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ABSTRACT

Long acquisition times remain a major challenge in clinical MRI, where a fun-
damental trade-off exists between the acceleration achieved through undersam-
pling and the diagnostic utility of the reconstructed images. We cast the prob-
lem of acquiring MRI data within a fixed time budget as a discrete reinforce-
ment learning (RL) task and propose an algorithm based on Deep Determinis-
tic Policy Gradient, referred to as E-DDPG. E-DDPG jointly optimizes sampling
patterns, image reconstruction quality, and diagnostic accuracy. We introduces
three key innovations: (1) a composite reward function that simultaneously en-
courages cross-entropy reduction, structural similarity improvement, and decrease
in predictive entropy; (2) a percentile-based replay buffer that diversifies learning
by equally sampling low- and high-value transitions; and (3) integration of the
Straight-Through Gumbel-Softmax mechanism to preserve end-to-end differen-
tiability while enabling discrete action selection. We evaluate E-DDPG against
state-of-the-art RL-based methods and ablation variants on the fastMRI/fastMRI+
knee datasets at acceleration factors of 4X, 8X, and 10X, demonstrating its supe-
rior performance and validating the effectiveness of each proposed component.

1 INTRODUCTION

With its exceptional soft tissue contrast, magnetic resonance imaging (MRI) has been the method
of choice for diagnosing various cancers (Stabile et al.|[2020), neurological disorders (Elmore et al.,
1998), and musculoskeletal conditions (Dean Deyle, [2011)). However, compared to other diagnostic
imaging modalities, MRI typically requires a long acquisition time (Brown et al.| 2014; Bernstein
et al.l 2004)), which poses significant clinical challenges. This limitation has drawn considerable
attention from the research community, leading to advances in rapid/fast imaging techniques such as
parallel imaging (Pruessmann et al.,|1999; |Griswold et al.,|2002), compressed sensing (Lustig et al.,
2007), and deep learning-based MR image reconstruction (Hammernik et al., [2018).

The common underlying strategy among these accelerated MRI approaches is acquiring fewer raw
data in Fourier space (k-space in MRI), often below the Nyquist sampling criterion, and recon-
structing “diagnostic quality” images through sophisticated algorithms instead of straightforwardly
applying the inverse Fourier transform. Consequently, as the number of acquired samples decreases
(or equivalently, as higher acceleration is achieved), it becomes increasingly critical to select the
most diagnostically informative samples, since highly accelerated imaging inevitably leads to image
quality degradation. A promising approach may involve an intelligent system that adaptively selects
k-space samples to maximize predefined diagnostic criteria for a given time budget, thereby balanc-
ing acquisition efficiency with diagnostic accuracy. While traditional optimization and supervised
learning (SL) methods have demonstrated success in improving k-space sampling strategies and
diagnostic performance, these approaches typically rely on fixed objectives—often model-based in
traditional optimization or driven primarily by training data in SL (Zeng et al.| 2021)).

Reinforcement learning (RL) approaches have recently shown promise as compelling alternatives
to traditional model-based optimization and SL methods, offering flexible and adaptive solutions
(Du et al., 2024; [Yang & Dong|, 2024; |Yen et al., [2024; [Liu et al.| [2024). Notable studies include
ASMR (Yen et al., 2024) which learns an adaptive policy (via proximal policy optimization or
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PPO) to select k-space samples for direct pathology classification; PG-MRI (Bakker et al., |2020),
which sequentially selects k-space measurements via a greedy policy-gradient search; Pineda et al.
(Pineda et al.| [2020) which employs deep Q-learning (DQL) (Mnih et al.l 2015) for sequential k-
space column selection guided by reconstruction quality; and Xu and Oksuz (Xu & Oksuz, [2025)),
utilizing a PPO-based (Schulman et al., 2017) sampler that emphasizes lesion-specific fidelity.

While these existing RL approaches have demonstrated promising results, opportunities remain to
more comprehensively address objectives such as diagnostic accuracy, image reconstruction qual-
ity, and predictive uncertainty. To this end, we build upon the deep deterministic policy gradient
(DDPG) algorithm (Lillicrap et al.| 2015]), leveraging its demonstrated capability in complex, high-
dimensional decision-making scenarios (Sumiea et al.,[2024). Our goal is to address key limitations
inherent in directly applying standard DDPG to the joint optimization of MRI acceleration and dis-
ease diagnosis. Specifically, we propose:

1. anovel SL-based composite reward function that jointly accounts for diagnostic accuracy,
reconstruction quality, and predictive uncertainty;

2. apercentile-based replay buffer that partitions transitions into high- and low-reward groups,
enabling balanced batch sampling to mitigate overestimation bias and improve training
stability;

3. the use of differentiable discrete action selection via the Straight-Through Gumbel-Softmax
estimator (Bengio et al.l|2013; Jang et al.| 2016), which enhances exploration and improves
gradient flow during learning.

