

TOWARD PRACTICAL EQUILIBRIUM PROPAGATION: BRAIN-INSPIRED RECURRENT NEURAL NETWORK WITH FEEDBACK REGULATION AND RESIDUAL CON- NECTIONS

Zhuo Liu

School of Microelectronics
University of Science and Technology of China
Hefei 230026, Anhui, China
zhuoliu00@mail.ustc.edu.cn

Tao Chen *

School of Microelectronics
University of Science and Technology of China
Hefei 230026, Anhui, China
tchen@ustc.edu.cn

ABSTRACT

Brain-like intelligent systems need brain-like learning methods. Equilibrium Propagation (EP) is a biologically plausible learning framework with strong potential for brain-inspired computing hardware. However, existing implementations of EP suffer from instability and prohibitively high computational costs. Inspired by the structure and dynamics of the brain, we propose a biologically plausible Feedback-regulated REsidual recurrent neural network (FRE-RNN) and study its learning performance in EP framework. Feedback regulation enables rapid convergence by attenuating feedback signals and reducing the disturbance of feedback path to feedforward path. The improvement in convergence property reduces the computational cost and training time of EP by orders of magnitude, delivering performance on par with backpropagation (BP) in benchmark tasks. Meanwhile, residual connections with brain-inspired topologies help alleviate the vanishing gradient problem that arises when feedback pathways are weak in deep RNNs. Our approach substantially enhances the applicability and practicality of EP. The techniques developed here also offer guidance to implementing in-situ learning in physical neural networks.

1 INTRODUCTION

Backpropagation (BP) has been the driving force behind the success of artificial intelligence (AI) across a wide variety of tasks, ranging from image recognition to natural language processing (Rumelhart et al., 1986; Lecun, 1988; He et al., 2016; Vaswani et al., 2017). Despite these triumphs, BP’s reliance on non-local error signals and weight transport lacks biological plausibility (Journ et al., 2023; Ororbia, 2023). The brain does not appear to implement the gradient computations performed by BP, in particular the explicit derivative of activation function, which demands precise access to the rate of change in neuronal activities at specific operating points (Ororbia, 2023). Moreover, implementing BP in neuromorphic systems incurs enormous overhead (Kudithipudi et al., 2025). Drawing inspiration from the topology and dynamics of the brain is a viable approach to advancing biologically plausible learning mechanisms and to promoting energy-efficient computing systems for AI.

Equilibrium Propagation (EP) (Scellier & Bengio, 2017; Ernoult et al., 2019; Laborieux et al., 2021) presents a compelling and hardware-friendly alternative. It leverages naturally settling dynamics in RNN for credit assignment, and eliminates the need for explicit activation derivatives. EP operates in two phases with nearly identical dynamics, and the synaptic adjustments depend only on local information (Ackley et al., 1985; Movellan, 1991; Ernoult et al., 2020). In EP, the output layer is softly nudged by the prediction error toward configurations that incrementally minimize the loss function, a regime termed weak supervision (Millidge et al., 2023). A major drawback of EP is

*Corresponding Author

its notably slow training speed and instability. An RNN often requires dozens or even hundreds of iterations to reach a stable state (Scellier & Bengio, 2017). Previous attempts to optimize EP’s performance have led to markedly more complicated procedures (O’Connor et al., 2019; Laborieux & Zenke, 2024).

In this paper, we draw inspiration from the brain and propose a Feedback-regulated REsidual recurrent neural network (FRE-RNN). We substantially improve the convergence properties of the RNNs and training speed of EP while achieving performance comparable to BP. Our contributions are as follows:

- By scaling down the feedback strength of RNNs, we enhance the robustness of EP and accelerate the training and inference speed by orders of magnitude because of the improved convergence properties.
- To counteract the gradient vanishing problem caused by weak feedback, we introduce residual connections into the layered RNNs, enabling training deep networks that previously challenged EP and achieving performance closer to BP.
- The feedback regulation and residual connections in RNNs of arbitrary graph topologies mirror the multi-scale recurrence in biological neural networks. Our work fosters EP’s biological plausibility and extend its applicability in brain-inspired computational hardware.

2 BACKGROUND

2.1 CONVERGENT RNNs WITH STATIC INPUT

Consider an RNN as a dynamical system driven by a static input x :

$$s[t+1] = F(x, s[t], \theta), \quad (1)$$

where the F is the transition function, $s[t]$ is the network state at time step t ($t = 0, 1, 2, \dots, T$), and θ denotes the parameters. Assuming that the network state stabilizes in T steps, the RNN reaches a stable point $s[T]$. Its convergence is typically guaranteed by either symmetric connections with asynchronous updates or by sufficiently small spectral radius of asymmetric connections with synchronous updates (Hopfield, 1982; Yildiz et al., 2012; Liu et al., 2025). That said, other factors, e.g. activation function, also influence the dynamical properties of RNNs (Miller & Hardt, 2019).

2.2 SCALING ADJACENCY MATRIX TO TUNE NETWORK DYNAMICS

Scaling the spectral radius (SR) of adjacency matrix, the largest eigenvalue of the weight matrix, is a common method to tune the dynamics of RNN (Bai et al., 2012; Nakajima et al., 2024; Liu et al., 2025). A SR less than one yields stable and convergent dynamics. In this case, injected signals tend to decay over time, which manifests as short-term memory. A SR exceeding one can give rise to expansive or even chaotic behavior in which small perturbations are amplified. By adjusting SR, one can bias the RNN toward convergent, oscillatory, or edge-of-chaos regimes, thereby tuning computational properties, such as convergence speed or long-term memory capacity. (Jaeger & Haas, 2004; Legenstein & Maass, 2007; Miller & Hardt, 2019).

2.3 EQUILIBRIUM PROPAGATION

Equilibrium propagation is a learning framework initially based on energy-based models. It proceeds in two phases: a free (first) phase and a weakly clamped (second) phase. For the first phase, the RNN converges to a steady state s^0 under the stimulation of input alone. In the clamped phase, the network is gently nudged by the prediction error and settles to a new stable state s^{β} . The weight update can be simplified to a contrastive learning compatible with spiking time dependent plasticity (STDP) (Scellier et al., 2018). EP has been further generalized to asymmetric RNNs governed by vector field dynamics (Scellier et al., 2018). Recent work shows that asymmetry in skew-symmetric Hopfield models can improve classification performance (Høier et al., 2024).

2.4 FEEDBACK REGULATION AND NETWORK STRUCTURE IN THE BRAIN

Cortical areas in the brain feature dynamic regulation of feedforward and feedback connections (Felleman & Van Essen, 1991; Mejias et al., 2016; Michalareas et al., 2016; Semedo et al., 2022; Fişek et al., 2023; Wang et al., 2023). In the visual system, for instance, feedforward signals dominate immediately following the onset of external stimulus, whereas feedback signals become prominent during spontaneous activity. Dynamically regulating the strength of feedback allows the brain to optimize information integration, ensuring efficient perception and decision-making. In mammalian neocortices, information processing involves not only feedforward synaptic chains but also extensive lateral and feedback loops that interconnect disparate regions, forming a richly recursive network rather than a strictly layered structure. This topology implies short average path length between neurons and efficient information flow (Watts & Strogatz, 1998; Markov et al., 2013; Lynn & Bassett, 2019; Kulkarni & Bassett, 2025). In deep neural networks, residual connections reflect the long-range skip-layer projections observed in cortical circuits (Perich & Rajan, 2020; Holk & Mejias, 2024). They mitigate vanishing gradient by providing skip pathways that preserve gradient (He et al., 2016).

3 ACCELERATING EP WITH BRAIN-INSPIRED NETWORK PROPERTIES

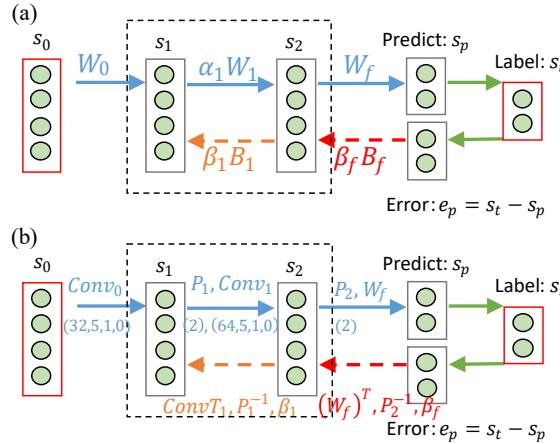


Figure 1: Illustration of feedback and feedforward regulation. (a) Layered architecture of RNN. The feedforward weights W_i and feedback weights B_i are rescaled by coefficients α_i and β_i respectively. The dashed box encloses an RNN formed by layers s_1 and s_2 with feedforward and feedback pathways. β_f is the nudging factor, which essentially scales the feedback strength of prediction error. (b) Embedding convolutional architecture in RNN. Convolutional parameter $(32, 5, 1, 0)$ is written as (channels, kernels, stride, padding). Parameter (2) in (b) denotes max-pooling with stride 2. $ConvT_i$ represents transpose convolution, the inverse process of the convolution, and P_i^{-1} means max-unpooling (Ernoult et al., 2019). Model architectures and training process are given in Appendix D.

3.1 PROTOTYPICAL SETTING OF EQUILIBRIUM PROPAGATION

Unlike the prototypical setting of equilibrium propagation (P-EP) (Ernoult et al., 2019), we separate the input and output layer from the recurrent network (Figure 1a). This separation allows the output layer to adopt the SoftMax activation commonly used in feedforward networks, which facilitates performance comparison (Laborieux & Zenke, 2024). For clarity, the RNN (black dashed box in Figure 1a) shown here only contains two hidden layers s_1 and s_2 , but the approach applies to deeper structures (see below). The states of the RNN evolve for T discrete steps until they converge. The dynamics of the whole RNN can be formulated as:

$$\begin{aligned} s^{\beta_f}[t+1] &= F(s^{\beta_f}[t], b) = \rho(W \cdot s^{\beta_f}[t] + b), \\ b &= [W_0 \cdot s_0, \quad \beta_f \cdot B_f \cdot e_p], \end{aligned} \quad (2)$$

where $s^{\beta_f}[t]$ is the state of the RNN at time t , ρ is the activation function, W is the forward weight matrix of the RNN, and b combines the feedforward input and the error-nudging term. Note that $s^{\beta_f} = [s_1^{\beta_f}, s_2^{\beta_f}]$. For each sample-label pair (x, s_{tar}) , we run the free phase ($\beta_f = 0$) for t_e iterations, obtain the prediction $s_p = \text{SoftMax}(W_f \cdot s_2)$, and compute the prediction error $e_p = s_{tar} - s_p$. During the clamped phase, the error nudges the RNN through the feedback weights B_f and scaling coefficient $\beta_f = \beta_{f1}$ ($\beta_{f1} = 0.1$ for layered architecture and $\beta_{f1} = 0.25$ for convolutional architecture by default). The network evolves for K further iterations under clamping to another state. The weights (W_0, W_1) are then updated with an STDP-compatible rule:

$$\Delta W_i = ds_{i+1} \cdot (s_i^0)^\top, \quad ds_{i+1} = s_{i+1}^{\beta_{f1}} - s_{i+1}^0, \quad (3)$$

where ds_i is the offset of stable point caused by the error nudging (Scellier et al., 2018). Similarly, the final weight for output is updated:

$$\Delta W_f = (s_{tar} - s_p^0) \cdot (s_2^0)^\top. \quad (4)$$

We also consider a RNN embedded with convolutional architecture in its forward paths (2 convolution layers, 2 max-pooling layers and 1 fully connected layer) shown in Figure 1b. The forward convolutional structure follows the architecture of existing convolutional neural networks (CNN) (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015), in which a pooling layer is placed after the activation of the convolution layer. We transform the CNN to an RNN by adding feedback connections symmetric with the feed-forward connections (See Appendix D for the pseudocode and schematics).

3.2 FEEDBACK REGULATION IN LAYERED RNN FOR FAST CONVERGENCE

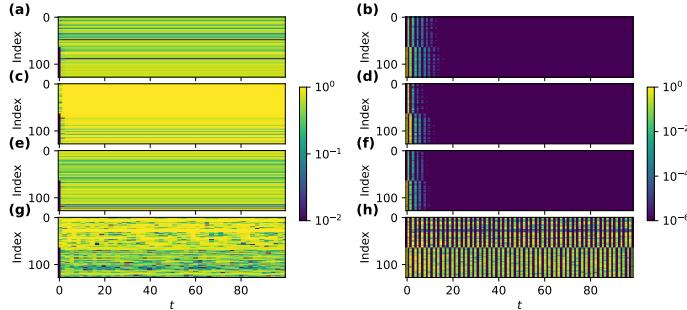


Figure 2: Convergence dynamics and speed versus feedback scaling β_i . All neurons in all hidden layers are indexed ($s_1:0\text{-}63$; $s_2:64\text{-}127$). Colors indicate neuronal activity (a,c,e,g) and changes in activity (b,d,f,h). (a) The state evolution of RNN with symmetric weights and $\beta_i = 0.1$; (b) The one-step difference of neural states in (a). (c, d) Symmetric weights with $\beta_i = 2$; (e, f) Asymmetric weights with $\beta_i = 0.1$; (g, h) Asymmetric weights with $\beta_i = 4$. In both symmetric and asymmetric feedback cases, down-scaling feedback connections tends to stabilize the network. See Figure 5d for the statistical robustness.

Although the SR can tune the RNN dynamics, scaling forward weights W_i distorts forward signal propagation, which is harmful to performance (see below). Therefore, we turn to another choice, namely, scaling only the feedback strength with β_i . This coefficient scales the gradients, in the same way as the nudging factor β_f . We consider both symmetric ($B_i = (W_i)^\top$) and asymmetric ($B_i \neq (W_i)^\top$) recurrent connections in the study, and compare the results with FNNs of the same size trained by BP (feedback connections removed) or feedback alignment (FA) (Lillicrap et al., 2016) that uses random weights $B_i \neq (W_i)^\top$ to feedback the error. Note that, after scaling, the overall weight matrix W of a symmetric RNN is no longer strictly symmetric. Therefore, we started from the vector field setting of EP rather than the energy-based setting in the first place. The feedforward and feedback weights are multiplied by coefficients α_i and β_i respectively. Figure 2a-d shows convergence speed for different β_i . With asymmetric weights, the network can converge to a fixed point (Figure 2e, f), exhibit cyclical oscillation (Figure 2g, h), or even become chaos. The feedback weights stay fixed during training process, which differs from EP in vector field dynamics (Scellier

et al., 2018). The pseudocode of learning procedure with a 2-hidden-layer RNN shown in Figure 1(a) is provided in Algorithm 1.

