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ABSTRACT

Brain-like intelligent systems need brain-like learning methods. Equilibrium
Propagation (EP) is a biologically plausible learning framework with strong poten-
tial for brain-inspired computing hardware. However, existing implementations
of EP suffer from instability and prohibitively high computational costs. Inspired
by the structure and dynamics of the brain, we propose a biologically plausible
Feedback-regulated REsidual recurrent neural network (FRE-RNN) and study its
learning performance in EP framework. Feedback regulation enables rapid con-
vergence by attenuating feedback signals and reducing the disturbance of feedback
path to feedforward path. The improvement in convergence property reduces the
computational cost and training time of EP by orders of magnitude, delivering
performance on par with backpropagation (BP) in benchmark tasks. Meanwhile,
residual connections with brain-inspired topologies help alleviate the vanishing
gradient problem that arises when feedback pathways are weak in deep RNNs.
Our approach substantially enhances the applicability and practicality of EP. The
techniques developed here also offer guidance to implementing in-situ learning in
physical neural networks.

1 INTRODUCTION

Backpropagation (BP) has been the driving force behind the success of artificial intelligence (AI)
across a wide variety of tasks, ranging from image recognition to natural language processing
(Rumelhart et al., 1986; Lecun, 1988; He et al., 2016; Vaswani et al., 2017). Despite these tri-
umphs, BP’s reliance on non-local error signals and weight transport lacks biological plausibility
(Journ et al., 2023; Ororbia, 2023). The brain does not appear to implement the gradient compu-
tations performed by BP, in particular the explicit derivative of activation function, which demands
precise access to the rate of change in neuronal activities at specific operating points (Ororbia, 2023).
Moreover, implementing BP in neuromorphic systems incurs enormous overhead (Kudithipudi et al.,
2025). Drawing inspiration from the topology and dynamics of the brain is a viable approach to ad-
vancing biologically plausible learning mechanisms and to promoting energy-efficient computing
systems for AI.

Equilibrium Propagation (EP) (Scellier & Bengio, 2017; Ernoult et al., 2019; Laborieux et al., 2021)
presents a compelling and hardware-friendly alternative. It leverages naturally settling dynamics in
RNN for credit assignment, and eliminates the need for explicit activation derivatives. EP operates
in two phases with nearly identical dynamics, and the synaptic adjustments depend only on local
information (Ackley et al., 1985; Movellan, 1991; Ernoult et al., 2020). In EP, the output layer is
softly nudged by the prediction error toward configurations that incrementally minimize the loss
function, a regime termed weak supervision (Millidge et al., 2023). A major drawback of EP is
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its notably slow training speed and instability. An RNN often requires dozens or even hundreds
of iterations to reach a stable state (Scellier & Bengio, 2017). Previous attempts to optimize EP’s
performance have led to markedly more complicated procedures (O’Connor et al., 2019; Laborieux
& Zenke, 2024).

In this paper, we draw inspiration from the brain and propose a Feedback-regulated REsidual recur-
rent neural network (FRE-RNN). We substantially improve the convergence properties of the RNNs
and training speed of EP while achieving performance comparable to BP. Our contributions are as
follows:

• By scaling down the feedback strength of RNNs, we enhance the robustness of EP and
accelerate the training and inference speed by orders of magnitude because of the improved
convergence properties.

• To counteract the gradient vanishing problem caused by weak feedback, we introduce resid-
ual connections into the layered RNNs, enabling training deep networks that previously
challenged EP and achieving performance closer to BP.

• The feedback regulation and residual connections in RNNs of arbitrary graph topologies
mirror the multi-scale recurrence in biological neural networks. Our work fosters EP’s bi-
ological plausibility and extend its applicability in brain-inspired computational hardware.

2 BACKGROUND

2.1 CONVERGENT RNNS WITH STATIC INPUT

Consider an RNN as a dynamical system driven by a static input x:

s[t+ 1] = F (x, s[t], θ), (1)

where the F is the transition function, s[t] is the network state at time step t(t = 0, 1, 2, . . . , T ),
and θ denotes the parameters. Assuming that the network state stabilizes in T steps, the RNN
reaches a stable point s[T ]. Its convergence is typically guaranteed by either symmetric connections
with asynchronous updates or by sufficiently small spectral radius of asymmetric connections with
synchronous updates (Hopfield, 1982; Yildiz et al., 2012; Liu et al., 2025). That said, other factors,
e.g. activation function, also influence the dynamical properties of RNNs (Miller & Hardt, 2019).

2.2 SCALING ADJACENCY MATRIX TO TUNE NETWORK DYNAMICS

Scaling the spectral radius (SR) of adjacency matrix, the largest eigenvalue of the weight matrix, is
a common method to tune the dynamics of RNN (Bai et al., 2012; Nakajima et al., 2024; Liu et al.,
2025). A SR less than one yields stable and convergent dynamics. In this case, injected signals
tend to decay over time, which manifests as short-term memory. A SR exceeding one can give
rise to expansive or even chaotic behavior in which small perturbations are amplified. By adjusting
SR, one can bias the RNN toward convergent, oscillatory, or edge-of-chaos regimes, thereby tuning
computational properties, such as convergence speed or long-term memory capacity. (Jaeger &
Haas, 2004; Legenstein & Maass, 2007; Miller & Hardt, 2019).

2.3 EQUILIBRIUM PROPAGATION

Equilibrium propagation is a learning framework initially based on energy-based models. It proceeds
in two phases: a free (first) phase and a weakly clamped (second) phase. For the first phase, the
RNN converges to a steady state s0 under the stimulation of input alone. In the clamped phase, the
network is gently nudged by the prediction error and settles to a new stable state sβ . The weight
update can be simplified to a contrastive learning compatible with spiking time dependent plasticity
(STDP) (Scellier et al., 2018). EP has been further generalized to asymmetric RNNs governed by
vector field dynamics (Scellier et al., 2018). Recent work shows that asymmetry in skew-symmetric
Hopfield models can improve classification performance (Høier et al., 2024).
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2.4 FEEDBACK REGULATION AND NETWORK STRUCTURE IN THE BRAIN

Cortical areas in the brain feature dynamic regulation of feedforward and feedback connections
(Felleman & Van Essen, 1991; Mejias et al., 2016; Michalareas et al., 2016; Semedo et al., 2022;
Fişek et al., 2023; Wang et al., 2023). In the visual system, for instance, feedforward signals domi-
nate immediately following the onset of external stimulus, whereas feedback signals become promi-
nent during spontaneous activity. Dynamically regulating the strength of feedback allows the brain
to optimize information integration, ensuring efficient perception and decision-making. In mam-
malian neocortices, information processing involves not only feedforward synaptic chains but also
extensive lateral and feedback loops that interconnect disparate regions, forming a richly recursive
network rather than a strictly layered structure. This topology implies short average path length
between neurons and efficient information flow (Watts & Strogatz, 1998; Markov et al., 2013; Lynn
& Bassett, 2019; Kulkarni & Bassett, 2025). In deep neural networks, residual connections reflect
the long-range skip-layer projections observed in cortical circuits (Perich & Rajan, 2020; Holk &
Mejias, 2024). They mitigate vanishing gradient by providing skip pathways that preserve gradient
(He et al., 2016).