Finally, we evaluate the proposed algorithm, referred to as Enhanced DDPG (E-DDPG), on the
fastMRI (Zbontar et al.l 2018)) and fastMRI+ (Zhao et al., |2022) knee datasets, and compare its
performance against competing RL-based methods at acceleration factors of 4X, 8X, and 10X.

2 THEORY

2.1 PROBLEM DESCRIPTION

Let N, and N, denote the numbers of frequency-encoding (readout) and phase-encoding lines,
respectively. Let C denote the numbers of coil elements, and let x1,...,xc € CN*No rep-
resent the multi-coil MRI raw data matrices. In Cartesian MRI, data acquisition involves play-
ing out different phase-encoding gradients prior to readout, which corresponds to sequentially

filling the columns of the MRI raw data matrices xi,...,Xc (Brown et al) 2014). Then, the
multi-coil MR images u,,...,uc € CN"*Mr are reconstructed via the inverse Fourier trans-
form, i.e., u, = F ’1(XC) forc = 1,...,C. A common method for combining the individual

coil images is the root-sum-of-squares (RSS) reconstruction, defined elementwise as ugss(i,j) =
(Jug (i, )2+ -+ + Juc(i,5)>)*/? for 1 <i < N, and 1 < j < N,,. Downstream disease diagno-
sis and annotation are performed by radiologists reading/interpreting the reconstructed image ugss,
which in the case of binary classification can be expressed as a mapping ugss — L(ugss) € {0, 1},
where 0 and 1 indicate the absence and presence of the suspected disease or condition, respectively.

Let K < N, be the sampling budget (i.e., the number of phase-encoding lines/columns allowed to
be acquired), and let m g € {0, 1}"» be an N,,-dimensional column vector with Zjvzpl mg(j) = K.
The corresponding k-space sampling mask is then given by my = lNT,mL € {0, 1}V-* N where
1y, is a column vector of ones of length [V, (readout length), and m} is a row-vector indicating
which phase-encoding columns are selected. Let R,, denote a neural network (NN) parameterized
by v trained for multi-coil MRI reconstruction. The NN-based reconstruction is then written as
yrss = Ry (mg ©x1,...,mg ®Xc), where ® denotes the element-wise product. Let L denote a
NN-based binary classifier parameterized by £. The absence and presence of the suspected disease,
e.g., meniscus tears, can be mapped via z = L¢(yrss) € {0,1}.

The goal of this paper is to determine an optimal sampling mask m7- from the possible candidates
such that it maximizes the quality of the reconstructed image ygrss and the accuracy of the predicted
label z via a reinforcement learning (RL) framework. To this end, we first model the problem as a
Markov decision process (MDP).
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2.2 1-STEP/STATE MDP

State & Action Spaces We aim to design an RL agent that selects K columns simultaneously. Let
Mipit = 1y, mi—l';it denote the initial binary sampling mask, where m;y € {0, 1}N » has ones at the
predefined central k-space column indices and zeros elsewhere. The underlying MDP reduces to a
one-step/state MDP in which the state space S is a singleton set, i.e., S = {Sini} With

N, xN
Sinit = R (Minig © X1, ..., Mipig © X¢) € RY¥7, (D

The action corresponds to selecting a full set of K phase-encoding columns, including the predefined
central k-space lines. Formally, the action space is defined as

A= {mg € {0, e img|l = K and mg (j) = 1Vj € supp(Minit) } » )

where supp(minic) C {1, ..., N,} denotes the set of indices corresponding to the predefined central

lines. Let a%) denote a specific action m%) € A, where £ = 1,...,| Al indexes the total number

of valid candidates |A| = (%:\‘\L:T‘:l\‘\lf)‘ The corresponding sampling mask constructed from this

action is then given by m'? = 1 (a\?)T € {0, 1}¥-*Ns,
Suppose that environment transitions are deterministic. Upon selecting an action ax, the terminal
state is given by

Sterm = Ry (Mg @ X1,...,mg O xc) € RV *Np, 3)

For both reconstructions sipi¢ and Serm, we use the first stage of the PromptMR model (Xin et al.}
2023) for R,,. This model completes the missing k-space columns in mj,;; © X, and myx ® X, for
c = 1,...C, applies the inverse Fourier transform F~ to reconstruct the individual coil images,
and combines them using the RSS reconstruction.

