
Accessing Higher Dimensions for Unsupervised Word
Translation

Sida I. Wang
FAIR, Meta

Abstract

The striking ability of unsupervised word translation has been demonstrated re-
cently with the help of low-dimensional word vectors / pretraining, which is used
by all successful methods and assumed to be necessary. We test and challenge this
assumption by developing a method that can also make use of high dimensional
signal. Freed from the limits of low dimensions, we show that relying on low-
dimensional vectors and their incidental properties miss out on better denoising
methods and signals in high dimensions, thus stunting the potential of the data. Our
results show that unsupervised translation can be achieved more easily and robustly
than previously thought – less than 80MB and minutes of CPU time is required
to achieve over 50% accuracy for English to Finnish, Hungarian, and Chinese
translations when trained in the same domain; even under domain mismatch, the
method still works fully unsupervised on English NewsCrawl to Chinese Wikipedia
and English Europarl to Spanish Wikipedia, among others. These results challenge
prevailing assumptions on the necessity and superiority of low-dimensional vectors
and show that the higher dimension signal can be used rather than thrown away.

1 Introduction
The ability to translate words from one language to another without any parallel data nor supervision
has been demonstrated in recent works (Lample et al., 2018b; Artetxe et al., 2018b, . . .), has
long been attempted (Rapp, 1995; Ravi and Knight, 2011, . . .), and provides empirical answers to
scientific questions about language grounding (Bender and Koller, 2020; Søgaard, 2023). However,
this striking phenomenon has only been demonstrated with the help of pretrained word vectors
or transformer models recently, lending further support to the necessity and superiority of low-
dimensional representations. In this work, we develop and test coocmap1 for unsupervised word
translation using only simple co-occurrence statistics easily computed from raw data. coocmap is dual
method of vecmap (Artetxe et al., 2018b), using co-occurrences statistics in place of low-dimensional
vectors. The greedy and deterministic coocmap establishes the most direct route from raw data to the
striking phenomenon of unsupervised word translation, and shows that pretrained representation is
not the key.

More surprisingly, coocmap greatly improves the data efficiency and robustness over the baseline
of vecmap-fasttext, showing that relying on low-dimensional vectors is not only unnecessary but
also inferior. With coocmap, 10–40MB of text data and a few minutes of CPU time is sufficient to
achieve unsupervised word translation if the training corpora are in the same domain (e.g. both on
Wikipedia, Figure 1). For context, this is less than the data used by Brown et al. (1993) to train IBM
word alignment models. On cases that were reported not to work using unsupervised methods by
Søgaard et al. (2018), we confirm their findings that using fasttext (Bojanowski et al., 2017) vectors
indeed fails, while coocmap solved many of these cases with very little data as well. For our main
results, we show that less similar language pairs such as English to Hungarian, Finnish and Chinese
posed no difficulty and also start to work with 10MB of data for Hungarian, 30MB of data for Finnish

1code released at https://github.com/facebookresearch/coocmap

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/facebookresearch/coocmap

100 101 102 103

data size (MB)

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 P
@

1

enwiki-eswiki
coocmap
dict-init
vecmap-fasttext

starts to work at 9MB

> 50% acc. at 20MB

↓ init. gap

Figure 1: Our results focus on the data re-
quirements as we varying the amount and do-
mains of data. The unsupervised accuracy
increases quickly with a sharp starting point
point and this can happen surprisingly early
(∼10MB here), reaching >50% by 20MB. As
data increases, supervised initialization with
ground-truth dictionary (dict-init) does not
make much difference as shown by the vanish-
ing initialization gap. vecmap-fasttext needs
more data and is less stable.

and 20MB of data for Chinese. The hardest case of training with domain mismatch (e.g. Wikipedia
vs. NewsCrawl or Europarl) is generally reported not to work (Marchisio et al., 2020) especially for
dissimilar languages. After aggressively discarding some information using clip and drop, coocmap
works on English to Hungarian and Chinese, significantly outperforming vectors, which do not work.

These results challenge the conventional wisdom ever since word vectors proved their worth both
for cross-lingual applications (Ruder et al., 2019) and more generally where a popular textbook
claims dense vectors work better in every NLP task than sparse vectors (Jurafsky and Martin, 2023,
6.8). We discuss reasons that disadvantage low-dimensional vectors unless compression is the goal,
which is far more intuitive than the conventional wisdom that dense vectors are both smaller and
perform better. For vectors to perform, they must have nice linear-algebraic properties (Mikolov
et al., 2013c,b), successfully denoise the data, while still retaining enough useful information. The
linear algebraic and denoising properties are incidental, since they are not part of the training
objective but are a consequence of being in low dimensions. These incidental properties come
in conflict with the actual training objective to retain more information as dimension increases,
leaving a small window of opportunity for success. The incidental denoising we get from having
low dimensions, while interesting and sufficient in easy cases, is actually suboptimal and worse
than the more intentional denoising in high dimensions used by coocmap. Furthermore, without the
need to have low dimensions, coocmap can access useful information in higher dimensions. The
higher dimensions contain knowledge such as portland-oregon, cbs-60 minutes, molecular-weight,
luisiana-purchase, tokyo-1964 that tend to be lost in lower dimensions. We speculate that similarly
processed co-occurrences would outperform low-dimensional vectors in other tasks too, especially if
the natural but incidental robustness of vectors is not enough.

2 Problem formulation

This word translation task is also called lexicon or dictionary induction in the literature. The task is
to translate words in one language to another (e.g. hello to bonjour in French) and is evaluated for
accuracy (precision@1) on translations of specific words in a reference dictionary. We do this fully
unsupervised, meaning we do not use any seed dictionary or character information. Let the datasets
D1 and D2 be sequences of words from the vocabulary sets V1, V2. Since we do not use character
information, we may refer to vocabulary by their integer indices V = [1, 2, . . .] for convenience.
We would like to find mapping from V1 to V2 based on statistics of the datasets. In particular, we
consider the window model where the sequential data is reduced to pairwise co-occurrences over
context windows of a fixed size m. The word-context co-occurrence matrix Co ∈ R|V |×|V | counts
the number of times word w occurs in the context of c, over a window of some size m

Co(w, c) =

|D|∑
i=1

∑
−m≤j≤m,j ̸=0

I[wi = w,wi+j = c] (1)

where wi is the i-th word of the dataset D. The matrix Co is the sufficient statistics of the popular
word2vec (Mikolov et al., 2013a,c) and fasttext (Bojanowski et al., 2017), which use the same

2

co-occurrence information, including additional objectives not explicit in the loss function:

ℓ(θ) =

|D|∑
i=1

∑
−m≤j≤m,j ̸=0

logθ p(wi+j |wi). (2)

For word translation, we obtain Co1 and Co2 from the two languages D1 and D2 separately.

Multilingual distributional hypothesis. If words are characterized by its co-occurrents (Harris,
1954), then translated words will keep their translated co-occurrents. In more precise notation, let
(s1, t1), (s2, t2), . . . , (sn, tn) be n pairs of translated words, then for translation (s, t)

X[s, s1], X[s, s2], . . . , X[s, sn] ∼ Z[t, t1], Z[t, t2], . . . , Z[t, tn],

for association matrices X = K(Co1), Z = K(Co2). While intuitive, this is not known to work
unsupervised nor with minimal supervision. Rapp (1995) presents evidence and correctly speculates
that there may be sufficient signal. Fung (1997); Rapp (1999) used a initial dictionary to successfully
expand the vocabulary further using a mutual information based association matrix. Alvarez-Melis
and Jaakkola (2018) operates on an association matrix generated from word vectors.

