distributions, SPADE establishes a novel paradigm for studying
transcriptional dynamics and their underlying biological mechanisms. The code is
available at https://github.com/xwang97/SpatialDynamics.

1 Introduction

Recent in-situ sequencing-based spatially resolved transcriptomics (SRT) technologies [14, 15, 16],
such as 10x Genomics Xenium and Vizgen MERSCOPE, measure the exact locations of mRNA
molecules that enable subcellular or even higher resolution quantification of their abundance. By
measuring molecule-wise spatial coordinates of transcripts, these platforms provide unprecedented
information to study the dynamics of transcription and intracellular transport of mRNA molecules.

Despite this promise, existing computational approaches for SRT data were mainly designed for
pixel-based SRT data [3, 11, 12], which quantify gene expression at the cellular level and tend to
overlook the fine-grained spatial distributions of individual molecules. The intracellular distribution
of mRNA is shaped by three processes: synthesis at transcription start sites, active transport, and
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Figure 1: Bi-State transcription model. a) on/off state of transcription. Top: off state, no new
transcripts generated; Bottom: on state, RNA molecules generated at the transcription start site. b)
RNA dynamics under different states. Top: drift-diffusion of existing molecules from nucleus to
cytosol; Bottom: on state, besides the movement of existing molecules, new molecules are generated
and will undergo the same diffusion process.

diffusion throughout the cytoplasm[6, 1, 2]. These mechanisms jointly determine the number of
transcripts and where these transcripts are observed within a cell. Thus, the spatial coordinates of
mRNA molecules, ranging from those distributed near the transcriptional start site, reflecting newly
synthesized transcripts, to those dispersed in the cytosol, representing transcripts synthesized earlier,
provide rich information to study the dynamics of transcription and the subsequent motion of mRNAs.

The spatial distribution of mRNA molecules arises from the combined effects of transcription, active
transport, and random diffusion. Consequently, the distance of molecules from the transcriptional
start site encodes the integration of these processes, allowing spatial patterns to serve as a short-term
temporal proxy of transcriptional dynamics. In this study, building on the dynamic model of mRNA
transcription and motion [20], we developed a disentangled deep learning framework that separates
the contributions of transcription and active transport, enabling inference of transcriptional rate
changes over short time intervals. Unlike existing approaches such as RNA velocity, which estimate
transcriptional activity from static omics data at the moment of measurement, our method leverages
spatial distributions to predict short-range transcriptional dynamics, thereby capturing regulatory
delays and establishing a new paradigm for modeling transcriptional processes.

Based on these ideas, we developed SPAtial Dynamics infErence (SPADE), a physics- and systems
biology-informed deep learning framework to model transcriptional dynamics using in-situ sequenc-
ing based SRT data. For each cell, SPADE first infers a pseudo-time trajectory of cells within its local
neighborhood by quantifying the shifts of transcript distribution using a Kolmogorov-Smirnov statistic
[13]. These time-series sequences are then input to a long-short term memory[8] (LSTM)-based
neural network to learn the transition functions between consecutive states. By the systems biology
of transcription dynamics, each transition is formed of two components, a transcription generation
module that models the biosynthesis of mRNA, and a diffusion module that models the movements of
mRNA molecule. By implementing biological and physical principles into the network architecture,
SPADE is able to explicitly learn the underlying factors that drive the transcriptional dynamics.

We evaluate SPADE on both simulated datasets and in-house collected in situ sequencing data.
Experimental results demonstrate that SPADE accurately recovers dynamic transcription rates,
identifies gene-specific bursting patterns, and uncovers regulatory delays between genes. To the
best of our knowledge, SPADE is the first framework to infer temporal variations in transcriptional
rates from single snapshots of spatial observations. By integrating biophysical principals with
disentangled deep learning, SPADE established a new paradigm for studying the dynamical behaviors
of transcription. We believe it brings valuable insights for revealing dynamic biological processes
from high-resolution spatial data.

2 Background

2.1 RNA dynamics in cells

The observed abundance and spatial localization of RNA molecules result from three processes.
Biosynthesis generates new mRNA transcripts at transcription start sites, regulated by transcription
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factors or epigenetic regulators. The newly generated molecules will then be transported from the
nucleus to the cytosol, ER, or other subcellular compartments, driven by both active transport and
diffusion. The molecules will undergo this drift-diffusion process throughout the cytoplasm until
degradation.