Reward Function Recall that £¢ is a NN-based binary classifier. We adapt the standard
ResNet-50 architecture (He et all [2016)), pretrained on ImageNet (Deng et al., [2009), for L, by:
1) inserting spatial dropout layers after each ReLLU activation to improve generalization, and 2) re-
placing the final fully connected layer with a three-layer multilayer perceptron (MLP) that outputs
two logits for binary classification. These logits are passed through a softmax function to obtain a
predictive probability distributions. Let pinit = Le¢(Sinit) and prerm = L (Sterm) denote the softmax
output vectors at the initial and terminal states. Let zyye € {0, 1} denote the ground truth label. We
define the following composite reward:

r= )\I(CE(pinita Ztrue) - CE(pterma Ztrue)) + A2 SSIM(Sinih Slerm) + A3 (H(pinil) - H(pterm))' “4)

Here, CE(-, -) denotes a weighted binary cross-entropy loss, where class weights are derived from
the label distribution; H(-) is the Shannon entropy of the model’s predictive distribution. The first
term rewards reductions in cross-entropy (i.e., improvements in classification accuracy), the second
term rewards increased structural similarity (SSIM) between the initial and terminal reconstructions,
and the third term rewards decreased output entropy, encouraging the agent to make more confident
predictions. Finally, A1, A2, and A3 are tuning parameters.

2.3 RL AGENT

DDPG for 1-Step/State MDP  We apply the DDPG method (Lillicrap et al.,2015) to our one-step
MDP. Let Q4 : S x {0, 1}N » — R denote the critic network parameterized by ¢, and let D denote
a replay buffer, which is a set of transitions/experiences (S, @ x, ). The temporal difference (TD)
loss for training the critic network simplifies to

L(9) = Esyare.)~pl(r = Qo (suit, ax))?]. 5)
Since the environment terminates immediately after a single action, the target Q-value does not
include any bootstrapped estimate from a subsequent step. Therefore, the reward r itself serves as
the target value for training the critic.
Let g1,...,9n, be independent and identically distributed samples from Gumbel(0, 1). Then, the
deterministic actor jig : S — RN» (logits), parameterized by 6, is trained to maximize the expected
Q-value:

J(0) = Es,,~D[ Qg (Sinit, top-K (126 (Sinit) + 8))], (6)
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Figure 1: Pipeline of the proposed method. The forward pass of E-DDPG is illustrated in (a); data
flow for the proposed composite reward, percentile-based replay buffer (PRB), and balanced sam-
pling for batch creation are illustrated in (b). The implemented actor and critic network architectures
are illustrated in (c).

where g := (g1,...,9n,) and top-K(-) is a top-k operator that selects K largest elements from its
N,-dimensional argument vector. Note that the Gumbel noise g is added to 1 (sinit) for exploration
during learning. To update the actor parameters, we employ the policy gradient method. Ideally, the
gradient is given by the chain rule as follows:

Vo J(0) = Eg,;~p [va Q¢(Sinit7 a)|a:t0P-K(#e(Smn)+g)Vb top_K(b)‘b:}le(sinit)"rng/"Le (s)|s:5mn}~ (7

However, since the top-K operation is non-differentiable, direct backpropagation of gradients
through it is obstructed. To address this, we adopt the Straight-Through Gumbel-Softmax (STGS)
estimator (Bengio et al.,|2013 Jang et al., 2016)), which constructs a differentiable surrogate action.