Isomorphism of word vectors. Despite the clear motivation in the association space, unsupervised
translation was first shown to work in vector space, where a linear mapping between the vector spaces
corresponds to word translation. This is called (approximate) isomorphism (Ruder et al., 2019). If
s translate to t, and Xs, Zt are their vectors, then XsW ∼ Zt where W can be a rotation matrix,
and the association metric can be cosine-distance, often after applying normalizations to raw word
vectors. Successful methods solve this problem using adversarial learning (Lample et al., 2018b)
or heuristic initialization and iterative refinement (Artetxe et al., 2018b; Hoshen and Wolf, 2018),
among others (Zhang et al., 2017b).

3 Method
We aim for simplicity in coocmap, and all steps consists of discrete optimization by arranging
columns of X or measuring distances between rows of X where X is the association matrix based
on co-occurrences (and Z for the other language). Almost all operations of coocmap has an analog
in vecmap and we will describe both of them for clarity. There are two main steps in both methods,
finding best matches and measuring cdist pairwise distances. Each row of X corresponds to a word
for both vecmap and coocmap and are inputs to cdist. vecmap finds a rotation W that best match
given row vectors X[s, :] and Z[t, :] for s = [s1, s2, . . . , sn] ∈ V n

1 and t = [t1, t2, . . . , tn] ∈ V n
2 .

For coocmap, instead of solving for W , we just re-arrange the columns of the association matrix with
indices s, t directly to get X[:, s], Z[:, t] where the columns of X are words too.2

Algorithm 1 coocmap self-learning

X ∈ R|V1|×|V1|, Z ∈ R|V2|×|V2|;
Input s, t Output s, t
repeat

D = cdist(X[:, s], Z[:, t])
s, t = match(D)

until no more improvement

Algorithm 2 vecmap self-learning

X ∈ R|V1|×d, Z ∈ R|V2|×d;
Input s, t Output s, t
repeat

W = solve(X[s, :], Z[t, :])
D = cdist(XW,Z)
s, t = match(D)

until no more improvement

cdist(X,Z)ij = dist(Xi, Zj) is a function that takes pairwise distances for each row of both
inputs and then outputs the results in a matrix. The self-learning loop use the same improvement
measurement as in vecmap meani maxj(cdist(i, j)), but without stochastic search. We explain how
to generate X,Z, s, t, and match next.

Measurement. It is important to normalize before taking measurements, and vecmap normalization
consists of normalizing each row to have unit ℓ2-norm (unitr), center so each column has 0 mean
(centerc), and normalizing rows (unitr) again. For precision,

normalize(Y) := unitr(centerc(unitr(Y))), (3)

where centerc(Y) := Y − sumr(Y)/r, sumr(Y) := 1TY , and Y ∈ Rr×c.
2We show a derivation in E on the equivalence of vecmap and coocmap.

3

coocmap. The input matrix X = normalize(Co◦
1
2) is obtained from Co by taking elementwise

square-root then normalize. cdist is the cosine-distance.

vecmap. From original word vectors X ′, we use their normalized versions X = normalize(X ′).
For solve(X[s], Z[t]), we use argminW∈Ω ||X[s, :]W − Z[t, :]||F , for rotation matrices Ω. This is
known as the Procrustes problem. cdist is the cosine-distance.

Initialization. We need the initial input s, t for Algorithms 1 and 2. For the unsupervised initializa-
tion, we follow vecmap’s method based on row-wise sorting. Let sort_row(X) make each row of X
be sorted independently and normalize(X) is defined in (3), then

Algorithm 3 unsupervised initialization
Input X,Z, Output D
R(Y) := sort_row(K(Y))
S(Y) := normalize(R(Y))
D = cdist(S(X), S(Z))

vecmap: X,Z ∈ R|V |×|V |

X = (X ′X ′⊺)
1
2 for X ′ ∈ R|V |×d

coocmap: X,Z ∈ R|V |×|V |

X = normalize(Co
◦1/2
1)

The first step of vecmap X = (Y ′Y ′⊺)
1
2 is actually converting from vector space to the association

space. So it is natural to replace the first step by normalize(Co
◦1/2
1) for coocmap.

Matching. The main problem once we have a distance matrix is to solve a matching problem

min
M

∑
(i,j)∈M

cdist(i, j) (4)

vecmap proposes a simple matching method, where we take j∗ = argminj cdist(i, j) for each i in
forward matching, and then take i∗ = argmini cdist(i, j) for each j in backward matching. This
always results in |V1|+ |V2| matches where words on each side is guaranteed to appear at least once.
For coocmap, there is complete freedom in forming matches i, j and often many words all match
with a single word. As a result, hubness mitigation (Lazaridou et al., 2015) is even more essential
compared to vecmap.

While there are many reasonable matching algorithms, we find that Cross-Domain Similarity Local
Scaling (CSLS) (Lample et al., 2018b) was enough to stabilize coocmap. Note that CSLS acts on the
pairwise distances and therefore directly applies to cdist,

csls(cdist(i, j)) = cdist(i, j)− 1

2k

 ∑
j′∈Ni(k)

cdist(i, j′) +
∑

i′∈Nj(k)

cdist(i′, j)


where Ni(k) are the k-nearest neighbors to i according to cdist. We use csls(cdist) as the input to
(4) in place of cdist. Instead of always preferring the best absolute match, CSLS prefers matches that
stand out relative to the k best alternatives.

3.1 Clip and drop
This basic coocmap above already works well on the easier cases and these techniques provided small
improvements. However, for difficult cases of training on different domains, clip is essential and drop
gives a final boost that can be large. These operations are aggressive and throws away potentially
useful information just like rank reduction, but we will show that they are far better especially under
domain shifts.

clip. For clip, we threshold the top and bottom values by percentile. While there are just 2 numbers
for the 2 thresholds, we use two percentiles operations to determine each of them so they are not
dominated by any particular row. Let ri = Qp(Xi) be the pth percentile value of the row i of X . We
threshold X at Qp(r1, r2, . . . , r|V |), where p = 1% for lowerbound and p = 99% for upperbound.
This results in two thresholds for the entire matrix that seem to agree well across languages. For
results on clip, we run coocmap with X = clip(normalize(Co◦1/2)). Intuitively, if words are already
very strongly associated, obsessing over exactly how strongly is not robust across languages and
datasets but can incur large ℓ2s. For lowerbound, extremely negatively associated words is clearly not
robust, since the smallest count is 0 and one can always use any two words together. Both bounds
seem to improve over baseline, but the upperbound is the more important one.

4

drop (head). Drop the r = 20 largest singular vectors, i.e. dropr(X) = X − Xr ∈ R|V |×|V |,
where Xr is the rank-r approximation of X by SVD. In the experiments, we first get the solution
of s, t from clip(normalize(Co◦1/2)) then use coocmap on X = clip(dropr(normalize(Co◦1/2)))
with s, t as the initial input. Drop was good at getting a final boost from a good solution, but is usually
worse than the basic coocmap in obtaining an initial solution. While the dropping top 1 singular
vector is discussed by (Mu and Viswanath, 2018; Arora et al., 2017) and popular vectors implicitly
drop already (see A), we see more benefits from dropping more and this seems to enable more benefits
of the higher dimensions. We show examples in Appendix F in support of this viewpoint.

Truncate (tail). This is the usual rank reduction where truncr(X) = Xr is the best rank-r
approximation of X by SVD. We use this for analysis on the effect of rank.

4 Experiments
For the main results, we report accuracy as a function of data size and only show results in the
fully unsupervised setting. The accuracy is measured by precision at 1 on the full MUSE dictionary
for the given language pair on the 5000 most common words in each language (see Section 6 for
limitations). Many results will be shown as scatter plots of accuracy vs. data size, each containing
thousands of experiments and more informative than tables. They will capture stability and the
qualitative behaviors of the transitional region as the amount of data varies. Each point in the scatter
plots represents an experiment where a specific amount of data was taken from the head of the
file for training co-occurrence matrices and fasttext vectors with default settings (skipgram, 300
dimension, more in B) for fasttext. coocmap use the same window size as fasttext (m = 5), the same
CSLS (k = 10) and same optimization parameters as vecmap. coocmap does not require additional
hyperparameters until we add clip and drop. The same amount of data is taken from both sides unless
one side is exhausted. In our experiments, most cases either achieve > 50% accuracy (i.e. works) or
near 0 accuracy and has a definite starting point (i.e. starts to work). Summary of these results are in
Table 1 and we will show details on progressively harder tests.