Algorithm 1 EP with Feedforward and Feedback Scaling

Require: Input: (x, s_{tar})
Require: Parameters: $\theta = [W_0, W_1, W_f, B_f, B_1, \alpha_1, \beta_1, \beta_{f1}]$
Ensure: Updated parameters θ

- 1: **function** FIRST-PHASE(θ, s_{tar})
- 2: $s_0 \leftarrow x$
- 3: **for** $t = 1$ to T **do**
- 4: $h_1 \leftarrow W_0 \cdot s_0 + \beta_1 \cdot B_1 \cdot s_2^0$
- 5: $h_2 \leftarrow \alpha_1 \cdot W_1 \cdot s_1^0$
- 6: $h_p \leftarrow W_f \cdot s_2^0$
- 7: $s_1^0, s_2^0, s_p^0 \leftarrow \rho(h_1), \rho(h_2), \text{SoftMax}(h_p)$
- 8: **end for**
- 9: $\Lambda_1 \leftarrow [s_i^0], i = 0, 1, 2, p$
- 10: **return** Λ_1
- 11: **end function**
- 12: **function** SECOND-PHASE($\theta, \Lambda_1, s_{tar}$)
- 13: $s_1^{\beta_{f1}}, s_2^{\beta_{f1}}, s_p^{\beta_{f1}} \leftarrow s_1^0, s_2^0, s_p^0$
- 14: **for** $t = 1$ to K **do**
- 15: $e_p \leftarrow s_{tar} - s_p^{\beta_{f1}}$
- 16: $h_1 \leftarrow W_0 \cdot s_0 + \beta_1 \cdot B_1 \cdot s_2^{\beta_{f1}}$
- 17: $h_2 \leftarrow \alpha_1 \cdot W_1 \cdot s_1^{\beta_{f1}} + \beta_f \cdot B_f \cdot e_p$
- 18: $h_p \leftarrow W_f \cdot s_2^{\beta_{f1}}$
- 19: $s_1^{\beta_{f1}}, s_2^{\beta_{f1}}, s_p^{\beta_{f1}} \leftarrow \rho(h_1), \rho(h_2), \text{SoftMax}(h_p)$
- 20: **end for**
- 21: $ds_i \leftarrow s_i^{\beta_{f1}} - s_i^0, i = 1, 2$
- 22: $\Lambda_2 \leftarrow [ds_1, ds_2]$
- 23: **return** Λ_2
- 24: **end function**
- 25: **function** UPDATING-WEIGHTS($\theta, \Lambda_1, \Lambda_2, s_{tar}$)
- 26: $\Delta W_i \leftarrow ds_{i+1} \cdot (s_i^0)^\top, i = 0, 1$
- 27: $\Delta W_f \leftarrow (s_{tar} - s_p^0) \cdot (s_2^0)^\top$
- 28: **end function**

3.3 RESIDUAL CONNECTIONS TO AVOID VANISHING GRADIENTS

In our 10-hidden-layer RNN with symmetric connections, we add cross layer residual links (Figure 3a-b) and carry out ablation study on their effects in performance. The three long-range bidirectional connections bypass adjacent layers to reduce gradient decay. For RNN with asymmetry connections, we introduce skip-layer connections between non-adjacent layers with $P = 20\%$ probability, creating an RNN with arbitrary graph topologies (AGT) where any pair of layers form connections stochastically (Figure 3c) (Salvatori et al., 2022). (See Algorithm S3 in Appendix D for training detail)

4 EXPERIMENTS

We evaluated our RNN models on MNIST and CIFAR-10 datasets and compared the results with P-EP and BP. The MNIST dataset consists of 70,000 grayscale handwritten digit images (28×28 pixels) split into 60,000 training and 10,000 test samples. CIFAR-10 contains 60,000 RGB images (32×32 pixels) of 10 categories, divided into 50,000 training and 10,000 test samples. Pre-processing, network structures and additional training details are in the Appendix D.

4.1 INFLUENCE OF FEEDFORWARD SCALING AND FEEDBACK SCALING

Figure 4 compares the effects of feedforward scaling α_i and feedback scaling β_i . In general, relative small feedback scaling ($\beta_i = 0.1$) yields high MNIST accuracy (Figure 4). In deeper RNNs, overly

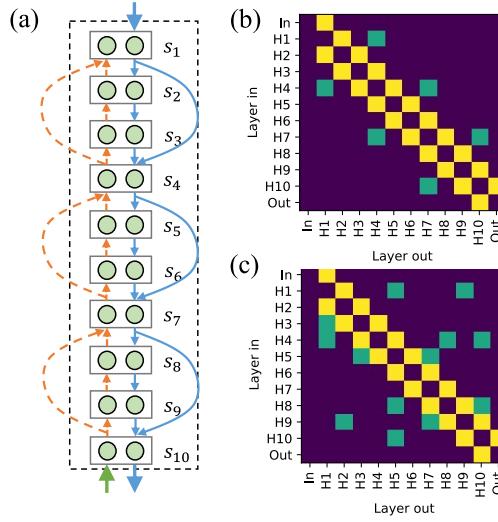


Figure 3: (a) A 10-hidden-layer RNN model with residual connections. The solid blue wires and the dashed orange wires represent forward and feedback residual connections respectively. The bidirectional connections are symmetric. (b) Adjacency matrix of (a). The blocks (green) other than the sub-diagonals indicate residual connections. (c) Adjacency matrix for a RNN with arbitrary graph topology.

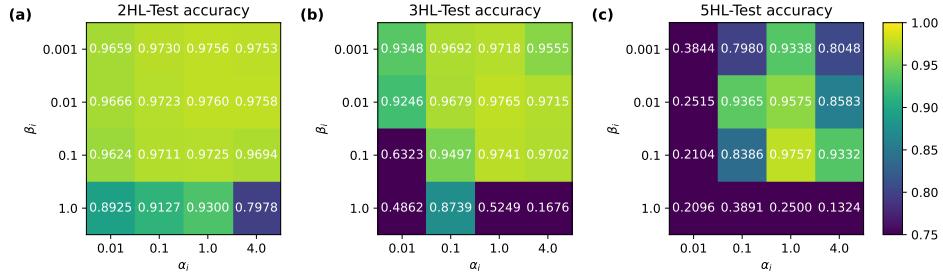


Figure 4: The influence of feedforward scaling α_i and feedback scaling β_i on accuracy of MNIST classification. (a) 2 hidden layers; (b) 3 hidden layers; (c) 5 hidden layers. Each layer has 64 neurons. By default, $T = 10 \times N_{\text{HiddenLayer}}$, $K = T/2$. Each result is averaged over five repetitive experiments.

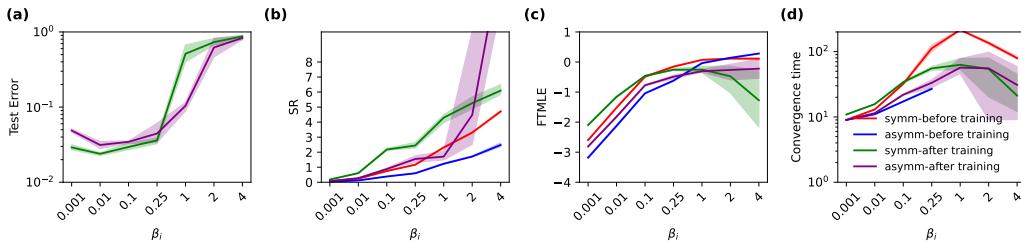


Figure 5: The test error, SR, FTMLE, and convergence time versus with feedback scaling β_i . The results are obtained from a 3-hidden-layer (64 neurons per layer) model trained on MNIST dataset. Note that the network does not converge under certain conditions, resulting in missing value in d.

low feedback scaling β_i jeopardizes the performance, which we attribute to vanishing gradients (Figure 4c, right two columns). In contrast, down-scaling the feedforward weights degrade performance, as the inference signals are weakened through the layers (see rows of Figure 4a). However, up-scaling α_i can also be detrimental, as this easily leads to saturation of neural state. The best performance of a 5-hidden-layer RNN is achieved without feedforward scaling $\alpha_i = 1$ and a trade-off in feedback scaling at $\beta_i = 0.1$. These results suggest that balancing the feedforward and feedback strengths is critical for better performance, not only accuracy but also speed (see Table 1).

To further investigate the influence of feedback scaling β_i , we plot the error, SR, finite time maximum Lyapunov exponent (FTMLE) (Shadden et al., 2005; Kanno & Uchida, 2014) and convergence time against feedback scaling coefficient before and after training of a 3-hidden-layer RNN on MNIST (Figure 5). It shows that larger feedback scaling β_i decreases accuracy (Figure 5a). As expected, SR is positively correlated to β_i (see Figure 5b), and large SR can lead to instability of a RNN indicated by the FTMLE shown in Figure 5c, which in turn explain the results in Figure 5a. In general, down-scaling the feedback ($\beta_i < 1$) reduces the convergence time of RNN, which is favorable. Note that up-scaling of feedback $\beta_i > 1$ can also decrease FTMLE and convergence time. However, this is attributed to the saturation of neural state, and will also lower the performance.

Additionally, one might suspect that the gradient signals in the lower layers are not fulfilling their intended role. In reservoir computing, where only the last layer is trained, the network can also reach high accuracy as long as the output dimension is large enough. However, this is unlikely in our case, as each layer in our network has only 64 neurons by default (other than the results in Table 1). To further confirm that the learning in lower layers are meaningful, we performed training with the weights of lower layers frozen—details of these experiments are included in the Appendix C.5. The results clearly show that the getting comparable results to BP requires effective training of lower layers.

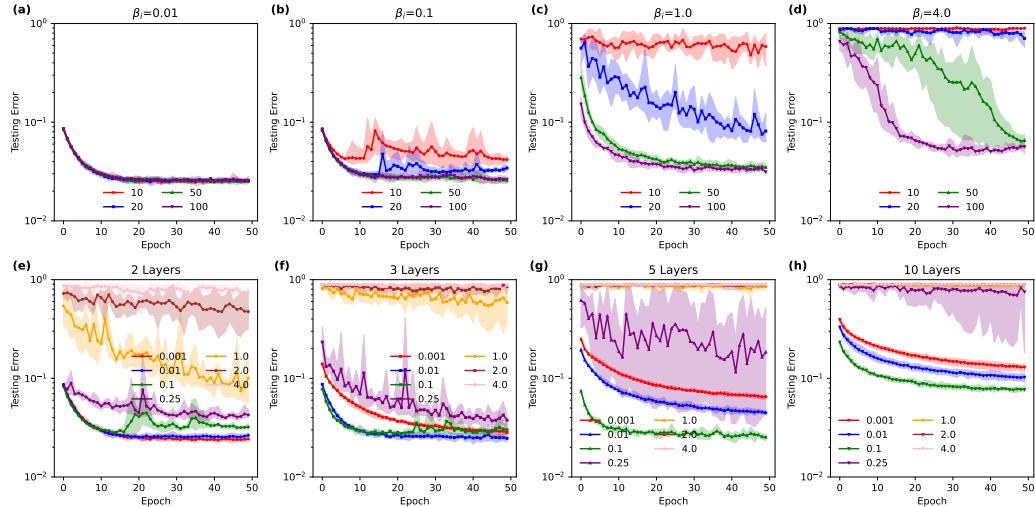


Figure 6: Test error with different hyperparameters. The curves of different T (10, 20, 50, 100) with 2 hidden layers (64 neurons per hidden layer) and (a) $\beta_i = 0.01$; (b) $\beta_i = 0.1$; (c) $\beta_i = 1$; (d) $\beta_i = 4$. The curves of different β_i (0.001, 0.01, 0.1, 0.25, 1, 2, 4) with (e) 2 hidden layers; (f) 3 hidden layers; (g) 5 hidden layers; (h) 10 hidden layers. The shaded areas represent deviations of five repeated experiments. By default, $T = 10 \times N_{\text{HiddenLayer}}$, $K = T/2$. See Appendix A for more information.

4.2 DOWN-SCALING FEEDBACK LEADS TO FASTER CONVERGENCE

Figure 6a-d plots the error versus the number of epochs with different iteration steps T . Under the condition of $\beta_i = 0.01$ (Figure 6a), the model with $T = 10$ and $K = 5$ works as well as the model with $T = 100$ and $K = 50$, suggesting possibility of speedup in training. Larger β_i requires more iterations to achieve a certain level of performance (See Figure 6b, c, d). Larger β_i means larger SR

Table 1: Comparison with P-EP and BP in accuracy and cost. The results of P-EP come from previous work (Ernoult et al., 2019). For BP results, we used a network with the same number of layers and number of nodes/channels. Each experiment is repeated five times, and the standard deviation is given. By default, $\beta_i = 0.01$ in our results, the feedback weights are symmetric with the feedforward weights for P-EP and Ours, and the learning rate in all layers are the same except for Ours-DLR (different learning rate), which uses varying learning rates identical to that of P-EP. For 2HL (two hidden layers) and 3HL (three hidden layers), there are 512 nodes per hidden layer. See Appendix D for more details.