3 ACCELERATING EP WITH BRAIN-INSPIRED NETWORK PROPERTIES
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Figure 1: Illustration of feedback and feedforward regulation. (a) Layered architecture of RNN. The
feedforward weights Wi and feedback weights Bi are rescaled by coefficients αi and βi respectively.
The dashed box encloses an RNN formed by layers s1 and s2 with feedforward and feedback path-
ways. βf is the nudging factor, which essentially scales the feedback strength of prediction error.
(b) Embedding convolutional architecture in RNN. Convolutional parameter (32,5,1,0) is written
as (channels, kernels, stride, padding). Parameter (2) in (b) denotes max-pooling with stride 2.
ConvTi represents transpose convolution, the inverse process of the convolution, and P−1

i means
max-unpooling (Ernoult et al., 2019). Model architectures and training process are given in Ap-
pendix D.

3.1 PROTOTYPICAL SETTING OF EQUILIBRIUM PROPAGATION

Unlike the prototypical setting of equilibrium propagation (P-EP) (Ernoult et al., 2019), we separate
the input and output layer from the recurrent network (Figure 1a). This separation allows the output
layer to adopt the SoftMax activation commonly used in feedforward networks, which facilitates
performance comparison (Laborieux & Zenke, 2024). For clarity, the RNN (black dashed box in
Figure 1a) shown here only contains two hidden layers s1 and s2, but the approach applies to deeper
structures (see below). The states of the RNN evolve for T discrete steps until they converge. The
dynamics of the whole RNN can be formulated as:

sβf [t+ 1] = F (sβf [t], b) = ρ(W · sβf [t] + b),

b = [W0 · s0, βf ·Bf · ep], (2)
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where sβf [t] is the state of the RNN at time t, ρ is the activation function, W is the forward weight
matrix of the RNN, and b combines the feedforward input and the error-nudging term. Note that
sβf = [s

βf

1 , s
βf

2 ]. For each sample-label pair (x, star), we run the free phase (βf = 0) for te
iterations, obtain the prediction sp = SoftMax(Wf · s2), and compute the prediction error ep =
star−sp. During the clamped phase, the error nudges the RNN through the feedback weights Bf and
scaling coefficient βf = βf1 (βf1 = 0.1 for layered architecture and βf1 = 0.25 for convolutional
architecture by default). The network evolves for K further iterations under clamping to another
state. The weights (W0,W1) are then updated with an STDP-compatible rule:

∆Wi = dsi+1 · (s0i )⊤, dsi+1 = s
βf1

i+1 − s0i+1, (3)

where dsi is the offset of stable point caused by the error nudging (Scellier et al., 2018). Similarly,
the final weight for output is updated:

∆Wf = (star − s0p) · (s02)⊤. (4)

We also consider a RNN embedded with convolutional architecture in its forward paths (2 convo-
lution layers, 2 max-pooling layers and 1 fully connected layer) shown in Figure 1b. The forward
convolutional structure follows the architecture of existing convolutional neural networks (CNN)
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015), in which a pooling layer is placed after
the activation of the convolution layer. We transform the CNN to an RNN by adding feedback con-
nections symmetric with the feed-forward connections (See Appendix D for the pseudocode and
schematics).

3.2 FEEDBACK REGULATION IN LAYERED RNN FOR FAST CONVERGENCE
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Figure 2: Convergence dynamics and speed versus feedback scaling βi. All neurons in all hidden
layers are indexed (s1:0-63; s2:64-127). Colors indicate neuronal activity (a,c,e,g) and changes in
activity (b,d,f,h). (a) The state evolution of RNN with symmetric weights and βi = 0.1; (b) The
one-step difference of neural states in (a). (c, d) Symmetric weights with βi = 2; (e, f) Asymmetric
weights with βi = 0.1; (g, h) Asymmetric weights with βi = 4. In both symmetric and asymmetric
feedback cases, down-scaling feedback connections tends to stabilize the network. See Figure 5d
for the statistical robustness.

Although the SR can tune the RNN dynamics, scaling forward weights Wi distorts forward signal
propagation, which is harmful to performance (see below). Therefore, we turn to another choice,
namely, scaling only the feedback strength with βi. This coefficient scales the gradients, in the same
way as the nudging factor βf . We consider both symmetric (Bi = (Wi)

⊤) and asymmetric (Bi ̸=
(Wi)

⊤) recurrent connections in the study, and compare the results with FNNs of the same size
trained by BP (feedback connections removed) or feedback alignment (FA) (Lillicrap et al., 2016)
that uses random weights Bi ̸= (Wi)

⊤ to feedback the error. Note that, after scaling, the overall
weight matrix W of a symmetric RNN is no longer strictly symmetric. Therefore, we started from
the vector field setting of EP rather then the energy-based setting in the first place. The feedforward
and feedback weights are multiplied by coefficients αi and βi respectively. Figure 2a-d shows
convergence speed for different βi. With asymmetric weights, the network can converge to a fixed
point (Figure 2e, f), exhibit cyclical oscillation (Figure 2g, h), or even become chaos. The feedback
weights stay fixed during training process, which differs from EP in vector field dynamics (Scellier

4



Published as a conference paper at ICLR 2026

et al., 2018). The pseudocode of learning procedure with a 2-hidden-layer RNN shown in Figure 1(a)
is provided in Algorithm 1.

Algorithm 1 EP with Feedforward and Feedback Scaling
Require: Input: (x, star)
Require: Parameters: θ = [W0,W1,Wf , Bf , B1, α1, β1, βf1]
Ensure: Updated parameters θ
1: function FIRST-PHASE(θ, star)
2: s0 ← x
3: for t = 1 to T do
4: h1 ←W0 · s0 + β1 ·B1 · s02
5: h2 ← α1 ·W1 · s01
6: hp ←Wf · s02
7: s01, s

0
2, s

0
p ← ρ(h1), ρ(h2),SoftMax(hp)

8: end for
9: Λ1 ← [s0i ], i = 0, 1, 2, p

10: return Λ1

11: end function
12: function SECOND-PHASE(θ,Λ1, star)
13: s

βf1

1 , s
βf1

2 , s
βf1
p ← s01, s

0
2, s

0
p

14: for t = 1 to K do
15: ep ← star − s

βf1
p

16: h1 ←W0 · s0 + β1 ·B1 · s
βf1

2

17: h2 ← α1 ·W1 · s
βf1

1 + βf ·Bf · ep
18: hp ←Wf · s

βf1

2

19: s
βf1

1 , s
βf1

2 , s
βf1
p ← ρ(h1), ρ(h2), SoftMax(hp)

20: end for
21: dsi ← s

βf1

i − s0i , i = 1, 2
22: Λ2 ← [ds1, ds2]
23: return Λ2

24: end function
25: function UPDATING-WEIGHTS(θ,Λ1,Λ2, star)
26: ∆Wi ← dsi+1 · (s0i )⊤, i = 0, 1
27: ∆Wf ← (star − s0p) · (s02)⊤
28: end function

3.3 RESIDUAL CONNECTIONS TO AVOID VANISHING GRADIENTS

In our 10-hidden-layer RNN with symmetric connections, we add cross layer residual links (Fig-
ure 3a-b) and carry out ablation study on their effects in performance. The three long-range bidi-
rectional connections bypass adjacent layers to reduce gradient decay. For RNN with asymmetry
connections, we introduce skip-layer connections between non-adjacent layers with P = 20% prob-
ability, creating an RNN with arbitrary graph topologies (AGT) where any pair of layers form con-
nections stochastically (Figure 3c) (Salvatori et al., 2022). (See Algorithm S3 in Appendix D for
training detail)

4 EXPERIMENTS

We evaluated our RNN models on MNIST and CIFAR-10 datasets and compared the results with P-
EP and BP. The MNIST dataset consists of 70,000 grayscale handwritten digit images (28×28 pixels)
split into 60,000 training and 10,000 test samples. CIFAR-10 contains 60,000 RGB images (32×32
pixels) of 10 categories, divided into 50,000 training and 10,000 test samples. Pre-processing, net-
work structures and additional training details are in the Appendix D.