STGS for Surrogate Action Letf := (f1,...,fn,) € R¥» denote the logits output by the actor
network, i.e., f = 119(Sinit). During the forward propagation, we add Gumbel noise g to the logits
output followed by the top-K operation to select discrete actions for interaction with the environ-
ment, i.e., ax = top-K(f + g) =: ab¥. To enable differentiability and gradient propagation during
training, we employ the STGS surrogate. Specifically, we approximate/relax the top-K selection
ah¥d as aso(5) = exp((fj + g;)/7)/ E}]:1 exp ((fj +g;)/7) € [0,1], where 7 > 0 is the temper-
ature parameter. Then, we construct the STGS surrogate action a515S by combining ¥ and a2t
in a way that ensures discrete forward behavior but maintains differentiability for gradient flow:

ax ™ = ag + (ak" — (detach(aR"))), ®)
where detach(-) denotes the stop-gradient operator, which blocks gradients from flowing through its
argument. This construction allows the surrogate action to reduce to a9 = ah¥ = qx during the

forward pass, while gradients are backpropagated through a2 only, because ¥ and detach(as")
have no gradient contribution, i.e., 9a3r ¢ /Of = daolt /Of.
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Percentile-based Replay Buffer (PRB) Intuitively, certain transitions and/or experiences—i.e.,
(Sinit, axc, 7)—that improve diagnostic confidence or significantly enhance image reconstruction
are more valuable for training. Uniform sampling from the replay buffer D of size Np, D =
{(sl(nllz7 a%% rM),..., (si(rfi\{”), a(I?]D), r(N2))}, may overlook these critical transitions. To address
this, we propose a percentile-based replay buffer (PRB) that employs a dynamic prioritization mech-
anism mitigating the limitations of uniform sampling by: 1) separating high-reward and low-reward
transitions, and 2) enforcing balanced training via a configurable sampling strategy.

The PRB divides transitions from the buffer D into two disjoint subsets: a high-reward buffer Bygp,
and a low-reward bufter Bioy, such that D = Byien U Biow. Transitions with rewards above a dy-
namically computed threshold are stored in Byign, while those with rewards below the threshold
are stored in By,,. To be specific, for the set of rewards stored within a sliding window of re-
cent transitions, denoted as VW, we define the threshold 7 as P-th percentile of the reward distri-
bution i.e., = Percentile(W, P). Using this threshold, transitions are partitioned into a high-
reward buffer Bpign and a low-reward buffer B, such that (Sinit, Ok, 7) € Bhign if 7 > 7, other-
wise (Sinit, @x,7) € Biow. This partitioning ensures that transitions associated with relatively high
rewards—such as those improving diagnostic confidence or reconstruction quality—are emphasized
during training, while still retaining lower-reward transitions to preserve stability and policy diver-
Sity.

For balanced learning, transitions are sampled from both Bjign and Bjo, according to a configurable
mix ratio 3 € [0, 1]. Specifically, a training batch B of size N is constructed as B = Sp,,,, (| N5 -
Bl)U Sp,,(Ng — | N - 8]), where Sc(q) is a uniform sampling operator that draws ¢ transitions
from buffer C. By maintaining this hierarchical process, the buffer dynamically adapts to prioritize
transitions that are more relevant to the agent’s current policy, while exploring a broad range of
experiences. Finally, the complete framework is illustrated in Figure

3 EXPERIMENTAL METHODS

Experiments were carried out using multi-coil k-space data from the fastMRI knee dataset (Zbon-
tar et al., 2018)), supplemented with slice-level annotations provided by the fastMRI+ dataset (Zhao
et al., 2022). Our objective was to reconstruct high-quality images from 4X, 8X, and 10X acceler-
ated (i.e., partially sampled) k-space data while preserving the diagnostic information required for
accurate identification of meniscus tears.

Data Preparation & Preprocessing The inverse Fourier transform ! was applied to the fully
sampled multi-coil k-space data. Since original image dimensions varied, each image was cropped
t0 320 x 320 x C' (Xu & Oksuz,[2025)). These cropped images were subsequently Fourier transformed
back to k-space, resulting in a dataset with dimensions identical to the cropped images except for
the coil dimension. An initial sampling mask (consisting of 16 central k-space columns set to 1s)
was generated for each slice and coil.

Training Strategy Overall, our E-DDPG framework consists of four learnable modules: 1) re-
construction network R, i.e., PromptMR (Xin et al} [2023), 2) classification network L, i.e., cus-
tomized ResNet-50 (He et al., [2016), 3) critic network Qg4, and 4) actor network 1. The recon-
struction network R, and the classifier £, were pretrained and remained frozen during subsequent
training of the RL agent (Q, and pg). This decoupling prevents instability that might arise from si-
multaneously adapting multiple sets of neural network parameters for reconstruction, classification,
critic, and actor losses.