Architecture	Training approach	Testing (Training)	Epoch / Batch size -T/K	WCT (HH:MM:SS)
2HL	P-EP (sigmoid-s)	98.05% \pm 0.10% (99.86%)	50/20-100/20	1:56:-
	Ours (tanh, Adam)	98.39% \pm 0.04% (100.00%)	50/500-10/10	0:01:16
	BP (tanh, Adam)	98.26% \pm 0.06% (100.00%)	50/500-1/1	0:00:18
3HL	P-EP (sigmoid-s)	97.99% \pm 0.18% (99.90%)	100/20-180/20	8:27:-
	Ours-DLR (tanh)	97.65% \pm 0.08% (98.93%)	100/20-18/10	1:01:14
	Ours (tanh)	97.83% \pm 0.13% (99.98%)	100/20-18/10	1:01:54
	Ours (tanh, Adam)	98.36% \pm 0.06% (100.00%)	50/500-18/10	0:02:11
Conv	BP (tanh, Adam)	98.36% \pm 0.08% (100.00%)	50/500-1/1	0:00:24
	P-EP (hard-sigmoid)	98.98% \pm 0.04% (99.46%)	40/20-200/10	8:58:-
	Ours (hard-sigmoid)	99.14% \pm 0.02% (99.78%)	40/128-20/10	0:12:28
	BP (hard-sigmoid)	98.93% \pm 0.18% (99.43%)	40/128-1/1	0:01:01

Table 2: Comparison with BP and FA and ablation study of residual connection. For layered architecture, there are 64 nodes per hidden layer and we chose $T = 10 \times N_{HiddenLayer}$, and $K = 5 \times N_{HiddenLayer}$, which guarantees saturation of accuracy at $\beta_i = 0.1$. For convolutional architectures, $\beta_i = 0.01$. By default, the Adam optimizer is used. Each experiment is repeated five times. See Appendix D for more training details.

Architecture -connections	Training approach	MNIST-Testing (Training)	CIFAR-10-Testing (Training)
5-symm	BP	97.69% \pm 0.10% (100.00%)	49.23% \pm 0.81% (56.72%)
	Ours	97.64% \pm 0.10% (99.98%)	50.72% \pm 0.17% (57.02%)
5-asymm	FA	96.44% \pm 0.10% (98.96%)	37.97% \pm 2.18% (38.92%)
	Ours	96.37% \pm 0.11% (97.99%)	45.27% \pm 0.73% (46.79%)
10-symm	BP	97.61% \pm 0.04% (99.93%)	48.23% \pm 1.26% (55.37%)
	Ours	92.49% \pm 0.32% (95.27%)	34.90% \pm 0.38% (34.64%)
	Ours-Residual	97.49% \pm 0.05% (99.77%)	44.46% \pm 0.51% (48.67%)
10-asymm	FA	94.52% \pm 0.26% (95.54%)	30.16% \pm 6.12% (30.20%)
	Ours	87.37% \pm 0.49% (87.95%)	30.37% \pm 1.09% (29.97%)
	Ours-AGT	96.87% \pm 0.11% (99.45%)	30.94% \pm 4.90% (31.36%)
20-symm	BP	97.48% \pm 0.07% (99.74%)	47.35% \pm 1.49% (54.59%)
	Ours-Residual	95.95% \pm 0.18% (98.20%)	43.61% \pm 1.17% (44.26%)
Conv	BP	99.34% \pm 0.04% (99.97%)	75.45% \pm 0.46% (83.61%)
	Ours	99.27% \pm 0.07% (99.78%)	75.04% \pm 0.51% (80.79%)

and FTMLE, thus requiring more iterations to settle the RNN as shown in Figure 2 and Figure 5(b-d). Or even worse, the gradient signal is completely distorted. At $\beta_i = 4$, even T=100 fails to exceed 95% accuracy. Figure 6e-h shows that while shallow networks benefit from low β_i , deeper networks (3, 5 and 10 layers) lose accuracy. In all cases, training performance peaks at certain β_i dependent on the network depth. Additional results are provided in Table S1 in Appendix B.

Table 1 compares our approach with P-EP, BP, and FA. Our model supersedes P-EP in training speed by at least one order of magnitude for both convolutional architecture and layered architecture. Importantly, our accuracy is comparable to BP and FA for the shallow architectures (5-hidden-layer and conv model, see also Table 2). In consideration of the improved stability (Figure 6) via feedback

regulation, we anticipate that physical implementations of RNN can achieve performance on par with BP. Additionally, for layered architecture, we also adopt the same training parameters (learning rate, batch size and epochs) as P-EP, differing only in feedback scaling (‘ours-DLR’ in Table 1). The results present clear evidence of speedup, which mainly stems from the reduced number of iterations required for convergence.

4.3 DOWN-SCALED FEEDBACK COORDINATES PLASTICITY OF DIFFERENT LAYERS

It is hypothesized that the brain requires different plasticity in different areas due to their varying functional roles (Atallah et al., 2004; Lowet et al., 2020). The variability in plasticity can be realized explicitly by adjusting learning rates or implicitly by modulating intensity of gradient. Previous work postulated that EP with weak feedback necessitates learning rates differing by orders of magnitude across layers (Scellier & Bengio, 2017). Here, we found that due to gradient differences across different layers induced by weak feedback, a 3-hidden-layer RNN at $\beta_i = 0.01$ (Table 1, ‘ours (tanh)’) learns well with a uniform learning rate. This result suggest that the feedback scaling alone is able to regulate gradient strength of different layers, pointing to another possible mechanism to coordinate plasticity.

4.4 RESIDUAL CONNECTIONS OVERCOME THE GRADIENT VANISHING IN DEEP RNNs

Weak feedback exacerbates vanishing gradient in deeper layered RNN (Figures S5–S6 in Appendix B). Adding residual connections restores gradient flow (Figure S7 in Appendix B). As a result, a 10-hidden-layer network sees substantial performance gains (Table 2), 5% increase in accuracy for MNIST and 9% for CIFAR-10. And even 20-hidden-layer model can be trained. As shown in Table 2, without residual connections, an asymmetric RNN trained by EP falls short of FA in accuracy, but arbitrary residual links surpasses the accuracy of FA for the MNIST classification (See ablation study on connection probability in Appendix B.). For more complex dataset CIFAR-10, the 10-hidden-layer asymmetric model with residual random feedback connections achieve accuracy nearly 14% below the symmetric model. A possible reason is that the gradient signal through multiple random fixed feedback connections become too distorted by error to coordinate the forward weight learning.

5 DISCUSSION

We have applied the feedback scaling to RNN to speed up the convergence and to accelerate training with EP with negligible overhead. To counteract the vanishing gradient in deep architecture, we have added residual connections to non-adjacent layers of deep RNNs, partly restoring classification performance. In principle, the residual connections makes credit assignment pathways shorter (Veit et al., 2016). The training exhibit remarkable resilience to noise on weight and neural state. Our structural modification is compatible with other algorithmic speed-ups (Scellier et al., 2023), thereby expanding the design space for efficient EP implementations.

Recent work on credit assignment in brain-inspired networks, e.g. adjoint propagation (Liu et al., 2025), partitions a large network into local RNNs with random internal connections of low SR for fast convergence and dynamic resource allocation, yielding speed and accuracy similar to this work. This work, however, adopts the feedback scaling to solves the stability issue and accelerate convergence speed of EP.

Weak feedback is often considered in biologically plausible learning algorithms (Sacramento et al., 2018; Haider et al., 2021; Meulemans et al., 2021). It has been shown that contrastive Hebbian learning with weak feedback approximates back-propagation while converging quickly (Xie & Seung, 2003). More recently, local representation alignment (LRA) likewise employed weak feedback (Ororbia et al., 2023) and skip connections from the output to deep layers for efficient training. The EP framework also approximates BP (Scellier & Bengio, 2017; Millidge et al., 2023), but under the weak clamping condition (weak supervision) (Laborieux et al., 2021; Millidge et al., 2023). We have shown that, at the infinitesimal inference limit, namely weak supervision and weak feedback (Millidge et al., 2023), EP is equivalent to LRA and BP (Appendix C). In other words, the dynamics of FRE-RNN is more like to the feedforward neural network due to its weak feedback.

However, there are still a few limitations to our approaches for large-scale neural network that underpins artificial intelligence. For complex datasets like CIFAR-10, there exists a notable performance gap compared to BP, using deep fully connected neural network. We attribute this gap to the inaccurate approximation to the true gradient as computed by BP (See Appendix C.4). Therefore, although EP can be extended to deep fully connected network (20-hidden-layers) and shallow CNNs, its applicability for deep CNN remains to be explored. For deep architectures with asymmetric connections, the accuracy decreases faster with increasing depth due to the inaccurate random error feedback. More in-depth investigation on residual connection topology is required to scale up the methodology to large scale deep architectures. Besides, the hyperparameters are optimized empirically. We find a feedback scaling in the range of 0.01-0.1 is favorable for shallow networks (less than 4 layers) and 0.1-0.25 for deeper architectures. Finding a general way to determine these parameters is still on-going. Additionally, existing EP converging naturally research continues to focus primarily on static-input settings (Laborieux et al., 2021; Ernoult et al., 2019; Laborieux & Zenke, 2024). Extending naturally converging RNN trained by EP to sequence tasks remains a challenge.

From a neurobiological perspective, residual connections, particularly the randomly generated arbitrary graph topologies, yield cortex-like connectivity patterns in the brain. The feedback-regulated residual RNNs equip the biologically plausible learning framework, EP, with biologically plausible network architecture. Although it currently runs on GPUs, it can exploit the natural convergence of physical RNNs and facilitate efficient learning and inference on dedicated neuromorphic hardware.

CODE AVAILABILITY

The code used in this work is available at <https://github.com/Zero0Hero/FRE-RNN-EP>.

REPRODUCIBILITY STATEMENT

The code necessary to reproduce the main results is provided as Jupyter Notebooks in the Supplementary Materials. Researchers can directly run them to reproduce the results. Further details on data pre-processing and training process are available within the provided code and in Appendix D.

THE USE OF LARGE LANGUAGE MODELS (LLMs)

In the preparation of this work, the authors used GPT-5 and Deepseek solely for the purpose of polishing and improving the linguistic fluency and readability of the text. This includes tasks such as correcting grammar and rephrasing sentences. After using the model, the authors reviewed and edited all content extensively and take full responsibility for all ideas, claims, and the final language presented in this paper.

REFERENCES

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for boltzmann machines. *Cognitive Science*, 9(1):147–169, 1985.

Hisham E. Atallah, Michael J. Frank, and Randall C. O'Reilly. Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. *Neurobiology of Learning and Memory*, 82(3):253–267, 2004. ISSN 1074-7427. doi: <https://doi.org/10.1016/j.nlm.2004.06.004>. URL <https://www.sciencedirect.com/science/article/pii/S1074742704000693>.

Zhang Bai, D. J. Miller, and Wang Yue. Nonlinear system modeling with random matrices: Echo state networks revisited. *IEEE Transactions on Neural Networks and Learning Systems*, 23(1):175–182, 2012. ISSN 2162-237X 2162-2388. doi: 10.1109/tnnls.2011.2178562.

Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization. In *International Conference for Learning Representations*. ICLR, 2015. doi: doi.org/10.48550/arXiv.1412.6980.

Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier. Updates of equilibrium prop match gradients of backprop through time in an rnn with static input. In

Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. Article 636. Curran Associates Inc., 2019.

Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier. Equilibrium propagation with continual weight updates, 2020. URL <https://openreview.net/forum?id=H1xJhJStPS>.

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. *Cerebral Cortex*, 1(1):1–47, 1991. ISSN 1047-3211. doi: 10.1093/cercor/1.1.1. URL <Go to ISI>://WOS:000208047200002.

Mehmet Fişek, Dustin Herrmann, Alexander Egea-Weiss, Matilda Cloves, Lisa Bauer, Tai-Ying Lee, Lloyd E. Russell, and Michael Häusser. Cortico-cortical feedback engages active dendrites in visual cortex. *Nature*, 617(7962):769–776, 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06007-6. URL <https://doi.org/10.1038/s41586-023-06007-6>.

Paul Haider, Benjamin Ellenberger, Laura Kriener, Jakob Jordan, Walter Senn, and Mihai A. Petrovici. Latent equilibrium: a unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, pp. Article 1365. Curran Associates Inc., 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016. ISBN 1063-6919. doi: 10.1109/CVPR.2016.90.

Maya van Holk and Jorge F Mejias. Biologically plausible models of cognitive flexibility: merging recurrent neural networks with full-brain dynamics. *Current Opinion in Behavioral Sciences*, 56: 101351, 2024. doi: 10.1016/j.cobeha.2024.101351. van Holk, Maya; Mejias, Jorge F. ORCIDs: 0000-0003-4930-1472 2352-1546 2352-1554.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the National Academy of Sciences*, 79(8):2554–2558, 1982. ISSN 0027-8424 1091-6490. doi: 10.1073/pnas.79.8.2554.

Rasmus Høier, Kirill Kalinin, Maxence Ernoult, and Christopher Zach. Dyadic learning in recurrent and feedforward models. In *NeurIPS 2024 Workshop Machine Learning with new Compute Paradigms*, 2024. URL <https://openreview.net/forum?id=LNFWowAERI>.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. *Science*, 304(5667):78–80, 2004. doi: 10.1126/science.1091277. URL <https://doi.org/10.1126/science.1091277>. doi: 10.1126/science.1091277.

Adrien Journ, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep learning without feedback. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=8gd4M-_Rj1.

Kazutaka Kanno and Atsushi Uchida. Finite-time lyapunov exponents in time-delayed nonlinear dynamical systems. *Physical Review E*, 89(3):032918, 2014. ISSN 1539-3755 1550-2376. doi: 10.1103/PhysRevE.89.032918.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems*, 2012.

Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays, Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand, Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur, Anand Subramoney, and Steve Furber. Neuromorphic computing at scale. *Nature*, 637(8047):801–812, 2025. ISSN 0028-0836 1476-4687. doi: 10.1038/s41586-024-08253-8.

Suman Kulkarni and Dani S. Bassett. Toward principles of brain network organization and function. *Annual Review of Biophysics*, 54(Volume 54, 2025):353–378, 2025. ISSN 1936-1238. doi: <https://doi.org/10.1146/annurev-biophys-030722-110624>. URL <https://www.annualreviews.org/content/journals/10.1146/annurev-biophys-030722-110624>.

Axel Laborieux and Friedemann Zenke. Improving equilibrium propagation without weight symmetry through jacobian homeostasis. In *The Twelfth International Conference on Learning Representations*. ICLR, 2024. URL <https://openreview.net/forum?id=kUveo5k1GF>.

Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and Damien Querlioz. Scaling equilibrium propagation to deep convnets by drastically reducing its gradient estimator bias. *Frontiers in Neuroscience*, 15:633674, 2021. ISSN 1662-453X. doi: 10.3389/fnins.2021.633674.

Yann Lecun. A theoretical framework for back-propagation. In *Proceedings of the 1988 Connectionist Models Summer School*, 1988.