4.1 INFLUENCE OF FEEDFORWARD SCALING AND FEEDBACK SCALING

Figure 4 compares the effects of feedforward scaling αi and feedback scaling βi. In general, relative
small feedback scaling (βi = 0.1) yields high MNIST accuracy (Figure 4). In deeper RNNs, overly
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Figure 3: (a) A 10-hidden-layer RNN model with residual connections. The solid blue wires and
the dashed orange wires represent forward and feedback residual connections respectively. The
bidirectional connections are symmetric. (b) Adjacency matrix of (a). The blocks (green) other
than the sub-diagonals indicate residual connections. (c) Adjacency matrix for a RNN with arbitrary
graph topology.
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Figure 4: The influence of feedforward scaling αi and feedback scaling βi on accuracy of MNIST
classification. (a) 2 hidden layers; (b) 3 hidden layers; (c) 5 hidden layers. Each layer has 64
neurons. By default, T = 10×NHiddenLayer,K = T/2. Each result is averaged over five repetitive
experiments.
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Figure 5: The test error, SR, FTMLE, and convergence time versus with feedback scaling βi. The
results are obtained from a 3-hidden-layer (64 nerons per layer) model trained on MNIST dataset.
Note that the network does not converge under certain conditions, resulting in missing value in d.
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low feedback scaling βi jeopardizes the performance, which we attribute to vanishing gradients
(Figure 4c, right two columns). In contrast, down-scaling the feedforward weights degrade perfor-
mance, as the inference signals are weakened through the layers (see rows of Figure 4a). However,
up-scaling αi can also be detrimental, as this easily leads to saturation of neural state. The best per-
formance of a 5-hidden-layer RNN is achieved without feedforward scaling αi = 1 and a trade-off
in feedback scaling at βi = 0.1. These results suggest that balancing the feedforward and feedback
strengths is critical for better performance, not only accuracy but also speed (see Table 1).

To further investigate the influence of feedback scaling βi, we plot the error, SR, finite time max-
imum Lyapunov exponent (FTMLE) (Shadden et al., 2005; Kanno & Uchida, 2014) and conver-
gence time against feedback scaling coefficient before and after training of a 3-hidden-layer RNN
on MNIST (Figure 5). It shows that larger feedback scaling βi decreases accuracy (Figure 5a). As
expected, SR is positively correlated to βi (see Figure 5b), and large SR can lead to instability of a
RNN indicated by the FTMLE shown in Figure 5c, which in turn explain the results in Figure 5a.
In general, down-scaling the feedback (βi < 1) reduces the convergence time of RNN, which is
favorable. Note that up-scaling of feedback βi >1 can also decrease FTMLE and convergence time.
However, this is attributed to the saturation of neural state, and will also lower the performance.

Additionally, one might suspect that the gradient signals in the lower layers are not fulfilling their
intended role. In reservoir computing, where only the last layer is trained, the network can also
reach high accuracy as long as the output dimension is large enough. However, this is unlikely in
our case, as each layer in our network has only 64 neurons by default (other than the results in Table
1). To further confirm that the learning in lower layers are meaningful, we performed training with
the weights of lower layers frozen—details of these experiments are included in the Appendix C.5.
The results clearly show that the getting comparable results to BP requires effective training of lower
layers.
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Figure 6: Test error with different hyperparameters. The curves of different T (10, 20, 50, 100) with
2 hidden layers (64 neurons per hidden layer) and (a) βi = 0.01; (b) βi = 0.1; (c) βi = 1; (d)
βi = 4. The curves of different βi (0.001, 0.01, 0.1, 0.25, 1, 2, 4) with (e) 2 hidden layers; (f) 3
hidden layers; (g) 5 hidden layers; (h) 10 hidden layers. The shaded areas represent deviations of
five repeated experiments. By default, T = 10 × NHiddenLayer,K = T/2. See Appendix A for
more information.

4.2 DOWN-SCALING FEEDBACK LEADS TO FASTER CONVERGENCE

Figure 6a-d plots the error versus the number of epochs with different iteration steps T . Under the
condition of βi = 0.01 (Figure 6a), the model with T = 10 and K = 5 works as well as the model
with T = 100 and K = 50, suggesting possibility of speedup in training. Larger βi requires more
iterations to achieve a certain level of performance (See Figure 6b, c, d). Larger βi means larger SR
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Table 1: Comparison with P-EP and BP in accuracy and cost. The results of P-EP come from
previous work (Ernoult et al., 2019). For BP results, we used a network with the same number
of layers and number of nodes/channels. Each experiment is repeated five times, and the standard
deviation is given. By default, βi = 0.01 in our results, the feedback weights are symmetric with
the feedforward weights for P-EP and Ours, and the learning rate in all layers are the same except
for Ours-DLR (different learning rate), which uses varying learning rates identical to that of P-EP.
For 2HL (two hidden layers) and 3HL (three hidden layers), there are 512 nodes per hidden layer.
See Appendix D for more details.

Architecture Training approach Testing (Training) Epoch / Batch size
-T/K WCT (HH:MM:SS)

2HL
P-EP (sigmoid-s) 98.05%±0.10% (99.86%) 50/20-100/20 1:56:-

Ours (tanh, Adam) 98.39%±0.04% (100.00%) 50/500-10/10 0:01:16
BP (tanh, Adam) 98.26%±0.06% (100.00%) 50/500-1/1 0:00:18

3HL

P-EP (sigmoid-s) 97.99%±0.18% (99.90%) 100/20-180/20 8:27:-
Ours-DLR (tanh) 97.65%±0.08% (98.93%) 100/20-18/10 1:01:14

Ours (tanh) 97.83%±0.13% (99.98%) 100/20-18/10 1:01:54
Ours (tanh, Adam) 98.36%±0.06% (100.00%) 50/500-18/10 0:02:11
BP (tanh, Adam) 98.36%±0.08% (100.00%) 50/500-1/1 0:00:24

Conv
P-EP (hard-sigmoid) 98.98%±0.04% (99.46%) 40/20-200/10 8:58:-
Ours (hard-sigmoid) 99.14%±0.02% (99.78%) 40/128-20/10 0:12:28
BP (hard-sigmoid) 98.93%±0.18% (99.43%) 40/128-1/1 0:01:01

Table 2: Comparison with BP and FA and ablation study of residual connection. For layered
architecture, there are 64 nodes per hidden layer and we chose T = 10 × NHiddenLayer, and
K = 5 × NHiddenLayer, which guarantees saturation of accuracy at βi = 0.1. For convolutional
architectures, βi = 0.01. By default, the Adam optimizer is used. Each experiment is repeated five
times. See Appendix D for more training details.