Methods. we compare these methods for the main results.

• dict-init: initialize with the ground truth dictionary then apply coocmap.
• coocmap: fully unsupervised coocmap and improvements with -clip, -drop if needed.
• vecmap-fasttext: apply vecmap to 300 dimensional fasttext vectors trained with default settings.
• vecmap-raw: apply vecmap to a svd factorization of the co-occurence matrix. If Co◦1/2 = USV ′,

then we use USr as the word vectors where Sr only keeps top r singular values. r = 300.

For dict-init, we initialized using the ground truth dictionary (i.e. initial input s, t to Algorithm 1
are the true evaluation dictionary) and then test on the same dictionary after self-learning. This
establishes an upper-bound for the amount of gains possible with a better initialization as long as
we are using the basic coocmap measurements and self-learning. After coocmap works stably, their
performance coincides, showing very few search failures and the limit of gains from initialization.

We use default parameters for fasttext in this section. This may be unfair to fasttext but better match
other results reported in the literature where the default hyperparameters are used or pretrained
vectors are downloaded. In Section B, we push on the potential of fasttext more and describe
hyperparameters.

Data. We test on these languages paired with English (en): Spanish (es), French (fr), German (de),
Hungarian (hu), Finnish (fi) and Chinese (zh).

For training data we use Wikipedia (wiki), Europarl (parl), and NewsCrawl (news), processed
from the source and removing obvious markups so raw text remains. The data is processed using
Huggingface WordLevel tokenizer with whitespace pre-tokenizer and lower-cased first.

wiki (https://dumps.wikimedia.org/): Wikipedia downloaded directly from the official dumps
(pages-meta-current), extract text using WikiExtractor (Attardi, 2015) and removed <doc id tags.
We start from the first dump until is >1000MB of data for each language and shuffle the com-
bined file. For zh, we also strip away all Latin characters [a-zA-Z] and segment using jieba:
https://github.com/fxsjy/jieba.

parl (https://www.statmt.org/europarl/): Europarl (Koehn, 2005) was shuffled after download-
ing since this is parallel data.

5

https://dumps.wikimedia.org/
https://www.statmt.org/europarl/

news (https://data.statmt.org/news-crawl/): NewsCrawl 2019.es was downloaded and used as
is. For 2018-2022.hu and 2018.en, we striped meta data by grep -v on http, trackingCode and {
after which a small random sample does not obviously contain more meta data. This removed over
35% from hu news and 0.1% from en.

For evaluation data, we use the full MUSE dictionaries for these language pairs. This allows for a
more stable evaluation given our focus on qualitative behaviors, but at a cost of being less comparable
to previous results.

source target start start’ works
enwiki eswiki 9 70 20
enwiki frwiki 10 80 30
enwiki zhwiki 14 700 50
enwiki dewiki 20 200 70
enparl huparl 8 – 20
enparl fiparl 30 – 80

Domain mismatch
source target start start’ works
enwiki esnews 30 – 70
enwiki hunews 140 – 600
enwiki esparl 500 – 500
ennews zhwiki 800 – 800
enwiki huparl – – –
enwiki fiparl – – –

Table 1: Summary of data requirements for
coocmap in MB (1e6 bytes). start: when
coocmap starts to work, start’: when vecmap-
fasttext baseline starts to work (check Fig-
ure 2 to see that start is clear), – denotes
failure for the whole range; works: when
coocmap reaches 50% accuracy. Readings
are rounded up to the next tick of the log plot,
or 1.4 if less than the middle of 1 and 2. The
same amount of data is used on both source
and target sides, unless one side is used up
(e.g. 100MB of huparl or 300MB of esparl).
There are less than 0.2 million tokens per
MB in all datasets, ranging from 0.13 in fi-
parl, 0.19 in zhwiki and 0.20 for ennews.

4.1 Same domain of data

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-dewiki
coocmap
dict-init
vecmap-fasttext
vecmap-raw

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-frwiki
coocmap
dict-init
vecmap-fasttext
vecmap-raw

100 101 102 103

data size (MB)

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 P
@

1
enwiki-eswiki

coocmap
dict-init
vecmap-fasttext
vecmap-raw

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 P
@

1

enwiki-zhwiki
coocmap
dict-init
vecmap-fasttext
vecmap-raw

100 101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enparl-huparl
coocmap
dict-init
vecmap-fasttext
vecmap-raw

100 101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 P
@

1

enparl-fiparl
coocmap
dict-init
vecmap-fasttext
vecmap-raw

Figure 2: accuracy vs. datasize where the source data and target data are in the same domain, either
both Wikipedia, or both Europarl (enparl-huparl, and enparl-fiparl). These cases are easy for coocmap
but sometimes failed for vecmap-fasttext or required more data.

Similar languages. To establish some baselines, we start with the easy settings where everything
eventually works. Figure 2 shows that coocmap starts to work at around 10MB of data while vecmap
trained on fasttext only starts to work once there are over 100MB of data. The transitional region
is fairly sharp, and coocmap works reliably on each language pair with around 100MB of data,
and vecmap with fastText also mostly works once there is around 100MB of data. vecmap-fasttext
eventually outperforms coocmap after it was trained on >100MB of data.

Less similar languages. For hard cases from (Søgaard et al., 2018), all of which were reported not
to work using MUSE (Lample et al., 2018b) using fastText vectors. Here, we confirm that vecmap
and fastText vectors also do not work on default settings. However, these are not even challenging to
the basic coocmap where all cases started to work with less than 30MB of data.

6

https://data.statmt.org/news-crawl/

For the small but clean Europarl data, we tested on English to Finnish (fi) and Hungarian (hu). As
shown in Figure 2, coocmap started to work at 9MB for hu and 30MB for fi. It finished the transition
region when we used all 300MB of en-fi and 100MB of en-hu. vecmap-fasttext has yet to work,
agreeing with the results of Søgaard et al. (2018). However, since vecmap-raw using simple SVD
worked, it was surprising that fasttext did not. Indeed, decreasing the dimension to 100 from 300
enables vecmap-fasttext to start working at 50MB of data for enparl-huparl (vs 8MB for coocmap,
Figure 6).

Next result is on English to Chinese (zh), where both are trained on Wikipedia. coocmap had a bit
more instability vecmap-fasttext also sometimes works with around 1GB of data. The more robust
version of coocmap-clip and drop is completely stable, and begin to work with less than 20MB of
data.

4.2 Under domain mismatch.
The most difficult case for unsupervised word translation is when data from different domains are
used for each language (Søgaard et al., 2018; Marchisio et al., 2020). The original vecmap of Artetxe
et al. (2018b) was tested on different types of crawls (WacKy, NewsCrawl, Common Crawl) which did
not work in previous methods. Marchisio et al. (2022b) show that vecmap also failed for NewsCrawl
to Common Crawl on harder languages. We test on Wikipedia to NewsCrawl and Europarl and see
successes on enwiki-esnews, enwiki-hunews, and ennews-zhwiki, enparl-eswiki before finally failing
on enwiki-fiparl and enwiki-huparl. See Figure 3.

On enwiki-esnews, where ∼100MB of data was required to reach 50%, though the basic coocmap
becomes unstable and all vecmap or fasttext based methods failed to work at all. However, clip and
drop not only stablizes this but enabled it start to work at 40MB of data.