The released versiorﬂ of PromptMR was trained without modification on fully-sampled as well as
4X, 8X, and 10X accelerated k-space data (19,912 slices in total) for 50 epochs. All optimizer
settings and architectural hyperparameters (e.g., the number of prompt blocks and channel counts)
are listed in Appendix. The resultant weights 6 were kept fixed for all subsequent stages.

A standard ResNet-50 architecture, pretrained on ImageNet, was adapted by 1) inserting spatial
dropout layers after each ReLLU activation to enhance generalization, and 2) replacing the final fully
connected layer with a three-layer MLP that outputs two logits for binary classification. To address

"https://github.com/hellopipu/PromptMR
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Algorithm 1 Enhanced DDPG (E-DDPG) Framework

Initalization: Replay buffers Bhigh, Biow, hyperparameters: A1, A2, A3, percentile P, mixing ratio
B, Gumbel temperature 7, replay buffer size Np, batch size Npg.

At each batch iteration:

. Receive current state s,

. Compute logits f from actor network (14 (sin;c) for each action a
. Sample Gumbel variables: g ~ Gumbel(0, 1)

. Select discrete actions via STGS

. Execute actions ax and observe next state Sierm

. Compute composite reward r (Eq. f)

. Sample transitions (Siu, a,7) from PRB

. Update critic ¢ by minimizing temporal-difference loss (Eq.

. Update actor 6 using policy gradient (Eq.

O 00NN B~ WK -

Output: Final optimized actor policy pg

class imbalance and mitigate overfitting, two strategies were employed simultaneously: 1) dropout
regularization in the classification head, and 2) oversampling of the minority class during training
to ensure balanced exposure across classes. The classifier was trained to minimize the binary cross-
entropy loss for 50 epochs on the following dataset: A subset of slices from the complete fastMRI
dataset was labeled as positive or negative for meniscus tears according to annotations provided by
fastMRI+. Corresponding multi-coil k-space slices were extracted based on these labels, resulting
in a final dataset comprising 6596 slices (20.6% positive) for training, 1247 slices (14.6% positive)
for validation, and 1502 slices (20.3% positive) for testing.

In E-DDPG, the actor ug takes the image reconstructed from partially sampled k-space data, i.e.,
Sinit, and feeds it through an initial convolutional block (3x3 Conv — InstanceNorm — ReLu —
Dropout), expanding the input to a predefined base number of feature channels. The output tensor
then traverses four identical downsampling stages; each stage consists of the same convolutional
block followed by a 2x2 MaxPool — BatchNorm block, which doubles the number of feature
channels while halving the spatial resolution. The output feature tensor of the final stage is flattened
and passed through a three-layer MLP with Leaky-ReLU activations, projecting it onto a length-.J
score vector, where J is the number of phase-encoding columns. The critic evaluates a state—action
pair (s, ax’). The image state si € R329%320 is first flattened and then projected via a fully
connected layer. The action vector a € RN» is passed through another fully connected layer of
the same width. These two outputs are concatenated and passed through two additional ReLU-
activated fully connected layers. Finally, a linear neuron returns the scalar Q4 (Sinit, ¢ ). The actor-
critic architecture is illustrated in Figure |1} and the training procedure at each batch iteration is
summarized in Algorithm I

All methods, including our proposed approach and the compared algorithms, were trained for 30
epochs using the same random seed. We set § = 0.5 to ensure an equal mix of high- and low-
reward transitions in each batch. In all experiments we weight the three reward components with
the coefficients Ay = 10, Ao = 100, and A3 = 10, to balance the relative influence of confidence
tightening versus the other two objectives. All trainings were completed using a 4-way NVIDIA
H200 GPU machine.

Comparison We compared the proposed E-DDPCﬂ with the following methods. /) Baseline:
The RSS coil combination of the inverse Fourier transform of the fully sampled multi-coil k-space
data served as the reference for evaluating SSIM and PSNR. The same binary classifier used in
our E-DDPG training was also trained on these RSS images, along with diagnostic annotations
indicating the presence or absence of meniscus tears. This supervised learning approach served
as the baseline framework for evaluating classification performance. 2) Competing RL-based MRI
Acceleration: ASMRP]| (Yen et al| 2024), Pineda et alf| (Pineda et al., 2020), and Xu and Oksuz)|

Zhttps://anonymous.4open.science/r/eddpg-8B30
3https://github.com/robinyen/asmr
*https://github.com/facebookresearch/active-mri-acquisition
>https://github.com/Ruru-Xu/KSRO
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Table 1: Performance comparison across metrics at different acceleration factors.