Robert Legenstein and Wolfgang Maass. Edge of chaos and prediction of computational performance for neural circuit models. *Neural Networks*, 20(3):323–334, 2007. ISSN 08936080. doi: 10.1016/j.neunet.2007.04.017.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic feedback weights support error backpropagation for deep learning. *Nature Communications*, 7(1):13276, 2016. ISSN 2041-1723. doi: 10.1038/ncomms13276.

Zhuo Liu, Xu Meng, Yousheng Wang, Hao Shu, Linmiao Wang, and Tao Chen. Adjoint propagation of error signal through modular recurrent neural networks for biologically plausible learning, 2025. URL <https://doi.org/10.21203/rs.3.rs-6759684/v1>.

Adam S. Lowet, Qiao Zheng, Sara Matias, Jan Drugowitsch, and Naoshige Uchida. Distributional reinforcement learning in the brain. *Trends in Neurosciences*, 43(12):980–997, 2020. ISSN 0166-2236. doi: <https://doi.org/10.1016/j.tins.2020.09.004>. URL <https://www.sciencedirect.com/science/article/pii/S0166223620301983>.

Christopher W. Lynn and Danielle S. Bassett. The physics of brain network structure, function and control. *Nature Reviews Physics*, 1(5):318–332, 2019. ISSN 2522-5820. doi: 10.1038/s42254-019-0040-8.

Nikola T. Markov, Mária Ercsey-Ravasz, David C. Van Essen, Kenneth Knoblauch, Zoltán Toroczkai, and Henry Kennedy. Cortical high-density counterstream architectures. *Science*, 342(6158), 2013. ISSN 0036-8075 1095-9203. doi: 10.1126/science.1238406.

Jorge F. Mejias, John D. Murray, Henry Kennedy, and Xiao-Jing Wang. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. *Science Advances*, 2(11):e1601335, 2016. doi: doi:10.1126/sciadv.1601335. URL <https://www.science.org/doi/abs/10.1126/sciadv.1601335>.

Jan Melchior and Laurenz Wiskott. Hebbian-descent, 2019. URL <https://arxiv.org/abs/1905.10585>.

Alexander Meulemans, Matilde Tristany Farinha, Javier Garcia Ordóñez, Pau Vilimelis Aceituno, João Sacramento, and Benjamin F. Grewe. Credit assignment in neural networks through deep feedback control. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 4674–4687. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/25048eb6a33209cb5a815bff0cf6887c-Paper.pdf.

Georgios Michalareas, Julien Vezoli, Stan van Pelt, Jan-Mathijs Schoffelen, Henry Kennedy, and Pascal Fries. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. *Neuron*, 89(2):384–397, 2016. ISSN 0896-6273. doi: <https://doi.org/10.1016/j.neuron.2015.12.018>. URL <https://www.sciencedirect.com/science/article/pii/S0896627315011204>.

John Miller and Moritz Hardt. Stable recurrent models. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Hygxb2CqKm>.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. Backpropagation at the infinitesimal inference limit of energy-based models: Unifying predictive coding, equilibrium propagation, and contrastive hebbian learning. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=nIMifqu2EO>.

Javier R. Movellan. *Contrastive Hebbian Learning in the Continuous Hopfield Model*, pp. 10–17. Morgan Kaufmann, 1991. ISBN 978-1-4832-1448-1. doi: <https://doi.org/10.1016/B978-1-4832-1448-1.50007-X>. URL <https://www.sciencedirect.com/science/article/pii/B978148321448150007X>.

Mitsumasa Nakajima, Yongbo Zhang, Katsuma Inoue, Yasuo Kuniyoshi, Toshikazu Hashimoto, and Kohei Nakajima. Reservoir direct feedback alignment: deep learning by physical dynamics. *Communications Physics*, 7(1):411, 2024. ISSN 2399-3650. doi: 10.1038/s42005-024-01895-0.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf.

Peter O’Connor, Efstratios Gavves, and Max Welling. Initialized equilibrium propagation for backprop-free training. In *International Conference on Learning Representations*. ICLR, 2019. URL <https://openreview.net/forum?id=B1GMDsR5tm>.

Alexander Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local target representations. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 4651–4658. AAAI, 2019.

Alexander Ororbia, Patrick Haffner, David Reitter, and C. Lee Giles. Learning to adapt by minimizing discrepancy, 2017.

Alexander G. Ororbia. Brain-inspired machine intelligence: A survey of neurobiologically-plausible credit assignment, 2023. URL <https://arxiv.org/abs/2312.09257>.

Alexander G. Ororbia, Ankur Mali, Daniel Kifer, and C. Lee Giles. Backpropagation-free deep learning with recursive local representation alignment. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 9327–9335. AAAI, 2023. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26118>.

Matthew G. Perich and Kanaka Rajan. Rethinking brain-wide interactions through multi-region ‘network of networks’ models. *Current Opinion in Neurobiology*, 65:146–151, 2020. ISSN 09594388. doi: 10.1016/j.conb.2020.11.003.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. *Nature*, 323(6088):533–536, 1986. ISSN 0028-0836. doi: 10.1038/323533a0. URL <Go to ISI> : //WOS:A1986E327500055. E3275 Times Cited:16725 Cited References Count:4.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcircuits approximate the backpropagation algorithm. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz, and Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=dq059nI_R9A.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. *Frontiers in Computational Neuroscience*, 11:24, 2017. ISSN 1662-5188. doi: 10.3389/fncom.2017.00024.

Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas Mesnard, and Yoshua Bengio. Generalization of equilibrium propagation to vector field dynamics, 2018. URL <https://arxiv.org/abs/1808.04873>.

Benjamin Scellier, Maxence Ernoult, Jack Kendall, and Suhas Kumar. Energy-based learning algorithms for analog computing: a comparative study. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 52705–52731. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a52b0d191b619477cc798d544f4f0e4b-Paper-Conference.pdf.

João D. Semedo, Anna I. Jasper, Amin Zandvakili, Aravind Krishna, Amir Aschner, Christian K. Machens, Adam Kohn, and Byron M. Yu. Feedforward and feedback interactions between visual cortical areas use different population activity patterns. *Nature Communications*, 13(1):1099, 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-28552-w. URL <https://doi.org/10.1038/s41467-022-28552-w>.

Shawn C. Shadden, Francois Lekien, and Jerrold E. Marsden. Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. *Physica D: Nonlinear Phenomena*, 212(3-4):271–304, 2005. ISSN 01672789. doi: 10.1016/j.physd.2005.10.007.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *International Conference on Learning Representations*, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively shallow networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf.

Ran Wang, Xupeng Chen, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel Friedman, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. Distributed feedforward and feedback cortical processing supports human speech production. *Proceedings of the National Academy of Sciences*, 120(42):e2300255120, 2023. doi: 10.1073/pnas.2300255120. URL <https://doi.org/10.1073/pnas.2300255120>. doi: 10.1073/pnas.2300255120.

D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393(6684):440–442, 1998. ISSN 0028-0836. doi: Doi10.1038/30918. URL <Go to ISI>://WOS:000074020000035. Zr842 Times Cited:29354 Cited References Count:27.

Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining lyapunov exponents from a time series. *Physica D: Nonlinear Phenomena*, 16(3):285–317, 1985. ISSN 0167-2789. doi: [https://doi.org/10.1016/0167-2789\(85\)90011-9](https://doi.org/10.1016/0167-2789(85)90011-9). URL <https://www.sciencedirect.com/science/article/pii/0167278985900119>.

X. Xie and H. S. Seung. Equivalence of backpropagation and contrastive hebbian learning in a layered network. *Neural Computation*, 15(2):441–454, 2003. ISSN 0899-7667. doi: 10.1162/089976603762552988.

Izzet B. Yildiz, Herbert Jaeger, and Stefan J. Kiebel. Re-visiting the echo state property. *Neural Networks*, 35:1–9, 2012. ISSN 08936080. doi: 10.1016/j.neunet.2012.07.005.

A THE DYNAMICS OF THE RNN

We quantize the convergence property of the recurrent neural network (RNN) with maximum Lyapunov exponent (MLE) (Wolf et al., 1985), and finite time maximum Lyapunov exponent (FTMLE) (Kanno & Uchida, 2014). When the MLE/FTMLE is large, the RNN converges slow or even not at all. To compute MLE and FTMLE, we first initialize a random perturbation vector δ_0 . Then we record the sequence of states $s^0[t]$ with $t = 0, 1, 2, \dots, T_e - 1$ corresponding to the last sample of a training set (see Figure 2 in the main text), and run the following steps:

1. Normalize perturbation vectors to unit length:

$$\delta_t \leftarrow \frac{\delta_t}{\|\delta_t\|}$$

2. Calculate the Jacobian matrix:

$$J(s^0[t]) = \frac{\partial F(s^0[t], b)}{\partial s^0[t]}$$

3. Update the perturbation:

$$\delta_{t+1} = J(s^0[t]) \cdot \delta_t$$

4. Record

$$r_i = \ln \|\delta_{t+1}\|$$

The maximum Lyapunov exponent is computed as $\lambda_{\max} = \frac{1}{T_e} \sum_{t=0}^{T_e-1} r_i$ for a sufficiently large T_e (default $T_e = 500$). The results at any $T < T_e$ are the FTMLE.

Figure S1–S2 show the FTMLE, MLE, training accuracy and test accuracy versus epochs of different models. In all cases, smaller β_i usually yields smaller (FT)MLE, whereas larger β_i do not always lead to larger (FT)MLE because the activation function saturates. The saturation diminishes perturbation.

For 2-hidden-layer RNN, smaller feedback scaling β_i yields steady training progress and better accuracy. Figure S3 plots the FTMLE and test accuracy against feedback scaling for different numbers of hidden layers. It shows that smaller β_i is favorable for shallow networks, because the RNN is easier to converge (indicated by FTMLE). But for deeper networks (5-hidden-layer or more), smaller β_i degrades performance because of vanishing gradient.

Further comparison between our FRE-RNN that incorporates convolutional structure with previous work (Ernoult et al., 2019) are also plotted in Figure S4. These results suggest that small feedback scaling ($\beta_i = 0.01$) leads to a smoother training process.

B GRADIENT VANISHING AND THE RESIDUAL CONNECTIONS

Figure S5 and S6 plot the error of each neuron versus epoch at different β_i . For a 2-hidden-layer RNN, the best performance is obtained at $\beta_i = 0.001$. In this situation, the error of the first hidden layer is at least two orders of magnitude less than the second hidden layer. At $\beta_i = 2$, the error also decreases from higher (high index neurons, closer to output layer) to lower layers, which is attributed to the saturation of the activation function. In general, the training progress more steadily for smaller β_i despite the vanishing gradient, which also applies to deeper networks (up to 10-hidden-layer).

To eliminate the vanishing gradient in EP, direct feedback from the higher layers or local amplification (with higher learning rate) is unavoidable (Nøkland, 2016; Ororbia et al., 2023). Figure S7 shows the effect of residual connections. $\beta_i = 0.1$ yield the best accuracy 97.5%, due to the balance between gradient flow and convergence.

Figure S8 shows the testing accuracy varies with the connection probability P of AGT with 10 hidden layers. Except for the connections in layered model, the connection between any two hidden layers is generated with probability P , i.e., we first use P to decide if the connections between any two layers will be established. As P increases, the accuracy rises first, peaks at 0.2 and decreases around 1. However, the reason behind is yet to be explored.

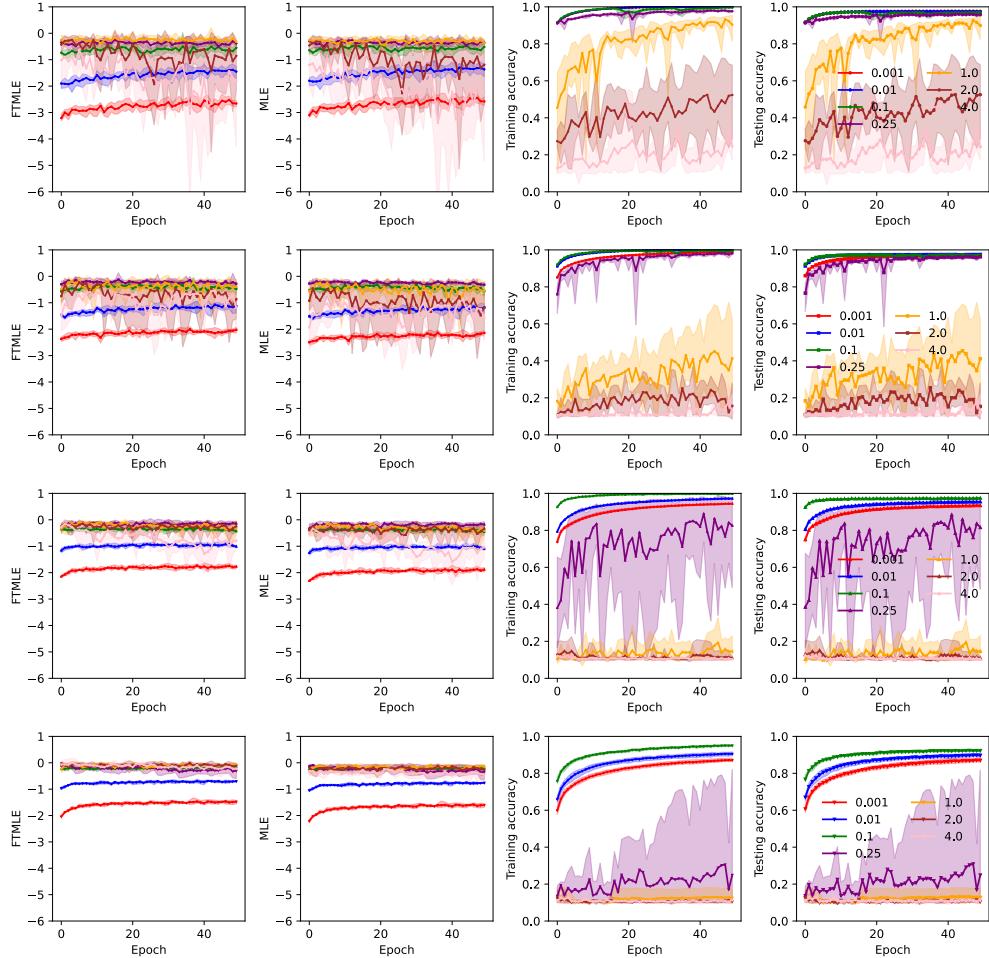


Figure S1: The FTMLE, MLE, training accuracy and testing accuracy of symmetric RNNs versus epochs with different feedback scaling β_i (legend). First row: 2 hidden layers; Second row: 3 hidden layers; Third row: 5 hidden layers; Fourth row: 10 hidden layers. The activation is tanh. Each case is repeated 5 times.