Architecture
-connections Training approach MNIST-Testing (Training) CIFAR-10-Testing (Training)

5-symm
BP 97.69%±0.10% (100.00%) 49.23%±0.81% (56.72%)

Ours 97.64%±0.10% (99.98%) 50.72%±0.17% (57.02%)

5-asymm
FA 96.44%±0.10% (98.96%) 37.97%±2.18% (38.92%)

Ours 96.37%±0.11% (97.99%) 45.27%±0.73% (46.79%)

10-symm
BP 97.61%±0.04% (99.93%) 48.23%±1.26% (55.37%)

Ours 92.49%±0.32% (95.27%) 34.90%±0.38% (34.64%)
Ours-Residual 97.49%±0.05% (99.77%) 44.46%±0.51% (48.67%)

10-asymm
FA 94.52%±0.26% (95.54%) 30.16%±6.12% (30.20%)

Ours 87.37%±0.49% (87.95%) 30.37%±1.09% (29.97%)
Ours-AGT 96.87%±0.11% (99.45%) 30.94%±4.90% (31.36%)

20-symm
BP 97.48%±0.07% (99.74%) 47.35%±1.49% (54.59%)

Ours-Residual 95.95%±0.18% (98.20%) 43.61%±1.17% (44.26%)

Conv
BP 99.34%±0.04% (99.97%) 75.45%±0.46% (83.61%)

Ours 99.27%±0.07% (99.78%) 75.04%±0.51% (80.79%)

and FTMLE, thus requiring more iterations to settle the RNN as shown in Figure 2 and Figure 5(b-
d). Or even worse, the gradient signal is completely distorted. At βi = 4, even T=100 fails to exceed
95% accuracy. Figure 6e-h shows that while shallow networks benefit from low βi, deeper networks
(3, 5 and 10 layers) lose accuracy. In all cases, training performance peaks at certain βi dependent
on the network depth. Additional results are provided in Table S1 in Appendix B.

Table 1 compares our approach with P-EP, BP, and FA. Our model supersedes P-EP in training
speed by at least one order of magnitude for both convolutional architecture and layered architecture.
Importantly, our accuracy is comparable to BP and FA for the shallow architectures (5-hidden-layer
and conv model, see also Table 2). In consideration of the improved stability (Figure 6) via feedback
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regulation, we anticipate that physical implementations of RNN can achieve performance on par
with BP. Additionally, for layered architecture, we also adopt the same training parameters (learning
rate, batch size and epochs) as P-EP, differing only in feedback scaling (‘ours-DLR’ in Table 1). The
results present clear evidence of speedup, which mainly stems from the reduced number of iterations
required for convergence.

4.3 DOWN-SCALED FEEDBACK COORDINATES PLASTICITY OF DIFFERENT LAYERS

It is hypothesized that the brain requires different plasticity in different areas due to their varying
functional roles (Atallah et al., 2004; Lowet et al., 2020). The variability in plasticity can be realized
explicitly by adjusting learning rates or implicitly by modulating intensity of gradient. Previous
work postulated that EP with weak feedback necessitates learning rates differing by orders of mag-
nitude across layers (Scellier & Bengio, 2017). Here, we found that due to gradient differences
across different layers induced by weak feedback, a 3-hidden-layer RNN at βi = 0.01 (Table 1,
‘ours (tanh)’) learns well with a uniform learning rate. This result suggest that the feedback scaling
alone is able to regulate gradient strength of different layers, pointing to another possible mechanism
to coordinate plasticity.

4.4 RESIDUAL CONNECTIONS OVERCOME THE GRADIENT VANISHING IN DEEP RNNS

Weak feedback exacerbates vanishing gradient in deeper layered RNN (Figures S5–S6 in Ap-
pendix B). Adding residual connections restores gradient flow (Figure S7 in Appendix B). As a
result, a 10-hidden-layer network sees substantial performance gains (Table 2), 5% increase in accu-
racy for MNIST and 9% for CIFAR-10. And even 20-hidden-layer model can be trained. As shown
in Table 2, without residual connections, an asymmetric RNN trained by EP falls short of FA in
accuracy, but arbitrary residual links surpasses the accuracy of FA for the MNIST classification (See
ablation study on connection probability in Appendix B.). For more complex dataset CIFAR-10,
the 10-hidden-layer asymmetric model with residual random feedback connections achieve accu-
racy nearly 14% below the symmetric model. A possible reason is that the gradient signal through
multiple random fixed feedback connections become too distorted by error to coordinate the forward
weight learning.

5 DISCUSSION

We have applied the feedback scaling to RNN to speed up the convergence and to accelerate training
with EP with negligible overhead. To counteract the vanishing gradient in deep architecture, we
have added residual connections to non-adjacent layers of deep RNNs, partly restoring classification
performance. In principle, the residual connections makes credit assignment pathways shorter (Veit
et al., 2016). The training exhibit remarkable resilience to noise on weight and neural state. Our
structural modification is compatible with other algorithmic speed-ups (Scellier et al., 2023), thereby
expanding the design space for efficient EP implementations.

Recent work on credit assignment in brain-inspired networks, e.g. adjoint propagation (Liu et al.,
2025), partitions a large network into local RNNs with random internal connections of low SR
for fast convergence and dynamic resource allocation, yielding speed and accuracy similar to this
work. This work, however, adopts the feedback scaling to solves the stability issue and accelerate
convergence speed of EP.

Weak feedback is often considered in biologically plausible learning algorithms (Sacramento et al.,
2018; Haider et al., 2021; Meulemans et al., 2021). It has been shown that contrastive Hebbian
learning with weak feedback approximates back-propagation while converging quickly (Xie & Se-
ung, 2003). More recently, local representation alignment (LRA) likewise employed weak feedback
(Ororbia et al., 2023) and skip connections from the output to deep layers for efficient training. The
EP framework also approximates BP (Scellier & Bengio, 2017; Millidge et al., 2023), but under
the weak clamping condition (weak supervision) (Laborieux et al., 2021; Millidge et al., 2023). We
have shown that, at the infinitesimal inference limit, namely weak supervision and weak feedback
(Millidge et al., 2023), EP is equivalent to LRA and BP (Appendix C). In other words, the dynamics
of FRE-RNN is more like to the feedforward neural network due to its weak feedback.
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However, there are still a few limitations to our approaches for large-scale neural network that under-
pins artificial intelligence. For complex datasets like CIFAR-10, there exists a notable performance
gap compared to BP, using deep fully connected neural network. We attribute this gap to the inaccu-
rate approximation to the true gradient as computed by BP (See Appendix C.4). Therefore, although
EP can be extended to deep fully connected network (20-hidden-layers) and shallow CNNs, its appli-
cability for deep CNN remains to be explored. For deep architectures with asymmetric connections,
the accuracy decreases faster with increasing depth due to the inaccurate random error feedback.
More in-depth investigation on residual connection topology is required to scale up the methodol-
ogy to large scale deep architectures. Besides, the hyperparameters are optimized empirically. We
find a feedback scaling in the range of 0.01-0.1 is favorable for shallow networks (less than 4 lay-
ers) and 0.1-0.25 for deeper architectures. Finding a general way to determine these parameters is
still on-going. Additionally, existing EP converging naturally research continues to focus primarily
on static-input settings (Laborieux et al., 2021; Ernoult et al., 2019; Laborieux & Zenke, 2024).
Extending naturally converging RNN trained by EP to sequence tasks remains a challenge.

From a neurobiological perspective, residual connections, particularly the randomly generated arbi-
trary graph topologies, yield cortex-like connectivity patterns in the brain. The feedback-regulated
residual RNNs equip the biologically plausible learning framework, EP, with biologically plausible
network architecture. Although it currently runs on GPUs, it can exploit the natural convergence of
physical RNNs and facilitate efficient learning and inference on dedicated neuromorphic hardware.