4X
Algorithm SSIM PSNR AUC Bal. Acc.
Baseline 1.000 Inf 0.883+0.001 0.782+0.001
E-DDPG 0.864+3e-3 32.236+1.731 0.857+0.004 0.750+0.007
ASMR 0.853+4e-3 31.03542.436 0.834+0.006 0.741+£0.012
Pineda et al. 0.797+5e-2 27.9114+2.183 0.814+0.011 0.674+0.013
Xu and Oksuz 0.850+5e-3 30.40942.213 0.831+0.005 0.730+0.007
Ablation Study SSIM PSNR AUC Bal. Acc.
w/o STGS 0.853+7e-3 30.799+2.125 0.828+0.003 0.728+0.008
w/o PRB 0.859+2e-3 31.09242.006 0.854+0.004 0.740+£0.007
w/o R 0.84945e-3 29.70441.445 0.8204-0.006 0.714+0.008
DDPG 0.809+2e-2 28.4041+2.226 0.749+0.013 0.708+0.009

8X
Algorithm SSIM PSNR AUC Bal. Acc.
Baseline 1.000 Inf 0.883+0.001 0.782+0.001
E-DDPG 0.862+3e-3 30.838+1.589 0.854+0.006 0.751+0.008
ASMR 0.84745e-3 29.65441.058 0.829+0.008 0.735+0.010
Pineda et al. 0.795+4e-2 27.187+2.110 0.766+0.012 0.665+0.018
Xu and Oksuz 0.838+6e-3 29.49242.171 0.823+0.004 0.727+£0.009
Ablation Study SSIM PSNR AUC Bal. Acc.
w/o STGS 0.851+6e-3 29.510+2.945 0.822+0.008 0.723+0.009
w/o PRB 0.85744e-3 29.697+1.741 0.847+0.003 0.736£0.004
wlo R 0.844+4e-3 27.865+1.234 0.819+0.009 0.716+0.005
DDPG 0.772+2e-2 26.48341.859 0.737+0.007 0.691+0.018

10X
Algorithm SSIM PSNR AUC Bal. Acc.
Baseline 1.000 Inf 0.883+0.001 0.782+0.001
E-DDPG 0.857+4e-3 30.673+1.926 0.823+0.006 0.720+0.014
ASMR 0.84143e-3 29.40342.084 0.819+0.008 0.718+0.013
Pineda et al. 0.776+1e-2 26.39413.665 0.732+0.018 0.662+0.014
Xu and Oksuz 0.8354-6e-3 29.34642.198 0.810+0.010 0.716£0.006
Ablation Study SSIM PSNR AUC Bal. Acc.
w/o STGS 0.848+6e-3 27.954+1.528 0.808+0.005 0.697+0.009
w/o PRB 0.85442e-3 28.06241.266 0.8204-0.004 0.71440.012
wlo R 0.841+5e-3 27.546+1.871 0.805+0.011 0.689+0.012
DDPG 0.7694-2e-2 24.4644-2.025 0.71140.008 0.675+0.021

(Xu & Oksuzl 2025) were chosen for comparison due to their relevance to the proposed method
and availability. These methods were trained on the same 4X, 8X, and 10X accelerated multi-coil
k-space raw data from the fastMRI knee dataset. In addition, a negative weighted cross-entropy
term, i.e., 7 = — CE(Pierm, 2Zire) in Eq. E], was added to their original reward functions to explicitly
link their training to the binary classification objective.

Ablation Study To systematically analyze the individual contributions of 1) the STGS estima-
tor, 2) PRB, and 3) composite reward, we performed the following ablation experiments. E-DDPG
without STGS (w/o STGS): The STGS estimator was replaced by a conventional softmax /top-K se-
lector. The actor still outputs a logit vector; however, the discrete action is now obtained by selecting
K largest softmax probabilities rather than through the STGS surrogate. All other elements (PRB
and composite reward) remained unchanged. E-DDPG without (w/o PRB): The PRB was replaced
by a standard DDPG replay buffer, resulting in uniform sampling of stored transitions. The STGS
estimator and composite reward remained unchanged. E-DDPG without (w/o R): The composite
reward was replaced by a single negative weighted cross-entropy term, i.e., 7 = — CE(perm, Ztrue )-
The PRB and the STGS remained unchanged. DDPG: The STGS estimator, PRB, and composite
reward were all removed from E-DDPG. Like E-DDPG without STGS, the same softmax/top-K se-
lector was used instead. In other words, we adapted the standard DDPG by adding softmax/top-K
for discrete action selection.