On enwiki-hunews, coocmap mostly fails but get 5% accuracy with above 100MB of data. Impres-
sively, clip and drop fully solves this problem as well, but even clip has a bit of instability, reaching
50% accuracy at 600MB of data.

On ennews-zhwiki, coocmap fails completely without clip and drop, and even then requires more
data than before. Finally it works and reaching over 50% accuracy around 800MB. In C, we show the
data still has higher potential, where truncating to 2000 dimensions enables ennews-zhwiki to work
with 300MB or even 100MB of data, though still not reliably.

For more extreme domain mismatch, we test enparl-eswiki. In addition to being small, Europarl
contains only parliamentary proceedings which has a distinct style and limited range of topics, to our
surprise this also worked with 295MB of enparl, and 500MB from eswiki, reaching a final accuracy
of 70% suddenly, although basic coocmap also showed no sign of working. All methods failed for
enwiki-fiparl and enwiki-huparl in the range limited by Europarl (300MB for fiparl and 90MB for
huparl) with up to 1GB of enwiki, reaching the end of our testing.

5 Analysis: why coocmap outperformed dense vectors
These main results show that high-dimensional coocmap is more data efficient and significantly more
robust than the popular low-dimensional word vectors fasttext/word2vec, which contract prevailing
assumptions that vectors are superior and necessary to enable unsupervised translation among
other tasks. Ruder et al. (2019) states “word embeddings enables” various interesting cross-lingual
phenomena. For unsupervised dictionary induction, landmark papers (Lample et al., 2018a; Artetxe
et al., 2018b) needed vectors and even methods that must use a |V | × |V | input constructed these
from low dimensional vectors anyway (Alvarez-Melis and Jaakkola, 2018; Marchisio et al., 2022a).
More generally, the popular textbook Jurafsky and Martin (2023, 6.8) states “dense vectors work
better in every NLP task than sparse vectors”. Here, we provide natural reasons that disadvantage
vectors if we do not mind having higher dimensions.

The conflicting dimensions of vectors. These properties must hold for vectors to work,

1. Approximate isomorphism: be able to translate by rotation/linear map
2. Denoise: reduce noise and information not robust for the task
3. Retention: keep enough information at a given dimension to achieve good performance

By testing the dimension of word vectors in Figure 4, we can see that isomorphism and denoising
only holds in low-dimensions. To see this on enwiki-dewiki where fasttext works well, both vecmap-

7

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-dewiki
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-zhwiki
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-esnews
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

ac
cu

ra
cy

 P
@

1

enwiki-hunews
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 P
@

1

ennews-zhwiki
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enparl-eswiki
coocmap
coocmap-clip
coocmap-drop
vecmap-fasttext

Figure 3: Accuracy vs. data size with clip and drop. Except for enwiki-eswiki and enwiki-zhwiki
(top left, top middle), the rest all have domain mismatch where vecmap-fasttext gets ≈0.

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-dewiki-300MB

coocmap-clip
coocmap-drop
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-esnews-300MB

coocmap-clip
coocmap-drop
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

 P
@

1

enwiki-hunews-300MB
coocmap-clip
coocmap-drop
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext

Figure 4: Accuracy vs. dimension at 300MB of data. coocmap-clip/drop: truncd(X) by svd,
coocmap-fasttext: X = normalize((X ′X ′⊺)

1
2) for X ′ ∈ R|V |×d, vecmap-fasttext: X ′ ∈ R|V |×d.

fasttext and coocmap-fasttext are better than SVD truncation at low dimensions. Then accuracy
goes to 0 as dimension increases. This is not because vectors fails to retain information, since
coocmap-fasttext-clip works if we apply additional clipping. See B for more testing on the effect
of dimension and other hyperparameters. Notably, lower dimensions have better isomorphism and
denoising, and higher dimensions have better accuracy and retention. This trade off leaves a limited
window for fasttext to work well. Still, selecting a good dimension is sufficient for fasttext vectors to
match the accuracy and data efficiency of coocmap on the easiest cases (en-es, fr, de) and work well
enough on dissimilar languages training on the same domain.

Søgaard et al. (2018) notes similar impact of dimensionality themselves, but without exploring
enough range that would have solved their enparl-huparl and enparl-fiparl tests (with vecmap). Yin
and Shen (2018) argues that optimal dimension may exist because of bias-variance tradeoff. Our
experiments show that coocmap keeps improving with higher dimensions, and they may have been
misled by relying on linear algebraic properties. The unreliability of isomorphism is also noted by
Patra et al. (2019); Marchisio et al. (2022b).

Better denoising in high dimensions. Domain mismatch is where the vectors struggle the most
regardless of dimension. In the easiest domain mismatch case of enwiki-esnews of Figure 4, vecmap-
fasttext failed whereas coocmap-fasttext-clip worked (though not stably), showing that clip helps
even when applied on top of the natural but incidental denoising of vectors.

The association matrix of coocmap normalize(Co◦1/2) is also better overall than other choices such
as Mikolov et al. (2013a); Levy and Goldberg (2014); Pennington et al. (2014); Rapp (1995). In A,
we compared to other full-rank association matrices corresponding to popular vectors and show they
also perform worse than coocmap. For instance, the positive pointwise mutual information matrix
(PPMI) of Levy and Goldberg (2014) corresponds to word2vec/fasttext. While it can work with

8

simple ℓ2 cdist without normalize and can reach higher accuracy than the basic coocmap if tested
on the same domain, it has lower data efficiency and completely fails on the easiest enwiki-esnews
with domain mismatch, showing the same behaviors as fasttext. A more aggressive squishing such as
normalize(log(1 + Co)) works robustly too but is less accurate and less data efficient. Impressively,
Rapp (1995) also works fully unsupervised with the prescribed ℓ1.

Higher dimensions contain useful information. In all cases, coocmap-clip and coocmap-drop
both become more accurate as dimension increases. Under domain mismatch, there is considerable
gains above even 1000 dimensions, suggesting that we are losing useful information when going to
lower dimensions. Analyzing the association matrices based on which values are clipped, we show
in F that higher dimensions retain more world knowledge such as portland-oregon, cbs-60 minutes,
molecular-weight, basketball-jordan, luisiana-purchase, tokyo-1964 and using low dimensional
vectors misses out.

6 Discussions
Better vectors exist. coocmap shows that it is feasible to denoise in high dimensions better than
with popular vectors. Thus, applying denoising suitable to task, the size/type of training data first
before reducing dimension is a more principled ways to train lower dimensional vectors than the
current practice of relying on poorly optimizing a supposed objective. In this view, training vectors
can just focus on how to best retain information in low dimensions and vectors should just get
monotonously better with increasing dimensions and stop at an acceptable loss of information for the
task and data.

There is room for improvements for vectors of all dimensions. In Figure 4, fasttext got higher
accuracy at impressively low dimensions in favorable conditions whereas SVD on coocmap-drop
becomes more accurate with increasing dimension. Without actually constructing the better vectors,
it is clear that meaningful improvements are possible: for any given dimension d, there exists rank-d
matrices that can achieve a higher accuracy than the max of all rank-d methods already tested in
Figure 4.

But why vectors? Here is our opinion on why low-dimensional vectors appeared necessary and
better beside social reasons. Co-occurrence counts from real data are noisy in very involved ways and
violate standard statistical assumptions, however it is obligatory to apply principled statistics such as
likelihood based on multinomial or χ2, whereas vectors take away these bad options and allow less
principled but better methods. Statistics says likelihood ratios is the most data efficient: D(s, t) =∑

i p(s, i) log
p(s,i)
p(t,i) , or perhaps the Hellinger distance H(s, t) =

∑
i ||p(s, i)

1
2 − p(t, i)

1
2 ||22 if we

want more robustness. Using raw counts or a term like p log p (super-linear in raw counts) always
failed when measuring with the ℓ2 norm. The likelihood-based method of Ravi and Knight (2011)
likely would fail on real data for these reasons. Normalization is a common and crucial element of all
working methods. The methods of Rapp (1995); Fung (1997); Rapp (1999) were based on statistical
principles but with modifications to make normalized measurements. Levy and Goldberg (2014);
Pennington et al. (2014) actually proposed better normalization methods too that would equally apply
to co-occurrences (Appendix A).