CODE AVAILABILITY

The code used in this work is available at https://github.com/Zero0Hero/
FRE-RNN-EP.

REPRODUCIBILITY STATEMENT

The code necessary to reproduce the main results is provided as Jupyter Notebooks in the Supple-
mentary Materials. Researchers can directly run them to reproduce the results. Further details on
data pre-processing and training process are available within the provided code and in Appendix D.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this work, the authors used GPT-5 and Deepseek solely for the purpose of
polishing and improving the linguistic fluency and readability of the text. This includes tasks such
as correcting grammar and rephrasing sentences. After using the model, the authors reviewed and
edited all content extensively and take full responsibility for all ideas, claims, and the final language
presented in this paper.
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A THE DYNAMICS OF THE RNN

We quantize the convergence property of the recurrent neural network (RNN) with maximum Lya-
punov exponent (MLE) (Wolf et al., 1985), and finite time maximum Lyapunov exponent (FTMLE)
(Kanno & Uchida, 2014). When the MLE/FTMLE is large, the RNN converges slow or even not
at all. To compute MLE and FTMLE, we first initialize a random perturbation vector δ0. Then we
record the sequence of states s0[t] with t = 0, 1, 2, . . . , Te − 1 corresponding to the last sample of a
training set (see Figure 2 in the main text), and run the following steps:

1. Normalize perturbation vectors to unit length:

δt ←
δt
∥δt∥

2. Calculate the Jacobian matrix:

J(s0[t]) =
∂F (s0[t], b)

∂s0[t]

3. Update the perturbation:
δt+1 = J(s0[t]) · δt

4. Record
ri = ln ∥δt+1∥

The maximum Lyapunov exponent is computed as λmax = 1
Te

∑Te−1
t=0 ri for a sufficiently large Te

(default Te = 500). The results at any T < Te are the FTMLE.

Figure S1–S2 show the FTMLE, MLE, training accuracy and test accuracy versus epochs of dif-
ferent models. In all cases, smaller βi usually yields smaller (FT)MLE, whereas larger βi do not
always lead to larger (FT)MLE because the activation function saturates. The saturation diminishes
perturbation.

For 2-hidden-layer RNN, smaller feedback scaling βi yields steady training progress and better ac-
curacy. Figure S3 plots the FTMLE and test accuracy against feedback scaling for different numbers
of hidden layers. It shows that smaller βi is favorable for shallow networks, because the RNN is eas-
ier to converge (indicated by FTMLE). But for deeper networks (5-hidden-layer or more), smaller
βi degrades performance because of vanishing gradient.

Further comparison between our FRE-RNN that incorporates convolutional strucutre with previous
work (Ernoult et al., 2019) are also plotted in Figure S4. These results suggest that small feedback
scaling (βi = 0.01) leads to a smoother training process.

B GRADIENT VANISHING AND THE RESIDUAL CONNECTIONS

Figure S5 and S6 plot the error of each neuron versus epoch at different βi. For a 2-hidden-layer
RNN, the best performance is obtained at βi = 0.001. In this situation, the error of the first hidden
layer is at least two orders of magnitude less than the second hidden layer. At βi = 2, the error also
decreases from higher (high index neurons, closer to output layer) to lower layers, which is attributed
to the saturation of the activation function. In general, the training progress more steadily for smaller
βi despite the vanishing gradient, which also applies to deeper networks (up to 10-hidden-layer).

To eliminate the vanishing gradient in EP, direct feedback from the higher layers or local amplifi-
cation (with higher learning rate) is unavoidable (Nøkland, 2016; Ororbia et al., 2023). Figure S7
shows the effect of residual connections. βi = 0.1 yield the best accuracy 97.5%, due to the balance
between gradient flow and convergence.

Figure S8 shows the testing accuracy varies with the connection probability P of AGT with 10
hidden layers. Except for the connections in layered model, the connection between any two hidden
layers is generated with probability P , i.e., we first use P to decide if the connections between any
two layers will be established. As P increases, the accuracy rises first, peaks at 0.2 and decreases
around 1. However, the reason behind is yet to be explored.
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Figure S1: The FTMLE, MLE, training accuracy and testing accuracy of symmetric RNNs versus
epochs with different feedback scaling βi (legend). First row: 2 hidden layers; Second row: 3 hidden
layers; Third row: 5 hidden layers; Fourth row: 10 hidden layers. The activation is tanh. Each case
is repeated 5 times.
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Figure S2: The FTMLE, MLE, training accuracy and testing accuracy of asymmetric RNNs versus
epochs with different feedback scaling βi (legend). First row: 2 hidden layers; Second row: 3 hidden
layers; Third row: 5 hidden layers; Fourth row: 10 hidden layers. The activation is tanh. Each case
is repeated 5 times.

Figure S3: The FTMLE and testing accuracy versus feedback scaling βi with different numbers of
hidden layers. (a) Symmetry weights; (b) Asymmetry weights. The FTMLE and testing accuracy
given here correspond to their maxima in all epochs. Note that the 5-hidden-layer asymmetry RNN
with large βi diverged and resulted in missing data points in (b). Each case is repeated 5 times.

17



Published as a conference paper at ICLR 2026

Figure S4: Comparison of RNN embedded with convolutional structure on the MNIST between
P-EP (a) (Ernoult et al., 2019) and our approach at different βi (b-d). We used the same parameters
as the EP reference (Ernoult et al., 2019).
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Figure S5: For 2-hidden-layer RNN, the mean error of each neuron in the last batch and testing
accuracy versus epochs at different βi. All neurons in the hidden layers and the output layer are
indexed from the input to the output layer.
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Figure S6: For the 10-hidden-layer model, the mean error of each neuron in the last batch and
testing accuracy versus epochs at different βi. All neurons in the hidden layers and the output layer
are indexed from the input to the output layer.
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Figure S7: For the 10-hidden-layer model with residual connections, the mean error of each neuron
in the last batch and testing accuracy versus epochs at different βi. All neurons in the hidden layers
and the output layer are indexed from the input to the output layer.

Figure S8: The testing accuracy on MNIST varies with the connection probability P of AGT with
10 hidden layers. The experiments are repeated 5 times.
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Table S1: Testing accuracy (mean of 5 repeated experiments) with different feedback scaling βi. By
default, T = 10×NHiddenLayer, K = 5×NHiddenLayer. Each hidden layer has 64 nodes.

Architecture-connections βi = 0.001 βi = 0.01 βi = 0.1 βi = 0.25 βi = 1 βi = 2 βi = 4

2HL-symm 97.69% 97.57% 97.25% 96.22% 93.12% 66.04% 40.92%
3HL-symm 97.22% 97.64% 97.41% 96.60% 55.86% 32.64% 22.11%
5HL-symm 93.54% 95.54% 97.60% 90.63% 25.31% 17.88% 14.61%
10HL-symm 87.15% 89.99% 92.54% 41.84% 14.07% 14.30% 14.23%

10HL-Residual-symm – 97.52% 97.46% – 95.51% – –
conv-symm – 99.15% 98.71% – 11.35% – –
2HL-asymm 96.96% 96.97% 96.88% 96.79% 93.88% 91.81% 89.91%
3HL-asymm 95.17% 96.91% 96.76% 96.66% 91.21% 54.65% 26.72%
5HL-asymm 91.14% 92.34% 96.41% 96.35% 17.15% 11.35% 13.07%

10HL-asymm 84.27% 85.83% 87.79% 90.97% 16.13% 14.21% 16.67%
10HL-AGT-asymm – 96.37% 96.75% – 33.31% – –

C EQUIVALENCE WITH EP AND BP UNDER THE CONDITION OF
INFINITESIMAL INFERENCE LIMIT

Figure S9: A layered network model used to illustrate the process of backpropagation (BP), local
representation alignment (LRA), and EP. Note that the final prediction layer ·p corresponds to the
third layer with subindex ·3. For LRA, we use βLRA instead of β1 and βf . For BP, the feedback
(orange) paths are absent.