Image Quality Assessment SSIM and PSNR were computed between reconstructed images pro-
duced by the proposed and comparison methods, and the baseline reference. Diagnostic performance
was assessed using the Area Under the Receiver Operating Characteristic curve (AUC) and Balanced
Accuracy (Bal. Acc.).

4 EXPERIMENTAL RESULTS

Overall, the proposed method (E-DDPG) consistently outperformed competing methods across all
tested undersampling factors in both image fidelity (SSIM and PSNR) and diagnostic accuracy (AUC
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(a) Baseline (b) E-DDPG (c) ASMR (d) Pineda et al.  (e) Xu and Oksuz

Figure 2: Exam-
ples of recon-
structed 1images |
at 10X accelera-
tion. Zoomed-in
views (red
boxes) highlight
key differences|
in regions of
interest.

(a) w/o STGS (b) w/o PRB (c) w/oR (d) DDPG

and Bal. Acc.)—best results indicated in bold excluding baseline—as shown in Table[I] Across all
three acceleration factors, E-DDPG achieves the strongest overall results. Its mean SSIM is 0.869
4 0.015, about three points higher than the next-best XU (0.840 £ 0.011) and seven to eight points
better than Pineda et al. and PILOT. As for PSNR, E-DDPG records 32.87 £ 0.12, whereas XU
reaches 30.57 and the other two algorithms stay in the 27-28 range. E-DDPG attains an average
AUC of 0.847 & 0.020, roughly 0.03 higher than XU and 0.07-0.08 above PILOT and Pineda et al.
Its Balanced Accuracy is 0.747 + 0.019, versus 0.715 for Xu and Oksuz and about 0.67 for the other
two methods.

These improvements in quantitative performance translated into enhanced reconstructed image qual-
ity, as shown in Figure[2] Zoomed-in views revealed that image details obtained by E-DDPG closely
match those of the baseline, with Xu and Oksuz also producing comparably clear results—consistent
with quantitative findings in Table[I] In contrast, images reconstructed by the remaining methods
exhibited noticeable blur, accompanied by a dark shaded region extending vertically along the right
side of the images. Among the ablation variants, the DDPG exhibited the most significant image
degradation. The other ablation variants (w/o STGS, w/o PRB, and w/o R) demonstrated slightly
reduced image quality compared to E-DDPG, but maintained similar overall visual quality. Exam-
ples of reconstructed images and policies at 4X and 8X are in Appendix. Figure 4 demonstrates the

mean of the metrics values and the 95% confidence intervals in 4 seeds <:i‘ + t\/iﬁ) Petty, 2012).

5 DISCUSSION AND CONCLUSION

Within the RL + SL framework, we have proposed E-DDPG addressing three key limitations of
standard DDPG. First, while vanilla DDPG is typically trained with a single scalar reward signal,
potentially missing subtle but critical changes in prediction confidence and reconstruction quality,
E-DDPG employs a composite reward (in Eq. ) that integrates weighted cross-entropy reduction
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Figure 3: Normalized frequency of the sampled k-space columns for 10X acceleration.
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Figure 4: Confidence interval.

ACE, SSIM improvement ASSIM, and entropy reduction AH. Second, vanilla DDPG uniformly
samples transitions from its replay buffer, treating all experiences equally informative; E-DDPG
introduces prioritized sampling so that rare or high-error experiences are replayed more frequently.
Third, directly applying DDPG’s continuous actor to discrete sampling is challenging because dis-
cretizing the action with a hard top-K breaks the differentiability of the actor-critic gradient chain
and restricts exploration. To address this, we incorporate the STGS estimator to preserve differen-
tiability for effective backpropagation. Learned policies, i.e., the resulting k-space sampling masks,
at 10X acceleration are shown in Figure[8] Although it is not immediately clear which specific sam-
pling patterns would yield the best performance, this very observation indicates the effectiveness of
the proposed E-DDPG in adaptively selecting the most informative k-space columns.