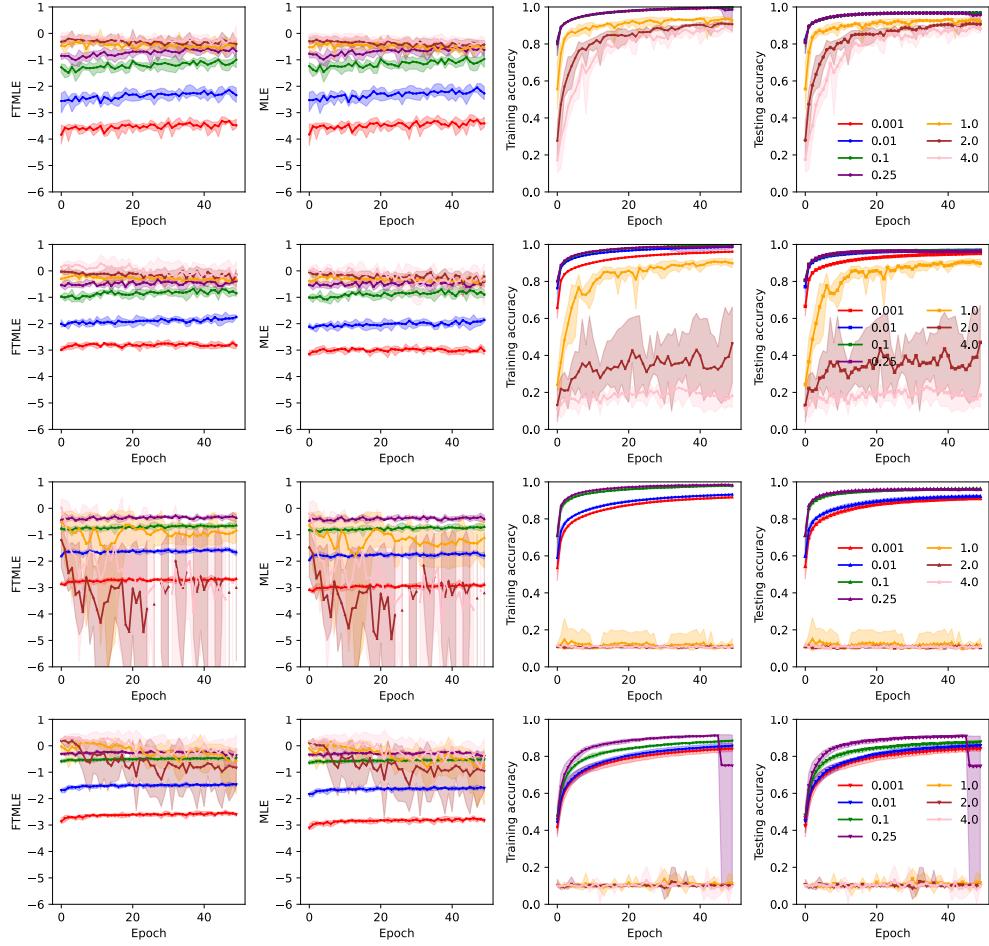


Figure S2: The FTMLE, MLE, training accuracy and testing accuracy of asymmetric RNNs versus epochs with different feedback scaling β_i (legend). First row: 2 hidden layers; Second row: 3 hidden layers; Third row: 5 hidden layers; Fourth row: 10 hidden layers. The activation is tanh. Each case is repeated 5 times.

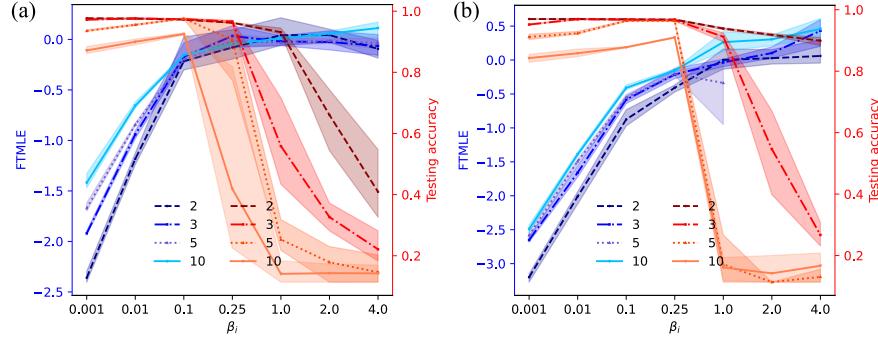


Figure S3: The FTMLE and testing accuracy versus feedback scaling β_i with different numbers of hidden layers. (a) Symmetry weights; (b) Asymmetry weights. The FTMLE and testing accuracy given here correspond to their maxima in all epochs. Note that the 5-hidden-layer asymmetry RNN with large β_i diverged and resulted in missing data points in (b). Each case is repeated 5 times.

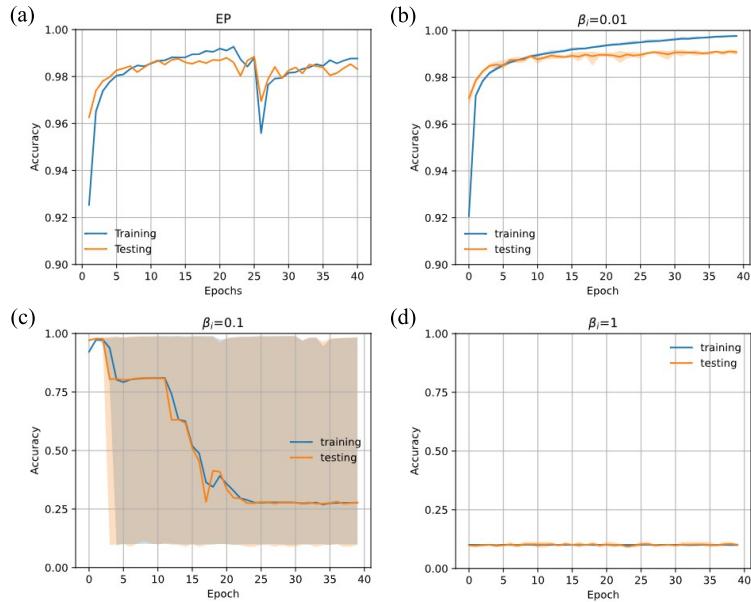


Figure S4: Comparison of RNN embedded with convolutional structure on the MNIST between P-EP (a) (Ernoult et al., 2019) and our approach at different β_i (b-d). We used the same parameters as the EP reference (Ernoult et al., 2019).

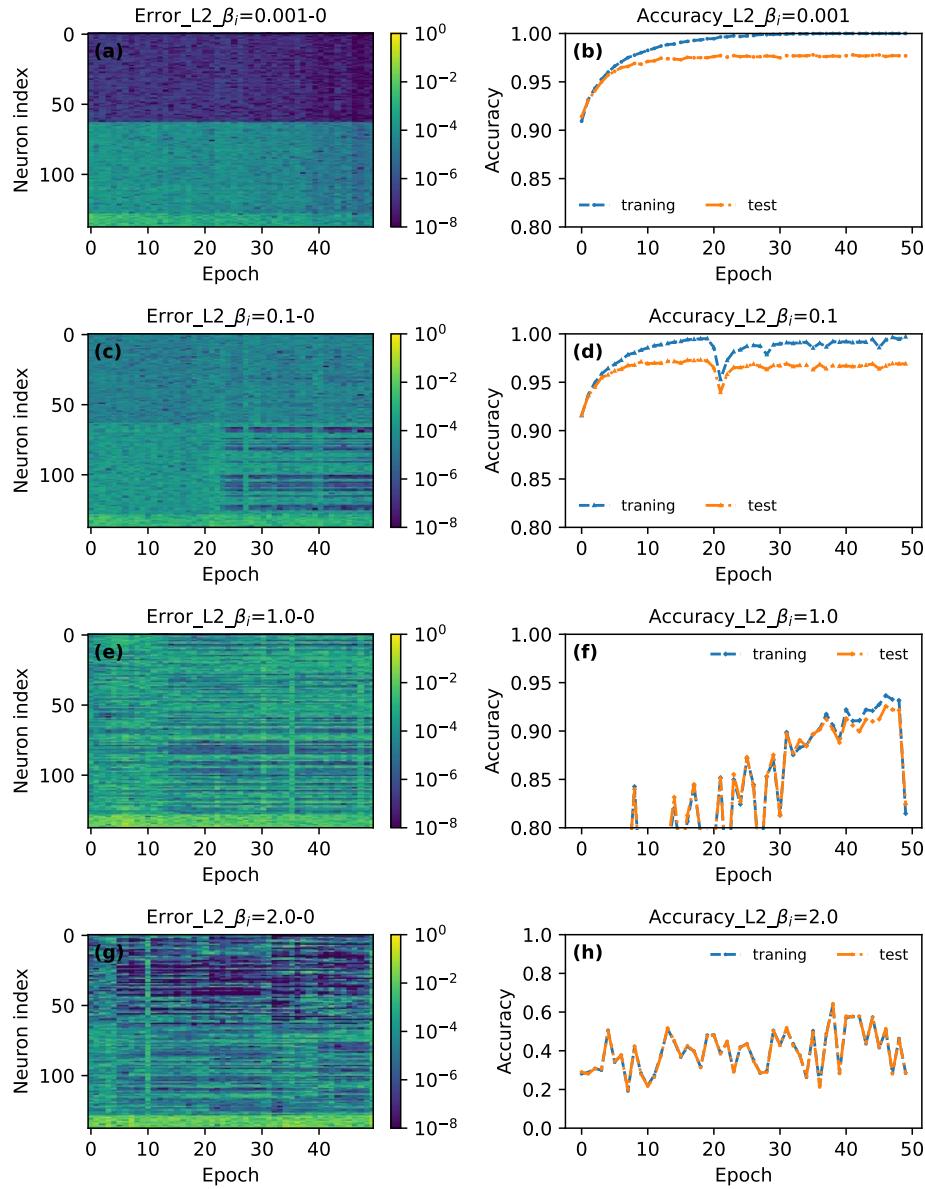


Figure S5: For 2-hidden-layer RNN, the mean error of each neuron in the last batch and testing accuracy versus epochs at different β_i . All neurons in the hidden layers and the output layer are indexed from the input to the output layer.

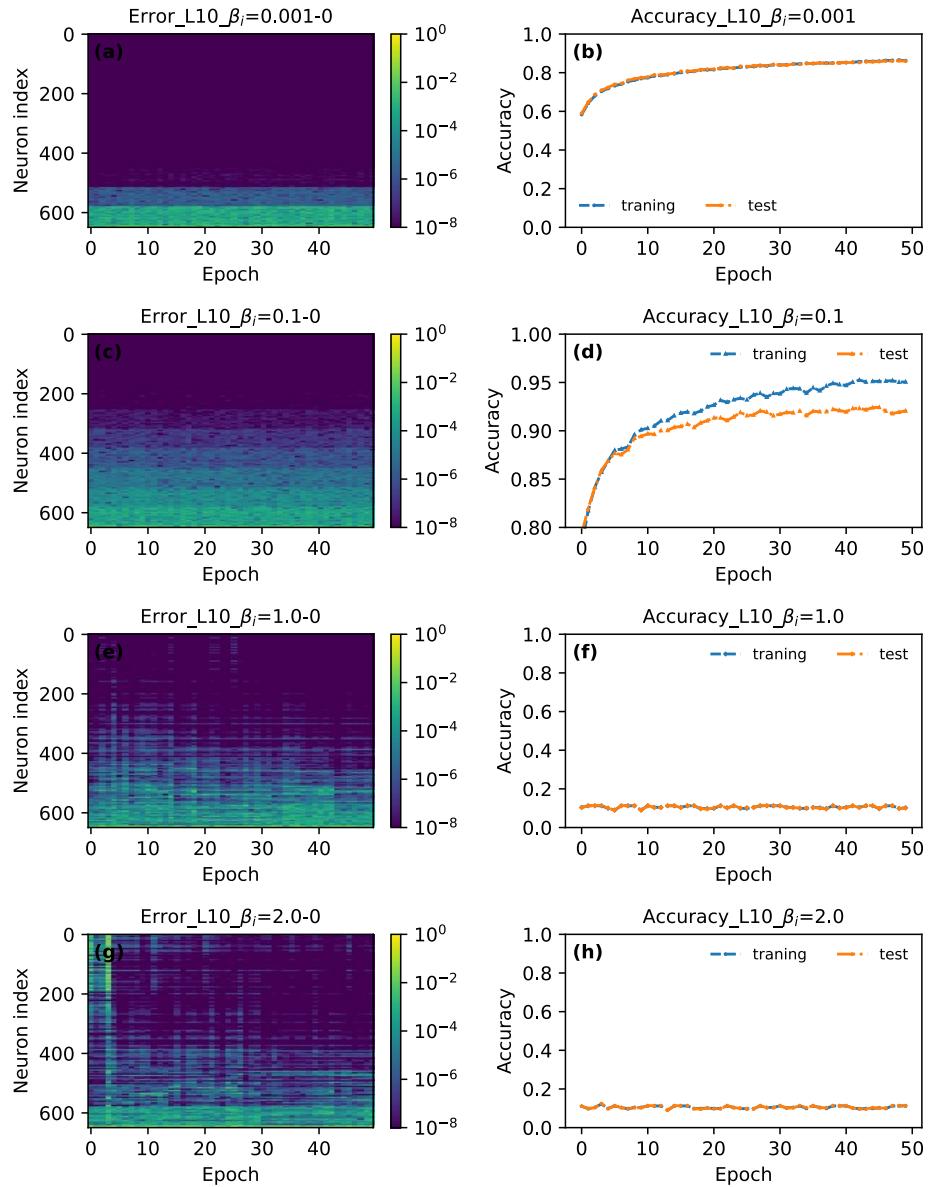


Figure S6: For the 10-hidden-layer model, the mean error of each neuron in the last batch and testing accuracy versus epochs at different β_i . All neurons in the hidden layers and the output layer are indexed from the input to the output layer.