In this section, we will use the infinitesimal inference limit (Millidge et al., 2023) to derive the
equivalence of EP with LRA and BP.

C.1 BACKPROPAGATION

When we remove the feedback connection of a 2-hidden-layer RNN shown in Figure S9, a feedfor-
ward network is left and can be trained with BP. The forward process of BP is described by:

s1 = ρ(h1), h1 = W0 · s0,
s2 = ρ(h2), h2 = W1 · s1, (S1)
sp = hp, hp = Wf · s2.

Defining a loss LBP = 1
2 (sp−star)

2, the weights adjust according to the gradient of the loss. Taking
∆W0 as an example:

∆W0 = −∂LBP

∂W0

= −ρ′(h1)⊙W⊤
1 ·

(
ρ′(h2)⊙W⊤

f · (sp − star)
)
· (s0)⊤, (S2)

where “⊙” means Hadamard product (element-wise product), “·” means scalar or matrix multipli-
cation. For two vectors/matrices, “⊙” requires identical dimensions and computes element-wise
products. Broadcasting rules may apply (e.g., a column vector vm×1 ⊙ Am×n scales each column
of A by v).
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C.2 LOCAL REPRESENTATION ALIGNMENT

LRA is an alternative training method following the principle of discrepancy reduction (Ororbia
et al., 2017; Ororbia & Mali, 2019). It can be divided into two phases: 1) the network runs the
forward process, producing latent representations of the input samples. 2) the weights adjust in the
direction of reducing the mismatch between current latent representations and target representations
in each layer.

The forward process is the same as BP:
s01 = ρ(h0

1), h0
1 = W0 · s0,

s02 = ρ(h0
2), h0

2 = W1 · s01, (S3)

s0p = h0
p, h0

p = Wf · s02.
where s0i are interpreted as the latent representations. The predicting error is ep = star − s0p. Then
we can get the target representations of the second hidden layer:

sβLRA

2 = ρ(hβLRA

2 ), hβLRA

2 = W1 · s01 + βLRA ·Bf · ep, (S4)
The same goes for the first hidden layer:

sβLRA

1 = ρ(hβLRA

1 ), hβLRA

1 = W1 · s0 + βLRA ·B1 · e2, e2 = sβLRA

2 − s02, (S5)

LRA defines the loss as the total discrepancy between latent representations and target representa-
tions:

LLRA =

L∑
i=1

kiLi(s
0
i , s

βLRA

i ) =

L∑
i=1

1

2
(s0i − sβLRA

i )2, (S6)

The weight Wi adjusts according to the local mismatch between s0i+1 and sβLRA

i+1 :

∆Wi = −
∂kiLi(s

0
i+1, s

βLRA

i+1 )

∂Wi

= (sβLRA

i+1 − s0i+1)⊙ f ′(h0
i+1) · (s0i )⊤

≈ (sβLRA

i+1 − s0i+1) · (s0i )⊤, (S7)
where the derivative of the activation function is omitted in the last row, a useful practice common
in LRA (Melchior & Wiskott, 2019; Ororbia & Mali, 2019; Ororbia et al., 2023). When βLRA → 0,
sβLRA

i → s0i and hβLRA

i → h0
i , then

ei = sβLRA

i − s0i = ρ(hβLRA

i )− ρ(h0
i )

= ρ(h0
i + βLRA ·Bi · ei+1)− ρ(h0

i )

≈ [ρ(h0
i ) + ρ′(h0

i )⊙ (βLRA ·Bi · ei+1)− ρ(h0
i ))]βLRA→0, (S8)

= ρ′(h0
i )⊙ (βLRA ·Bi · ei+1)

The approximation in Equation S8 is based on a first-order Taylor expansion of ρ(h0
i +∆h) around

h0
i , where ∆h = βLRA ·Bi · ei+1. For a small perturbation ∆h→ 0, the Taylor expansion gives:

ρ(h0
i +∆h) = ρ(h0

i ) + ρ′(h0
i ) ·∆h+O(∆h2), (S9)

When βLRA → 0, higher order terms O(∆h2) are negligible, leaving only the linear terms. We
arrive at the last row after canceling out ρ(h0

i ). There we can express the weight adjustments as

∆W0 = e1 · (s00)⊤

=
[
ρ′(h0

1)⊙
(
βLRA ·B1 ·

(
ρ′(h0

2)⊙
(
βLRA ·Bf · (star − sp)

)))
· (s0)⊤

]
Bi=(Wi)⊤

= −βLRA · βLRA · ρ′(h0
1)⊙W⊤

1 ·
(
ρ′(h0

2)⊙W⊤
f · (sp − star)

)
· (s0)⊤, (S10)

which is the same as BP (Equation S2) except for a constant. Thus, LRA at weak feedback limit
approximates BP. An LRA algorithm for a 2-hidden-layer network is described in Algorithm S1. The
feedback weights in LRA need not be learned here, but can be kept symmetric with the feedforward
weights.
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C.3 EQUILIBRIUM PROPAGATION

We can also formulate EP in terms of discrepancy reduction. In EP (Algorithm 1 in the main text),
the network states evolve as follows (β = 0 for the first phase and β = βf for the second phase):

hβ
1 = W0 · sβ0 + β1 ·B1 · sβ2 ,

hβ
2 = W1 · sβ1 + βf ·Bf · ep,

hβ
p = Wf · sβ2 ,

sβ1 , s
β
2 , s

β
p = ρ(hβ

1 ), ρ(h
β
2 ), h

β
p , (S11)

where ep = star − s0p is the predicting error. The network converges to final states h0
1, h

0
2, s

0
1, s

0
2 in

the free phase. The error of s2 neurons can be described by:

ds2 = [ρ(h
βf

2 )]βf→0 − [ρ(h0
2)]βf=0

≈ ρ′(h0
2)⊙ (βf ·Bf · ep), (S12)

where only the first-order infinitesimal term is retained as β1 → 0. The same goes for the first
hidden layer:

ds1 = [ρ(h
βf

1 )]βf→0 − [ρ(h0
1)]βf=0

≈ ρ′(h0
1)⊙ (β1 ·B1 · (ρ′(h0

2)⊙ (βf ·Bf · ep))), (S13)

The weight W0 can be updated by:

∆W0 =
ds1 · (s00)⊤

β1 · βf
= ρ′(h0

1)⊙B1 · (ρ′(h0
2)⊙Bf · ep) · (s00)⊤, (S14)

With Bi = W⊤
i ,

ds1 = βf · β1 · ρ′(h0
1)⊙W⊤

1 · (ρ′(h0
2)⊙W⊤

f · −(sp − star)), (S15)

∆W0 =
ds1 · (s00)⊤

β1 · βf
= −ρ′(h0

1)⊙W⊤
1 ·

(
ρ′(h0

2)⊙W⊤
f · (sp − star)

)
· (s00)⊤. (S16)