A commonly used systems biology model of transcription is the bi-state model[18, 5, 9] (see
Figure 1), where genes switch between “off” and “on” states. In the “off” state, no new molecule
will be produced, and the spatial distribution of the transcripts only reflects drift–diffusion of
already transcribed molecules. In the “on” state, synthesis and diffusion act jointly. The spatial
distributions are shaped by both the synthesis of new mRNAs and the diffusion of newly synthesized
and existing mRNAs. Noted, this model captures most patterns of transcriptional dynamics such
as cis-transcriptional regulation and transcriptional bursting, which links the spatial distribution of
mRNA molecules with their underlying transcription mechanisms.

The biological hypothesis of our model is that the snapshots of transcript spatial distributions encode
temporal transcriptional signals: transcripts near the nucleus often correspond to recent generations,
while more dispersed molecules are more likely to be related to older events.

2.2 Task definition and formulation

We first introduce the notations and features used in our model. Because transcriptional dynamics are
gene-specific, SPADE models each gene independently by using the spatial distribution of its mRNA
molecules within each cell. To train a deep disentangling model, we first derive a feature vector from
the spatial distribution of transcripts within each cell. For each cell, we discretize the radial distance
from the nuclear center to the cell boundary into a series of intervals. Denote the nuclear center as d0,
and the width of each interval as ∆d, the boundary of the j-th interval can be defined as:

dj = d0 + j ·∆d (1)

For each gene, denote the feature vector of a cell as x. Its j-th entry xj is the number of mRNA
molecules of the gene located between dj−1 and dj . By this definition, the intracellular spatial
distribution of the mRNA will be encoded by x.

Based on our biological assumptions, the feature vector xti at any time ti can be denoted as the
summation of two components:

xti = mti + gti (2)
, where m denotes the contribution of the drift-diffusion process of the existing molecules and g
represents the contribution of the newly generated transcripts.

By this definition, the dynamics of the system can be represented by how the feature vector evolves
between consecutive time points xti to xti+1 :

xti+1 = f(xti) (3)

, where f is the transition function that encodes the transcription dynamics following the bi-state
transcription model and motion of mRNA molecules. The objective of our model is to learn f from
the observed spatial patterns of the transcripts.

3 Method

3.1 Overview of SPADE

SPADE is a systems biology-informed deep learning framework designed to infer transcriptional
dynamics using in-situ sequencing-based SRT data (see Figure 2). SPADE is based on two com-
putational assumptions: 1) the transcriptional dynamics of one gene in an individual cell can be
reconstructed from snapshots of the gene’s expression pattern in multiple cells at different states, and
2) the spatial distribution of mRNA molecules can recapitulate the processes of its synthesis and
movements. The input of SPADE is the spatial distribution of mRNA molecules, the boundary, and
the transcription start site of each cell. The output is the transcription rate in a small time interval for
each gene in each cell.

For each cell and each gene, SPADE first infers a pseudo-time trajectory by aligning neighboring
cells, achieved by quantifying shifts in the spatial distribution of mRNA molecules across cells

3



1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Distance Distance

1

2

3

4

5

6

6 7

t3

t2 t1

t4t5

Distance Distance

d=0.3

d=0.8

h

h0 h1 hT-1

Encoder Decoder

Generator

Switch

z

Rate

On/O�

Transcription

Movement

Next state

a

b

Molecule Distribution

Di�usion

Figure 2: SPADE framework. a) Construction of pseudo-time trajectories. top left: molecules in the
starting cell; right: starting from cell ci, estimate possible next state after diffusion, and compare with
neighbors to derive transition probabilities; bottom left: random walk from the starting cell. b) Fitting
the trajectories with a sequencing model, disentangling each state transition into molecule movement
and generation components using systems biology constraints.

(Figure 2a). An LSTM-based recurrent neural network is then trained to model transitions between
consecutive states over the trajectory (Figure 2b). Guided by the bi-state transcription model, each
transition is decomposed into a generation module that captures mRNA synthesis and a movement
module that models drift–diffusion of existing molecules. By implementing systems biology model
into its neural network architecture, SPADE explicitly disentangles the observed spatial distribution
of mRNA molecules by their synthesis and movement.