Giving up on statistics and starting from vecmap lead to big improvements, ironic for our attempt to
understand unsupervised translation and how exactly vectors enabled it. To prefer more empirical
tests on a wider range of operations instead of believing that we can model natural language data
with simple statistics might be another underrated lesson from deep learning. In this work, we give
up on statistical modelling without giving up on higher dimensions, which makes available these key
tools that were sufficient to outperform low-dimensional vectors: large squeezing operations like
sqrt, normalizing against a baseline (subtracting means, divide by marginals), contrasting with others
during matching (CSLS), clip and drop. With just normalize and CSLS, coocmap would have similar
accuracy and higher data efficiency compared to fasttext. Clip made co-occurrences more robust
than vectors while also increasing accuracy, showing the possibility of denoising in high-dimensions.
Finally, drop enabled some access to the information in higher dimensions and lead to noticeably
higher accuracy as dimension increases. This is actually a more intuitive situation than the prevailing
understanding that going to very low dimensions is both more compact and more accurate.

IBM models. coocmap shows that unsupervised word translation would have been possible with
the amount of compute and data used to train IBM word alignment models (Brown et al., 1993).

9

While we do not test on the exact en-fr Hansards (LDC), we know it has > 1.3 million sentence pairs
from the Parliament of Canada. This can be compared to our Europarl en-hu experiments, which
has 0.6 million sentence pairs for a more distant language pair, showing there may not be much
additional information from the sentence alignments. coocmap with drop got around 75% accuracy
here. Though the compute requirement of coocmap may have been difficult in ’93 – by our estimate
en-hu with |V | = 5000 probably requires |V |3 ∗ 100 ≈ 1 Tera-FLOs, which should have been easy
by the early 2000s on computers having Giga-FLOPS.

Limitations. The vocabulary size is a potentially important parameter unexplored in this paper
where we used a low 5000 for cleaner/faster experiments. The most expensive step is factorization
operations and measuring distances of high dimensional co-occurrences which is O(|V |3) as opposed
to O(d|V |2) for vectors, though approximations are available with dimension reduction (see E).
Having a low vocabulary size may explain why we see little benefit (except in our hardest cases such
as C) from the potential denoising effects of truncation. Low-dimensional vectors is more easily
scalable to larger vocabulary and can more easily used by neural models. However, BPE, indexing,
truncating vocabulary, multiple window sizes and other alternatives are not explored to better use
higher dimensions.

Speculations. As cross-domain is more challenging than just cross-lingual, it is especially likely
that our findings may apply in other cross-domain tasks. So we speculate that if co-occurrences are
similarly processed without going to low dimensions, they are likely to perform better on other tasks
where more robustness is required than the natural robustness of low-dimensions. Similarly, neural
models may also benefit from intentional denoising like clip and drop.

Beyond simple vectors, more recent language models may also suffer from low dimensions, which
might be why they benefit from retrieval (Khandelwal et al., 2020), where low dimensional vectors
may lose too much information for the task. Recently, contextual transformer representations
superseded non-contextual vectors with more data and more dimensions pushing up the performance
across tasks. Following Kaplan et al. (2020), there are important trade-off between dimensions, data
and compute. If data is the limiting factor, it is plausible that better ways of using higher dimensions
is helpful.

Related work. Rapp (1995) already hinted that there might be enough signal for fully unsuper-
vised translation. Fung (1997); Rapp (1999); Haghighi et al. (2008) tested their high dimensional
approaches with seed words, but without a full search procedure. Ravi and Knight (2011) succeeded
in the case of time expressions and parallel data, but likely used insufficient normalization for harder
cases. Mikolov et al. (2013b) noticed the relation between low-dimensional rotations and translation.
With good enough vectors, Zhang et al. (2017a); Lample et al. (2018a); Artetxe et al. (2018a) achieved
fully unsupervised word translation while showing that seed words do not matter too much as long as
the unsupervised method works. There was much follow up on these successes, in particular, even
methods that must use an association matrix (Alvarez-Melis and Jaakkola, 2018; Marchisio et al.,
2022b) constructed them from low-dimensional vectors.

Broader Impact
For dictionary induction, this work shows it can be done with less data and is more robust to domain
mismatch than previously thought. We have a working procedure that is more direct, using less
compute, making it more accessible for educational purposes. Unsupervised translation means
learning from the statistics of data alone and can make bland and silly mistakes where outputs should
not be relied on unless they can be verified.

Acknowledgments
Thanks to Mikel Artetxe, Kelly Marchisio, Luke Zettlemoyer, Scott Yih, Freda Shi, Hila Gonen and
Tianyi Zhang for helpful discussions.

References
David Alvarez-Melis and Tommi Jaakkola. 2018. Gromov-wasserstein alignment of word embedding

spaces. In Proc. of EMNLP, pages 1881–1890.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for sentence
embeddings. In ICLR.

10

http://aclweb.org/anthology/D18-1214
http://aclweb.org/anthology/D18-1214
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a. Generalizing and improving bilingual word
embedding mappings with a multi-step framework of linear transformations. In Proc. of AAAI.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018b. A robust self-learning method for fully
unsupervised cross-lingual mappings of word embeddings. In Proc. of ACL.

Giusepppe Attardi. 2015. Wikiextractor. https://github.com/attardi/wikiextractor.

Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form, and
understanding in the age of data. In Proc of ACL.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the ACL, 5:135–146.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Parameter estimation. Computational Linguistics.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29.

Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. 2015. Improving zero-shot learning by
mitigating the hubness problem. In Proc. of ICLR.

Pascale Fung. 1997. Finding terminology translations from non-parallel corpora. Journal of Visual
Languages and Computing.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. 2008. Learning bilingual
lexicons from monolingual corpora. In Proc. of ACL.

Zellig S. Harris. 1954. Distributional structure. In Word, volume 10, page 146–162.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial unsupervised word translation. In Proc. of
EMNLP.

Dan Jurafsky and James H. Martin. 2023. Speech and language processing: 3rd Edition. Draft.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language
models. CoRR, abs/2001.08361.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. General-
ization through memorization: Nearest neighbor language models. In ICLR.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation. In Proceedings
of Machine Translation Summit X: Papers.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018a. Unsuper-
vised machine translation using monolingual corpora only. In Proc. of ICLR.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
2018b. Word translation without parallel data. In Proc. of ICLR.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. 2015. Hubness and pollution: Delving into
cross-space mapping for zero-shot learning. In Proc. of ACL, pages 270–280.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In
NIPS.

Kelly Marchisio, Kevin Duh, and Philipp Koehn. 2020. When does unsupervised machine translation
work? In Proceedings of WMT, pages 571–583.

Kelly Marchisio, Ali Saad-Eldin, Kevin Duh, Carey Priebe, and Philipp Koehn. 2022a. Bilingual
lexicon induction for low-resource languages using graph matching via optimal transport. In Proc
of EMNLP, pages 2545–2561.