Note that compared with the weight update in the main text, 1/(β1 ·βf ) is added to recover a gradient
amplitude similar to BP. Further, if we assume that the high-order infinitesimal in the first phase can
be omitted, the dynamics of RNN is governed by:

s01 = ρ(hβ
1 ), h0

1 = [W0 · s0 + β1 ·B1 · s02]β1→0 ≈W0 · s0, (S17)

s02 = ρ(h0
2), h0

2 = [W1 · s01 + βf ·Bf · ep]β1→0,βf=0 ≈W1 · s01, (S18)

s0p = h0
p, h0

p = Wf · s02. (S19)

The information flow of RNN degenerates into that of a feedforward network. This does not affect
the error information dsi, thus Equation S16 approximates Equation S2 for BP. Meanwhile, it re-
sembles LRA with low βLRA, which turns explicit error into implicit error. Hitherto, we have shown
that although the errors are obtained differently in EP, LRA, and BP, they are equivalent under the
assumption of weak supervision and weak feedback.
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Algorithm S1 Local Representation Alignment (LRA)
Input: (x, star)
Parameter: θ = [W0,W1,W2, B2, B1, βLRA]
Output: θ

1: function FORWARD(θ, x)
2: s0 ← x
3: s01 ← ρ(h1), h1 ←W0 · s0
4: s02 ← ρ(h2), h2 ←W1 · s01
5: s0p ←Wf · s02
6: Λ1 ← [s0i ], i = 0, 1, 2, p
7: return Λ1

8: end function
9: function FEEDBACK(θ,Λ1, star)

10: ep ← star − s0p
11: sβLRA

2 ← ρ(h2), h2 ←W1 · s01 + βLRA ·Bf · ep
12: e2 ← sβLRA

2 − s02
13: sβLRA

1 ← ρ(h1), h1 ←W0 · s0 + βLRA ·B1 · e2
14: e1 ← sβLRA

1 − s01
15: Λ2 ← [e1, e2, ep]
16: return Λ2

17: end function
18: function UPDATING-WEIGHTS(θ,Λ1,Λ2)
19: ∆Wi ← ei+1 · (s0i )T , i = 0, 1
20: ∆Wf ← ep · (s02)T
21: end function

C.4 EXPERIMENTS FOR EQUIVALENCE WITH EP AND BP

Prior works have shown that EP can be equalized to BPTT in specific conditions and can achieve
comparable performance (Ernoult et al., 2019; Laborieux et al., 2021). As discussed in the previ-
ous section, although the overall architecture forms an RNN, the network behaves similarly to a
feedforward model due to weak feedback connections.

To experimentally show the equivalence of EP and BP, we can further compare our model with
FNN with same feedforward weights trained by BP. We mainly compare cosine similarity of states,
bias gradients and weight gradients for the first batch (batch size is 200) as given in Figure S10.
Figure S10(a-c) shows similarity under the conditions of βi = 1 with different iterations. For the the
bias gradients, i.e., dsi, the cosine similarity declines rapidly, indicating no similarity between our
model and BP. With weak feedback βi = 0.1, as shown in Figure S10(d-f), the similarity of states
approaches 1 and the similarity of bias gradient of last 6(4) layers exceeds 0.5 with T = 500/50
(T = 20). These results provide further evidence that EP is equivalent to BP under the condition of
weak feedback.

We further studied the influence of βi on the cosine similarity. Figure S10(g) shows that lager
βi leads to lower similarity of states. Figure S10(h) shows that lower βi = 0.01 also leads to
the decrease in similarity, which may caused by insufficient precision of data storage (float32 by
default). Therefore, we use datatype float64 to repeat experiments. Figure S10(k,l) shows that the
similarity of gradient signal remains around 1 with βi = 0.1. This indicates that weak feedback does
indeed lead to an exponential decline in gradient signals, thus requiring higher relative accuracy.
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Figure S10: The cosine similarity of gradients and states between our model and feedforward model
trained by BP in an 8-hidden-layer FNN (states: s0i ; bias gradients: dsi; weight gradients: ∆Wi).
The axis x is the layers of the model. Error propagates from the last layer ”out” to the first hidden
layer ”fc1” layer by layer. (a-c), with different numbers of iterations under feedback scaling βi = 1.
(d-f), with different numbers of iterations under small feedback scaling βi = 0.1. (g-i), with different
feedback scaling (T=50,K=20). (j-l), Repeat (g-i) with datatype float64 (float32 by default).
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C.5 VERIFYING THE EFFECTIVENESS OF WEAK FEEDBACK IN EQUILIBRIUM PROPAGATION
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Figure S11: The testing accuracy on MNIST with different βi varies with nll. The experiments are
repeated 5 times.

To demonstrate that the lower few layers of the our model are indeed receiving meaningful credit
signals, we report the test accuracy of only updating the last nll layer (i.e., freezing the weights of
Layers 1 − nll) in Figure S11. For a 5-hidden layer model with βi = 0.1, updating only the final
layer yields a test accuracy of about 85%. As nll increase to 5, the accuracy also reaches around
97.5%. A similar trend is observed for the model with βi = 0.01. These results show that achieving
over 97% accuracy requires effective gradient propagation to all layers, confirming that our model
successfully delivers usable credit signals throughout the entire network.

C.6 ROBUSTNESS TO THE NOISE
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Figure S12: The maximum test accuracy model with different noise intensity on weights and states
added both in training and test. (a) With 2 hidden layers; (b) With 3 hidden layers; (c) With 5 hidden
layers. The model is trained for 50 epochs and the experiments is repeated 5 times.

To evaluate the robustness of the model, we introduce noise on weights and time-varying noise
on states, which are random Gauss noise imposed at each weight update or at each state update,
respectively. The noise on weights is directly added to the weight, while the noise on states is added
as the bias b in Equation 3.1. The mean absolute values of non-zero weights and neural activations
after noiseless training are approximately 0.09 and 0.76 respectively.

The accuracy of the model with two hidden layers varies with two types of noises as presented in Fig-
ure S12(a). It maintains satisfactory performance when the standard deviation of state noise reaches
0.1 or the standard deviation of weight noise reaches 0.01. In deeper structures (Figure S12(b,c)),
the results are consistent with the aforementioned observations for weight noise, demonstrating ex-
cellent robustness. However, the tolerance to time-varying state noise degrades significantly, which
we attribute to the layer-wise noise accumulation and the distortion of weak gradient signal by the
noise in the training process. To confirm our hypothesis, we impose the noises only in the test,
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Figure S13: The maximum test accuracy model with different noise intensity on weights and states
(the state noise is added only in test). (a) With 2 hidden layers; (b) With 3 hidden layers; (c) With 5
hidden layers. The model is trained for 50 epochs in a single experiment.

and the test accuracy almost remains unaffected (Figure S13). Therefore, the network is potentially
resilient to noise. However, how to improve resilient in the training process require further study.

D TRAINING DETAILS

Table S2 provides the parameters of the Adam optimizer that are used in Tables S1–S2 (Diederik
P. Kingma, 2015). The training details for Table 1 are given in Table S3. For convolutional architec-
tures in EP, the training process can be described by Algorithm S2. The training sample is fed into
the network through Conv0. Then the state of the first layer goes through max pooling MaxPool1
and convolution Conv1 sequentially to reach the second layer. The second layer also feedbacks its
states to the first layer through transposed convolution ConvT1 and max-unpooling MaxUnpool1.
With T iterations, the RNN converges to the steady states and produces outputs through MaxPool2
and a fully connected layer. Then the prediction error is computed and used to nudge the RNN by
the reverse of the fully connected layer and max-unpooling MaxUnpool2. Note that the unpooling
MaxUnpooli requires the indices from the corresponding pooling MaxPooli.