3.2 Inference of pseudo-time trajectory in the neighborhood of each cell

A central challenge in learning transcriptional dynamics from omics data is the absence of true
time-series measurements. Prior studies have shown that snapshots of cells at different stages can
be aligned to approximate temporal progression [4, 10]. Building on this concept, we hypothesize
that cells with similar spatial distributions of an mRNA molecule can be aligned along a pseudo-time
trajectory. SPADE implements this idea by constructing a pseudo-trajectory for each gene and
each cell, by aligning the spatial distribution of the mRNA molecule in the cells within a spatial
neighborhood, and fitting them with a deep disentangling model to reconstruct transcription rate,
transport, and diffusion dynamics from the nucleus to the cytosol of the mRNA in each cell.
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To construct the pseudo-time trajectory, for each cell ci and a given gene, we first identify its k-nearest
neighbors of the cell n1, n2, · · · , nk ∈ N(ci) by the spatial coordinates of the cell centers. We then
estimate the empirical cumulative distribution function (CDF) F̂ (ci) of the transcripts of the gene and
simulate possible next states {F̂s(ci)}3s=1 by diffusing the molecules for one to three steps. For each
neighboring cell nj , we also compute the CDF and then derive a dissimilarity score by employing the
Kolmogorov–Smirnov (KS) distance:

dij = min
s=1,2,3

KS
(
F̂ (nj), F̂s(ci)

)
. (4)

A smaller dij indicates a higher likelihood that ci transitions to nj . Transition probabilities are then
computed via a softmax transformation:

pij =
exp(−α · dij)
k∑

l=1

exp(−α · dil)
. (5)

, where α is a hyperparameter that controls the sharpness of the transition probabilities. Using
these probabilities, we perform random walks of length T from N randomly selected starting cells,
generating an N × T set of pseudo-trajectories. Each row represents the approximate time-series of a
single cell and serves as SPADE’s training input. As shown in Figure 2a, local transcript distributions
are compared using the KS distance, and the resulting transition matrix guides the sampling of
candidate trajectories.

3.3 Modeling Transitions

SPADE models the transition between consecutive states xti 7→ xti+1 from time point ti to ti+1 by
decomposing it into two components: (1) the drift–diffusion of existing mRNA molecules and (2)
the generation of new mRNA molecules. An LSTM-based recurrent neural network parameterizes
the two processes over the trajectory, embedding time-dependent change in hidden states hti (see
Figure 2b).

Drift–diffusion of existing molecules. We describe the dynamics of an mRNA molecule m using a
drift–diffusion process:

dm(t) = µ(m(t)) dt+ σ(m(t)) dBt, (6)
, where µ corresponds to active transport (constant velocity) and σ accounts for diffusion (stochastic
Brownian motion). Using Euler’s approximation, the update after a time interval ∆t would be:

m(t+∆t) = m(t) + µ(m(t))∆t+ σ(m(t))Bt. (7)

In our framework, this process will be embedded into the LSTM latent space. Given a feature
sequence {xt0 , . . . ,xtT } derived from the trajectories in last section, the hidden state is updated as:

hti = LSTMCell(hti−1 ,xti). (8)

From the hidden state, we employ a variational auto-encoder (VAE) inspired encoder-decoder module
to learn the molecule movement between adjacent intervals, such as from ti to ti+1. Specifically, the
drift and diffusion components are embedded into a latent representation via encoder networks µθ

and σθ:
zti ∼ N (µθ(h

ti), σθ(h
ti)), (9)

m̂ti+1 = xti + fM (zti), (10)
, where fM maps the latent variable back to the feature space. This formulation enables the predicted
state at ti+1 to approximate the molecule-movement component derived from the state at ti.

Generation of new molecules. New transcripts are transcribed near the nucleus following the bi-state
model, making gti+1 a vector with a single non-zero entry at the first dimension. By the bi-state
transcription model, two variables are involved in this process: (1) the on/off state of the transcription,
represented by a Bernoulli variable αti , and (2) the transcription rate at the on state, denoted by vti .
Under the hidden state assumption, a switch module to learn the on/off transcriptional state and a
generation module to infer the transcription rate are employed:

αti ∼ Bernoulli(fG1
(hti)), (11)
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vti = ReLU(fG2(h
ti)), (12)

ĝti+1 = αti · vti · e1, (13)
, where fG1

and fG2
are fully connected networks denoting the switch module and the generation

module, respectively, e1 is a one-hot vector indicating the nuclear compartment, and ReLU ensures
transcription rate is always positive.