11

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16935/16781
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16935/16781
http://aclweb.org/anthology/P18-1073
http://aclweb.org/anthology/P18-1073
https://github.com/attardi/wikiextractor
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://aclanthology.org/J90-1003
https://aclanthology.org/J90-1003
https://arxiv.org/pdf/1412.6568.pdf
https://arxiv.org/pdf/1412.6568.pdf
https://aclanthology.org/P08-1088
https://aclanthology.org/P08-1088
https://www.aclweb.org/anthology/D18-1043
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://aclanthology.org/2005.mtsummit-papers.11
https://openreview.net/pdf?id=H196sainb
https://doi.org/10.3115/v1/P15-1027
https://doi.org/10.3115/v1/P15-1027
https://aclanthology.org/2020.wmt-1.68
https://aclanthology.org/2020.wmt-1.68
https://aclanthology.org/2022.emnlp-main.164
https://aclanthology.org/2022.emnlp-main.164

Kelly Marchisio, Neha Verma, Kevin Duh, and Philipp Koehn. 2022b. IsoVec: Controlling the
relative isomorphism of word embedding spaces. In Proc of EMNLP, pages 6019–6033.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013b. Exploiting similarities among languages for
machine translation.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013c. Distributed
representations of words and phrases and their compositionality. In Proc. of Neurips.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top: Simple and effective postprocessing for
word representations. In ICLR.

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg, Matthew R. Gormley, and Graham Neubig.
2019. Bilingual lexicon induction with semi-supervision in non-isometric embedding spaces. In
Proc. of ACL.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe: Global vectors for
word representation. In Proc of EMNLP.

Reinhard Rapp. 1995. Identifying word translations in non-parallel texts. In Proceedings of the
Association for Computational Linguistics.

Reinhard Rapp. 1999. Automatic identification of word translations from unrelated English and
German corpora. In Proc. of ACL.

Sujith Ravi and Kevin Knight. 2011. Deciphering foreign language. In Proc of ACL.

Sebastian Ruder, Ivan Vulic, and Anders Søgaard. 2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research, 65:569–631.

Anders Søgaard. 2023. Grounding the vector space of an octopus: Word meaning from raw text.
Minds & Machines, 33:33–54.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual
dictionary induction. In Proc. of ACL.

Karl Stratos, Michael Collins, and Daniel Hsu. 2015. Model-based word embeddings from decompo-
sitions of count matrices. In Proc. of ACL.

Zi Yin and Yuanyuan Shen. 2018. On the dimensionality of word embedding. In Neurips.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. 2017a. Adversarial training for unsuper-
vised bilingual lexicon induction. In Proc. of ACL.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. 2017b. Earth mover’s distance minimiza-
tion for unsupervised bilingual lexicon induction. In Proc. of EMNLP.

12

https://aclanthology.org/2022.emnlp-main.404
https://aclanthology.org/2022.emnlp-main.404
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://aclanthology.org/P19-1018
http://arxiv.org/abs/cmp-lg/9505037
https://www.aclweb.org/anthology/P99-1067
https://www.aclweb.org/anthology/P99-1067
https://www.aclweb.org/anthology/P11-1002
https://www.jair.org/index.php/jair/article/view/11640
https://www.jair.org/index.php/jair/article/view/11640
https://www.aclweb.org/anthology/P18-1072
https://www.aclweb.org/anthology/P18-1072
https://aclanthology.org/P15-1124
https://aclanthology.org/P15-1124
https://proceedings.neurips.cc/paper_files/paper/2018/file/b534ba68236ba543ae44b22bd110a1d6-Paper.pdf
https://www.aclweb.org/anthology/P17-1179
https://www.aclweb.org/anthology/P17-1179
https://www.aclweb.org/anthology/D17-1207
https://www.aclweb.org/anthology/D17-1207

A Comparison of association matrices

100 101 102 103

data size (MB)

0.0

0.2

0.4

0.6

0.8
ac

cu
ra

cy
 P

@
1

enwiki-eswiki-90s
coocmap
coocmap-drop
fung1997-l1
rapp1995

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-dewiki-90s
coocmap
coocmap-drop
fung1997-l1
rapp1995

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-esnews-90s
coocmap
coocmap-drop
fung1997-l1
rapp1995

100 101 102 103

data size (MB)

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 P
@

1

enwiki-eswiki
coocmap
coocmap-drop
glove-l2
levy2014-l2
log1p

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-dewiki
coocmap
coocmap-drop
glove-l2
levy2014-l2
log1p

100 101 102 103

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-esnews
coocmap
coocmap-drop
glove-l2
levy2014-l2
log1p

Figure 5: top: methods from the 90s, bottom: methods from 2010s word2vec and glove.

method association formula normalize cdist
coocmap Co◦1/2 normalize ℓ2
log1p log(1 + Co) normalize ℓ2
Rapp (1995) p(s,i)

p(s)p(i) ℓ1 ℓ1

Fung (1997) p(s, i) log p(s,i)
p(s)p(i) ℓ1 ℓ1

Levy and Goldberg (2014) max
(
0, log p(s,i)

p(s)p(i) − log k
)

ℓ2 ℓ2

/ Church and Hanks (1990)
Pennington et al. (2014) log(1 + Co)− b · 1⊺ − 1 · b̃⊺ ℓ2 ℓ2

In Figure 5, we compare to several choices of association method K(Co) and find all of them to
be worse than Co◦1/2 plus normalize overall, and the two popular methods from 2010s are better
than the two methods from 1990s. These methods all perform normalization by factoring out the
marginals one way or another.

Besides the association matrices themselves, we match them with their best normalization method
from normalize, ℓ1, ℓ2. We report ℓ2 rather than normalize for Levy and Goldberg (2014); Penning-
ton et al. (2014) which proposed their own normalization. In all these cases, normalize gave almost
identical results as ℓ2, showing their own normalization was sufficient. normalize corresponds to ℓ2
cdist since it did ℓ2 normalization as the last step in (3). We use p(s, i) = Co(s, i)/

∑
s′,i′ Co(s

′, i′)
when a probability was required.

On the top of Figure 5, we compare Rapp (1995); Fung (1997) from the 90s specifically designed
for dictionary induction as well. Impressively, Rapp (1995) also performed well using ℓ1 distance
as prescribed, where it even started to work on enwiki-esnews. Fung (1997) did not work with the
prescribed ℓ2 criteria (not shown) but worked with ℓ1 as well. We think Rapp (1999) is similar to our
modification of Fung (1997) with ℓ1, which contains its most important term. However, using ℓ1 lead
to lower data efficiency and lower accuracy in methods that also work with ℓ2.

On bottom of Figure 5, we compare two popular association matrices from the 2010s. Notably, the
positive PMI of (Levy and Goldberg, 2014) corresponds to word2vec/fasttext, and actually has similar
performance characteristics as fasttext, where both reach higher accuracy than coocmap on easy cases
but has lower data efficiency and fails on enwiki-esnews. Other methods that use normalize on log
also worked for enwiki-esnews. Of these, coocmap has the highest accuracy. Levy and Goldberg
(2014) achieved higher accuracy while Pennington et al. (2014) worked on enwiki-esnews. The
normalization proposed in both methods achieved almost identical results with ℓ2 as with normalize.
ℓ1 also worked on them but clearly worse and has less data efficiency (not shown).

13

Pennington et al. (2014) did not specify what the biases b should be, instead just leaving them to
gradient optimization, we picked them to subtract out the mean of logs whereas PMI would subtract
the log of means. Co◦1/2 was also tested by Stratos et al. (2015) and found to be favourable. We also
did not find the shifted PPMI to be better than the basic PPMI of Church and Hanks (1990).

B Improving fasttext

101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-dewiki
dim
100
300
method_type
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext
coocmap-drop

101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enparl-huparl
dim
100
300
method_type
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext
coocmap-drop

101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 P
@

1

enwiki-esnews
dim
100
300
method_type
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext
coocmap-drop

101 102

data size (MB)

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

 P
@

1
enwiki-hunews

dim
100
300
method_type
coocmap-fasttext
coocmap-fasttext-clip
vecmap-fasttext
coocmap-drop

Figure 6: Improving fasttext with hyperparameter and clipping. Drop was set to min(20, 20 d
400)

resulting in a double curve since d = 100, 300 were both used.