Finally, despite the gains demonstrated by E-DDPG, several practical limitations remain. First,
the framework operates on individual 2D slices. Second, the reconstruction and classifier backbones
were held fixed during RL training. Third, the current approach employs an 1-step MDP formulation
that selects K columns simultaneously with a single action. Future work will focus on 1) 3D k-
space trajectories coupled with a 3D reconstruction/classifier networks, 2) enabling end-to-end joint
optimization for R,, L¢, Q4, and 19, and 3) investigation of sequential/active sampling that could
offer further improvements as MRI is inherently a dynamic environment. In conclusion, we have
demonstrated RL-based adaptive k-space sampling, achieving high-quality image reconstruction
and and diagnostic accuracy at various acceleration factors.
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A APPENDIX

A.1 LIST OF HYPERPARAMETERS

Table 2 lists the hyperparameters used in E-DDPG across all experiments. Table 3 lists the hy-
perparameters that remain fixed throughout all experiments for the two auxiliary networks used by
E-DDPG. The upper half lists the architectural and training settings of the PromptMR reconstruc-
tor, while the lower half records the optimizer, learning schedule, and regularization choices for the
ResNet-50 classifier.

11
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Table 2: E-DDPG hyperparameter settings

Parameter Value
Optimizer Adam
Learning rate 1x107%
Dropout rate 0.25
Buffer size (Np) 300000
Bhrigh, Biow 150000, 150000
Batch size (Np) 128
Reward coefficients (A1, Ao, A3) 10, 100, 10
Mixing ratio (o) 0.5
Percentile (P) 0.75
Gumbel temperature (7) 1

Table 3: PromptMR and ResNet-50 hyperparameter settings

Parameter | Value
PromptMR hyperparameters
Optimizer AdamW
num_cascades 12
num_adj_slices 3

n_feat0 48
feature_dim [72, 96, 120]
prompt_dim [24, 48, 72]
sens_n_feat0 24
sens_feature_dim [36, 48, 60]
sens_prompt_dim [12, 24, 36]
len_prompt [5, 5, 5]
prompt_size [64, 32, 16]
n_enc_cab [2, 3, 3]
n_dec_cab 2,2, 3]
n_skip_cab [1,1,1]
n_bottleneck _cab 3

Ir 1x1077
Ir_step_size 35 epochs
Ir_gamma 0.1
ResNet-50 hyperparameters
Optimizer Adam
Learning rate 1x10°%
Scheduler step size 8
Scheduler decay factor | 0.5
Dropout rate 0.1

A.2 EXPERIMENTAL RESULTS

Figures 5-8 present representative reconstructions and the k-space sampling patterns/statistics for
4X and 8X accelerations. Figures 5 and 7 show 4X and 8X reconstructions (with zoomed insets),
while Figures 6 and 8 illustrate the normalized column-selection frequencies corresponding to these
acceleration factors. The exhibited image quality in Figures 5-7 is quantitatively supported by the
SSIM, PSNR, AUC, and Bal. Acc. metrics reported in the main manuscript. Figure 9 shows the
mean rewards of the proposed method over 30 epochs along with different acceleration factors.
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(a) Baseline (b) E-DDPG (c) ASMR (d) Pineda et al.  (e) Xu and Oksuz

(f) w/o STGS (g) w/o PRB (h) wio R (i) DDPG

Figure 5: Examples of reconstructed images at 4X acceleration. Zoomed-in views (red boxes)
highlight key differences in regions of interest.
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Figure 6: Normalized frequency of the sampled k-space columns for 4X acceleration.
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(a) Baseline (b) E-DDPG (c) ASMR (d) Pineda et al.  (e) Xu and Oksuz

(f) w/o STGS (g) w/o PRB (h) wio R (i) DDPG

Figure 7: Examples of reconstructed images at 8X acceleration. Zoomed-in views (red boxes)
highlight key differences in regions of interest.
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Figure 8: Normalized frequency of the sampled k-space columns for 8X acceleration.

14



Under review as a conference paper at ICLR 2026

o
=}
[}

—

»
gy
G

>
o
o

»
i
G

D s G S G

Average Reward
w s
~ o
w o

w
o
S}

Acceleration

3.25 —o— 4x
—o— 8%

3.001 f —o— 10x
5 10 15 20 25 30

Epoch

Figure 9: Convergence graph of the proposed algorithm for different acceleration factors
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