Transition. The overall state update is obtained by summing the contributions from these two
components.

x̂ti+1 = m̂ti+1 + ĝti+1 . (14)

Location-aware learning. The transcriptional activity of a given gene can vary across different
tissue regions due to spatial heterogeneity, which reflects differences related to cell type composition,
differentiation state, and microenvironmental context. [19]. To account for this, SPADE incorporates
a spatial embedding module that conditions the initial hidden state on the cell’s spatial coordinates.
Since the LSTM propagates information recursively through hidden states, the initial state ht0 will
influence subsequent dynamics. Rather than using a random initialization, we map the spatial
coordinates (Cx, Cy, Cz) into the hidden space via a fully connected embedding layer:

ht0 = fs(Cx, Cy, Cz), (15)

, where fs denotes the embedding function. By conditioning ht0 on spatial locations, SPADE
learns location-specific patterns of the transcriptional dynamics, enabling it to better capture spatial
heterogeneity within tissues.

Overall training objective. The overall loss function combines a reconstruction term with a
regularization term informed by the bi-state model. Given a sequence with T time steps, the
reconstruction loss penalizes the difference between the predicted and observed feature vectors:

Lrecon =
1

T

T∑
i=1

∥x̂ti − xti∥22, (16)

, where each prediction is decomposed as x̂ti = m̂ti + ĝti .

Since x̂ti is the sum of two components, training only with Lrecon may lead to trivial solutions. To
address this, we introduce a regularization loss on the Bernoulli transcription state αti :

Lreg =
1

T

T∑
i=1

(
αti + β |αti − αti−1 |

)
, (17)

, where the first term controls the total fraction of time transcription is “on”, and the second penalizes
excessive on/off switching to enforce temporal smoothness.

The final objective combines reconstruction and regularization losses in a weighted form:

L = Lrecon + λLreg, (18)

, where λ balances reconstruction accuracy against biological plausibility. Once trained, the model
outputs inferred transcription rates vti for each gene in each cell in a small time interval, providing
estimated transcription dynamics within the cell’s local neighborhood.

4 Experiments

We evaluate SPADE on both synthetic datasets and in-house generated Xenium SRT data. The
synthetic data-based experiments allow quantitative assessment of the framework’s capability and
accuracy in recovering known transcription rate and mRNA movement, while the real data-based
experiments demonstrate the biological interpretability and discoveries enabled by SPADE. Our
evaluation focuses on three aspects: (1) accuracy in reconstructing transcriptional rates and changes,
such as transcription bursting, (2) ability to disentangle the synthesis and movement of mRNA in
explaining the spatial distribution of the molecules, and (3) biological insights such as delayed
transcriptional regulatory relations.

4.1 Synthetic data and evaluation metrics
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Figure 3: Simulated experiments. Top: transcrip-
tion rate (red = ground truth, blue = SPADE pre-
diction). Bottom: on/off state.

To systematically evaluate SPADE, we simu-
lated the transcription using the bi-state model
and diffusion of mRNA molecules using Fick’s
law of diffusion within individual cells under
different kinetic parameters. Each scenario var-
ied in transcriptional on/off states, transcrip-
tion rates, and diffusion and transport velocities,
thereby creating diverse dynamic patterns. The
simulated data provides ground-truth dynamic
parameters, enabling quantitative evaluation of
SPADE’s ability to recover transcriptional dy-
namics. Detailed simulation design and param-
eter settings are available in Appendix A.

We assess the performance of SPADE using two
metrics: (1) the accuracy of on/off state inferred
at each time step, and (2) the coefficient of determination (R²) between predicted and ground-truth
transcription rates. As shown in Figure 3, SPADE accurately captures both the shifts between on and
off states and the continuous transcription rates across all the scenarios. The predicted on/off states
closely matched ground truth, and transcription rate estimates achieved R² scores above 0.6 across all
settings, with higher performance in simpler kinetic setups. These results demonstrate that SPADE
can faithfully disentangle the generation and movement processes from static spatial distributions of
the observed mRNA molecules. Results on all other scenarios are available in Appendix B Figure 7

4.2 Pseudo-time trajectory captures time-dependent shift of transcription rate

Figure 4: Example pseudo-trajectory at
a local region.

Constructing pseudo-trajectories for each cell–gene pair is
a key step in SPADE, as the sampled sequences provide the
training data for dynamics inference. To validate that these
pseudo-trajectories capture meaningful sequential patterns,
we visualized sampled trajectories from real spatial tran-
scriptomics data. Figure 4 shows an example trajectory
at a local spatial region (illustrated by red arrows), and
Figure 5 visualizes both the spatial distributions of the
mRNA molecules in each cell and the density of mRNA
molecules with respect to the distance to the transcription
start site.