In the main results, we used default parameters, where the important ones were skigram, lr: 0.05,
dim: 300, epoch: 5. In analysis section, we improve fasttext further by tuning dimension, learning
rate and epoch number, then by using coocmap, clip and drop. The effect of dimension has been
specifically explored in Figure 4. Here we show how 100 dimension and 300 dimensions as we vary
with the size of data – 100-dim tend to be more data efficient whereas 300-dim tend to reach higher
performance. The learning rate was slowed as 0.1(d/50)−1/2 to account for observed instability
in higher dimensions. The epoch was increased to 5× (300/|D|)1/2 for data size D in MB to run
more epoch on smaller data size. We did not observe too much difference between this and default
parameters beyond stablizing higher dimensions.

vecmap-fasttext only fully works for the two cases with no domain mismatch – enwiki-dewiki and
enparl-huparl. In contrast, coocmap-fasttext show that fasttext contains the information to tackle
harder cases of enwiki-esnews, showing that while fasttext is retaining the necessary information,
it does not have the necessary linear algebraic property for vecmap to work. On enparl-huparl,
vecmap-fasttext did not work for 300 dimensions whereas coocmap-fasttext-clip did using the same
vectors with clipping, achieving better accuracy than vecmap-fasttext 100 dim. On enwiki-esnews,
only coocmap-fasttext-clip and coocmap-fasttext worked. Finally, all fasttext based methods failed
on enwiki-hunews.

It is always possible that we are still using fasttext poorly, but we covered the main factors and
clarified the role of dimension which seems sufficient to explain the observed behaviors.

14

C Clip, drop and truncate

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4
ac

cu
ra

cy
 P

@
1

ennews-zhwiki-100MB
coocmap-clip
coocmap-clip-1.5
coocmap-drop
coocmap-drop-1.5

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 P
@

1

ennews-zhwiki-300MB
coocmap-clip
coocmap-clip-1.5
coocmap-drop
coocmap-drop-1.5

101 102 103

dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 P
@

1

ennews-zhwiki-1000MB
coocmap-clip
coocmap-clip-1.5
coocmap-drop
coocmap-drop-1.5

Figure 7: Accuracy vs. dimension on ennews to zhwiki, on 100MB, 300MB and 1000MB of data.

In this section, we try to push our most difficult case of ennews-zhwiki further by varying hyper-
parameters as well as dimensions. In our main results in Figure 3, ennews-zhwiki barely had any
transition before reaching high accuracy at 800MB, making us suspect there might be signal before
that but the hyperparameter was not optimal. So here we try clip at 1.5% for coopmap-clip-1.5,
drop-1.5 instead of 1% as in every other experiment. We also adjust drop to min(20, 20 d

400) instead
of a constant 20 so that less is dropped for lower dimensions d.

In Figure 7, we get the typical behavior of increasing accuracy with increasing dimension for 1000MB
of data all the way to the end. For 100MB and 300MB, this only worked when we also truncate some
of the tail end of the SVD. Even here, the maximum accuracy was reached at around 2000 dimensions
out of 5000, reaching > 50% accuracy at 300MB of data and 2000 dimensions. It is also remarkable
that while clipping more resulted in more stability, the final accuracies are virtually identical when
both clip and clip-1.5 works or when both drop and drop-1.5 works. This is a case where it is helpful
to truncate some of the tail of the SVD as well, at least for 100MB and 300MB where all failed at full
dimensions. However, the accuracy still increased up to 2000 dimensions, much higher than typical
vectors for the vocabulary size according to conventional wisdom.

D More details and ablations
D.1 Effect of initialization

101 102

dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-esnews-1000MB

coocmap
coocmap-drop
coocmap-fasttext-sqrt
vecmap-fasttext

101 102

dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

 P
@

1

enwiki-esnews-1000MB

coocmap
coocmap-drop
coocmap-fasttext-sqrt
vecmap-fasttext

Figure 8: Accuracy vs. dimensions on enwiki-esnews. 1000MB of data. Left: use full coocmap
initialization. Top red line is when coocmap-drop uses all 5000 dimensions. Right: use their own
initialization.

To rule out that fasttext is only limited by the unsupervised initialization step, Figure 8 shows when
all methods use the unsupervised initialization of full rank coocmap (left), vs their own unsupervised
initialization (right). Here vecmap-fasttext and coocmap-fasttext-sqrt both worked for a slightly
wider range of dimensions but the differences are small. Using the clipped version of initialization
also did not make much difference. Overall, varying initializations did not matter too much for
unsupervised initializations. On the other hand, for supervised initialization, coocmap tend not
be very sensitive once there is enough data. vecmap can be more sticky and is more affected by
supervised initialization, possibly because W can reach a local minimum.

D.2 Effect of matching method
The matching method was critical in getting coocmap to work, where simply applying the bidirectional
matching does not work even on the simplest enwiki-eswiki. It starts to work in the first few iterations,

15

but then half of the vocabulary gets matched to the one word (often but not always [UNK]) and
accuracy go to 0. Some hubness mitigation (Dinu et al., 2015) is a must for coocmap. This is not
surprising since the indices s, t can make arbitrary matches, whereas the vector space cannot make
arbitrary matches from a rigid rotation.

We tried a naive and greedy mutual matching method that also solved the problem, but CSLS is better,
simpler and is more similar to prior works. A proper matching methods such as Hungarian algorithm
or softer matching method already tested on bilingual dictionary induction (Marchisio et al., 2022a)
should work as well.

Subwords. we used fasttext since it is more standard for this problem, and we also checked that the
subwords information made no difference by turning them off in fasttext hyperparameters. This is
reassuring for the findings to apply to word2vec as well.

E From vectors to association matrices
We derive a more precise relationship between coocmap and vecmap using the notations of Section 3.

Let the d-dimensional vectors be X,Z ∈ R|V |×d such that they are whitened X⊺X = Z⊺Z = Id.
Then for coocmap, the association matrices is K(Y) = (Y Y ⊺)1/2 = Y Y ⊺. We can show that for
dot product cdist, and permutations s, t,

cdist(K(X)[:, s],K(Z)[:, t]) = cdist(XW,Z) (5)

where the LHS is the distance function in coocmap of Alg 1 and the RHS is the distance function in
vecmap of Alg 2. To see this,

cdist(K(X)[:, s],K(Z)[:, t])

= K(X)[:, s] ·K(Z)[:, t]⊺

= (XX[s])⊺ · (ZZ[t]⊺)⊺

= XX[s]
⊺ · Z[t]Z⊺

= X(X[s]
⊺
Z[t])Z⊺ if X[s]W = Z[t], then W = (X[s]

⊺
X[s])−1X[s]⊺Z[t]

= XWZ⊺ since (X[s]
⊺
X[s])−1 = I, W = X[s]⊺Z[t]

= cdist(XW,Z)

We can try relaxing the whitening assumption. w.l.o.g., let X = U1Σ1, Z = U2Σ2 where U⊺
i Ui = Id.

This can be obtained via SVD on any X ′ = U1Σ1V
⊺
1 so that the association matrix is not affected,

i.e. K(X ′) = (X ′X ′⊺)1/2 = (XX⊺)1/2 = U1Σ1U
⊺
1 . In this case, W = U1[s]

⊺U2[t] is the mapping
that would make the two sides equal.

However, if we try least square solve as before, we get W = Σ−1
1 U1[s]

TU2[t]Σ2 . The Procrustes
solution for X[s]W = Z[t] (or U1[s]Σ1W = U2[t]Σ2) is W = svd-norm(Σ⊺

1U1[s]
⊺U2[t]Σ2).

svd-norm takes the SVD but set all singular values to 1. Neither will make the two sides equal
exactly but these have some similarities.