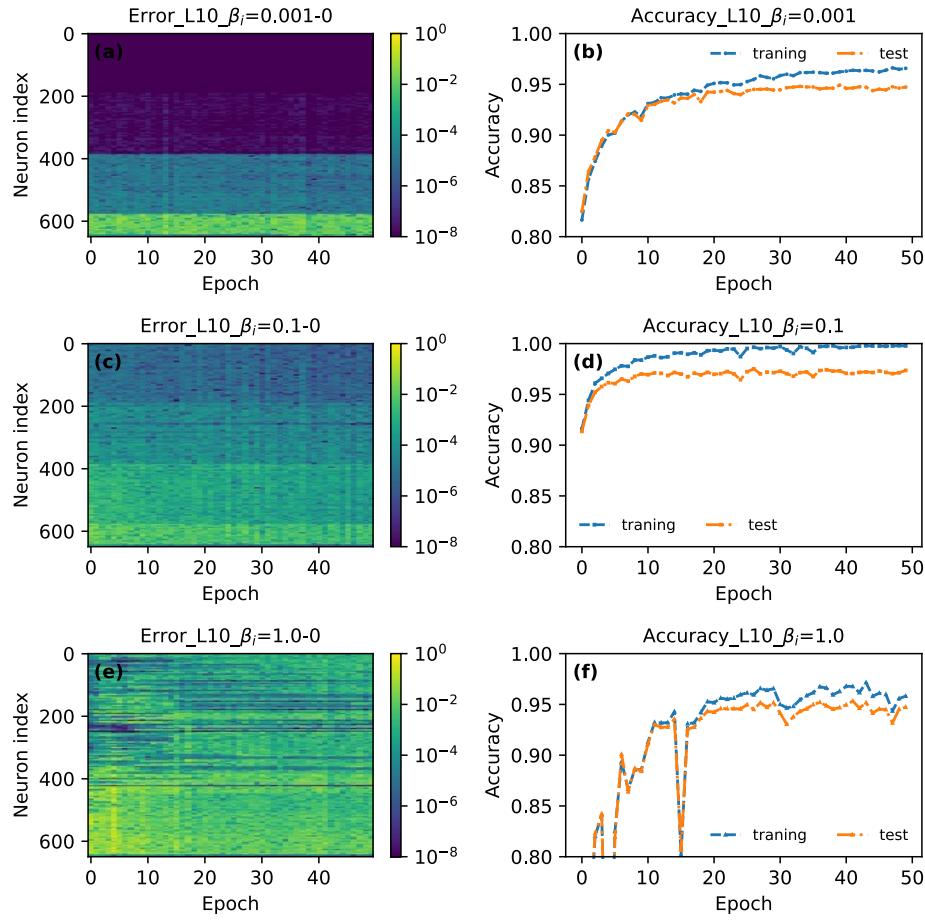


Figure S7: For the 10-hidden-layer model with residual connections, the mean error of each neuron in the last batch and testing accuracy versus epochs at different β_i . All neurons in the hidden layers and the output layer are indexed from the input to the output layer.

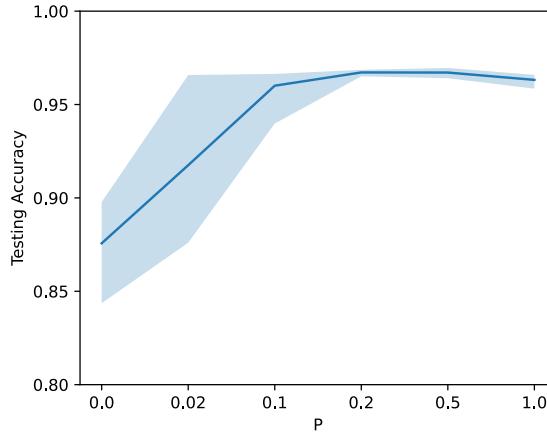


Figure S8: The testing accuracy on MNIST varies with the connection probability P of AGT with 10 hidden layers. The experiments are repeated 5 times.

Table S1: Testing accuracy (mean of 5 repeated experiments) with different feedback scaling β_i . By default, $T = 10 \times N_{\text{HiddenLayer}}$, $K = 5 \times N_{\text{HiddenLayer}}$. Each hidden layer has 64 nodes.

Architecture-connections	$\beta_i = 0.001$	$\beta_i = 0.01$	$\beta_i = 0.1$	$\beta_i = 0.25$	$\beta_i = 1$	$\beta_i = 2$	$\beta_i = 4$
2HL-symm	97.69%	97.57%	97.25%	96.22%	93.12%	66.04%	40.92%
3HL-symm	97.22%	97.64%	97.41%	96.60%	55.86%	32.64%	22.11%
5HL-symm	93.54%	95.54%	97.60%	90.63%	25.31%	17.88%	14.61%
10HL-symm	87.15%	89.99%	92.54%	41.84%	14.07%	14.30%	14.23%
10HL-Residual-symm	—	97.52%	97.46%	—	95.51%	—	—
conv-symm	—	99.15%	98.71%	—	11.35%	—	—
2HL-asymm	96.96%	96.97%	96.88%	96.79%	93.88%	91.81%	89.91%
3HL-asymm	95.17%	96.91%	96.76%	96.66%	91.21%	54.65%	26.72%
5HL-asymm	91.14%	92.34%	96.41%	96.35%	17.15%	11.35%	13.07%
10HL-asymm	84.27%	85.83%	87.79%	90.97%	16.13%	14.21%	16.67%
10HL-AGT-asymm	—	96.37%	96.75%	—	33.31%	—	—

C EQUIVALENCE WITH EP AND BP UNDER THE CONDITION OF INFINITESIMAL INFERENCE LIMIT

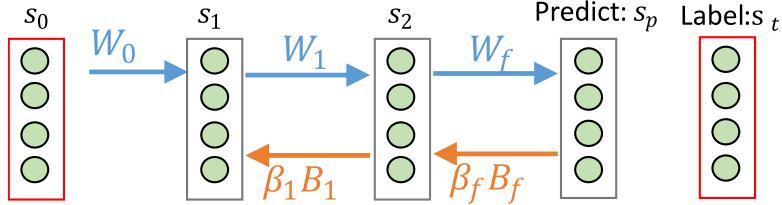


Figure S9: A layered network model used to illustrate the process of backpropagation (BP), local representation alignment (LRA), and EP. Note that the final prediction layer s_p corresponds to the third layer with subindex $_{\cdot 3}$. For LRA, we use β_{LRA} instead of β_1 and β_f . For BP, the feedback (orange) paths are absent.

In this section, we will use the infinitesimal inference limit (Millidge et al., 2023) to derive the equivalence of EP with LRA and BP.

C.1 BACKPROPAGATION

When we remove the feedback connection of a 2-hidden-layer RNN shown in Figure S9, a feedforward network is left and can be trained with BP. The forward process of BP is described by:

$$\begin{aligned} s_1 &= \rho(h_1), h_1 = W_0 \cdot s_0, \\ s_2 &= \rho(h_2), h_2 = W_1 \cdot s_1, \\ s_p &= h_p, h_p = W_f \cdot s_2. \end{aligned} \tag{S1}$$

Defining a loss $L_{\text{BP}} = \frac{1}{2}(s_p - s_{\text{tar}})^2$, the weights adjust according to the gradient of the loss. Taking ΔW_0 as an example:

$$\begin{aligned} \Delta W_0 &= -\frac{\partial L_{\text{BP}}}{\partial W_0} \\ &= -\rho'(h_1) \odot W_1^\top \cdot (\rho'(h_2) \odot W_f^\top \cdot (s_p - s_{\text{tar}})) \cdot (s_0)^\top, \end{aligned} \tag{S2}$$

where “ \odot ” means Hadamard product (element-wise product), “ \cdot ” means scalar or matrix multiplication. For two vectors/matrices, “ \odot ” requires identical dimensions and computes element-wise products. Broadcasting rules may apply (e.g., a column vector $v_{m \times 1} \odot A_{m \times n}$ scales each column of A by v).

C.2 LOCAL REPRESENTATION ALIGNMENT

LRA is an alternative training method following the principle of discrepancy reduction (Ororbia et al., 2017; Ororbia & Mali, 2019). It can be divided into two phases: 1) the network runs the forward process, producing latent representations of the input samples. 2) the weights adjust in the direction of reducing the mismatch between current latent representations and target representations in each layer.

The forward process is the same as BP:

$$\begin{aligned} s_1^0 &= \rho(h_1^0), & h_1^0 &= W_0 \cdot s_0, \\ s_2^0 &= \rho(h_2^0), & h_2^0 &= W_1 \cdot s_1^0, \\ s_p^0 &= h_p^0, & h_p^0 &= W_f \cdot s_2^0. \end{aligned} \quad (\text{S3})$$

where s_i^0 are interpreted as the latent representations. The predicting error is $e_p = s_{\text{tar}} - s_p^0$. Then we can get the target representations of the second hidden layer:

$$s_2^{\beta_{\text{LRA}}} = \rho(h_2^{\beta_{\text{LRA}}}), \quad h_2^{\beta_{\text{LRA}}} = W_1 \cdot s_1^0 + \beta_{\text{LRA}} \cdot B_f \cdot e_p, \quad (\text{S4})$$

The same goes for the first hidden layer:

$$s_1^{\beta_{\text{LRA}}} = \rho(h_1^{\beta_{\text{LRA}}}), \quad h_1^{\beta_{\text{LRA}}} = W_1 \cdot s_0 + \beta_{\text{LRA}} \cdot B_1 \cdot e_2, \quad e_2 = s_2^{\beta_{\text{LRA}}} - s_2^0, \quad (\text{S5})$$

LRA defines the loss as the total discrepancy between latent representations and target representations:

$$L_{\text{LRA}} = \sum_{i=1}^L k_i L_i(s_i^0, s_i^{\beta_{\text{LRA}}}) = \sum_{i=1}^L \frac{1}{2} (s_i^0 - s_i^{\beta_{\text{LRA}}})^2, \quad (\text{S6})$$

The weight W_i adjusts according to the local mismatch between s_{i+1}^0 and $s_{i+1}^{\beta_{\text{LRA}}}$:

$$\begin{aligned} \Delta W_i &= -\frac{\partial k_i L_i(s_{i+1}^0, s_{i+1}^{\beta_{\text{LRA}}})}{\partial W_i} \\ &= (s_{i+1}^{\beta_{\text{LRA}}} - s_{i+1}^0) \odot f'(h_{i+1}^0) \cdot (s_i^0)^\top \\ &\approx (s_{i+1}^{\beta_{\text{LRA}}} - s_{i+1}^0) \cdot (s_i^0)^\top, \end{aligned} \quad (\text{S7})$$

where the derivative of the activation function is omitted in the last row, a useful practice common in LRA (Melchior & Wiskott, 2019; Ororbia & Mali, 2019; Ororbia et al., 2023). When $\beta_{\text{LRA}} \rightarrow 0$, $s_i^{\beta_{\text{LRA}}} \rightarrow s_i^0$ and $h_i^{\beta_{\text{LRA}}} \rightarrow h_i^0$, then

$$\begin{aligned} e_i &= s_i^{\beta_{\text{LRA}}} - s_i^0 = \rho(h_i^{\beta_{\text{LRA}}}) - \rho(h_i^0) \\ &= \rho(h_i^0 + \beta_{\text{LRA}} \cdot B_i \cdot e_{i+1}) - \rho(h_i^0) \\ &\approx [\rho(h_i^0) + \rho'(h_i^0) \odot (\beta_{\text{LRA}} \cdot B_i \cdot e_{i+1}) - \rho(h_i^0)]_{\beta_{\text{LRA}} \rightarrow 0}, \\ &= \rho'(h_i^0) \odot (\beta_{\text{LRA}} \cdot B_i \cdot e_{i+1}) \end{aligned} \quad (\text{S8})$$

The approximation in Equation S8 is based on a first-order Taylor expansion of $\rho(h_i^0 + \Delta h)$ around h_i^0 , where $\Delta h = \beta_{\text{LRA}} \cdot B_i \cdot e_{i+1}$. For a small perturbation $\Delta h \rightarrow 0$, the Taylor expansion gives:

$$\rho(h_i^0 + \Delta h) = \rho(h_i^0) + \rho'(h_i^0) \cdot \Delta h + O(\Delta h^2), \quad (\text{S9})$$

When $\beta_{\text{LRA}} \rightarrow 0$, higher order terms $O(\Delta h^2)$ are negligible, leaving only the linear terms. We arrive at the last row after canceling out $\rho(h_i^0)$. There we can express the weight adjustments as

$$\begin{aligned} \Delta W_0 &= e_1 \cdot (s_0^0)^\top \\ &= [\rho'(h_1^0) \odot (\beta_{\text{LRA}} \cdot B_1 \cdot (\rho'(h_2^0) \odot (\beta_{\text{LRA}} \cdot B_f \cdot (s_{\text{tar}} - s_p))))] \cdot (s_0)^\top]_{B_i=(W_i)^\top} \\ &= -\beta_{\text{LRA}} \cdot \beta_{\text{LRA}} \cdot \rho'(h_1^0) \odot W_1^\top \cdot (\rho'(h_2^0) \odot W_f^\top \cdot (s_p - s_{\text{tar}})) \cdot (s_0)^\top, \end{aligned} \quad (\text{S10})$$

which is the same as BP (Equation S2) except for a constant. Thus, LRA at weak feedback limit approximates BP. An LRA algorithm for a 2-hidden-layer network is described in Algorithm S1. The feedback weights in LRA need not be learned here, but can be kept symmetric with the feedforward weights.