Examining the molecule-level patterns along the trajectory
(Figure 5 top) shows that successive time steps recapit-
ulate the expected outward diffusion of transcripts from
the nucleus. Consistently, the radial density plots (Fig-
ure 5 bottom) revealed smooth shifts in transcript distri-
butions, confirming that the sampled trajectories capture
biologically interpretable temporal progressions. More
visualizations are available in Figure 9.

These results demonstrated that our diffusion-based random-walk method effectively leverages local
neighborhood information to construct pseudo-time series while preserving coherent spatiotemporal
patterns, thus providing reliable input sequences for model training.

4.3 SPADE reveals delayed effect in cis-transcriptional regulation

In cis-transcriptional regulation, transcription factors (TFs) activate or suppress downstream targets
with an inherent time delay because of the time required for their own transcription and translation
[7]. The transcription rate in a small time interval inferred by SPADE first time enables the direct
detection of delay effects in cis-regulation using static data.

We evaluated known TF–target pairs by testing the lagged dependencies between their inferred
transcription rate with Granger causality test[17]. As shown in Figure 6b, SPADE captures clear
delay patterns in which TF activation curves lead to the corresponding target gene responses (see
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Figure 5: Intracellular RNA molecule distributions (top) and corresponding density plots (bottom) of
the selected trajectory.

more examples in Figure 8). In addition, we aggregated the results of each TF-target pair across
all cells. The boxplots of p-values of the Granger causality (Figure 6a) suggested that the known
TF–target pairs consistently exhibit stronger causal signals than randomly sampled TF-target pairs.

These findings indicate that transcription rates inferred by SPADE over short time intervals can
capture regulatory delays, thereby providing evidence of causal relationships between TFs and their
targets.

Figure 6: Transcriptional delay effects detected by SPADE. a) Causality test results on transcription
rates of TF-target pairs. b) Examples of transcription rate curves of TF-target pairs inferred by
SPADE.

5 Conclusion

In this work, we introduced SPADE, a systems biology–informed deep learning framework for
inferring transcriptional rates and mRNA dynamics from static spatial transcriptomics data. By
leveraging molecule-level spatial distributions, SPADE reconstructs pseudo-trajectories, disentangles
transcriptional activity into generation and drift–diffusion processes, and embeds spatial heterogeneity
through location-aware modeling. Experiments on both synthetic and real-world datasets demonstrate
that SPADE accurately recovers transcriptional rates, reliably infers transcriptional on/off states, and
uncovers regulatory delays between transcription factors and their targets.

Our analysis also underscores the broader potential of coupling biophysical constraints with deep
learning to learn the dynamics of biological processes using static snapshots of omics data. Future
extensions will incorporate additional modalities, such as epigenomic and proteomic data. Overall,
SPADE establishes a foundation for AI-driven discovery of causal and dynamic mechanisms in
complex biological systems.
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A Simulation Design

To quantitatively evaluate SPADE with ground-truth parameters, we simulated the transcriptional
dynamics of RNA molecules within single cells based on a bi-state (on/off) model combined with
drift–diffusion processes.

Cellular environment. Each cell was modeled as a circular domain of fixed radius, within which
molecules undergo directed drift and Brownian diffusion until degradation. Simulations were
performed at a time resolution of 0.1 for a total of T = 20 time units.

Transcriptional dynamics. RNA synthesis followed a bi-state process: during the on state, transcripts
are generated at a constant rate and initiated near the nuclear center; during the off state, no new
molecules are produced. In all cases, synthesized molecules will undergo the drift–diffusion dynamics.

Simulation scenarios. To capture a range of transcriptional behaviors, we designed five scenarios
varying in the sequence of on/off states, their durations, and transcription rates (Table 1).

Table 1: Simulation scenarios used to benchmark SPADE.

Scenario State sequence Rate Durations
1 Off → On 5 50, 150
2 Off → On → Off 5 50, 100, 50
3 On → Off → On 5 50, 100, 50
4 Off → On → Off 10 80, 80, 40
5 On → Off → On 10 30, 70, 100

These scenarios were chosen to reflect diverse transcriptional patterns, including different on/off
switch patterns, and variable transcriptional intensities. The resulting data provides ground-truth
dynamic parameters for benchmarking SPADE’s inference of transcriptional states and rates.

B Additional example results of the experiments
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Figure 7: Inferred transcription rates and states of simulated scenarios which are not shown in main
text.

Figure 8: Additional examples of detected delay effects.
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Figure 9: More examples showing the molecule distributions of sampled pseudo-trajectories.
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