F What is in higher dimensions?
Although the increasing accuracy, the absolute results and the consistency when we keep higher
dimensions suggest that there are useful signals, it could always be that we are using lower dimensions
poorly or benefting from other unknown effects. In this section, we compare the full-rank matrix and
the low-rank matrix to see what exactly is the difference. If the information lost by low rank seems
useful or robust, then we can be more confident in retaining this information. Indeed, the low rank
version seem to lose or de-emphasize a lot of world knowledge, specific phrases and the like while
making the association matrix more like a similarity matrix. In this section, we compare the full-rank
matrix and the low-rank matrix to see what exactly is the difference. If the information lost by low
rank looks useful or robust, then we can be more confident in retaining this information. Indeed, the
low rank version seem to lose or de-emphasize a lot of world knowledge, specific phrases and the
like while making the association matrix more like a similarity matrix.

We construct the full dimensional matrix, apply normalize and drop. Then we use the thresholds
established by clip. If an entry needs to be clipped in the full-rank matrix, but somehow is already

16

reduced and no longer need to be clipped in the lower-rank matrix, we record this as full-rank+ in
Table 9. Conversely, if low-rank instead increased an entry so that it should be clipped, we note it as
300-dim+.

From these examples, the differences are clear. The full dimensional matrix contain more world
knowledge and otherwise favor dissimilar words that are highly related: richard-nixon (famous
person), portland-oregon maine (geography), error-margin, molecular-weight (scientifc term), tokyo-
1964 (olympic), basketball-jordan james (famous players), cbs-60 minutes (show on CBS), louisiana-
parish purchase (famous event).

In contrast, the 300-dim+ favors identical or similar words like state-state, age-age, who-whom,
truth-true, tokyo-pyeongchang, cbs-fox, family-households, making the association matrix more like
the similarity matrix. This is also intuitive from SVD as well: if the association matrix is USV ⊺, then
the similarity matrix is US2V ⊺ whereas low dimension is USdV

⊺ with both S2 and Sd = truncd(S)
emphasizing higher singular values.

We also tested full-rank vs 1000-dim, where the effects are similar to the full-rank vs 300-dim shown,
but more subtle and harder to present clearly. When we tested drop we found drop tend to reduce
associations between pairs of numbers, words and punctuations and the like, whereas it increased
associations between article and words. It is not clear if this is good or bad.

G Example predictions
We include some predictions for extra information. The P@1 is quite generous to small vocabulary
V , since it does not evaluate on entries if the source is not in V1, or if no targets are in the V2, treating
the evaluation as out-of-vocabulary instead. So we show the number of correct predictions and the
source overlap with the reference dictionary, both out of 5000. Results are shown in Table 10.

17

source full-rank+ source full-rank+ full-rank+ 300-dim+ full-rank+ 300-dim+

NewsCrawl Wikipedia

NewsCrawl NewsCrawl

Wikipedia Wikipedia

NewsCrawl

NewsCrawl

Wikipedia Wikipedia

source: tokyo source: truth

source: basketball

source: cbs

richard nixon families residing

cooper anderson called so japanese winter speak true_

anderson cooper aspect ratio prosecutors south commission are

report contributed error margin electric china moment than

at least walter scott metropolitan korea post be

no longer yet another detention pyeongchang uncomfortable story

than rather oregon portland

this earlier scott walter bay chinese tell god

dean wells unless otherwise 1964 china commission view

kyle walker usa today 2020 korea table than

crazy rich jones indiana ward areas functional universe

behind scenes louisiana parish stock san search which

walker kyle british columbia rose taiwan

politically correct water %,

thomas cook cooper alice

graham billy maryland baltimore operations club

sense common why reason face fox corruption rugby

detroit lions illinois chicago 60 night division nfl

correct politically lord rings nation channel courts clubs

aaron rodgers james bond boston telling magic golf

2000 russell siege laid minutes abc james ball

star wars %). persons

light shed molecular weight 60 bbc nba club

town hall then since minutes disney operations stadium

almost certainly bob hope columbia cable country ice

hollywood reporter if even walter live memorial rugby

texas austin coast guard rather shows college clubs

cash flow final fantasy

Figure 9: Left: word pairs favored by the full rank matrix (full-rank+) on NewsCrawl or Wikipedia
sorted by the amount of difference over all pairs of words. 300-dim+ not shown since 72/top 100
consists of identical words with the rest mostly synonyms. Right: same comparison but for selected
words, also sorted by the difference.

18

ennews zhwiki enwiki esnews enwiki dewiki

4458 3484 2732

947 2727 3056

2179 682 1805

2972 2847 337

2401 4176 4669

733 868 2248

4260 451 414

2803 3548 105

4542 2375 86

4191 3570 702

612 3021 248

3360 765 1178

1846 4575 164

713 731 1907

2015 4058 3208

3843 3708 3200

1536 854 4578

1014 3187 477

2672 1483 1716

4934 4708 4489

989 1094 2866

4400 3813 2976

3289 934 4788

1620 1642 691

821 3045 251

2611 4274 725

1520 3626 286

801 302 290

4003 133 3903

319 4955 808

4424 3366 1050

1345 2249 1803

4835 4508 2179

4737 2669 3926

3894 764 4449

4472 1810 3979

4648 782 4909

3297 936 2510

539 955 3978

1083 72 2325

swift 〉 victims víctimas looking ergaben

significant 重⼤ somewhat bastante deputy stellvertreter

strength ⼒量 star estrella 1977 1977

letters 信 centers centros september september

coverage 直播 theology sindicatos strict streng

idea 提议 historic históricos sector bereich

assist 协助 research investigaciones came kam

properties 特性 tell comprobar while hingegen

circuit 法官 script estuvieron county county

saint 圣 elevation mínima pacific bewohnern

recently 近年 800 600 house haus

maria 娜 forms formas product produkt

surprise 在内 delayed adelantado second zweite

copyright & r r contained enthielt

carrying 携带 accurate precisa easy schwer

suspects ⾃杀 technologies tecnologías tone ton

dropped 下降 elements elementos consensus zustande

largest 最⼤ abbey estás television fernsehen

通讯 mountains sierra 75 75

masters 公开赛 southwestern básico handed übergeben

words 词 problems problemas electrical elektrische

pan 亚 compete competir proposal vorschlag

maximum 以上 remains sido beta)-

ceo 总裁 crown corona food nahrung

offer 提供 harbor sentirse power macht

150 150 phone teléfono able konnte

individual 个⼈ z subraya late späten

cancer 疾病 german alemán park park

."" 任内 early naranja en en

always 总是 provisions vigente source quelle

backs 司职 fruit aceite cost kosten

modern 现代 engines motores 99 99

spell 词 trump trump stand stehen

loud 声 forming formar pitch ton

metres 公尺 personal personales populated besiedelt

flood 洪⽔ identity identidad hunt jagd

attract 吸引 strong fuerte wore trugen

lowest 最低 recent recientes seems scheint

50 50 always siempre cousin bruder

build 建造 into nos operate betreiben

correct 1411 correct 2024 correct 2424

source 3341 source 4351 source 4401

P@1 66.30% P@1 71.60% P@1 77.05%

communica

Figure 10: 40 random samples from all predictions. Source indices are included to reflect frequency
where smaller means more frequent in the source language (left columns).

19

	Introduction
	Problem formulation
	Method
	Clip and drop

	Experiments
	Same domain of data
	Under domain mismatch.

	Analysis: why coocmap outperformed dense vectors
	Discussions
	Comparison of association matrices
	Improving fasttext
	Clip, drop and truncate
	More details and ablations
	Effect of initialization
	Effect of matching method

	From vectors to association matrices
	What is in higher dimensions?
	Example predictions