C.3 EQUILIBRIUM PROPAGATION

We can also formulate EP in terms of discrepancy reduction. In EP (Algorithm 1 in the main text), the network states evolve as follows ($\beta = 0$ for the first phase and $\beta = \beta_f$ for the second phase):

$$\begin{aligned} h_1^\beta &= W_0 \cdot s_0^\beta + \beta_1 \cdot B_1 \cdot s_2^\beta, \\ h_2^\beta &= W_1 \cdot s_1^\beta + \beta_f \cdot B_f \cdot e_p, \\ h_p^\beta &= W_f \cdot s_2^\beta, \\ s_1^\beta, s_2^\beta, s_p^\beta &= \rho(h_1^\beta), \rho(h_2^\beta), h_p^\beta, \end{aligned} \quad (\text{S11})$$

where $e_p = s_{tar} - s_p^0$ is the predicting error. The network converges to final states $h_1^0, h_2^0, s_1^0, s_2^0$ in the free phase. The error of s_2 neurons can be described by:

$$\begin{aligned} ds_2 &= [\rho(h_2^{\beta_f})]_{\beta_f \rightarrow 0} - [\rho(h_2^0)]_{\beta_f=0} \\ &\approx \rho'(h_2^0) \odot (\beta_f \cdot B_f \cdot e_p), \end{aligned} \quad (\text{S12})$$

where only the first-order infinitesimal term is retained as $\beta_1 \rightarrow 0$. The same goes for the first hidden layer:

$$\begin{aligned} ds_1 &= [\rho(h_1^{\beta_f})]_{\beta_f \rightarrow 0} - [\rho(h_1^0)]_{\beta_f=0} \\ &\approx \rho'(h_1^0) \odot (\beta_1 \cdot B_1 \cdot (\rho'(h_2^0) \odot (\beta_f \cdot B_f \cdot e_p))), \end{aligned} \quad (\text{S13})$$

The weight W_0 can be updated by:

$$\Delta W_0 = \frac{ds_1 \cdot (s_0^0)^\top}{\beta_1 \cdot \beta_f} = \rho'(h_1^0) \odot B_1 \cdot (\rho'(h_2^0) \odot B_f \cdot e_p) \cdot (s_0^0)^\top, \quad (\text{S14})$$

With $B_i = W_i^\top$,

$$ds_1 = \beta_f \cdot \beta_1 \cdot \rho'(h_1^0) \odot W_1^\top \cdot (\rho'(h_2^0) \odot W_f^\top \cdot -(s_p - s_{tar})), \quad (\text{S15})$$

$$\Delta W_0 = \frac{ds_1 \cdot (s_0^0)^\top}{\beta_1 \cdot \beta_f} = -\rho'(h_1^0) \odot W_1^\top \cdot (\rho'(h_2^0) \odot W_f^\top \cdot (s_p - s_{tar})) \cdot (s_0^0)^\top. \quad (\text{S16})$$

Note that compared with the weight update in the main text, $1/(\beta_1 \cdot \beta_f)$ is added to recover a gradient amplitude similar to BP. Further, if we assume that the high-order infinitesimal in the first phase can be omitted, the dynamics of RNN is governed by:

$$s_1^0 = \rho(h_1^0), \quad h_1^0 = [W_0 \cdot s_0 + \beta_1 \cdot B_1 \cdot s_2^0]_{\beta_1 \rightarrow 0} \approx W_0 \cdot s_0, \quad (\text{S17})$$

$$s_2^0 = \rho(h_2^0), \quad h_2^0 = [W_1 \cdot s_1^0 + \beta_f \cdot B_f \cdot e_p]_{\beta_1 \rightarrow 0, \beta_f=0} \approx W_1 \cdot s_1^0, \quad (\text{S18})$$

$$s_p^0 = h_p^0, \quad h_p^0 = W_f \cdot s_2^0. \quad (\text{S19})$$

The information flow of RNN degenerates into that of a feedforward network. This does not affect the error information ds_i , thus Equation S16 approximates Equation S2 for BP. Meanwhile, it resembles LRA with low β_{LRA} , which turns explicit error into implicit error. Hitherto, we have shown that although the errors are obtained differently in EP, LRA, and BP, they are equivalent under the assumption of weak supervision and weak feedback.

Algorithm S1 Local Representation Alignment (LRA)

Input: (x, s_{tar})
Parameter: $\theta = [W_0, W_1, W_2, B_2, B_1, \beta_{LRA}]$
Output: θ

```

1: function FORWARD( $\theta, x$ )
2:    $s_0 \leftarrow x$ 
3:    $s_1^0 \leftarrow \rho(h_1), h_1 \leftarrow W_0 \cdot s_0$ 
4:    $s_2^0 \leftarrow \rho(h_2), h_2 \leftarrow W_1 \cdot s_1^0$ 
5:    $s_p^0 \leftarrow W_f \cdot s_2^0$ 
6:    $\Lambda_1 \leftarrow [s_i^0], i = 0, 1, 2, p$ 
7:   return  $\Lambda_1$ 
8: end function

9: function FEEDBACK( $\theta, \Lambda_1, s_{tar}$ )
10:   $e_p \leftarrow s_{tar} - s_p^0$ 
11:   $s_2^{\beta_{LRA}} \leftarrow \rho(h_2), h_2 \leftarrow W_1 \cdot s_1^0 + \beta_{LRA} \cdot B_f \cdot e_p$ 
12:   $e_2 \leftarrow s_2^{\beta_{LRA}} - s_2^0$ 
13:   $s_1^{\beta_{LRA}} \leftarrow \rho(h_1), h_1 \leftarrow W_0 \cdot s_0 + \beta_{LRA} \cdot B_1 \cdot e_2$ 
14:   $e_1 \leftarrow s_1^{\beta_{LRA}} - s_1^0$ 
15:   $\Lambda_2 \leftarrow [e_1, e_2, e_p]$ 
16:  return  $\Lambda_2$ 
17: end function

18: function UPDATING-WEIGHTS( $\theta, \Lambda_1, \Lambda_2$ )
19:   $\Delta W_i \leftarrow e_{i+1} \cdot (s_i^0)^T, i = 0, 1$ 
20:   $\Delta W_f \leftarrow e_p \cdot (s_2^0)^T$ 
21: end function

```

C.4 EXPERIMENTS FOR EQUIVALENCE WITH EP AND BP

Prior works have shown that EP can be equalized to BPTT in specific conditions and can achieve comparable performance (Ernoult et al., 2019; Laborieux et al., 2021). As discussed in the previous section, although the overall architecture forms an RNN, the network behaves similarly to a feedforward model due to weak feedback connections.

To experimentally show the equivalence of EP and BP, we can further compare our model with FNN with same feedforward weights trained by BP. We mainly compare cosine similarity of states, bias gradients and weight gradients for the first batch (batch size is 200) as given in Figure S10. Figure S10(a-c) shows similarity under the conditions of $\beta_i = 1$ with different iterations. For the bias gradients, i.e., ds_i , the cosine similarity declines rapidly, indicating no similarity between our model and BP. With weak feedback $\beta_i = 0.1$, as shown in Figure S10(d-f), the similarity of states approaches 1 and the similarity of bias gradient of last 6(4) layers exceeds 0.5 with $T = 500/50$ ($T = 20$). These results provide further evidence that EP is equivalent to BP under the condition of weak feedback.

We further studied the influence of β_i on the cosine similarity. Figure S10(g) shows that larger β_i leads to lower similarity of states. Figure S10(h) shows that lower $\beta_i = 0.01$ also leads to the decrease in similarity, which may be caused by insufficient precision of data storage (float32 by default). Therefore, we use datatype float64 to repeat experiments. Figure S10(k,l) shows that the similarity of gradient signal remains around 1 with $\beta_i = 0.1$. This indicates that weak feedback does indeed lead to an exponential decline in gradient signals, thus requiring higher relative accuracy.

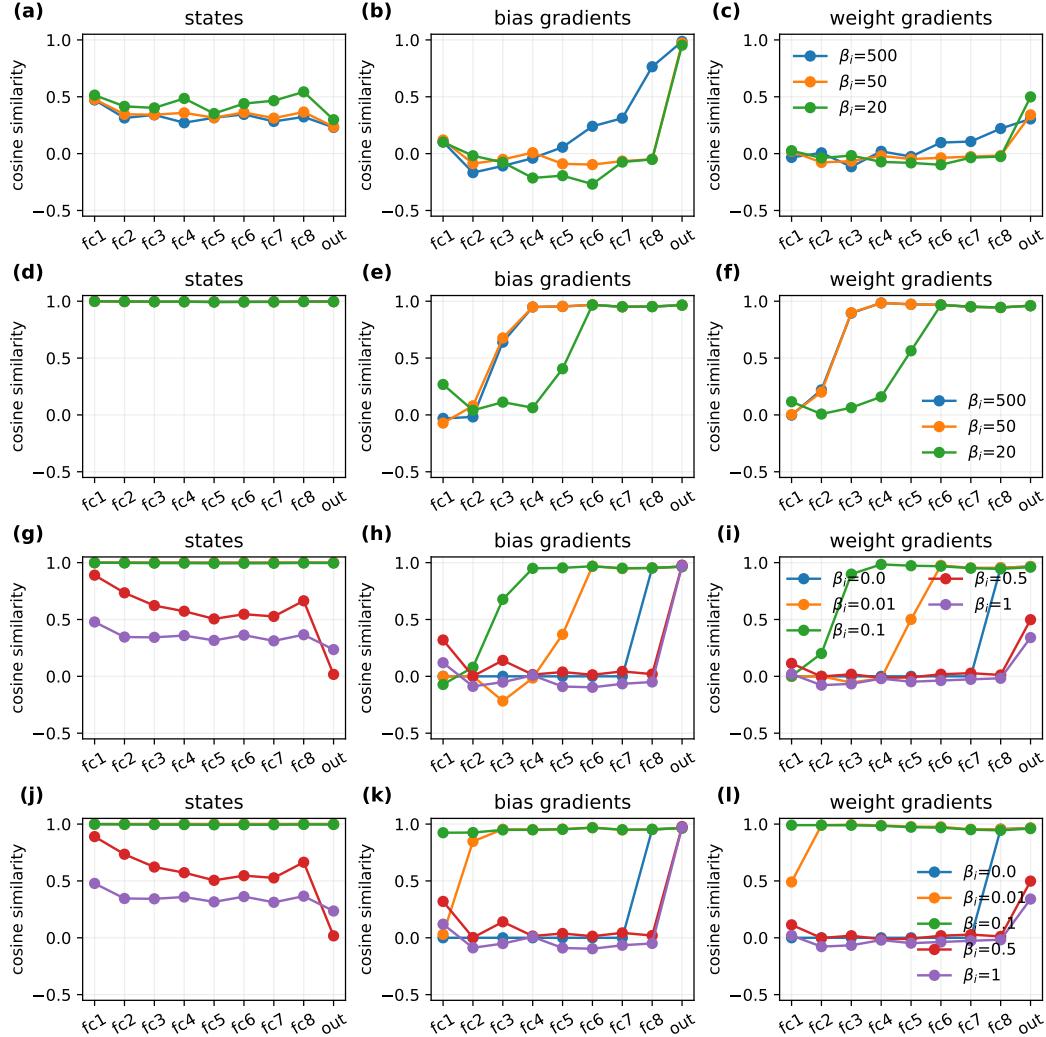


Figure S10: The cosine similarity of gradients and states between our model and feedforward model trained by BP in an 8-hidden-layer FNN (states: s_i^0 ; bias gradients: ds_i ; weight gradients: ΔW_i). The axis x is the layers of the model. Error propagates from the last layer "out" to the first hidden layer "fc1" layer by layer. (a-c), with different numbers of iterations under feedback scaling $\beta_i = 1$. (d-f), with different numbers of iterations under small feedback scaling $\beta_i = 0.1$. (g-i), with different feedback scaling ($T=50, K=20$). (j-l), Repeat (g-i) with datatype float64 (float32 by default).

C.5 VERIFYING THE EFFECTIVENESS OF WEAK FEEDBACK IN EQUILIBRIUM PROPAGATION

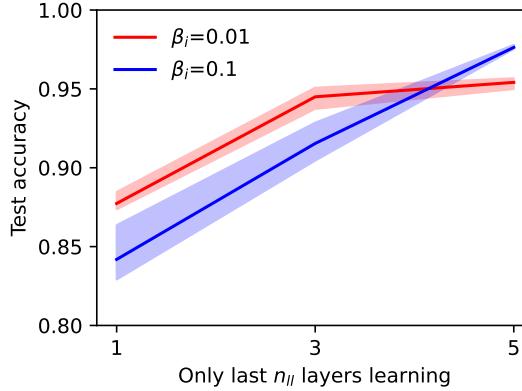


Figure S11: The testing accuracy on MNIST with different β_i varies with n_{ll} . The experiments are repeated 5 times.

To demonstrate that the lower few layers of the our model are indeed receiving meaningful credit signals, we report the test accuracy of only updating the last n_{ll} layer (i.e., freezing the weights of Layers 1 – n_{ll}) in Figure S11. For a 5-hidden layer model with $\beta_i = 0.1$, updating only the final layer yields a test accuracy of about 85%. As n_{ll} increase to 5, the accuracy also reaches around 97.5%. A similar trend is observed for the model with $\beta_i = 0.01$. These results show that achieving over 97% accuracy requires effective gradient propagation to all layers, confirming that our model successfully delivers usable credit signals throughout the entire network.

C.6 ROBUSTNESS TO THE NOISE

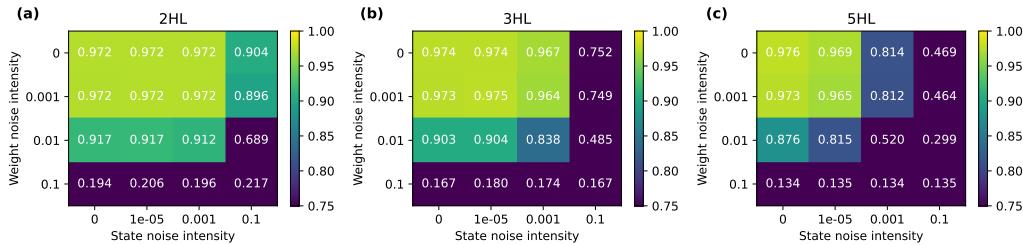


Figure S12: The maximum test accuracy model with different noise intensity on weights and states added both in training and test. (a) With 2 hidden layers; (b) With 3 hidden layers; (c) With 5 hidden layers. The model is trained for 50 epochs and the experiments is repeated 5 times.