For Table S2, Adam optimizer is used for all experiments. The activation functions sigmoid-s
and hard-sigmoid are defined as ρ(x) = 1

1+e−4(x−0.5) , ρ(x) = max(min(x, 0), 1), respectively
(Ernoult et al., 2019). For 5-HL, 10-HL and 20-HL architectures, the Adam optimizer parameters
are as shown in Table S2 (epoch: 50, batch size: 500). The inference details of the architecture
shown in Figure 3b are described by Algorithm S3. The details for convolutional architectures are
given in Table S3 and Figure S14–S15. The cosine-annealing scheduler is used in convolutional
architectures for CIFAR-10 (Tmax = 50, ηmin = 10−6).

For MNIST, no pre-processing is used. For the CIFAR-10 dataset, we follow ref. (Scellier
et al., 2023) to pre-process the images. We normalize the input images using mean µ =
(0.4914, 0.4822, 0.4465) and standard deviation σ = 3× (0.2023, 0.1944, 0.2010).

The results for comparison of time consumption were obtained in a virtualized Windows 11 envi-
ronment with Intel Xeon Gold 6238R CPU, 16 GB RAM, and Nvidia RTX A5000 (24 GB VRAM).
Other results were obtained on a Windows 11 environment with Intel Core i5-12490F, 32 GB RAM,
and Nvidia GTX 1650 (4 GB VRAM) or a Windows 11 environment with AMD R7-7700, 32 GB
RAM, and Nvidia RTX 4070 (12 GB VRAM). The default numerical precision is float32 (single-
precision float).

Table S2: The parameters of the Adam optimizer.
Parameter Name Default Value

Learning rate (MNIST / CIFAR-10) 10−3/2× 10−4

First-order moment estimation decay rate (β1) 0.9
Second-order moment estimation decay rate (β2) 0.999

Small constant for numerical stability (ϵ) 10−8
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Table S3: Training details for Table 1 and Table 2. The results of EB-EP and P-EP come from
previous work (Ernoult et al., 2019). SGD refers to Stochastic Gradient Descent with mini-batches.

Architecture Training approach Optimizer Epoch / Batch size
-T/K Learning rate Weight decay

2HL P-EP (sigmoid-s) SGD 50/20-100/20 [0.005, 0.05, 0.2] None
Proposed (tanh, Adam) Adam 50/500-10/10 [0.001, 0.001, 0.001] None

3HL

P-EP (sigmoid-s) SGD 100/20-180/20 [0.002, 0.01, 0.05, 0.2] None
Proposed-DLR (tanh) SGD 100/20-18/10 [0.002, 0.01, 0.05, 0.2] None

Proposed (tanh) SGD 100/20-18/10 [0.1, 0.1, 0.1, 0.1] None
Proposed (tanh, Adam) Adam 50/500-18/10 10−3 None

BP (tanh, Adam) Adam 50/500-1/1 10−3 None

Conv
(Table 1)

P-EP (hard-sigmoid) SGD 40/20-200/10 [0.015, 0.035, 0.15] None
Proposed (hard-sigmoid) SGD 40/128-20/10 [0.15, 0.35, 0.9] 10−5

BP (hard-sigmoid) SGD 40/128-1/1 [0.001, 0.02, 0.4] 10−5

Conv
(Table 2 MNIST)

Proposed (hard-sigmoid) Adam 40/128-20/10 2× 10−4 10−6

BP (hard-sigmoid) Adam 40/128-1/1 2× 10−4 10−6

Conv
(Table 2 CIFAR-10)

Proposed (hard-sigmoid) Adam 50/128-40/10 2.5× 10−4 2× 10−4

BP (hard-sigmoid) Adam 50/128-1/1 2.5× 10−4 2× 10−4

Conv1 MaxPool1 Conv2 MaxPool2 Dense

1@28x28

32@24x24 32@12x12

64@8x8 64@4x4

1x10

Figure S14: Convolutional architectures for MNIST.
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3@32x32
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128@8x8 128@4x4

1x10

Figure S15: Convolutional architectures for CIFAR-10.
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Algorithm S2 Two phases in EP training process for convolution architecture
Input: Sample-label pairs (x, star)
Parameter: θ = [W0,W1,Wf , Bf , B1, α1, β1, βf1]
Output: θ

1: function FIRST-PHASE(θ, star)
2: s0 ← x
3: for t← 1 to T do
4: h1 ← Conv0(s0) + β1 ·MaxUnpool1(ConvT1(s

0
2))

5: h2 ← Conv1(MaxPool1(s
0
1))

6: hp ←Wf · Flatten(MaxPool2(s
0
2))

7: s01, s
0
2, s

0
p ← ρ(h1), ρ(h2),SoftMax(hp)

8: end for
9: Λ1 ← [s0i ], i = 0, 1, 2, p

10: return Λ1

11: end function
12: function SECOND-PHASE(θ,Λ1, star)
13: s0, s

βf1

1 , s
βf1

2 , s
βf1
p ← x, s01, s

0
2, s

0
p

14: for t← 1 to K do
15: ep ← star − s

βf1
p

16: h1 ← Conv0(s0) + β1 ·MaxUnpool1(ConvT1(s
βf1

2 ))

17: h2 ← Conv1(MaxPool1(s
βf1

1 )) + βf ·MaxUnpool2(Unflatten(W⊤
f ep))

18: hp ←Wf · Flatten(MaxPool2(s
βf1

2 ))

19: s
βf1

1 , s
βf1

2 , s
βf1
p ← ρ(h1), ρ(h2),SoftMax(hp)

20: end for
21: end function
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Algorithm S3 EP with feedback scaling and residual connections (Figure 3b)
Input: (x, star)
Parameter: θ = [W0,Wi,Wf , Bf , Bi, βi, βf1]
Output: θ

1: function ITERATION(θ,Λ1, star)
2: for t← 1 to K do
3: if Nudging Phase then
4: βf ← βf1

5: s0, s
βf1

1 , s
βf1

2 , s
βf1
p ← x, s01, s

0
2, s

0
p

6: else
7: βf ← 0
8: s0 ← x
9: end if

10: h1 ←W0s0 + β1B1s
βf

2 + β4,1B4,1s
βf

4

11: h2 ←W1s
βf

1 + β2B2s
βf

3

12: h3 ←W2s
βf

2 + β3B3s
βf

4

13: h4 ←W3s
βf

3 + β14B4s
βf

5 +W1,4s
βf

1 + β7,4B7,4s
βf

7

14: h5 ←W4s
βf

4 + β5B5s
βf

6

15: h6 ←W5s
βf

5 + β6B6s
βf

7

16: h7 ←W6s
βf

6 + β7B7s
βf

8 +W4,7s
βf

4 + β10,7B10,7s
βf

10

17: h8 ←W7s
βf

7 + β8B8s
βf

9

18: h9 ←W8s
βf

8 + β9B9s
βf

10

19: h10 ←W9s
βf

9 + βfBfe
βf
p +W7,10s

βf

7

20: hp ←Wfs
βf

10

21: s
βf

i ← ρ(hi), i = 0, 1, 2, . . . , 10

22: s
βf
p ← SoftMax(hp)

23: end for
24: end function
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