To evaluate the robustness of the model, we introduce noise on weights and time-varying noise on states, which are random Gauss noise imposed at each weight update or at each state update, respectively. The noise on weights is directly added to the weight, while the noise on states is added as the bias b in Equation 3.1. The mean absolute values of non-zero weights and neural activations after noiseless training are approximately 0.09 and 0.76 respectively.

The accuracy of the model with two hidden layers varies with two types of noises as presented in Figure S12(a). It maintains satisfactory performance when the standard deviation of state noise reaches 0.1 or the standard deviation of weight noise reaches 0.01. In deeper structures (Figure S12(b,c)), the results are consistent with the aforementioned observations for weight noise, demonstrating excellent robustness. However, the tolerance to time-varying state noise degrades significantly, which we attribute to the layer-wise noise accumulation and the distortion of weak gradient signal by the noise in the training process. To confirm our hypothesis, we impose the noises only in the test,

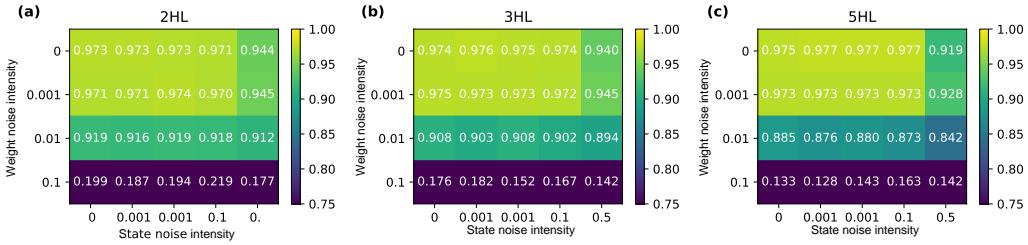


Figure S13: The maximum test accuracy model with different noise intensity on weights and states (the state noise is added only in test). (a) With 2 hidden layers; (b) With 3 hidden layers; (c) With 5 hidden layers. The model is trained for 50 epochs in a single experiment.

and the test accuracy almost remains unaffected (Figure S13). Therefore, the network is potentially resilient to noise. However, how to improve resilient in the training process require further study.

D TRAINING DETAILS

Table S2 provides the parameters of the Adam optimizer that are used in Tables S1–S2 (Diederik P. Kingma, 2015). The training details for Table 1 are given in Table S3. For convolutional architectures in EP, the training process can be described by Algorithm S2. The training sample is fed into the network through Conv_0 . Then the state of the first layer goes through max pooling MaxPool_1 and convolution Conv_1 sequentially to reach the second layer. The second layer also feedbacks its states to the first layer through transposed convolution ConvT_1 and max-unpooling MaxUnpool_1 . With T iterations, the RNN converges to the steady states and produces outputs through MaxPool_2 and a fully connected layer. Then the prediction error is computed and used to nudge the RNN by the reverse of the fully connected layer and max-unpooling MaxUnpool_2 . Note that the unpooling MaxUnpool_i requires the indices from the corresponding pooling MaxPool_i .

For Table S2, Adam optimizer is used for all experiments. The activation functions sigmoid-s and hard-sigmoid are defined as $\rho(x) = \frac{1}{1+e^{-4(x-0.5)}}$, $\rho(x) = \max(\min(x, 0), 1)$, respectively (Ernoult et al., 2019). For 5-HL, 10-HL and 20-HL architectures, the Adam optimizer parameters are as shown in Table S2 (epoch: 50, batch size: 500). The inference details of the architecture shown in Figure 3b are described by Algorithm S3. The details for convolutional architectures are given in Table S3 and Figure S14–S15. The cosine-annealing scheduler is used in convolutional architectures for CIFAR-10 ($T_{\max} = 50$, $\eta_{\min} = 10^{-6}$).

For MNIST, no pre-processing is used. For the CIFAR-10 dataset, we follow ref. (Scellier et al., 2023) to pre-process the images. We normalize the input images using mean $\mu = (0.4914, 0.4822, 0.4465)$ and standard deviation $\sigma = 3 \times (0.2023, 0.1944, 0.2010)$.

The results for comparison of time consumption were obtained in a virtualized Windows 11 environment with Intel Xeon Gold 6238R CPU, 16 GB RAM, and Nvidia RTX A5000 (24 GB VRAM). Other results were obtained on a Windows 11 environment with Intel Core i5-12490F, 32 GB RAM, and Nvidia GTX 1650 (4 GB VRAM) or a Windows 11 environment with AMD R7-7700, 32 GB RAM, and Nvidia RTX 4070 (12 GB VRAM). The default numerical precision is float32 (single-precision float).

Table S2: The parameters of the Adam optimizer.

Parameter Name	Default Value
Learning rate (MNIST / CIFAR-10)	$10^{-3}/2 \times 10^{-4}$
First-order moment estimation decay rate (β_1)	0.9
Second-order moment estimation decay rate (β_2)	0.999
Small constant for numerical stability (ϵ)	10^{-8}

Table S3: Training details for Table 1 and Table 2. The results of EB-EP and P-EP come from previous work (Ernoult et al., 2019). SGD refers to Stochastic Gradient Descent with mini-batches.

Architecture	Training approach	Optimizer	Epoch / Batch size -T/K	Learning rate	Weight decay
2HL	P-EP (sigmoid-s)	SGD	50/20-100/20	[0.005, 0.05, 0.2]	None
	Proposed (tanh, Adam)	Adam	50/500-10/10	[0.001, 0.001, 0.001]	None
3HL	P-EP (sigmoid-s)	SGD	100/20-180/20	[0.002, 0.01, 0.05, 0.2]	None
	Proposed-DLR (tanh)	SGD	100/20-18/10	[0.002, 0.01, 0.05, 0.2]	None
	Proposed (tanh)	SGD	100/20-18/10	[0.1, 0.1, 0.1, 0.1]	None
	Proposed (tanh, Adam)	Adam	50/500-18/10	10^{-3}	None
Conv (Table 1)	BP (tanh, Adam)	Adam	50/500-1/1	10^{-3}	None
	P-EP (hard-sigmoid)	SGD	40/20-200/10	[0.015, 0.035, 0.15]	None
	Proposed (hard-sigmoid)	SGD	40/128-20/10	[0.15, 0.35, 0.9]	10^{-5}
Conv (Table 2 MNIST)	BP (hard-sigmoid)	SGD	40/128-1/1	[0.001, 0.02, 0.4]	10^{-5}
	Proposed (hard-sigmoid)	Adam	40/128-20/10	2×10^{-4}	10^{-6}
Conv (Table 2 CIFAR-10)	BP (hard-sigmoid)	Adam	40/128-1/1	2×10^{-4}	10^{-6}
	Proposed (hard-sigmoid)	Adam	50/128-40/10	2.5×10^{-4}	2×10^{-4}
	BP (hard-sigmoid)	Adam	50/128-1/1	2.5×10^{-4}	2×10^{-4}

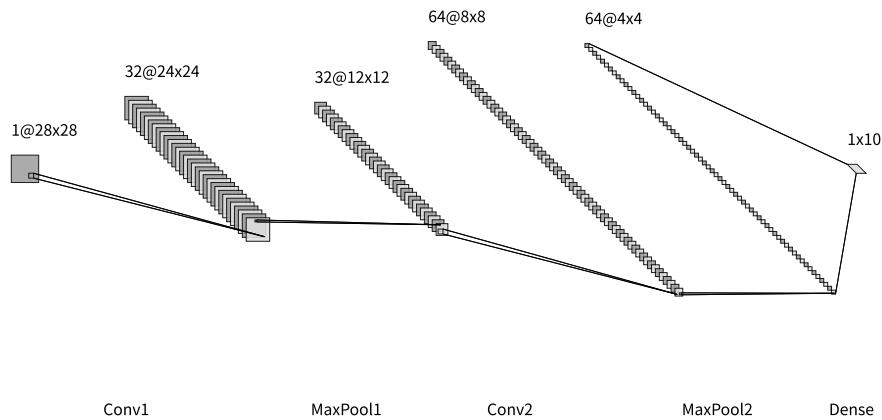


Figure S14: Convolutional architectures for MNIST.

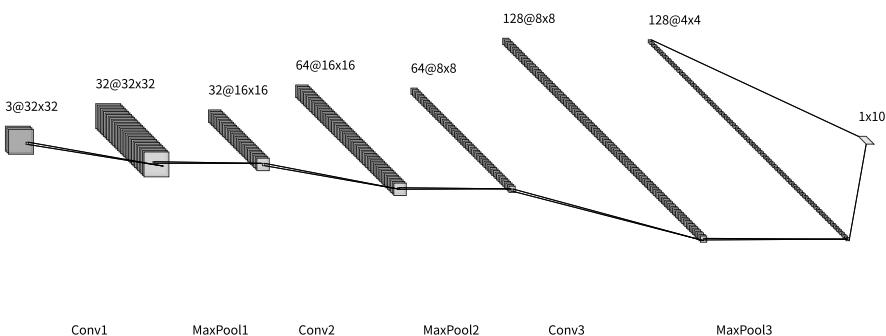


Figure S15: Convolutional architectures for CIFAR-10.

Algorithm S2 Two phases in EP training process for convolution architecture

Input: Sample-label pairs (x, s_{tar}) **Parameter:** $\theta = [W_0, W_1, W_f, B_f, B_1, \alpha_1, \beta_1, \beta_{f1}]$ **Output:** θ

```

1: function FIRST-PHASE( $\theta, s_{tar}$ )
2:    $s_0 \leftarrow x$ 
3:   for  $t \leftarrow 1$  to  $T$  do
4:      $h_1 \leftarrow \text{Conv}_0(s_0) + \beta_1 \cdot \text{MaxUnpool}_1(\text{ConvT}_1(s_2^0))$ 
5:      $h_2 \leftarrow \text{Conv}_1(\text{MaxPool}_1(s_1^0))$ 
6:      $h_p \leftarrow W_f \cdot \text{Flatten}(\text{MaxPool}_2(s_2^0))$ 
7:      $s_1^0, s_2^0, s_p^0 \leftarrow \rho(h_1), \rho(h_2), \text{SoftMax}(h_p)$ 
8:   end for
9:    $\Lambda_1 \leftarrow [s_i^0], i = 0, 1, 2, p$ 
10:  return  $\Lambda_1$ 
11: end function

12: function SECOND-PHASE( $\theta, \Lambda_1, s_{tar}$ )
13:    $s_0, s_1^{\beta_{f1}}, s_2^{\beta_{f1}}, s_p^{\beta_{f1}} \leftarrow x, s_1^0, s_2^0, s_p^0$ 
14:   for  $t \leftarrow 1$  to  $K$  do
15:      $e_p \leftarrow s_{tar} - s_p^{\beta_{f1}}$ 
16:      $h_1 \leftarrow \text{Conv}_0(s_0) + \beta_1 \cdot \text{MaxUnpool}_1(\text{ConvT}_1(s_2^{\beta_{f1}}))$ 
17:      $h_2 \leftarrow \text{Conv}_1(\text{MaxPool}_1(s_1^{\beta_{f1}})) + \beta_f \cdot \text{MaxUnpool}_2(\text{Unflatten}(W_f^\top e_p))$ 
18:      $h_p \leftarrow W_f \cdot \text{Flatten}(\text{MaxPool}_2(s_2^{\beta_{f1}}))$ 
19:      $s_1^{\beta_{f1}}, s_2^{\beta_{f1}}, s_p^{\beta_{f1}} \leftarrow \rho(h_1), \rho(h_2), \text{SoftMax}(h_p)$ 
20:   end for
21: end function

```

Algorithm S3 EP with feedback scaling and residual connections (Figure 3b)

Input: (x, s_{tar}) **Parameter:** $\theta = [W_0, W_i, W_f, B_f, B_i, \beta_i, \beta_{f1}]$ **Output:** θ

```

1: function ITERATION( $\theta, \Lambda_1, s_{tar}$ )
2:   for  $t \leftarrow 1$  to  $K$  do
3:     if Nudging Phase then
4:        $\beta_f \leftarrow \beta_{f1}$ 
5:        $s_0, s_1^{\beta_{f1}}, s_2^{\beta_{f1}}, s_p^{\beta_{f1}} \leftarrow x, s_1^0, s_2^0, s_p^0$ 
6:     else
7:        $\beta_f \leftarrow 0$ 
8:        $s_0 \leftarrow x$ 
9:     end if
10:     $h_1 \leftarrow W_0 s_0 + \beta_1 B_1 s_2^{\beta_f} + \beta_{4,1} B_{4,1} s_4^{\beta_f}$ 
11:     $h_2 \leftarrow W_1 s_1^{\beta_f} + \beta_2 B_2 s_3^{\beta_f}$ 
12:     $h_3 \leftarrow W_2 s_2^{\beta_f} + \beta_3 B_3 s_4^{\beta_f}$ 
13:     $h_4 \leftarrow W_3 s_3^{\beta_f} + \beta_{14} B_4 s_5^{\beta_f} + W_{1,4} s_1^{\beta_f} + \beta_{7,4} B_{7,4} s_7^{\beta_f}$ 
14:     $h_5 \leftarrow W_4 s_4^{\beta_f} + \beta_5 B_5 s_6^{\beta_f}$ 
15:     $h_6 \leftarrow W_5 s_5^{\beta_f} + \beta_6 B_6 s_7^{\beta_f}$ 
16:     $h_7 \leftarrow W_6 s_6^{\beta_f} + \beta_7 B_7 s_8^{\beta_f} + W_{4,7} s_4^{\beta_f} + \beta_{10,7} B_{10,7} s_{10}^{\beta_f}$ 
17:     $h_8 \leftarrow W_7 s_7^{\beta_f} + \beta_8 B_8 s_9^{\beta_f}$ 
18:     $h_9 \leftarrow W_8 s_8^{\beta_f} + \beta_9 B_9 s_{10}^{\beta_f}$ 
19:     $h_{10} \leftarrow W_9 s_9^{\beta_f} + \beta_f B_f e_p^{\beta_f} + W_{7,10} s_7^{\beta_f}$ 
20:     $h_p \leftarrow W_f s_{10}^{\beta_f}$ 
21:     $s_i^{\beta_f} \leftarrow \rho(h_i), \quad i = 0, 1, 2, \dots, 10$ 
22:     $s_p^{\beta_f} \leftarrow \text{SoftMax}(h_p)$ 
23:   end for
24: end function

```
